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ABSTRACT

Classical statistics suggest that for inference purposes one should always use as much data as is

available. We study how the presence of market microstructure noise in high-frequency financial

data can change that result. We show that the optimal sampling frequency at which to estimate the

parameters of a discretely sampled continuous-time model can be finite when the observations are

contaminated by market microstructure effects. We then address the question of what to do about

the presence of the noise. We show that modelling the noise term explicitly restores the first order

statistical effect that sampling as often as possible is optimal. But, more surprisingly, we also

demonstrate that this is true even if one misspecifies the assumed distribution of the noise term. Not

only is it still optimal to sample as often as possible, but the estimator has the same variance as if

the noise distribution had been correctly specified, implying that attempts to incorporate the noise

into the analysis cannot do more harm than good. Finally, we study the same questions when the

observations are sampled at random time intervals, which are an essential feature of transaction-level

data.
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The notion that the observed transaction price in high frequency financial data is the unobserv-

able efficient price plus some noise component due to the imperfections of the trading process is

a well established concept in the market microstructure literature (see for instance Black (1986)).

In this paper, we study the implications of such a data generating process for the estimation of

the parameters of the continuous-time efficient price process, using discretely sampled data on the

transaction price process. In particular, we focus on the effects of the presence of the noise for the

estimation of the variance of asset returns, σ2. In the absence of noise, it is well known that the

quadratic variation of the process (i.e., the average sum of squares of log-returns measured at high

frequency) estimates σ2. In theory, sampling as often as possible will produce in the limit a perfect

estimate of σ2. We show, however, that the situation changes radically in the presence of market

microstructure noise that is not taken into account in the analysis.

We start by asking whether it remains optimal to sample the price process as often as possible

in the presence of market microstructure noise, consistently with the basic statistical principle that,

ceteris paribus, more data is preferred to less. We show that, if noise is present but unaccounted

for, then the optimal sampling frequency is finite. The intuition for this result is as follows. The

volatility of the underlying efficient price process and the market microstructure noise tend to behave

differently at different frequencies. Thinking in terms of signal-to-noise ratio, a log-return observed

from transaction prices over a tiny time interval is mostly composed of market microstructure noise

and brings little information regarding the volatility of the price process since the latter is (at least in

the Brownian case) proportional to the time interval separating successive observations. As the time

interval separating the two prices in the log-return increases, the amount of market microstructure

noise remains constant, since each price is measured with error, while the informational content of

volatility increases. Hence very high frequency data are mostly composed of market microstructure

noise, while the volatility of the price process is more apparent in longer horizon returns. Running

counter to this effect is the basic statistical principle mentioned above: in an idealized setting where

the data are observed without error, sampling more frequently cannot hurt. What we show is that

these two effects compensate each other and result in a finite optimal sampling frequency (in the

root mean squared error sense).

We then address the question of what to do about the presence of the noise. If, convinced by

either the empirical evidence and/or the theoretical market microstructure models, one decides to

account for the presence of the noise, how should one go about doing it? We show that modelling
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the noise term explicitly restores the first order statistical effect that sampling as often as possible

is optimal. But, more surprisingly, we also demonstrate that this is true even if one misspecifies

the assumed distribution of the noise term. If the econometrician assumes that the noise terms are

normally distributed when in fact they are not, not only is it still optimal to sample as often as

possible (unlike the result when no allowance is made for the presence of noise), but the estimator

has the same variance as if the noise distribution had been correctly specified. Put differently,

attempts to include a noise term in the econometric analysis cannot do more harm than good. This

robustness result, we think, is a major argument in favor of incorporating the presence of the noise

when estimating continuous time models with high frequency financial data, even if one is unsure

about what is the true distribution of the noise term. Finally, we study the same questions when the

observations are sampled at random time intervals, which are an essential feature of transaction-level

data.

Our results also have implications for the two parallel tracks that have developed in the recent

financial econometrics literature dealing with discretely observed continuous-time processes. One

strand of the literature has argued that estimation methods should be robust to the potential issues

arising in the presence of high frequency data and, consequently, be asymptotically valid without

requiring that the sampling interval ∆ separating successive observations tend to zero (see, e.g.,

Hansen and Scheinkman (1995), Aït-Sahalia (1996) and Aït-Sahalia (2002)). Another strand of the

literature has dispensed with that constraint, and the asymptotic validity of these methods requires

that ∆ tend to zero instead of or in addition to, an increasing length of time T over which these

observations are recorded (see, e.g., Andersen, Bollerslev, Diebold, and Labys (2003), Bandi and

Phillips (2003) and Barndorff-Nielsen and Shephard (2002)).

The first strand of literature has been informally warning about the potential dangers of using

high frequency financial data without accounting for their inherent noise (see e.g., page 529 of Aït-

Sahalia (1996)), and we propose a formal modelization of that phenomenon. The implications of our

analysis are most salient for the second strand of the literature, which is predicated on the use of high

frequency data but does not account for the presence of market microstructure noise. Our results

show that the properties of estimators based on the local sample path properties of the process (such

as the quadratic variation to estimate σ2) change dramatically in the presence of noise, while at

the same time we suggest a robust approach to correcting for the presence of market microstructure

noise.
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The paper is organized as follows. We start by describing in Section 1 our reduced form setup

and the underlying structural models that support it. We then review in Section 2 the base case

where no noise is present, before analyzing in Section 3 the situation where the presence of the

noise is ignored. Next, we show in Section 4 that accounting for the presence of the noise restores

the optimality of high frequency sampling. Our robustness results are presented in Section 5 and

interpreted in Section 6. We incorporate random sampling intervals into the analysis in Section

7, and a drift term in 8. Sections 9 and 10 present two further relaxation of our assumptions, to

serially correlated and cross-correlated noise respectively. Section 11 concludes. All proofs are in the

Appendix.

