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Three-candidate spatial competition when candidates have

valence: stochastic voting

Haldun Evrenk∗and Dmitriy Kha

January 30, 2010

Abstract

We study the effects of stochastic (probabilistic) voting on equilibrium locations,
equilibrium vote shares and comparative statics in a setup with three heterogenous
candidates and a single-dimensional issue space. Comparing the equilibria with and
without stochastic voting, we find that under an appropriate level of uncertainty about
voter behavior, the model has a pure strategy Nash Equilibrium (PSNE) that is free
from several non-plausible features of the PSNE under deterministic voting. The results
are robust to extensions to asymmetric density and plurality maximization.

Keywords: probabilistic voting; valence; three-candidate competition; centripetal
incentives

1 Introduction

In this paper we study the effects of stochastic (probabilistic) voting on the equilibrium
location, equilibrium vote shares and comparative statics in a model of unidimensional
political competition among three candidates who differ in valence.1 It is well known that
(in models of both two-candidate and multi-candidate spatial competition) one can restore
the existence of PSNE by adding a stochastic component to voter preferences.2 Naturally,
this point can be illustrated by using models under which there is no equilibrium without
stochastic voting. The model we study, instead, has (local or global) Nash equilibria without
stochastic voting. Comparing the equilibria of the model with and without stochastic voting,
allows us to note the effects of stochastic voting on the equilibrium location, equilibrium
vote shares and comparative statics.

Evrenk (2009a;b and 2010) studies several versions of our model without stochastic
voting (below, we refer to all these versions as the deterministic model). He notes that the
equilibria of the deterministic model has several non-plausible features. More specifically,
when the voter density is symmetric and the candidates are vote-maximizers, (i) a pure
strategy Nash equilibrium (PSNE) exists only in two non-generic cases, and (ii) in the local
Nash Equilibrium (LNE), the candidates with the second–and the third–highest valence
receive the same vote share even when their valence differs significantly. Although these

∗Corresponding Author. Address: Economics, Suffolk University, 73 Tremont St. Boston, MA. USA.
Email: hevrenk@suffolk.edu

1Coined by Stokes (1963), the term valence refers to non-policy characteristics of a candidate such as
honesty, competency, charisma and campaign ability.

2The seminal work in Hinich (1977) on two-candidate competition is extended to a multi-candidate setup
by Lin, Enelow, and Dorussen (1999) and Adams (1999a).
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two features can be eliminated by considering an asymmetric density, the following three
non-plausible features remain in the deterministic model: (iii) the highest-valence candidate
is always located between the other two candidates and he always receives a majority of
votes; (iv) unless a candidate’s valence is higher than that of the others, in equilibrium
all his supporters prefer policies that are more extreme than that of the candidate; and
(v) when a lower-valence candidate’s valence (appeal) increases, the other lower-valence
candidate’s vote share increases.3

Given an appropriate degree of uncertainty about the stochastic component of voter
preferences, we find that all of the non-plausible features mentioned above will be eliminated
when the voter preferences have a stochastic component (voting is stochastic). Under
stochastic voting PSNE exists quite regularly; a voter of a lower-valence candidate does not
necessarily prefer a policy that is more “extreme” than that of the candidate (a centrist
voter may also vote for a candidate on the left due to a favorable preference shock); the
highest-valence candidate still positions himself at the center, but he does not necessarily
receive a majority of votes; and, always, if a candidate’s appeal (valence) increases while
the others do not change, this candidate’s vote share increases while the other candidates’
vote shares decrease.

It should also be noted that the equilibria of the stochastic voting has non-plausible
features of its own. First, although the center candidate does not necessarily receive a
majority of votes, his vote share is still larger than that of the other candidates. It seems
that this feature of the model can be modified by adding further assumptions.4 Second,
when the variance of the preference shock is large, there is an agglomerated PSNE (an
equilibrium in which all candidates adopt the same policy). Sometimes this is the only
equilibrium and sometimes the model has both an agglomerated and dispersed equilibria.
We also find that when each candidate maximizes his plurality, some equilibria are supported
by a paradoxical candidate-behavior: by deviating from his PSNE location, the candidate
with the highest valence can receive a majority of votes; he does not do so in equilibrium,
because such a move reduces his plurality. Comparing the stochastic and deterministic
models helps us to see that this non-plausible feature is due to the plurality maximization
assumption, and not due to stochastic voting: Evrenk (2010) reports the same result (and,
for a larger set of parameters) for the deterministic model.

In our analysis, we first derive some comparative statics analytically for the case in
which the level of uncertainty about the voting behavior is almost zero (when the stochastic
voting model is in an epsilon–neighborhood of the deterministic model). But, in general the
equilibria under stochastic voting cannot be calculated analytically; it must be calculated
through numerical simulations.5

Due to the constraints on computing power, an equilibrium search in models of multi-
candidate competition is typically done as this: starting from an initial strategy profile
(specified by the researcher) the code produces a chain of best-responses to see if this chain
converges (a fixed point of the best-responses is a PSNE of the game). If it does not converge

3This is non-plausible as it implies that the latter lower-valence candidate’s vote share increases when
his (relative) appeal decreases.

4Simulating models using data from the UK recently Adams (2001) and Schofield (2005) show that one
can obtain equilibria that are surprisingly close to the actual situation (in which the center party does not
receive the highest vote share). The models these authors simulate allow for valence differences, stochastic
voting (and activist valence in the former and party loyalty in the latter).

5See Groseclose (2001) for a similar approach (theoretical results for a convex loss function satisfying a
weak restriction on the curvature; then, simulations for a specific loss function to uncover the comparative
statics that cannot be derived analytically) in the context of two-party competition.
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after a certain number of steps (specified by the researcher), then the code stops looking
for an equilibrium and the researcher concludes that no equilibrium exists. Our method is
quite different. As we discuss in Appendix C in more detail, our code checks for all possible
strategy profiles. Thus it finds all the equilibria there are. We simulate the model under
both symmetric and asymmetric densities (we consider different degrees of asymmetry). For
each case, we also simulate the model under different candidate-objectives. All the equilibria
we found (as well as our codes used to find them) are available as online supplements.

In the literature, Adams (1999b) uses numerical simulations to study equilibria of three-
candidate spatial competition under valence differences and stochastic preferences. Our
paper differs from Adams (1999b) and complements it in several ways. He studies political
competition when the voter density is uniform, while we study political competition when
voter density is Triangular (always unimodal and possibly asymmetric). Under uniform
density, the model has no Nash equilibrium when voting is deterministic. Thus, Adams
(1999b) compares equilibria with and without valence differences given stochastic voting
while we compare equilibria with and without stochastic voting given that there are valence
differences among the candidates. His benchmark is the less dispersed (or, usually, com-
pletely agglomerated) equilibria of the stochastic model without any valence differences;
thus, he focuses on centrifugal incentives.6 Our benchmark is the more dispersed LNE
of the deterministic model, and, therefore, we focus on centripetal incentives (Cox, 1987).
He studies comparative statics with respect to the weight voters put on the utility from
candidate’s policy (the policy salience parameter) while we study comparative statics with
respect to the degree of uncertainty about voting decision.7 Finally, Adams (1999b) focuses
on (and reports only) equilibrium locations but not on vote shares or comparative statics.

