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Abstract 

We analyze sequential second-price auctions under complete information involving two or more bidders with similar 
decreasing marginal valuations. Krishna (1999) designed a 2-bidder numerical example to show the existence of two 
symmetric equilibria characterized by an asymmetric allocation and weakly declining prices. We generalize Krishna's 
insights by showing that symmetric (asymmetric) allocations imply constant (weakly declining) price patterns and we 
derive the necessary conditions supporting symmetric allocations. The conditions become increasingly restrictive as the 
number of object increases.
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1. Introduction 
 
Bernheim and Whinston (1986) have argued that the complete information assumption is 
appropriate for the analysis of frequently-held auctions involving the same bidders. In 
such settings, the bidders know each other’s valuations, but the seller is poorly informed. 
It is easy to construct a second-price auction under complete information involving two 
symmetric bidders with declining valuations that will support two symmetric equilibria1 
characterized by a constant price pattern. Consider the outcome tree of the game 
illustrated in Figure 1. Arrows denote the allocation in each subgame and prices are given 
next to the paths. At each node, the bidders’ gross payoffs are put in parentheses. Each 
unit could go either to bidder A (left branch) or to bidder B (right branch). The 
equilibrium outcome is solved by backward induction and bids reflect the opportunity 
cost of not winning. The outcome tree, unlike the extensive form, features gross payoffs 
at every node which are obtained through subgame replacement. At nodes associated to 
the jth object, gross  payoffs are defined as the sum of valuations for objects won along 
the given path minus the sum of prices for objects that would be won among the last n-
j+1 objects.  For the last object, gross payoffs are the sum of the valuations.  

In Figure 1, bidders’ valuations for the first and second objects are 1θ  and 2θ . 

Bidder i has gross payoffs of 1 2θ θ+ , 1θ  and 0 from winning both objects, one object and 
nothing at the end nodes. Provided bidder A won the first object, he would bid his gross 
payoff differential 2θ for the second object. Conditional on bidder A having won the first 

object, bidder B would have a gross payoff differential of 1 0θ −  and would win the 

second object at price 2 2
Bp θ= . Conditional on the first object being won by bidder B, 

bidder A would win the second object by bidding 1θ  and paying 2 2
Ap θ= .  Moving up the 

tree, the payoffs at the two nodes account for allocations and prices derived for the 
second object: ( )1 1 2,θ θ θ−  vs ( )1 2 1,θ θ θ− . Both bidders end up bidding 2θ , knowing that 
if they lose the first object they will get the second at the same price.   

As for the Heckscher-Ohlin model in the trade literature, the results of this 2x2 
auction are not robust when the number of objects n or the number of bidders increases.  
In an example of a four-object auction involving two bidders with symmetric valuations, 
Krishna (1999) uncovered two symmetric equilibria characterized by an asymmetric 
allocation and declining prices with one bidder winning three objects and the other bidder 
getting a single object. The multiplicity of equilibria arises because bidders can be 
interchanged.2 

The analysis of sequential auctions under complete information with symmetric 
bidders has been largely ignored in the literature and it is the purpose of this note to shed 
more light on such auctions. We show that when the number of objects is even, but 
greater or equal to 4, symmetric allocations and a constant price trend arise under specific 

                                                 
1 We assume throughout that bidders have identical declining valuations. Equilibria are symmetric when 
they generate the same sequence of prices. Bidders can then be interchanged.     
     
2 When the two bidders have asymmetric valuations, Katzman (1999) has shown that the equilibrium is 
unique, possibly inefficient and that the price pattern may be constant or declining. Gale and Stegeman 
(2001) have analyzed cases with asymmetric valuations with more than two objects.  
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conditions about bidders’ valuations. Otherwise the allocations are uneven and prices are 
declining with possibly flat segments. When the number of objects is uneven, allocations 
are asymmetric and prices are declining.  

 
2. The model 

The auction is a sequential second-price one involving two completely informed bidders 
with identical decreasing marginal valuations: 1 2 1n nθ θ θ θ−> > ... > > .3 Part of the 4-
object version of the game is illustrated in Figure 2. In this instance, a symmetric 
allocation with bidders A and B getting two objects each can be achieved through six 
equilibria provided valuations decrease at a decreasing rate, 2 3 3 4θ θ θ θ− > − : {A,B,A,B}, 
{B,A,B,A}, {A,A,B,B}, {B,B,A,A}, {A,B,B,A} and {B,A,A,B}. Equilibrium prices are 
constant and the seller’s revenue is 34R θ= . If the bidders had symmetric valuations such 

that 2 3 3 4θ θ θ θ′ ′ ′ ′− < − , prices would weakly decline 

{ }3 2 4 2 4 3 2 4 3 43 , , ,p θ θ θ θ θ θ θ θ θ θ′ ′ ′ ′ ′ ′ ′ ′ ′ ′= − − + − + − , one player would get 1 object, the other 

would get 3 and 2 3 42R Rθ θ θ
<′ ′ ′ ′= + +
>

.4 Symmetric allocations are also possible in 

higher-dimensional games. We show that the condition just derived for the n = 4 case is a 
special case of a more general set of conditions. 
 