1. Setup

Our basic setup is as follows. We assume that the underlying process of interest, typically the

log-price of a security, is a time-homogenous diffusion on the real line

dXt = µ(Xt; θ)dt+ σdWt (1.1)

where X0 = 0, Wt is a Brownian motion, µ(., .) is the drift function, σ2 the diffusion coefficient and

θ the drift parameters, θ ∈ Θ and σ > 0. The parameter space is an open and bounded set. As

discussed in Aït-Sahalia and Mykland (2003), the properties of parametric estimators in this model

are quite different depending upon we estimate θ alone, σ2 alone, or both parameters together. When

the data are noisy, the main effects that we describe are already present in the simpler of these three

cases, where σ2 alone is estimated, and so we focus on that case. Moreover, in the high frequency

context we have in mind, the diffusive component of (1.1) is of order (dt)1/2 while the drift component

is of order dt only, so the drift component is mathematically negligible at high frequencies. This is

validated empirically: including a drift actually deteriorates the performance of variance estimates

from high frequency data since the drift is estimated with a large standard error. Not centering

the log returns for the purpose of variance estimation produces more accurate results (see Merton

(1980)). So we simplify the analysis one step further by setting µ = 0, which we do until Section 8,

where we then show that adding a drift term does not alter our results.

In that case,

Xt = σWt. (1.2)

Until Section 7, we treat the case where we observations occur at equidistant time intervals ∆, in
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which case he parameter σ2 is therefore estimated at time T on the basis ofN+1 discrete observations

recorded at times τ0 = 0, τ1 = ∆,..., τN = N∆ = T . In Section 7, we let the sampling intervals

be themselves random variables, since this feature is an essential characteristic of high frequency

transaction data.

Where we depart from the inference setup previously studied in Aït-Sahalia and Mykland (2003)

is that we now assume that, instead of observing the process X at dates τ i, we observe X with error:

X̃τ i = Xτ i + Uτ i (1.3)

where the U 0τ is are iid noise with mean zero and variance a
2 and are independent of the W process.

In that context, we viewX as the efficient log-price, while the observed X̃ is the transaction log-price.

In an efficient market, Xt is the log of the expectation of the final value of the security conditional

on all publicly available information at time t. It corresponds to the log-price that would be in effect

in a perfect market with no trading imperfections, frictions, or informational effects. The Brownian

motion W is the process representing the arrival of new information, which in this idealized setting

is immediately impounded in X.

By contrast, Ut summarizes the noise generated by the mechanics of the trading process. What

we have in mind as the source of noise is a diverse array of market microstructure effects, either

information or non-information related, such as the presence of a bid-ask spread and the correspond-

ing bounces, the differences in trade sizes and the corresponding differences in representativeness

of the prices, the different informational content of price changes due to informational asymmetries

of traders, the gradual response of prices to a block trade, the strategic component of the order

flow, inventory control effects, the discreteness of price changes in markets that are not decimalized,

etc. That these phenomena are real are important is an accepted fact in the market microstructure

literature, both theoretical and empirical. One can in fact argue that these phenomena justify this

literature.

We view (1.3) as the simplest possible reduced form of structural market microstructure models.

Our specification coincides with that of Hasbrouck (1993), who discusses the theoretical market

microstructure underpinnings of such a model, estimates the value of the parameter a to be 0.33%

(since the model is set in terms of log prices, a is a percentage of the asset price) and argues that

the parameter a is a summary measure of market quality. Simple structural market microstructure

models will indeed generate (1.3). For instance, Roll (1984) proposes a model where U is due entirely

to the bid-ask spread, and takes the form U = ± spread/2. A disturbance U can also be generated
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by adverse selection effects as in Glosten (1987), where the spread has two components: one that

is due to monopoly power, clearing costs, inventory carrying costs, etc., as previously, and a second

one that arises because of adverse selection whereby the specialist is concerned that the investor

on the other side of the transaction has superior information. In that situation, the disturbance U

would no longer be uncorrelated with the W process and would exhibit autocorrelation at the first

order, which would complicate our analysis without fundamentally altering it: see Sections 9 and

10 where we relax the assumptions that the U 0s are serially uncorrelated and independent of the W

process, respectively. The situation where the measurement error is primarily due to the fact that

transaction prices are multiples of a tick size (i.e., X̃τ i = miκ where κ is the tick size and mi is the

integer closest to Xτ i/κ) can be modeled as a rounding off problem (see Jacod (1996) and Delattre

and Jacod (1997)). Finally, more complex structural models, such as that of Madhavan, Richardson,

and Roomans (1997), also give rise to reduced forms where the observed transaction price X̃ takes

the form of an unobserved fundamental value plus error.

With (1.3) as our basic data generating process, we now turn to the questions we address in this

paper: how often should one sample a continuous-time process when the data are subject to market

microstructure noise, what are the implications of the noise for the estimation of the parameters of

the X process, and how should one correct for the presence of the noise, allowing for the possibility

that the econometrician misspecifies the assumed distribution of the noise term, and finally allowing

for the sampling to occur at random points in time? We proceed from the simplest to the most

complex situation by adding one extra layer of complexity at a time: Figure 1 shows the three

sampling schemes we consider, starting with fixed sampling without market microstructure noise,

then moving to fixed sampling with noise and concluding with an analysis of the situation where

transaction prices are not only subject to microstructure noise but are also recorded at random time

intervals.

2. The Baseline Case: No Microstructure Noise

We start by briefly reviewing what would happen in the absence of market microstructure noise,

that is when a = 0. With X denoting the log-price, the first differences of the observations are

the log-returns Yi = X̃τ i − X̃τ i−1 , i = 1, ...,N. The observations Yi = σ
¡
Wτ i+1 −Wτ i

¢
are then iid

N(0, σ2∆) so the likelihood function is

l(σ2) = −N ln(2πσ2∆)/2− (2σ2∆)−1Y 0Y, (2.1)
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where Y = (Y1, ..., YN)
0.. The maximum-likelihood estimator of σ2 coincides with the discrete ap-

proximation to the quadratic variation of the process

σ̂2 =
1

T

NX
i=1

Y 2i (2.2)

which has the following exact small sample moments:

E
£
σ̂2
¤
=
1

T

NX
i=1

E
£
Y 2i
¤
=

N
¡
σ2∆

¢
T

= σ2,

V ar
£
σ̂2
¤
=
1

T 2
V ar

"
NX
i=1

Y 2i

#
=
1

T 2

Ã
NX
i=1

V ar
£
Y 2i
¤!
=

N

T 2
¡
2σ4∆2

¢
=
2σ4∆

T

and the following asymptotic distribution

T 1/2
¡
σ̂2 − σ2

¢ −→
T−→∞

N(0, ω) (2.3)

where

ω = AV AR(σ̂2) = ∆E
h
−l̈(σ2)

i−1
= 2σ4∆. (2.4)

Thus selecting ∆ as small as possible is optimal for the purpose of estimating σ2.