2 The Model

Consider a setup with a continuum of voters and three candidates, j ∈ {1, 2, 3}. Let i
denote the voter whose most preferred policy platform is i ∈ I ⊂ R, where I is compact,
and let f(i) denote the density of i. For now, only assume that the density is atomless and
f(i) > 0 at the interior of I (we later simulate the model for a Triangular density with
support I = [−1, 1]). Let vj ∈ R denote valence (Stokes, 1963) of candidate j, e.g., his
competency, integrity, charisma or campaigning ability. We normalize candidate valences
as

v2 > v1 ≥ v3 = 0

and let r = v1
v2

.

The preferences of voter i over candidate j are represented by the utility function8

U ji (pj , vj) = −L(i− pj) + vj + σεij . (1)

6Using the agglomerated LNE of the stochastic model as the benchmark, Schofield (2007) studies cen-
trifugal incentives analytically in a much more general setup.

7de Palma, Hong and Thisse (1990) also uses simulations to study the effect of stochastic voting on PSNE
of a stylized model of spatial (unidimensional) competition among two to six candidates. They, too, focus
on how equilibria change as one varies the level of uncertainty, but, as they do not consider candidates with
different valences, in their model, too, there is no equilibrium when the number of competing candidates is
three and the voting is deterministic.

8It is worth noting that the additive form used in (1) assumes that (i) each voter’s valuation of candidate
valence is independent of the policy of the candidate (or, the most preferred policy of that voter); and (ii)
each candidate’s non-policy characteristics have an identical influence on each voter.
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In (1), L(x) : R → R is the “loss function” representing the voter’s policy preferences.
Again while simulating the model we specify L(.) further, but for now only assume that
L(.) is (i) symmetric around zero, L(x) = L(−x); (ii) twice continuously differentiable with
L′(0) = 0, limx→∞ L

′(x) = ∞, and for x > 0, L′(x) = −L′(−x) > 0; and, (iii) strictly
convex. The voting is sincere: i votes for the j who provides the highest U ji (pj , vj).

In (1), σεij ∈ R, denotes a preference shock for voter i. More specifically, σ ≥ 0 is a
scaling constant and εij is a Type I extreme value (also known as Gumbel or log-Weibull)
random variable with c.d.f. Ψ(x) = exp(− exp(−x)). Since a Type I random variable has
variance π2/6, the variance of the preference shock is equal to (σπ)2/6. Below, we focus on
the case in which the preference shock is independently and identically distributed. Thus,
for any two voters i and h, where h 6= i, and any two candidates j and k, where k 6= j, we
assume that E[εij |εik] = E[εij |εhj ] = E[εij ].

The candidates cannot observe individual preference shocks; they only know the distri-
bution of σεij . Given this information structure, each j simultaneously chooses his policy
platform to maximize his (expected) vote share Vj(pj , p−j), where p−j = (pk, pl). (In ad-
dition, in Section 4 we simulate the model when each candidate’s objective is to maximize
his plurality.)

Let us define some of the terms that are used throughout the paper. If for each j,
Vj(pj , p

∗
−j) has a global maximum at p∗j , then policy profile p∗ = (p∗1, p

∗
2, p
∗
3) is a (pure

strategy Nash Equilibrium) PSNE. If for each j, Vj(pj , p
∗
−j) has (at least) a local maximum

at p∗j , then policy profile p∗ = (p∗1, p
∗
2, p
∗
3) is a (local pure strategy Nash Equilibrium) LNE.9

In an agglomerated equilibrium, all the candidates adopt the same policy platform. If at
least one candidate’s equilibrium policy differs, then it is a dispersed equilibrium. If the
only equilibria of the game are (p∗1, p

∗
2, p
∗
3) 6= 0 and its mirror image, i.e., (−p∗1,−p∗2,−p∗3),

then we say that the game has a (modulo symmetry) unique equilibrium. We also call
(p∗1, p

∗
2, p
∗
3) as a left-PSNE if p∗1 < p∗2 or p∗3 > p∗2. Naturally, a right-PSNE, then, is simply

the PSNE policy platform in which we have p∗1 > p∗2 or p∗3 < p∗2.
This paper focus on the performance of the model when the voting is stochastic, σ > 0.

To see the changes in voting pattern, comparative statics and other features of equilibria
due to stochastic voting, we compare the results with those under the deterministic model,
σ = 0. In these comparisons (p∗D1 , p∗D2 , p∗D3 ) denotes the equilibria of the deterministic
model.

Equilibrium locations for the stochastic model cannot be identified analytically although
those for the deterministic model can be. Therefore, we first use the fact that deterministic
model is a special (or, degenerate) case of the stochastic model, and analyze the stochastic
model at an ε−neighborhood of the deterministic model, i.e., when σ is infinitesimally small.
Then, we simulate the game for larger values of σ, and compare the resulting PSNE with
the equilibria of the deterministic model.

2.1 The deterministic model and its non-plausible features

The LNE locations and vote shares for the deterministic model can be calculated analytically
when one specifies the voter density, f(i). Evrenk (2009a;b) analyze the equilibria under
a symmetric voter density, while without imposing a specific voter density Evrenk (2010,
Theorem 2) shows that in any LNE the lower-valence candidates differentiate their policies
from each other and from the policy of the higher-valence candidate. More specifically,

9Note that, by definition, each PSNE is an LNE.
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in any LNE, Candidate 2 positions himself between the two lower-valence candidates; the
distance between Candidate 2 and Candidate j ∈ {1, 3} is equal to δj = L−1(v2−vj), where,
by abusing the notation, we define L−1(y) = {x ≥ 0|L(x) = y}.

Motivating the current paper, equilibria in the deterministic model have several non-
plausible features. As we note in Section 1, when the voter density is symmetric: (i) the
model does not have a PSNE, (except for a non-generic case in which r = 0) only an LNE
exists;10 (ii) in this LNE, even when there is a significant valence difference between Can-
didates 1 and 3, they always locate symmetrically around the mean and each receives the
same vote share; (iii) when the PSNE exists, Candidate 2 (the candidate with the high-
est valence) receives the majority of votes in equilibrium; (iv) a lower-valence candidate’s
voters are always more “extreme” than the candidate himself; (v) when a lower-valence
candidate’s appeal increases, the other lower-valence candidate’s vote share increases by an
equal amount.