Proposition 1: Consider two bidders {A,B} having similar strictly declining marginal 
valuations and let k≡ n/2 where n is an even number of successive second-price auctions 
with 4n ≥ . There are multiple symmetric equilibria with a constant price pattern or 
weakly declining pattern generating identical payoffs for the two bidders. The bidders get 
the same number of objects k if and only if the price pattern is constant which requires 

( )1 1
1 1

1,..., 1
k pk

m k m k p
m m

k k p p kθ θ θ θ
−

+ + +
= =

− > − − ∀ = −∑ ∑ .  

 
Proof: Intuitively, bidder A must be indifferent between his allocation and that of bidder 
B, whether the allocations are symmetric or asymmetric. Under a symmetric allocation 
derived through backward induction, let us assume that bidder A has won k objects and 
                                                 
3 The case of endogenous valuations is analyzed by Krishna (1999). In her two-object auction, a snowball 
effect arises because bidders use the object as inputs and compete on the “output” market. The bidder who 
won the first object has a higher valuation for the second object because that second object would secure a 
monopoly position. In our case, we treat valuations as exogenous. This could be rationalized by the 
existence of alternative marketing mechanisms preventing monopoly outcomes. For example, the daily hog 
auction in the Canadian province of Quebec involved a small number of bidders. However, they get a large 
share of their hog supply through a pre-attribution/formula pricing mechanism based on historical market 
shares.    
 
4 Consider the following examples with valuations adding up to the same total such that the seller’s revenue 
from selling the 4 objects as a block would be the same: { }10,9,6,5θ = , { }10,9,6.7,4.3θ ′ = , 

{ }10,9,8,3θ ′′ = and { }10,8,7,5θ ′′′ = . When the objects are sold sequentially, the first set of valuations 

produces a symmetric allocation, identical prices p = 6 and revenue R = 24. For the asymmetric allocations 
with weakly declining prices, we have 24.3, 23, 25.R R R′ ′′ ′′′= = =    
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bidder B has won 0 1j k≤ ≤ −  objects. When 1j k= − , one object remains to be 
auctioned. Bidder A bids his valuation for the nth and last object and this is the price that 
bidder B will pay given that his valuation is higher: 1 1

B
k j k kp θ θ+ + += < . Thus, at the (n-1)th 

auction, bidders know that if they lose the object they will win the last one and gain 

1k kθ θ +− . Because bidders must be indifferent between winning and losing the (n-1)th 
object, prices for the (n-1)th and nth objects must be the same. This is just like the 2 2×  
auction in Figure 1.  

Consider now 2j k= − . Bidder B knows that bidder A has used up his first k 
valuations. Bidder B can win the last two objects by bidding in excess of 1kθ +  and gain 

1 1 1k k k kθ θ θ θ− + +− + −  for these last two objects, or win one object and gain 1 2k kθ θ− +−  or 
win none and gain nothing. The latter option is dominated because valuations are strictly 
declining. If bidder B is to win the last two objects, it must be that: 1 1 2k k k kθ θ θ θ+ + +− > −  
or valuations must decrease at a decreasing rate at the kth valuation.  This is the condition 
required to have symmetric allocations for the 4-object auction in Figure 2. If it is not 
met, an asymmetric allocation emerges and prices must decline.   

In this 4 object-auction, if bidder B is to win only one object, his maximum payoff 
is achieved by having bidder A get the first three objects. Hence, 1 4

Bπ θ θ= −  which must 

equal ( )
3

1
m m

m

pθ
=

−∑ . Clearly the average price on the first three objects must be above 4θ .  

Furthermore, if one of the first three objects was to be sold below 4θ , bidder B would 
prefer getting this object instead of the fourth object. But bidder A would prefer bidder 
B’s payoff and so a price below 4θ  cannot be observed. Therefore, prices must be weakly 
declining. Consider now the case j=0 (i.e., bidder A has won the first k objects and k 
others remain to be auctioned). A symmetric allocation requires that bidder B wins the 
last k objects and that both bidders get the same payoff. This requires that 

( )1 1
1 1

1,..., 1
k pk

m k m k p
m m

k k p p kθ θ θ θ
−

+ + +
= =

− > − − ∀ = −∑ ∑ .  QED  

 

The number of conditions increases with k (or n) because the symmetric allocation 
is pitted against a larger number of potential asymmetric allocations. Furthermore, the 
conditions supporting a symmetric allocation become increasingly stringent when the 
number of objects increases. For 3k =  ( )6n = , it must be that 