3. When the Observations Are Noisy But the Noise Is Ignored

Suppose now that market microstructure noise is present but the presence of the U 0s is ignored

when estimating σ2. In other words, we use the log-likelihood (2.1) even though the true structure

of the observed log-returns Y 0i s is given by an MA(1) process since

Yi = X̃τ i − X̃τ i−1 + Uτ i − Uτ i−1

= σ
¡
Wτ i −Wτ i−1

¢
+ Uτ i − Uτ i−1 (3.1)

≡ εi + ηεi−1

where the ε0is are iid with mean zero and variance γ
2. The relationship to the original parametrization

(σ2, a2) is given by

γ2(1 + η2) = V ar[Yi] = σ2∆+ 2a2 (3.2)

γ2η = cov(Yi, Yi−1) = −a2 (3.3)
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or equivalently

γ2 =
1

2

n
2a2 + σ2∆+

p
σ2∆ (4a2 + σ2∆)

o
(3.4)

η =
1

2a2

n
−2a2 − σ2∆+

p
σ2∆ (4a2 + σ2∆)

o
(3.5)

which implies, as required, that −1 < η < 0.

The estimator σ̂2 obtained from maximizing the misspecified log-likelihood has the following

properties:

Proposition 1. In small samples (finite T ), the RMSE of the estimator σ̂2 is given by

RMSE
£
σ̂2
¤
=

³¡
E
£
σ̂2
¤− σ2

¢2
+ V ar

£
σ̂2
¤´1/2

=

Ã
4a4

∆2
+
2
¡
σ4∆2 + 4σ2∆a2 + 6a4

¢
T∆

− 4a
4

T 2

!1/2
(3.6)

and has a minimum (provided that T is greater than 21/2a2/σ2) which is reached at

∆∗ =
21/3a4/3

σ2

³σ2T + ¡σ4T 2 − 2a4¢1/2´1/3 + 21/3a4/3³
σ2T + (σ4T 2 − 2a4)1/2

´1/3
 . (3.7)

As T grows, we have

∆∗ =
22/3a4/3

σ4/3
T 1/3 +O

µ
1

T 1/3

¶
.

Figure 2 displays the RMSE of the estimator as a function of ∆ and T, with parameter values

σ = 0.5 and a = 0.05. Complementary to this are the results of Gloter and Jacod (2000) which show

that the presence of even increasingly negligible noise is sufficient to adversely affect the identification

of σ2. They study the asymptotic distribution of σ̂2 when the standard deviation aN of the noise

term goes to zero as the sample size increases, showing that σ̂2 is consistent if and only if NaN goes

to zero, and characterizing the asymptotic distribution of σ̂2 as a function of whether N3/2aN goes

to zero, a finite constant, or infinity.

4. Incorporating Market Microstructure Noise Explicitly

Now we show that if we explicitly incorporate the U 0s into the likelihood function, then we are

back into the standard case where the optimal sampling scheme consists in sampling as often as
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possible. Suppose that the microstructure noise is normally distributed, an assumption we will relax

below in Section 5. The likelihood function for the Y 0s is then given by

l(η, γ2) = − ln det(V )/2−N ln(2πγ2)/2− (2γ2)−1Y 0V −1Y, (4.1)

where the covariance matrix for the vector Y = (Y1, ..., YN)0 is given by γ2V , where

V = [vij ]i,j=1,...,N =



1 + η2 η 0 · · · 0

η 1 + η2 η
. . .

...

0 η 1 + η2
. . . 0

...
. . . . . . . . . η

0 · · · 0 η 1 + η2


(4.2)

Further,

det(V ) =
1− η2N+2

1− η2
(4.3)

and, neglecting the end effects, an approximate inverse of V is the matrix Ω = [ωij]i,j=1,...,N where

ωij =
¡
1− η2

¢−1
(−η)|i−j|

(see Durbin (1959)). The product VΩ differs from the identity matrix only on the first and last rows.

The exact inverse is V −1 =
£
vij
¤
i,j=1,...,N

where

vij =
¡
1− η2

¢−1 ¡
1− η2N+2

¢−1 n
(−η)|i−j| − (−η)i+j − (−η)2N−i−j+2 (4.4)

− (−η)2N+|i−j|+2 + (−η)2N+i−j+2 + (−η)2N−i+j+2
o
.

(see Shaman (1969) and Haddad (1995)).

We then obtain the following for the MLE estimators of σ2 and a2 :

Proposition 2. The MLE (σ̂2, â2) is consistent and its asymptotic variance is given by

AVARnormal(σ̂
2, â2) =

 4
p
σ6∆ (4a2 + σ2∆) + 2σ4∆ −σ2∆h(∆, σ2, a2)

• ∆
2

¡
2a2 + σ2∆

¢
h(∆, σ2, a2)

 .

with

h(∆, σ2, a2) ≡ 2a2 +
p
σ2∆ (4a2 + σ2∆) + σ2∆. (4.5)
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Since AVARnormal(σ̂2) is increasing in ∆, it is optimal to sample as often as possible. Further,

since

AVARnormal(σ̂
2) = 8σ3a∆1/2 + 2σ2∆+ o(∆), (4.6)

the loss of efficiency relative to the case where no market mircrostructure noise is present (and

AVAR(σ̂2) = 2σ2∆ as given in (2.4)) is at order ∆1/2. Figure 3 plots the asymptotic variances of

σ̂2 as functions of ∆ with and without noise (the parameter values are again σ = 0.5 and a = 0.05).

5. The Effect of Misspecifying the Distribution of the Microstruc-

ture Noise

We now study the situation where one attempts to incorporate the presence of the U 0s into the

analysis, as in Section 4, but assumes a misspecified model for them. Specifically, we consider the

case where the U 0s are assumed to be normally distributed when in reality they have a different

distribution. We still suppose that the U 0s are iid with mean zero and variance a2.