Evrenk (2010) shows that the first two features listed above can be eliminated by con-
sidering an asymmetric voter density and that the third feature, too, can be eliminated
by considering plurality-maximizing candidates. This latter result holds, however, only
because plurality maximization implies paradoxical candidate-behavior.

The fourth feature directly (and, the fifth feature indirectly) follows from the voting
pattern in the LNE of the deterministic model. To see this consider a left-LNE (p∗D1 <
p∗D2 < p∗D3 ). For a given p∗D, let B∗j denote the set of voters for whom j is the best
candidate: B∗j is j’s voter base. Similarly, let W ∗j denote the set of voters for whom j

(located at p∗Dj ) is the worst candidate. Given that the distance between Candidate 2 and

Candidate j ∈ {1, 3} is equal to δj = L−1(v2 − vj) in LNE, we have B∗1 = {i|i < p∗D1 },
B∗3 = {i|i > p∗D3 }, and B∗2 is equal to the open interval (p∗D1 , p∗D3 ), i.e., each B∗j is separated

by the policies of the lower-valence candidates.11 To see the boundaries of W ∗j ’s let I(pj , pk)
denote the voter indifferent between candidates j and k. As we prove in Appendix A,

Lemma 1 When σ = 0, in equilibrium Candidate 2 is never the worst candidate for any
voter (W ∗2 = ∅) while W ∗1 = {i|i > I(p1, p3)} and W ∗3 = {i|i < I(p1, p3)}.

Figure 1 demonstrates the voter utilities, resulting LNE locations, B∗j ’s and W ∗j ’s in
an LNE (for now, ignore the specific numbers in Figure 1). To relate this to a stochastic
model, let ρij denote the probability that voter i votes for candidate j. In the deterministic
model when candidates are located at p∗D, we have

ρij =


1 if i ∈ B∗j ,

1/2 if i = p∗Dj and j ∈ {1, 3},
0 otherwise.

(2)

In contrast with (2), for any policy platforms and candidate valences, in the stochastic

10In the other non-generic case, r = 1, too, a PSNE exists (Evrenk 2009a;b). But, as this LNE has a
different pattern, and, as this case is not generic, we do not consider it here.

11Simply note that when p1 = p2 − L−1(v2 − v1) we have for any i < (>)p1,

Ui(p2, v2) = −L(i− p2) + v2 < (>)Ui(p2, v2) = −L(i− p1) + v1.

Similarly, when p3 = p2 + L−1(v2 − v3), all the voters to the right-hand-side of Candidate 3 prefer this
candidate strictly to Candidate 2.
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Figure 1: Voter utilities, LNE locations, candidate bases (B∗j ’s) and W ∗j ’s in the determinis-
tic model. The thickly (thinly) drawn blue (yellow) parabola depicts utility from Candidate
2 (Candidate 3) while the third parabola depicts utility from Candidate 1.

model12

ρij =
exp((−L(i− pj) + vj)/σ)∑3
k=1 exp((−L(i− pk) + vk)/σ)

, (3)

and Vj(pj , p−j) =
∫
I ρijf(i)di. When candidate locations are fixed at p∗D, as σ converges

to zero from the right, (3) converges to (2). That is, at σ = 0 and p = p∗D, the functions
ρij are continuous over B∗j ’s and W ∗j ’s in σ from the right. Using this continuity we have
the following result.

Proposition 1 When candidates are located at their LNE locations under the deterministic
model (p∗D), for any lower-valence candidate (j ∈ {1, 3}), any voter i, and any σ ≥ 0, if

i ∈ B∗j , then
∂ρij
∂σ < 0, and if i ∈W ∗j , then

∂ρij
∂σ > 0. For σ = 0, if i /∈ B∗j ,

∂ρij
∂σ > 0.

Proved in Appendix A, Proposition 1 shows that if we perturb the deterministic model
so that voter preferences become slightly stochastic, then the voting patterns change in a
specific way: ρij decreases over the voter base of j and increases over the voter bases of
other candidates. As we keep increasing the level of uncertainty further, an increase in σ
still reduces ρij over the voter base of j but does not necessarily increase all over I\B∗j . We
only know that ρij increases over the set of voters who find j as the worst candidate in the
deterministic model.13

Proposition 1 indicates the source of centripetal incentives (Cox 1990) to the lower-
valence candidates under stochastic voting. Moreover, it notes that such incentives exist at
the LNE locations of the deterministic model. Comparing the resulting equilibria under

12This is simply the probability that U ji (pj , vj) is larger than both Umi (pm, vm) and Uni (pm, vm) where
m 6= n are both from {1, 2, 3}\j. See Train (2003) for derivation.

13For σ large enough, one can show that there are voters close to p∗Dj but still in I\(B∗j ∪W ∗j ) for whom
∂ρij
∂σ

< 0. Their voting behavior, however, does not contradict the relationship identified in Proposition 1.
As we show in the next section, when σ is large, candidate j locates closer to the center, so these voters are
not likely to be in his voter base in the stochastic model anyway.
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stochastic voting with equilibria under deterministic voting, we note the effects of these
incentives in sections 3 and 4. Further, in Appendix B we provide some numerical calcu-
lations that measure the strength of these incentives. But, intuitively one can explain the
source as follows.

When σ = 0, moving from p∗Dj towards the electoral center reduces the vote share of
a lower-valence candidate j: as he moves towards the center, the indifferent voter between
him and Candidate 2 moves further away from the center, his vote share decreases among
B∗j , but he cannot get any new votes from the voters in I\B∗j . When σ > 0, however, with a
positive probability each i ∈ I\B∗j will receive a preference shock and vote for j even though
(by definition of B∗j ) there is another candidate k who would be preferred to j had there
been no preference shock. The probability that i will receive a sufficiently high preference
shock and will switch to j decreases in (i) the valence difference between j and k, and (ii)
the distance between i and pj . That is, for i ∈ B∗k, as −L(i− pk) + vk − (−L(i− pj) + vj)
increases, i will need a higher εij to vote for j. But the higher the needed preference shock,
the less likely that it will occur. As valence is exogenous in our model, there is nothing that
candidate j can do to reduce vk − vj . Yet, j can reduce −L(i− pk) + L(i− pj) by coming
closer to the voters in B∗k, and, thus, increasing the probability that an i ∈ B∗k switches to
j.