3 2

4 5 1 6
1 1

3 max 2 ,m m
m m

θ θ θ θ θ θ
= =

 
− > − − 

 
∑ ∑ . These inequality restrictions can be rearranged 

as: ( )3 5 2 3 6 42 , 3Min θ θ θ θ θ θ+ + + ≥ . Clearly the differences between the first three 
valuations and the fourth one must be large compared to the differences between the 4th 
and the 5th and 6th. For 5k =  ( )10n = , one of the necessary conditions is 

( )5 6 6 74θ θ θ θ− ≥ − . Clearly ( ) ( )1 1 2k k k kθ θ θ θ+ + +− − −  must increase significantly as the 
number of objects increases if a symmetric allocation is to be observed.   
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Proposition 2: When n, the number of successive second-price auctions with two bidders 
{A,B} having similar declining marginal valuations, is uneven, the allocation is 
asymmetric and the price pattern is always declining with possibly flat segments. 
  
Proof. As for an asymmetric allocation when the number of objects is even in proposition 
1, prices must be weakly declining because of payoff symmetry. Consider an auction 
with n = 3 and bidder A winning 2 objects and bidder B winning only one.  Bidder B 
“waits” to win the last object for a payoff  of 1 3.

Bπ θ θ= −  Bidder A must be indifferent 
between winning the first two objects or taking bidder B’s place as the winner of a single 
object and vice versa. Furthermore, when the second object is put for sale, bidder B must 
be indifferent between his payoffs from waiting for the third object or getting the second 
object. Bidder A knows that and the price for the second and third objects is the same: 3θ  
which explains the flat segment. Therefore, payoff symmetry requires that the price 
sequence be: { }2 3 3, ,p θ θ θ= . Because players A and B can be interchanged, there are two 
symmetric equilibria with the same weakly declining price pattern.   QED    
 

Figure 3 illustrates the results of proposition 1 and 2 via a few examples. The first 
example illustrates the case for 4 objects with declining valuations equal to { }10,7,5,4  
for each bidder. The condition in proposition 1 is met and the equilibrium is characterized 
by a constant price. The 5-object example with bidders’ valuations equal to 
{ }20,15,12,10, 2  generates weakly declining prices: { }16,8,8,8,3p = . A similar outcome 
also emerges with our 6-object example with bidders’ valuations equal to 
{ }20,15,12,10,7,6 . Even though bidders have symmetric valuations, they can safely 
exploit rapid declines in valuations through asymmetric allocations. For the same reason, 
a symmetric (inefficient) allocation can arise when bidders have asymmetric valuations 
as shown by Katzman (1999).      

Our analysis can be generalized for cases involving more than 2 bidders. In the 3-
bidder case with n a multiple of 3, the symmetric allocation entails having bidders A,B,C 
winning 3k n≡  objects at a constant price 1kp θ += . When the game is at a point where 

n-3 objects have been sold such that bidders A,B,C have { }, , 3k k k −  objects, then bidder 
C must decide whether it is best to get the last three objects or to get only one and letting 

the other bidders get one as well: 1
2

3
k

i k
i k

θ θ +
= −

−∑ ≥  2 2k kθ θ− +− . This is a necessary, but not 

sufficient condition. However, if 9n = , we are comparing allocations { }3,3,3  and 

{ }4,4,1  and our necessary condition for a symmetric allocation is 2 3 5θ θ θ+ + > 43θ . 

Other asymmetric allocations, { }5,2,2  and { }7,1,1  impose additional conditions, namely: 
3 2

4 6 1 8
1 1

3 max 2 ,i i
i i

θ θ θ θ θ θ
= =

 
− > − − 

 
∑ ∑  or ( )3 6 2 3 8 42 , 3Min θ θ θ θ θ θ+ + + > . The drop in 

valuation between the kth and k+1th objects must be large, as shown for the 2-bidder 
cases. 
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3. Conclusion 

We analyze sequential second-price auctions under complete information when bidders 
have identical decreasing marginal valuations over n objects ( 1 ... nθ θ> > ). We show that 
a symmetric (asymmetric) allocation with each is bidder getting k objects is characterized 
by constant (weakly declining) prices. Generally, symmetric allocations require that 
valuations be such that 1k kθ θ +−  be larger than 1 2k kθ θ+ +− . The decreases in valuations 
from the k+1th object must be increasingly small relative to the decrease in valuation 
between the kth and k+1th objects as the number of objects auctioned increases, thus 
making asymmetric allocations more likely when the number of objects is large.        
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Figure 1.  The complete information two-bidder two-object second-price auction with 
symmetric valuations.  

 
 

 
 
Figure 2. A 2-bidder 4-object auction with symmetric allocations. 
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n

p

1 2 3 4 5 6

8
7

5

3

1 6
1 5

1 0 , 7 , 5 , 4iθ =

2 0 , 1 5 , 1 2 , 1 0 , 3iθ =

2 0 , 1 5 , 1 2 , 1 0 , 7 , 6iθ =

 
Figure 3. Examples of price patterns when bidders are symmetric. 
 