Since the econometrician assumes the U 0s to have a normal distribution, inference is still done with

the log-likelihood l(σ2, a2), or equivalently l(η, γ2) given in (4.1), using (3.2)-(3.3). This means that

the scores l̇σ2 and l̇a2 , or equivalently (B.1) and (B.2), are used as moment functions (or “estimating

equations”). Since the first order moments of the moment functions only depend on the second order

moment structure of the log-returns (Y1, ..., YN), which is unchanged by the absence of normality,

the moment functions are unbiased

Etrue[l̇η] = Etrue[l̇γ2 ] = 0 (5.1)

and similarly for l̇σ2 and l̇a2. Hence the estimator (σ̂
2, â2) based on these moment functions is

consistent and asymptotically unbiased (even though the likelihood function is misspecified.)

The effect of misspecification lies in the asymptotic variance matrix. We use a technical trick to

simplify calculations that would otherwise be daunting. By using the cumulants of the distribution

of U, we express the asymptotic variance of these estimators in terms of deviations from normality.
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We have that

Etrue
h
l̇η l̇γ2

i
= Covtrue(l̇η, l̇γ2)

= Covtrue

− 1

2γ2

NX
i,j=1

YiYj
∂vij

∂η
,
1

2γ4

NX
k,l=1

YkYlv
kl


= − 1

4γ6

NX
i,j,k,l=1

∂vij

∂η
vklCovtrue(YiYj , YkYl) (5.2)

= − 1

4γ6

NX
i,j,k,l=1

∂vij

∂η
vkl[Cumtrue(Yi, Yj , Yk, Yl) + 2Covtrue(Yi, Yj)Covtrue(Yk, Yl)].

where “true” denotes the true distribution of the Y 0s, not the incorrectly specified one, and Cum

denotes the cumulants. The last transition is because

Covtrue(YiYj , YkYl) = Etrue [YiYjYkYl]−Etrue [YiYj ]Etrue [YkYl]

= κijkl − κijκkl

= κi,j,k,l + κi,jκk,l[3]− κi,jκk,l

= κi,j,k,l + κi,kκj,l + κi,lκj,k

= Cumtrue(Yi, Yj , Yk, Yl) +Covtrue(Yi, Yk)Covtrue(Yj , Yk)

+Covtrue(Yi, Yl)Covtrue(Yj, Yk)

since Y has mean zero (see e.g., Section 2.3 of McCullagh (1987)). The need for permutation goes

away due to the summing over all indices (i, j, k, l), and since V −1 = [vij ] is symmetric.

When looking at (5.2), note that Cumnormal(Yi, Yj, Yk, Yl) = 0, where “normal” denotes a Normal

distribution with the same first and second order moments as the true distribution. That is, if the

Y 0s were normal we would have

Enormal
h
l̇η l̇γ2

i
= − 1

4γ6

NX
i,j,k,l=1

∂vij

∂η
vkl[2Covnormal(Yi, Yj)Covnormal(Yk, Yl)].

Also, since the covariance structure does not depend on Gaussianity, Covtrue(Yi, Yj) = Covnormal(Yi, Yj).

Next, we have

Enormal

h
l̇η l̇γ2

i
= −Enormal

h
l̈ηγ2

i
= −Etrue

h
l̈ηγ2

i
(5.3)

with the last equality following from the fact that l̈ηγ2 depends only on the second moments of the

Y 0s. (Note that in general Etrue
h
l̇η l̇γ2

i
6= −Etrue

h
l̈ηγ2

i
because the likelihood may be misspecified.)
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Thus, it follows from (5.2) that

Etrue
h
l̇η l̇γ2

i
= Enormal

h
l̇η l̇γ2

i
− 1

4γ6

NX
i,j,k,l=1

∂vij

∂η
vklCumtrue(Yi, Yj, Yk, Yl)

= −Etrue
h
l̈ηγ2

i
− 1

4γ6

NX
i,j,k,l=1

∂vij

∂η
vklCumtrue(Yi, Yj , Yk, Yl) (5.4)

It follows similarly that

Etrue

·³
l̇η
´2¸

= V artrue(l̇η)

= −Etrue
h
l̈ηη
i
+

1

4γ4

NX
i,j,k,l=1

∂vij

∂η

∂vkl

∂η
Cumtrue(Yi, Yj , Yk, Yl) (5.5)

and

Etrue

·³
l̇γ2
´2¸

= V artrue(l̇γ2)

= −Etrue
h
l̈γ2γ2

i
+

1

4γ8

NX
i,j,k,l=1

vijvklCumtrue(Yi, Yj , Yk, Yl). (5.6)

To calculate the fourth cumulant Cumtrue(Yi, Yj, Yk, Yl), recall from (3.1) that the observed log-

returns are

Yi = σ
¡
Wτ i −Wτ i−1

¢
+ Uτ i − Uτ i−1.

First, note that the τ i are nonrandom, and since W is independent of the U 0s, and has Gaussian

increments. Second, the cumulants are multilinear, so

Cumtrue(Yi, Yj , Yk, Yl) = Cumtrue
¡
σ
¡
Wτ i −Wτ i−1

¢
+ Uτ i − Uτ i−1 , σ

¡
Wτj −Wτj−1

¢
+ Uτj − Uτj−1,

σ
¡
Wτk −Wτk−1

¢
+ Uτk − Uτk−1 , σ

¡
Wτ l −Wτ l−1

¢
+ Uτl − Uτ l−1

¢
= σ4Cumtrue(Wτ i −Wτ i−1,Wτj −Wτj−1,Wτk −Wτk−1,Wτ l −Wτ l−1)

+σ3Cumtrue(Wτ i −Wτ i−1 ,Wτj −Wτj−1 ,Wτk −Wτk−1 , Uτ l − Uτ l−1)[4]

+σ2Cumtrue(Wτ i −Wτ i−1 ,Wτj −Wτj−1 , Uτk − Uτk−1 , Uτ l − Uτ l−1)[6]

+σCumtrue(Wτ i −Wτ i−1 , Uτj − Uτj−1 , Uτk − Uτk−1 , Uτ l − Uτ l−1)[4]

+Cumtrue(Uτ i − Uτ i−1 , Uτj − Uτj−1 , Uτk − Uτk−1 , Uτ l − Uτ l−1)

Out of these terms, only the last is nonzero because W has Gaussian increments (so all cumulants

of its increments of order greater than two are zero), and is independent of the U 0s (so all cumulants

11



involving increments of both W and U are also zero.) Therefore,

Cumtrue(Yi, Yj, Yk, Yl) = Cumtrue(Uτ i − Uτ i−1 , Uτj − Uτj−1 , Uτk − Uτk−1 , Uτ l − Uτ l−1)

where U is a generic random variable with distribution Uτ i .