3 Equilibria

We describe our simulation model in detail in Appendix C. To summarize in a nutshell,
our method differs from that of earlier simulation studies in the number of strategy profiles
checked. More specifically, a typical simulation study starts with an initial strategy profile,
then checks if one of the candidates has any profitable deviation from this profile. If he
has, then this candidate is located to this profitable deviation and a new strategy profile
is obtained. Then the code checks if the next candidate has a profitable deviation at this
new strategy profile. This process will stop if it converges to a strategy profile under which
none of the candidates has a profitable deviation or if it carries this search a certain number
of steps and gets no convergence. When the latter happens, the researcher concludes that
there is no PSNE or repeats the search with another initial strategy profile. In our method,
the code checks all possible strategy profiles to see if any PSNE exists. Since it checks all
the strategy profiles, the method finds all the PSNE and when it finds none, one knows
that it is because there is none. It has a disadvantage: it can take quite some time.14

When simulating the model we set I equal to [−1, 1]. To be able to calculate the
vote shares and the best-responses, we discretize the strategy space, approximating the
interval [−1, 1] by 201 equidistant locations from minus one to one.15 That is, for each j,
we have pj ∈ IS = {−100

100 ,−
99
100 , .....0,

1
100 , ....

100
100}. As the voter density, we use a discrete

approximation of a Triangular density with base [−1, 1] and mode m, that is

f(i,m) =

{
(1 + i)K/(1 +m) for i ∈ IS and i < m
(1− i)K/(1−m) for i ∈ IS and i ≥ m

14For more details about the actual times, see Appendix C. Note, however, that with the advances in the
computing power commonly available, this disadvantage should soon disappear.

15There are cases in which we use a finer approximation, see Appendix C.
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where K = (
∑

i∈IS f(i,m))−1. As a result

Vj(pj , p−j) =
∑
i∈IS

ρij(pj , p−j)f(i,m).

In all simulations we use a quartic loss function,16 L(i− pj) = (i− pj)4. In Section 4.3,
we discuss this choice. In all simulations we set r = 1/2. We vary several other factors.
We simulate the model both under symmetric and asymmetric densities: we consider three
different values of m (0, 1/4, and 3/4). For each value of m, we simulate the model
under two different values of σ (0.12 and 0.25). For each of these cases, we simulate the
model under two different candidate objective functions: vote share maximization and
plurality maximization. In this section the results under the symmetric density (m = 0)
and vote-share maximization are discussed. In Section 4 we report some of the results under
asymmetric density and plurality maximization to note how these different assumptions
affect the equilibria when voting is stochastic. Data (MS Excel) files provided as online
supplements present all the equilibria of all the variations mentioned above.

3.1 Results for symmetric density and vote maximization

Figure 2 presents equilibrium locations and vote shares for three different levels of σ: the
deterministic case (σ = 0) as the benchmark, and the two stochastic cases at different levels
of uncertainty, σ = 0.12 and σ = 0.25. In all these cases we set r = 1/2. Therefore,
when σ = 0 no PSNE exists under a symmetric density. Thus, for σ = 0 we plot the LNE
(calculated analytically in Evrenk (2009a;b)). Note that when the valence differences are
small, the necessary condition in Evrenk (2009b) is violated; then the LNE does not exist.

Under symmetric density (and, any σ), if (p∗1, p
∗
2, p
∗
3) is an equilibrium, so is (−p∗3,−p∗2,−p∗1).

Since the right-PSNE is more common in the cases we study in next section (when m > 0),
to avoid messy figures we plot only the right-PSNE in Figure 2.

Below, we discuss how all non-plausible features of PSNE of the deterministic model
disappear when σ = 0.12.

First, a PSNE does exist as long as the valence differences between the candidates are
not too large. More specifically, when σ = 0.12, a (modulo symmetry) unique, dispersed
PSNE exists for any 0.01 ≤ v2 ≤ 0.35.17 An agglomerated PSNE at the electoral mean

16Quartic loss functions are not commonly used in the literature. Although Proposition 1 holds under
any (strictly) convex loss function, when simulating the model we use a quartic loss function because, in the
deterministic (benchmark) case, the quartic loss function performs better than the commonly used quadratic
loss function: the set of parameters under which PSNE exists is significantly larger when L(x) = x4. Yet, a
quartic loss function has a higher curvature than the quadratic one, so one may think that we impose too
much risk aversion on the voter’s preferences over policy lotteries by using a quartic loss function. We do not:
in our model the voters are not deciding under certainty (the policy platforms of candidates are certain). In
our model the uncertainty exists only from the point of view of the candidates. Still, it is straightforward to
modify our code and calculate all the equilibria under any other loss function (simply replace all expressions
of the form ()4 with the alternative loss function).

17Since there is no analytical solution, to investigate why PSNE fails to exist when it does, we studied the
vote share of each candidate when he deviates from his PSNE platform for all values of v2. We found that
as v2 increases, Candidate 1’s vote share from a policy platform between Candidates 2 and 3 increases and
at the highest valence value under which the equilibrium exists (v2 = 0.35), by deviating to this location he
can get a vote share very close to his PSNE vote share. Without any analytical solution one cannot know
for sure, but it seems to us that the equilibrium fails to exists because of this deviation. Note that the
standard criticism of vote maximization as an objective function applies to this deviation as well: although
it increases his vote share, such a deviation also increases the vote share of Candidate 2 reducing plurality
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(a) (b)

(c) (d)

(e) (f)

Figure 2: Equilibrium locations and vote shares at three different levels of σ. Panels (a) and
(b) depict the LNE of the deterministic model. The rest depict PSNE obtained through
simulations. In all panels r = 1/2, the blue curve, the green curve, and the red curve
represents (respectively) Candidates 2, 1, and 3.
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(p = 0), too, exists for very small valence differences (0.01 ≤ v2 ≤ 0.03).18

Second, the lower-valence candidates are not located symmetrically around the mean,
nor do they receive the same vote share. Instead, the one with a higher valence is located
closer to the electoral mean (|p∗1| < |p∗3|) and receives a larger vote share in the equilibrium,
V1(p

∗) > V3(p
∗).

Third, for given valence values, the highest-valence candidate receives a smaller vote
share than V2(p

∗D). More important, for v2 ≤ 0.12, Candidate 2 receives less than a
majority of votes in the PSNE of the stochastic model. This, however, does not mean
that under stochastic voting the center candidate’s vote share varies completely. In all the
simulations we mention in this paper, (that is, under any σ > 0) if a dispersed PSNE exists,
then, in this equilibrium the candidate with the highest valence is located between the two
lower-valence candidates and he always receives the largest vote share. Thus, to capture
political competition in countries such as the UK, one has to extend the model further.19

Fourth, in equilibrium if i is to the left of Candidate 1, then it is still more likely that
she will vote for Candidate 1 (the left-most candidate). Yet, in the stochastic model i will
vote for Candidate 2 (and even for Candidate 3) with some non-zero probability. Similarly,
now, some of the voters with most preferred policies on the right-hand side of the left-most
candidate will vote for him.