If i = j = k = l, we have:

Cumtrue(Uτ i − Uτ i−1 , Uτ i − Uτ i−1 , Uτ i − Uτ i−1 , Uτ i − Uτ i−1) = Cum4(Uτ i − Uτ i−1)

= Cum4(Uτ i) +Cum4(−Uτ i−1)

= 2 Cum4(U)

with the second equality following from the independence of Uτ i and Uτ i−1, and the third from the

fact that the cumulant is of even order. Cum4(U) denotes the fourth cumulant of the random variable

U, which has mean zero, so, in terms of the moments of U we have

Cum4(U) = E
£
U4
¤− 3 ¡E £U2¤¢2 . (5.7)

If max(i, j, k, l) = min(i, j, k, l) + 1, two situations arise. Set m = min(i, j, k, l) and M =

max(i, j, k, l). Also set s = s(i, j, k, l) = #{i, j, k, l = m}. If s is odd, say s = 1 with i = m, and

j, k, l =M = m+ 1, we get a term of the form

Cumtrue(Uτm − Uτm−1 , Uτm+1 − Uτm , Uτm+1 − Uτm , Uτm+1 − Uτm) = −Cum4(Uτm).

By permutation, the same situation arises if s = 3. If instead s is even, i.e., s = 2, then we have

terms of the form

Cumtrue(Uτm − Uτm−1 , Uτm − Uτm−1 , Uτm+1 − Uτm , Uτm+1 − Uτm) = Cum4(Uτm).

Finally, if at least one pair of indices in the quadruple (i, j, k, l) is more than one integer apart, then

Cumtrue(Uτ i − Uτ i−1 , Uτj −Uτj−1 , Uτk − Uτk−1 , Uτ l − Uτ l−1) = 0

by independence of the U 0s.

Putting it all together, we have

Cumtrue(Yi, Yj , Yk, Yl) =


2 Cum4(U) if i = j = k = l

(−1)sCum4(U) if max(i, j, k, l) = min(i, j, k, l) + 1

0 otherwise

(5.8)

We now need to evaluate the sums that appear on the right hand sides of (5.4), (5.5) and (5.6).

We obtain:

12



Theorem 1. The estimators (σ̂2, â2) obtained by maximizing the log-likelihood (4.1) are consistent

and their asymptotic variance is given by

AV ARtrue(σ̂
2, â2) = AV ARnormal(σ̂

2, â2) +Cum4(U)

 0 0

0 ∆

 (5.9)

where AVARnormal(σ̂
2, â2) is the asymptotic variance in the case where the distribution of U is

Normal, that is, the expression given in Proposition 2.

6. Robustness to Misspecification of the Noise Distribution

The above Theorem 1 has implications for the use of the Gaussian likelihood l that go beyond

consistency, namely that this likelihood can also be used to estimate the distribution of σ̂2 under

misspecification. With l denoting the log-likelihood assuming that the U 0s are Gaussian, given in

(4.1), −l̈(σ̂2, â2) denote the observed information matrix in the original parameters σ2 and a2. Then

V̂ = \AVARnormal =
µ
− 1
T
l̈(σ̂2, â2)

¶−1
is the usual estimate of asymptotic variance when the distribution is correctly specified as Gaussian.

Also note, however, that otherwise, so long as (σ̂2, â2) is consistent, V̂ is also a consistent estimate

of the matrix AVARnormal(σ̂2, â2). Since this matrix coincides with AVARtrue(σ̂2, â2) for all but the

(a2, a2) term (see (5.9)), the asymptotic variance of T 1/2(σ̂2−σ2) is consistently estimated by V̂σ2σ2 .
The similar statement is true for the covariances, but not, obviously, for the asymptotic variance of

T 1/2(â2 − a2).

In the likelihood context, the possibility of estimating the asymptotic variance by the observed

information is due to the second Bartlett identity. For a general log likelihood l, if S ≡ Etrue[l̇l̇
0]/N

and D ≡ −Etrue[l̈]/N (differentiation refers to the original parameters (σ2, a2), not the transformed

parameters (γ2, η)) this identity says that

S −D = 0. (6.1)

It implies that the asymptotic variance takes the form

AVAR = ∆(DS−1D)−1 = ∆D−1. (6.2)

It is clear that (6.2) remains valid if the second Bartlett identity holds only to first order, i.e.,

S −D = o(1) (6.3)

13



as N →∞, for a general criterion function l which satisfies Etrue[l̇] = o(N).

However, in view of Theorem 1, equation (6.3) cannot be satisfied. In fact, we show in Appendix

D that

S −D = Cum4(U)gg
0 + o(1), (6.4)

where

g =

 gσ2

ga2

 =

 ∆1/2

σ(4a2+σ2∆)3/2

1
2a4

µ
1− ∆1/2σ(6a2+σ2∆)

(4a2+σ2∆)3/2

¶
 . (6.5)

From (6.5), we see that g 6= 0 whenever σ2 > 0. This is consistent with the result in Theorem 1 that

the true asymptotic variance matrix, AV ARtrue(σ̂2, â2), does not coincide with the one for Gaussian

noise, AV ARnormal(σ̂2, â2). On the other hand, the 2 × 2 matrix gg0 is of rank 1, signaling that

there exist linear combinations that will cancel out the first column of S−D. From what we already

know of the form of the correction matrix, D−1 gives such a combination, so that the asymptotic

variance of the original parameters (σ2, a2) will have the property that its first column is not subject

to correction in the absence of normality.