Fifth, the comparative statics with respect to a lower-valence candidate’s valence are
opposite to these of the deterministic model. In the deterministic model, when v1 in-
creases, Candidate 3 comes closer to the center, and, thus, he ends up with a higher vote
share.20 Perhaps more surprising, the increase in both candidate’s vote shares are the same
although only the valance of Candidate 1 increases. In the stochastic model, however,
when v1 increases, Candidate 3 moves away from the center and his vote share decreases.
The comparative statics under stochastic voting is more plausible: why should we expect
Candidate 3 to gain votes when his appeal (relative to Candidate 1) decreases.

Intuitively, we have the non-plausible comparative statics in the deterministic model,
because the voting pattern implied by the deterministic preferences means that in the LNE
of the deterministic model the two lower-valence candidates are not directly competing with
each other. That is, if Candidate 1 (Candidate 3) changes his policy slightly, then there
will be no change in the vote share of Candidate 3 (Candidate 1); see Figure 1.

In both the deterministic and the stochastic models, when v1 increases, Candidate 1
moves towards the center and Candidate 2 moves towards Candidate 1 (and, thus, further
away from the center). As there is no direct competition between Candidates 1 and 3,
Candidate 3 does not respond to a change in p1; he only responds to the change in p2. As
Candidate 2 moves further away from Candidate 3 and the center, Candidate 3 comes closer
to the center to increase his vote share (those voters who were in B∗2 but close to p∗D3 will
switch to Candidate 3 when Candidate 2 moves further away from them). Therefore, in the
deterministic model an increase in v1 results in a higher vote share for Candidate 3.

In the stochastic model, all candidates are directly competing with each other: ρij is

of Candidate 1.
18We present and discuss agglomerated PSNE in Section 4.2.
19When modelling multi-party competition in UK, Schofield (2005) considers activist valence and Adams

(2001, p 136-143) considers partisan voters.
20See Proposition 1 in Evrenk (2009a;b). There is no comparative statics with respect to v3 since we set

v3 = 0. This normalization is innocuous: Evrenk (2009a) shows that the LNE of the deterministic model
depends only on the valence difference and equation (3) shows that ρij , and, thus, PSNE of the stochastic
model depends only on these differences.
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Figure 3: In both (a) and (b) σ = 0.12, v2 = 0.13, v1 = 0.065 and p = [−0.09,−0.01, 0.16].
Panel (a) plots the probabilities that voter i votes for each candidate when v1 = 0.065 and
panel (b) plots the changes in these probabilities when v1 increases to 0.1. The solid, the
dashed and the dotted curves represent the corresponding variables for candidates (respec-
tively) 2, 1, and 3.

always strictly positive for any i and j. Differentiating (3) with respect to vk, we can see
that an increase in vk leads to an increase in ρik and to a decrease in ρij for any i ∈ I and
j 6= k. The exact magnitude of these changes are presented in Figure 3. Panel (a) plots ρij ’s
for a given PSNE. Panel (b) plots the change in ρij ’s when r increases from 1/2 to 10/13
(when v1 increases from 1/2 of v2 to 10/13 of v2) without changing candidate locations
or σ. Note that the changes in ρij ’s predict the directions in which the candidates will
move after the increase in v1. After becoming more popular with every voter, Candidate
1 comes closer to the center, while now (relatively) less popular Candidates 2 and 3 move
further away from the center to appeal to voters who prefer extreme policies. Candidate
2 moves towards Candidate 1, picking up some of the supporters of Candidate 1 among
the farthest left part of the spectrum (now, these are less likely to vote for Candidate 1
who becomes more centrist), while Candidate 3 moves further to the right and increases his
(already high) support among the extreme right. The new PSNE is at [−0.06,−0.025, 0.165].
The candidates who move away from the center end up with a lower vote share as V1(p

∗)
increases.

As the reader may note, the last PSNE locations have precision beyond the 201 point
approximation of the interval [−1, 1]: neither −0.025 nor 0.165 can be written as N

100 where
N is an integer between −100 and 100. To calculate the new PSNE we had to divide [−1, 1]
into 401 equidistant locations; because, when σ = 0.12, v2 = 0.13, and v1 = 0.1, a PSNE
does not exist under a 201 point approximation. As we discuss in more detail in Appendix
C, the holes among the set of equilibria (no PSNE) as well as multiple equilibria are not due
to stochastic voting per se, but rather they are due to the discrete approximation necessary
for the simulations.21 The next issue we discuss, however, is completely due to stochastic
voting.

In addition to the several plausible features of the PSNE of the stochastic model dis-

21Typically the objective function is quite flat and quite symmetric around its maximum at PSNE location,
evaluating it at only a few points (discretizing the policy space) leads to such problems
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cussed, it should also be noted that stochastic voting gives rise to a more plausible PSNE
only under an appropriate level of uncertainty (σ). As we run simulations under different
values of σ, we find that when σ increases, (i) the set of valence differences under which a
PSNE exists becomes larger; (ii) in the dispersed PSNE, equilibrium locations become less
dispersed, leading to an increase in the set of parameters under which V2(p

∗) < 1/2; and
(iii) the set of parameters under which an agglomerated PSNE exists increases (see Section
4.2 and Figure 9.b). For instance, when σ = 0.08 no PSNE exists. On the other hand, when
σ = 0.25, a PSNE always exists. Under small valence differences, there is only an agglom-
erated equilibrium and under moderate valence differences both type of equilibria coexist:
if 0.01 ≤ v2 ≤ 0.44, then only an agglomerated equilibrium exists; if 0.44 ≤ v2 ≤ 0.61, then
both an agglomerated equilibrium and a dispersed one exist; and if 0.62 ≤ v2 ≤ 1, then
only a dispersed equilibrium exists. Although PSNE is more likely to exists under larger σ,
a plausible PSNE is less likely: as panels (e) and (f) make clear under σ = 0.25, there is no
dispersed PSNE in which V2(p

∗) < 1/2.

4 Equilibria under alternative assumptions and the alterna-
tive (agglomerated) equilibria

In the previous section, we discussed several features of the equilibrium under stochastic
voting using a stylized model (symmetric density and vote share maximizing candidates).
Actual voter densities are not symmetric. Nor is there agreement on the most appropriate
objective function in models of multi-candidate competition; still many argue that it is not
vote-maximization, see Shepsle (1991 p.24) for a review. In this section we discuss how
the results change when one simulates a model in which voter density is asymmetric or
each candidate maximize his plurality. In short, under such extensions we find that all the
main points noted in Section 3 still hold. Still these extensions help us to illustrate some
non-plausible features of equilibria under stochastic voting (as well as those under plurality-
maximization). One such non-plausible feature is the agglomerated equilibria. Presented
at the end of this section, agglomerated equilibria exist under all the variations.