A curious consequence of (6.4) is that while the observed information can be used to estimate

the asymptotic variance of σ̂2 when a2 is not known, this is not the case when a2 is known. This

is because the second Bartlett identity also fails to first order when considering a2 to be known,

i.e., when differentiating with respect to σ2 only. Indeed, in that case we have from the upper left

component in the matrix equation (6.4)

Sσ2σ2 −Dσ2σ2 = N−1Etrue
h
l̇σ2σ2(σ

2, a2)2
i
+N−1Etrue

h
l̈σ2σ2(σ

2, a2)
i

= Cum4(U) (gσ2)
2 + o(1)

which is not o(1) unless Cum4(U) = 0.

To make the connection between Theorem 1 and the second Bartlett identity, one needs to go to

the log profile likelihood

λ(σ2) ≡ sup
a2

l(σ2, a2). (6.6)

Obviously, maximizing the likelihood l(σ2, a2) is the same as maximizing λ(σ2). Thus one can

think of σ2 as being estimated (when α2 is unknown) by maximizing the criterion function λ(σ2),

or by solving λ̇(σ̂2) = 0. Also, the observed profile information is related to the original observed

information by

λ̈(σ̂2)−1 =
h
l̈(σ̂2, â2)−1

i
σ2σ2

, (6.7)
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i.e., the first (upper left hand corner) component of the inverse observed information in the original

problem. We recall the rationale for equation (6.7) in Appendix D, where we also show that Etrue[λ̇] =

o(N). In view of Theorem 1, λ̈(σ̂2) can be used to estimate the asymptotic variance of σ̂2 under the

true (possibly non-Gaussian) distribution of the U 0s, and so it must be that the criterion function λ

satisfies (6.3), that is

N−1Etrue[λ̇(σ2)2] +N−1Etrue[λ̈(σ2)] = o(1). (6.8)

This is indeed the case, as shown in Appendix D.

This phenomenon is related, although not identical, to what occurs in the context of quasi-

likelihood (for comprehensive treatments of quasi-likelihood theory, see the books by McCullagh and

Nelder (1989) and Heyde (1997), and the references therein, and for early econometrics examples see

Macurdy (1982) and White (1982)). In quasi-likelihood situations, one uses a possibly incorrectly

specified score vector which is nevertheless required to satisfy the second Bartlett identity. What

makes our situation unusual relative to quasi-likelihood is that the interest parameter σ2 and the

nuisance parameter a2 are entangled in the same estimating equations (l̇σ2 and l̇a2 from the Gaussian

likelihood) in such a way that the estimate of σ2 depends, to first order, on whether a2 is known

or not. This is unlike the typical development of quasi-likelihood, where the nuisance parameter

separates out (see, e.g., Table 9.1 (p. 326) of McCullagh and Nelder (1989)). Thus only by going to

the profile likelihood λ can one make the usual comparison to quasi-likelihood.

7. Randomly Spaced Sampling Intervals

One could of course argue that we have made many simplifying or special assumptions. We now

show that none of these assumptions drive the results, and that the effects we describe are all present

in more complex (and realistic) setups. We start by relaxing the assumption that ∆ is constant.

Indeed, one essential feature of transaction data in finance is that the time that separates suc-

cessive observations is random, or at least time-varying. So, as in Aït-Sahalia and Mykland (2003),

we are led to consider the case where ∆i = τ i − τ i−1 are either deterministic and time-varying, or

random in which case we assume for simplicity that they are iid, independent of the W process. We

denote by NT the number of observations recorded by time T . NT is random if the ∆0s are. We also

suppose that Uτ i can be written Ui, where the Ui are iid and independent of the W process and the

∆0is. Thus, the observation noise is the same at all observation times, whether random or nonran-

dom. If we define the Yis as before, in the first two lines of (3.1), though the MA(1) representation
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is not valid in the same form.

We can do inference conditionally on the observed sampling times, in light of the fact that the

likelihood function using all the available information is

L (YN ,∆N , ..., Y1,∆1;β,ψ) = L (YN , ..., Y1|∆N , ...,∆1;β)× L (∆N , ...,∆1;ψ)

where β are the parameters of the state process, that is (σ2, a2), and ψ are the parameters of the

sampling process, if any (the density of the sampling intervals density L (∆NT , ...,∆1;ψ) may have

its own nuisance parameters ψ, such as an unknown arrival rate, but we assume that it does not

depend on the parameters β of the state process.) The corresponding log-likelihood function is

NX
n=1

lnL (YN , ..., Y1|∆N , ...,∆1;β) +
N−1X
n=1

lnL (∆N , ...,∆1;ψ) (7.1)

and since we only care about β, we only need to maximize the first term in that sum.

We operate on the covariance matrix Σ of the log-returns Y 0s, now given by

Σ =



σ2∆1 + 2a2 −a2 0 · · · 0

−a2 σ2∆2 + 2a
2 −a2 . . .

...

0 −a2 σ2∆3 + 2a
2 . . . 0

...
. . . . . . . . . −a2

0 · · · 0 −a2 σ2∆n + 2a2


(7.2)

Note that in the equally spaced case, Σ = γ2V . The log-likelihood function is given by

lnL (YN , ..., Y1|∆N , ...,∆1;β) ≡ l(σ2, a2) (7.3)

= − ln det(Σ)/2−N ln(2π)/2− Y 0Σ−1Y/2,

Suppose in the following that β1 and β2 can represent either σ
2 or a2. We start with:

Lemma 1. Fisher’s Conditional Information is given by

E
h
− l̈β2β1

¯̄̄
∆
i
= −1

2

∂2 ln detΣ

∂β2β1
. (7.4)

7.1 Expansion around a fixed value of ∆

To continue further with the calculations, we now expand around a fixed value of ∆, namely

∆0 = E [∆] . Specifically, suppose now that

∆i = ∆0 (1 + ξi) (7.5)
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where and ∆0 are nonrandom, the ξ0is are iid random variables with mean zero. We will Taylor-

expand the expressions above around = 0, i.e., around the non-random sampling case. For simplic-

ity, we take the ξ0is to be bounded. Denote by Σ0 the value of Σ when ∆ is replaced by ∆0, and let

Ξ denote the matrix whose diagonal elements are the terms ∆0ξi, and whose off-diagonal elements

are zero. We obtain:

Theorem 2. The MLE (σ̂2, â2) is again consistent, this time with asymptotic variance