4.1 Alternative voter densities and candidate objectives

Figure 4 presents the PSNE of the model under different values of σ when the mode of
the voter density is on the right-hand-side of the center (i = 0) with m = 1/4. The first
row presents LNE locations under deterministic voting; (Evrenk, 2010 Proposition 3). The
second and the third rows are obtained under stochastic voting. Evrenk (2010) shows
that some of the non-plausible features of the deterministic model can be eliminated by
considering an asymmetric voter density. Under an asymmetric density a PSNE exists; in
panels (a) and (b), when v2 is in the shaded region the LNE is a PSNE. When it exists, the
PSNE is unique (its mirror image is not a PSNE anymore). Due to the voting pattern under
the deterministic model (presented in Figure 1 above), when the majority of voters are on
the right-hand-side of the center, in the PSNE of the deterministic model the candidate
with the second-highest valence is located to the left of Candidate 2 (and the center).
Intuitively, Candidate 1 positions himself to the left of Candidate 2 as under the voter
density we consider the left tail is longer (and, thus, there are more voters there).

As the reader can see from the online supplementary files, the set of equilibria under
stochastic voting is richer than what is depicted in Figure 4 (and, thus, the set of equilibria
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(c) (d)

(e) (f)

Figure 4: PSNE under vote maximization. The first row presents equilibrium under deter-
ministic voting while the last two rows present equilibrium under stochastic voting. In all
panels m = 1/4, r = 1/2, the blue curve, the green curve, and the red curve represents
(respectively) Candidates 2, 1, and 3.
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in the deterministic model); this is especially true when σ is large. Further, under stochastic
voting, too, PSNE that are the mirror image of another PSNE are eliminated. The stochastic
and the deterministic voting models differ in the location of lower-valence candidates when
the density is asymmetric. As discussed above, when m > 0, in the deterministic model
Candidate 1 is always located to the left of Candidate 2 while in the stochastic model there
are more right-PSNE (for this reason, we plot only the right-PSNE in Figure 4). Again,
this difference is due to the different voting patterns. In the deterministic model Candidate
1 positions himself on the longer tail because he will be supported by voters whose most
preferred policies are more “extreme” than his policy. Under the stochastic model the lower-
valence candidates receive votes from those voters whose most preferred policies are close
to the candidate’s policy. Then, for m > 0, the right-hand side of Candidate 2 provides
proximity to many voters as the majority of the electorate prefers policies to the righ-hand-
side of the center. Although the locations of the lower-valence candidates differ between
the stochastic and deterministic models, these models are similar in that all equilibrium
locations move to the right (left) as the mode of the density moves to the right (left).

The asymmetric voter density underlying Figure 4 also helps us to emphasize our earlier
point that the stochastic voting model performs better only under an appropriate voter
density. Note that under stochastic voting the size of the set of values of v2 under which
a PSNE exists is larger; but when σ = 0.25, a PSNE does not exists for small values of v2
under which a PSNE exists in the deterministic model.

The second extension we consider is competition among plurality maximizing candidates.
To keep the discussion short we do not present the LNE and PSNE under deterministic
voting. Evrenk (2010) finds that under deterministic voting the LNE of the model is the
same as the LNE under vote-maximization if the voter density is symmetric. If the density
is asymmetric, the LNE’s will differ. Under stochastic voting, we find that the PSNE
of these two models differ whether the density is symmetric or not. To note this point
Figure 5 presents the PSNE under a symmetric voter density and σ = 0.12 when each
candidate’s objective is plurality maximization; compare panels (a) and (b) of Figure 5
with panels (c) and (d) of Figure 2. One point we want to note about the model under
plurality-maximization is the paradoxical behavior that supports some equilibria.22 Figure
6 illustrates this anomaly through a numerical example. When each candidate maximizes
his plurality, for m = 0, σ = 0.12, v2 = 0.13 and r = 1/2, there exists a (modulo symmetry)
unique PSNE at [0.12, 0.08,−0.14]. At this PSNE, Candidate 2 receives slightly less than
50 percent of the votes. As Figure 6 shows, however, Candidate 2 could win more than the
majority of the votes by simply moving to −0.01. But, he does not do so, as such a move
would reduce his plurality.

4.2 Agglomerated Equilibrium

It is well known that under stochastic voting an agglomerated PSNE exists, see Lin, Enelow
and Dorussen (1999) and Adams (1999a;b). In our simulations, too, we find agglomerated
equilibria under certain valence and variance parameters. Figure 7 presents the vote shares
in the agglomerated equilibria for different levels of m and σ. Here, we plot only the
agglomerated equilibrium under vote share maximization. The agglomerated equilibrium
under plurality maximization is provided in the supplementary files. Under either objective
function, the agglomerated PSNE shares certain characteristics first noted by Schofield

22Evrenk (2010) notes that when candidates are plurality-maximizers the same type of equilibria exist
under the deterministic model as well.
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(a) (b)

(c) (d)

(e) (f)

Figure 5: PSNE under plurality maximization. In all panels σ = 0.12 and r = 1/2. In the
first, middle, and last row m is equal to (respectively) 0, 0.25, and 0.75. The blue curve,
the green curve, and the red curve represents (respectively) Candidates 2, 1, and 3.
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Figure 6: Under plurality-maximization, in PSNE Candidate 2 position himself at 0.08.
Yet, by deviating to −0.02, he can receive more than a majority of all votes.

(2005) in his analysis of conditions under which an LSNE exists at the joint mean: the
larger is σ and the larger is the variance of voter density, the larger is the set of parameters
under which an agglomerated PSNE exists.

5 Discussion and Conclusion

In this paper we note how stochastic voting affects the voting patterns, comparative statics,
equilibrium location and equilibrium vote shares using a stylized model in which equilibrium
exists when voting is deterministic. When one assumes that voting is deterministic, the
equilibria of the three-candidate spatial competition have several non-plausible features.
We find that these features can be eliminated by assuming that voting is stochastic and
by choosing an appropriate degree of uncertainty about voting behavior. Still, one cannot
control all the aspects of the equilibria by choosing an appropriate degree of uncertainty. We
find, for instance, in the equilibrium the center candidate always receives more votes than
the other two candidates in equilibrium. Thus, to model political competition in countries
where this is not the case, one has to extend the model further. We also find that when
candidates are plurality-maximizing, the equilibria under stochastic voting is supported by
a paradoxical behavior (Figure 6).

The setup we study is stylized and it is not meant to capture political competition in
a specific country. Yet, it helps us examine both the potential and the limits of a model
that assumes only candidate heterogeneity (valence differences) and stochastic voting. This
paper is a part of a project in which several extensions of this model will be studied. The
simplicity of the model becomes an advantage; within this framework the model can be
easily extended (as extensions are easier to simulate and, more important, are analytically
more tractable compared to more general models of multi-candidate competition).