AVAR(σ̂2, â2) = A(0) + 2A(2) +O( 3) (7.6)

where

A(0) =

 4
p
σ6∆0 (4a2 + σ2∆0) + 2σ

4∆0 −σ2∆0h(∆0, σ2, a2)
• ∆0

2

¡
2a2 + σ2∆0

¢
h(∆0, σ2, a2)


and

A(2) =
V ar[ξ]

(4a2 +∆0σ2)

 A
(2)
σ2σ2

A
(2)
σ2a2

• A
(2)
a2a2


with

A
(2)
σ2σ2

= −4
³
∆20σ

6 +∆
3/2
0 σ5

p
4a2 +∆0σ2

´
A
(2)
σ2a2

= ∆
3/2
0 σ3

p
4a2 +∆0σ2

¡
2a2 + 3∆0σ

2
¢
+∆20σ

4
¡
8a2 + 3∆0σ

2
¢

A
(2)
a2a2

= −∆20σ2
³
2a2 + σ

p
∆0
p
4a2 +∆0σ2 +∆0σ

2
´2

Note that A(0) is the asymptotic variance matrix already present in Proposition 2, except that

it is evaluated at ∆0 = E[∆]. Note also that the second order correction term is proportional to

V ar[ξ], and is therefore zero in the absence of sampling randomness. When that happens, ∆ = ∆0

with probability one and the asymptotic variance of the estimator reduces to the leading term A(0),

i.e., to the result in the fixed sampling case given in Proposition 2..

7.2 Randomly Spaced Sampling Intervals and Misspecified Microstructure Noise

Suppose now, as in Section 5, that the U 0s are iid, have mean zero and variance a2, but are

otherwise not necessarily Gaussian. We adopt the same approach as in Section 5, namely to express

the estimator’s properties in terms of deviations from the deterministic and Gaussian case. The

additional correction terms in the asymptotic variance are given in the following result.
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Theorem 3. The asymptotic variance is given by

AVARtrue(σ̂
2, â2) =

³
A(0) +Cum4(U)B

(0)
´
+ 2

³
A(2) +Cum4(U)B

(2)
´
+O( 3) (7.7)

where A(0) and A(2) are given in the statement of Theorem 2 and

B(0) =

 0 0

0 ∆0


while

B(2) = V ar[ξ]

 B
(2)
σ2σ2

B
(2)
σ2a2

• B
(2)
a2a2


B
(2)
σ2σ2

=
10∆

3/2
0 σ5

(4a2 +∆0σ2)
5/2

+
4∆20σ

6
¡
16a4 + 11a2∆0σ

2 + 2∆20σ
4
¢

(2a2 +∆0σ2)
3(4a2 +∆0σ2)

2

B
(2)
σ2a2

=
−∆20σ4

(2a2 +∆0σ2)
3(4a2 +∆0σ2)

5/2

³p
4a2 +∆0σ2

¡
32a6 + 64a4∆0σ

2 + 35a2∆20σ
4 + 6∆30σ

6
¢

+∆
1/2
0 σ

¡
116a6 + 126a4∆0σ

2 + 47a2∆20σ
4 + 6∆30σ

6
¢´

B
(2)
a2a2

=
16a8∆

5/2
0 σ3

¡
13a4 + 10a2∆0σ

2 + 2∆20σ
4
¢

(2a2 +∆0σ2)
3(4a2 +∆0σ2)

5/2
³
2a2 + σ2∆−pσ2∆ (4a2 + σ2∆)

´2 .
The term A(0) is the base asymptotic variance of the estimator, already present with fixed sam-

pling and Gaussian noise. The term Cum4(U)B
(0) is the correction due to the misspecification of

the error distribution. These two terms are identical to those present in Theorem 1. The terms

proportional to 2 are the further correction terms introduced by the randomness of the sampling.

A(2) is the base correction term present even with Gaussian noise in Theorem 2, and Cum4(U)B(2)

is the further correction due to the sampling randomness. Both A(2) and B(2) are proportional to

V ar[ξ] and hence vanish in the absence of sampling randomness.

8. Presence of a Drift Coefficient

What happens to our conclusions when the underlying X process has a drift? We shall see in

this case that the presence of the drift does not alter our earlier conclusions. As a simple example,

consider linear drift, i.e., replace (1.2) with

Xt = µt+ σWt. (8.1)
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The contamination by market microstructure noise is as before: the observed process is given by

(1.3).

As before, we first-difference to get the log-returns Yi = X̃τ i−X̃τ i−1+Uτ i−Uτ i−1. The likelihood

function is now

lnL (YN , ..., Y1|∆N , ...,∆1;β) ≡ l(σ2, a2, µ)

= − ln det(Σ)/2−N ln(2π)/2− (Y − µ∆)0Σ−1(Y − µ∆)/2,

where the covariance matrix is given in (7.2), and where ∆ = (∆1, ...,∆N)
0. If β denotes either σ2

or a2, one obtains

l̈µβ = ∆
0 ∂Σ−1

∂β
(Y − µ∆),

so that E[l̈µβ|∆] = 0 no matter whether the U 0s are normally distributed or have another distribution
with mean 0 and variance a2. In particular,

E[l̈µβ ] = 0. (8.2)

Now let E[l̈] be the 3×3 matrix of expected second likelihood derivatives. Let E[l̈] = −TE[∆]D+
o(T ). Similarly define Cov(l̇, l̇) = TE[∆]S + o(T ). As before, when the U 0s have a normal distribu-

tion, S = D, and otherwise that is not the case. The asymptotic variance matrix of the estimators

is of the form AVAR = E[∆]D−1SD−1.

Let Dσ2,a2 be the corresponding 2 × 2 matrix when estimation is carried out on σ2 and a2 for

known µ, and Dµ is the asymptotic information on µ for known σ2 and a2. Similarly define Sσ2,a2

and AVARσ2,a2 . Since D is block diagonal by (8.2),

D =

 Dσ2,a2 0

00 Dµ

 ,

it follows that

D−1 =

 D−1
σ2,a2

0

00 D−1µ

 .