One such extension is to study the role of electoral uncertainty when competition is
among three candidates with policy preferences (and, valence differences). It is possible
that electoral uncertainty may create “centrifugal” incentives for candidates who prefer a
policy at the margin. The other extension involves strategic voting. For both extensions,
one needs to model which policy will be implemented when neither of the three candidates
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(a) (b)

(c) (d)

Figure 7: Agglomerated PSNE vote shares under vote maximization. In both (a) and (b),
m = 0 and all candidates are located at 0; in (c) m = 0.25 and all candidates are located
at 0.05; and, in (d) m = 0.75 and all candidates are located at 0.17. In all panels r = 1/2,
the blue curve, the green curve, and the red curve represents (respectively) Candidates 2,
1, and 3.
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receives a majority of votes. There is, however, no agreement on how to model this issue
(coalition formation) in the literature. Further, this raises another question that has not
received much attention in models of political competition with valence differences: how
the valence value of a coalition of different politicians with different valences is determined.
These issues are left for future research.

6 Appendix A: Proofs

Proof of Lemma 1. Simply note that for a voter located in B∗1 or B∗3 , Candidate 2 is
never the worst candidate: there is always another candidate whose valence is lower and
whose policy is further from this voter’s most preferred policy, thus W ∗2 = ∅. Then for
each voter either one of the remaining candidates is the worst candidate. As the locations
of these candidates differ, I(p1, p3) exists and it is unique (Groseclose, 2001, Appendix III),
and it is closer to Candidate 1 when v2 > v1 (Evrenk, 2009a, Lemma 1).
Proof of Proposition 1. Dividing both sides by uji = −L(i− pj) + vj , we can rewrite ρij
as

[1 +
∑

k∈{1,2,3}\j

exp((uki − u
j
i )/σ)]−1

where uki = −L(i− pk) + vk. Taking the derivative with respect to σ > 0, we find that

∂ρij
∂σ

=

∑
k∈{1,2,3}\j(exp((uki − u

j
i )/σ))(uki − u

j
i )

σ2[1 +
∑

k∈{1,2,3}\j exp((uki − u
j
i )/σ)]2

Since the denominator (and, exp(x)) is always positive, we have
∂ρij
∂σ ≶ 0 if and only if

(exp((uki − umi )/σ))(uki − u
j
i ) + (umi − u

j
i ) ≶ 0, where k,m, and j are distinct candidates.

If i ∈ B∗j , then (uki − u
j
i ) < 0 and (umi − u

j
i ) < 0. Hence,

∂ρij
∂σ < 0. Similarly, if i ∈ W ∗j ,

then (uki − u
j
i ) > 0 and (umi − u

j
i ) > 0. Hence,

∂ρij
∂σ > 0. Finally, when σ = 0, consider

i ∈ (B∗j )C\W ∗j . If k is the higher-valence candidate, then for any i ∈ (B∗j )C\W ∗j we have

uki − umi > 0, and thus exp((uki − umi )/σ))(uki − uji ) converges to infinity, so no matter

the magnitude of the negative term (umi − u
j
i ), we have

∂ρij
∂σ |(σ=0) > 0. If k is the other

lower-valence candidate, then for any i ∈ (B∗j )C\W ∗j , we have uki − umi < 0, and thus

exp((uki − umi )/σ))(uki − u
j
i ) converges to zero with σ. Therefore,

∂ρij
∂σ |(σ=0) has the same

sign as (umi − u
j
i ): we have

∂ρij
∂σ |(σ=0) > 0.

7 Appendix B: Centripetal incentives: numerical calcula-
tions

To provide a basis for our conjecture, Figure 8 demonstrates some calculations. Consider a
symmetric voter density over the interval [−1, 1]. Then, we have p∗D1 = − δ1+δ3

2 = −p∗D3 , and

p∗D2 = δ1−δ3
2 . When, v2 = 0.12, r = 1/2, and L(x) = x4, the LNE is given by p∗D = [−0.542,

−0.047, 0.542] (In Figure 1, candidates are at these LNE locations). Panels (a), (b), and (c)
of Figure 2 shows ρij ’s under different levels of σ while keeping candidates at p∗D = [−0.542,
−0.047, 0.542]. As long as the candidates are at p∗D, under any σ, we have ρij > ρik for all
i ∈ B∗j and any j 6= k. That is, under stochastic voting, too, a candidate is more popular
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in his (deterministic) voter base. But, as σ increases, the difference between ρik and ρij
decreases, resulting in an increase in the number of voters who vote for k although they are
in B∗j . Consider, for instance, the voting behavior of the voter located at the center (i = 0).
When σ increases from 0.01 to 0.12 and then to 0.25, the probability that she votes for the
lowest-valence candidate (Candidate 3) who is located at 0.542, increases from 1× 10−9 to
0.12 to 0.22. This follows from Proposition 1, as 0 ∈ W ∗3 . Since 0 /∈ W ∗1 , Proposition 1
does not specify how ρij changes for i ∈ I\(W ∗j ∪B∗j ); we find that the probability that the

center voter votes for Candidate 1 (located at −0.542) increases from 4 × 10−7 to 0.20 to
0.28. Panels (b) and (c) show that both ρi1 and ρi3 increase around the electoral center.
This increase is the basis for our conjecture on centripetal incentives for the lower-valence
candidates.

Panels (d), (e) and (f) in Figure 2 calculate the net effect of a move towards the center on
the vote share of a lower-valence candidate. In panels (d) and (e), we calculate the change
in his vote share, ∆ρi3f(i), as the lowest-valence candidate moves 0.01 units towards the
center (from p∗D3 = 0.542 to p′3 = 0.541).23 In panel (e), we plot ∆ρi3f(i) for σ ∈ [0, 1],
where panel (d) presents a slice from the three dimensional graph in panel (e). As one can
see from these two panels, by moving towards the center, Candidate 3 loses some of his
supporters from the right side of p∗D3 , but he gains far more supporters from the left of p∗D3 .

Panel (f) shows how the expected number of votes he receive changes when Candidate
1 moves 0.01 units towards the center. Note that the incentives of the other lower-valence
candidate, Candidate 1, is similar and even stronger: the net change in his vote share is
larger. As a result, when σ = 0.12, he, too, moves towards the center, resulting in a
dispersed PSNE at [−0.08, −0.02, 0.15]. Intuitively, Candidate 1 has stronger centripetal
incentives; with his relatively higher valence, it takes a smaller preference shock to convince
the voters around the electoral center to vote for Candidate 1.

8 Appendix C: Simulation technique and the resulting prob-
lems

The program code(s) used to calculate the PSNE are provided as online supplementary
files. Both are MATLAB files posted with a txt extension (they would work in several freely
available MATLAB clones as well): one calculates the PSNE under vote share maximization
and the other one calculates PSNE under plurality maximization. Below we describe how
these codes work.

Under both codes, the program works as follows. For a 2N + 1 point approximation,
first one sets N (so, to repeat our calculations with 201-point approximation one needs to
set N = 100 in these codes). Then, by setting r, σ, and v2 the parameters of the game are
determined. With, say, a 201 point approximation, there is a total of 2013 (slightly more
than eight million) possible strategy profiles. The program starts from the policy profile
[−1,−1,−1] and checks all the way until [1, 1, 1] each of these strategy profiles.

To check if a given single policy profile (say, [−1,−1,−1]) is PSNE the code first checks
if Candidate 1 can increase his payoff by deviating from p1 = −1 given that p3 = p2 = −1. If
he can, it moves to the next strategy profile (the next profile would be [−0.99,−1,−1] when
we have a 201-point approximation). If he cannot, then the program calculates if Candidate
2 can increase his payoff by deviating from p2 = −1 given that p1 = p3 = −1. Similarly, if

23In both panels, Candidates 1 and 2 are still located at p∗D1 and p∗D2 , v2 = 0.12 and r = 1/2.
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Figure 8: In (a), (b), and (c), we have v2 = 0.12, v1 = 0.06, p = p∗D = [−0.542, −0.047,
0.542], and the solid, dashed and dotted curves represent the corresponding variable for
candidates (respectively) 2, 1, and 3. In (d) and (e) (in panel (f)), Candidate 3 (Candidate
1) moves to 0.532 ( −0.532).
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he can, then it moves to the next strategy profile [−0.99,−1,−1], and if Candidate 2 cannot,
then it checks if Candidate 3 can increase his payoff by deviating from p3 = −1 given that
p1 = p2 = −1. Only if none of these candidates can increase his payoff by deviating from
[−1,−1,−1], it identifies this profile as a PSNE.24

After checking these 2013 strategy profiles for a given valence vector [rv2, v2, 0], the
program moves to next value of v2 and checks the resulting 2013 strategy profiles. Each
graph presenting the PSNE of the stochastic model is the result of this process applied to
100 different values of v2 (from 0.01 to 1). As of year 2010, when repeating the calculations,
one should be aware of the required time (especially if access to a supercomputer is not
possible): in a personal computer with a 2.4 Ghz processor and 3 GB RAM, calculating the
PSNE under vote-maximization takes about three days, while calculating the PSNE under
plurality-maximization takes almost 12 days.

When we began simulating the PSNE of the stochastic model, we followed the most
common method: start the game at an initial strategy profile and see if it converges to
anything. As Merrill and Adams (2001) notes, this method works fine when the best-
response correspondences constitute a contraction mapping. But, trying different starting
points, we found that for some values there is a neighboring PSNE. As a result, we switched
to the current method which identifies all the PSNE. These neighboring equilibria are due
to the discrete approximation we used. Another result due to the discrete approximation
are the holes among the set of equilibria.

While discussing the equilibrium locations underlying Figure 3 we note that under a
201-point approximation, a PSNE does not exist for σ = 0.12, v2 = 0.12, and v1 = 0.06.
One can see that in the supporting documents listing all the PSNE that the computer
detected, there are several holes, i.e., values of v2 with no corresponding PSNE. To study
why we have these holes at certain N (and, why they disappear later) another such hole at
σ = 0.12, v2 = 0.14, and v1 = 0.07 is a particularly good example. (In this discussion we
always have σ = 0.12 and r = 1/2; so, to keep it short we refer to a case by the value of v2.)

The lack of PSNE at v2 = 0.14 is particularly illuminating because a PSNE exists
both when v2 = 0.13 and when v2 = 0.15. These two PSNE differ from each other only
slightly: in both PSNE p∗1 = 0.09, p∗2 = 0.01 while p∗3 = −0.16 when v2 = 0.13, and p∗3 =
−0.17 when v2 = 0.15. Note that the distance between the two lower-valence candidates
is equal to 0.25 when v2 = 0.13 and that this distance is equal to 0.26 when v2 = 0.15.
As this distance increases in the valence difference, we would expect an equilibrium in
which |p∗1 − p∗3| is between 0.25 and 0.26 when v2 is between 0.13 and 0.15. Yet, when one
divides [−1, 1] into 201-equidistant points, it is impossible to have 0.25 < |p∗1 − p∗3| < 0.26.
What exactly happens when the program searches for an equilibrium is illustrated in Figure
9. When v2 = 0.14, for p1 = 0.09, p2 = −0.01, the best response of Candidate 3 is
around −0.165. Yet, in a 201 point approximation this location is not available; among
the available points V3[0.09, 0.01, p3] is highest at p3 = −0.17. But, when Candidate 3
moves to −0.17, Candidate 2 has incentives to deviate to 0.02 (see Figure 3(b)). But,
when p2 = 0.02, Candidate 3 prefers to move closer to the center, i.e., among the available
points V3[0.09, 0.02, p3] is highest at p3 = −0.16. This is not an equilibrium either. Given
that Candidate 3 came closer to the center, Candidate 2 moves back to 0.01 closing the
full cycle.25 When we consider a finer approximation26 (N = 400), it is possible to have

24So, when Candidate 3 can increase his payoff by deviating, the program, again, goes to the next strategy
profile, [−0.99,−1,−1].

25Throughout this whole cycle, Candidate 1 has no incentives to deviate from 0.09.
26We don’t we carry out all simulations under a very fine approximation because this is quite costly in
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Figure 9: The cycling best-responses. For σ = 0.12, v2 = 0.14, v1 = 0.07 and p1 = 0.09,
panels (a) and (c) show the best-responses of Candidate 3, and panels (b) and (d) show the
best-responses of Candidate 2.

0.25 < |p∗1 − p∗3| < 0.26. The PSNE exists at [0.09, 0.015,−0.165] with |p∗1 − p∗3| = 0.255.
The holes among the set of PSNE are not the only effect of discrete density used. As we
discuss next, for large values of σ we may have two neighboring equilibria.

At higher levels of σ, there is an increase in the number of dispersed PSNE as well. At
σ = 0.25, for instance, there is more than one (or, if you count the mirror images, more than
two) dispersed PSNE when v2 is high. More specifically, for 0.62 ≤ v2 ≤ 0.67, there are two
PSNE (and, their mirror images). In all of these PSNE the distance between Candidates
1 and 2 is less than or equal to (2/100). As a result, between two PSNE’s the vote shares
of the same candidate are almost the same (most of the time the difference is equal to
one hundredth of a percent). This multiplicity of equilibria, too, we believe, is due to the
discrete approximation. We do not have any analytical argument to support this result, but
when we choose a finer approximation by dividing [−1, 1] into 801 equidistant points, we
find that now for three values of v2 (0.64, 0.65, 0.67), there is a (modulo symmetry) unique
PSNE (while for the other three values of v2 there are still two symmetric PSNE).
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