Hence

AVAR(σ̂2, â2) = E[∆]D−1
σ2,a2

Sσ2,a2D
−1
σ2,a2

. (8.3)

The asymptotic variance of (σ̂2, â2) is thus the same as if µ were known, in other words, as if µ = 0,

which is the case that we focused on in all the previous sections.
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9. Serially Correlated Noise

We now examine what happens if we relax the assumption that the market microstructure noise

is serially independent. Suppose that, instead of being iid with mean 0 and variance a2, the market

microstructure noise follows

dUt = −bUtdt+ cdZt

where b > 0, c > 0 and Z is a Brownian motion independent ofW. U∆|U0 has a Gaussian distribution
with mean e−b∆U0 and variance c2

2b

¡
1− e−2b∆

¢
. The unconditional mean and variance of U are 0

and a2 = c2

2b . The main consequence of this model is that the variance contributed by the noise to

a log-return observed over an interval of time ∆ is now of order O(∆), that is of the same order as

the variance of the efficient price process σ2∆, instead of being of order O(1) as previously. In other

words, log-prices observed close together have very highly correlated noise terms. Because of this

feature, this model for the microstructure noise would not be appropriate if the primary source of

the noise consists of bid-ask bounces. In such a situation, the fact that a transaction is on the bid or

ask side has little predictive power for the next transaction, or at least not enough to predict that

two successive transactions are on the same side with very high probability. On the other hand, this

model can better capture effects such as the gradual adjustment of prices in response to a shock such

as a large trade. In practice, the noise term probably encompasses both of these examples, resulting

in a situation where the variance contributed by the noise has both types of components, some of

order O(1), some of lower orders in ∆.

The observed log-returns take the form

Yi = X̃τ i − X̃τ i−1 + Uτ i − Uτ i−1

= σ
¡
Wτ i −Wτ i−1

¢
+ Uτ i − Uτ i−1

≡ wi + ui

where the w0is are iid N(0, σ2∆) and the u0is are independent of the w0is, are Gaussian with mean

zero and variance

E
£
u2i
¤
= E

h¡
Uτ i − Uτ i−1

¢2i
=

c2
¡
1− e−b∆

¢
b

= c2∆+ o(∆) (9.1)

instead of 2a2.

In addition, the u0is are now serially correlated. In particular, we have

E [Uτ iUτk ] =
c2
¡
1− e−b∆(i−k)

¢
2b
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for i ≥ k. If one ignores the presence of this type of serially correlated noise when estimating σ2,

then:

Proposition 3. In small samples (finite T ), the RMSE of the estimator σ̂2 is given by

RMSE
£
σ̂2
¤
=

Ã
c4
¡
1− e−b∆

¢2
b2∆2

+
c4
¡
1− e−b∆

¢2 ¡ T
∆e

−2b∆ − 1 + e−2Tb
¢

T 2b2 (1 + e−b∆)2

+
2

T∆

Ã
σ2∆+

c2
¡
1− e−b∆

¢
b

!21/2 (9.2)

= c2 − bc2

2
∆+

¡
σ2 + c2

¢2
∆

c2T
+O(∆2) +O

µ
1

T 2

¶
so that for large T, starting from a value of c2 in the limit where ∆→ 0, increasing ∆ first reduces

RMSE
£
σ̂2
¤
. Hence the optimal sampling frequency is finite.

Figure 4 displays the RMSE of the estimator as a function of ∆ and T, with parameter values

σ = 0.15, b = 1 and c = 0.1. With realistic parameter values, T must be quite large before

RMSE
£
σ̂2
¤
exhibits a minimum in ∆: asymptotically in small ∆, this will only occur if

−bc
2

2
+

¡
σ2 + c2

¢2
c2T

< 0

that is,

T >
2
¡
σ2 + c2

¢2
bc4

or T > 21.125 years with these parameter values. This is due to the fact that the existence of a

minimum in ∆ comes from the bias component, which becomes predominant as T gets large. This

is another way of seeing that this type of noise is not nearly as bad as iid noise for the purpose of

inferring σ2 from high frequency data. Recall from (9.1) that the variance of the noise is of the same

order O(∆) as the variance of the efficient price process. Thus log returns computed from transaction

prices sampled close together are not subject to a lot of noise (O(∆) vs. O(1)). Figure 4 shows the

shape of the curve for two values of T , one too small for a minimum to occur, one large enough.

As for the rest of the analysis of the paper, the covariance matrix of the log-returns, γ2V in (4.2),

should be replaced by the matrix whose diagonal elements are

V ar
£
Y 2i
¤
= E

£
w2i
¤
+E

£
u2i
¤
= σ2∆+

c2
¡
1− e−b∆

¢
b
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and off-diagonal elements i > j are:

cov (Yi, Yj) = E [YiYj ] = E [(wi + ui) (wj + uj)]

= E [uiuj] = E
£¡
Uτ i − Uτ i−1

¢ ¡
Uτj − Uτj−1

¢¤
= E

£
Uτ iUτj

¤−E
£
Uτ iUτj−1

¤−E
£
Uτ i−1Uτj

¤
+E

£
Uτ i−1Uτj−1

¤
= −c

2
¡
1− e−b∆

¢2
e−b∆(i−j−1)

2b

Note that the theorems in the previous sections do not apply to this new situation because, hav-

ing modified the matrix γ2V, the artificial “normal” distribution that assumes iid U 0s that are

N(0, α2) would no longer use the correct second moment structure of the data. Thus the analysis

would have to be repeated for this new scenario.

10. Noise Correlated with the Price Process

We have assumed so far that the U process was uncorrelated with theW process. Microstructure

noise attributable to informational effects is likely to be correlated with the efficient price process,

since it is generated by the response of market participants to information signals (i.e., to the efficient

price process). This would be the case for instance in the bid-ask model with adverse selection of

Glosten (1987). When the U process is no longer uncorrelated from the W process, the form of the

variance matrix of the observed log-returns Y must be altered, replacing γ2vij in (4.2) with

cov(Yi, Yj) = cov(σ
¡
Wτ i −Wτ i−1

¢
+ Uτ i − Uτ i−1 , σ

¡
Wτj −Wτj−1

¢
+ Uτj − Uτj−1)

= σ2∆δij + cov(σ
¡
Wτ i −Wτ i−1

¢
, Uτj − Uτj−1)

+cov(σ
¡
Wτj −Wτj−1

¢
, Uτ i − Uτ i−1) + cov(Uτ i − Uτ i−1, Uτj − Uτj−1)

where δij is the Kronecker symbol.

The small sample properties of the misspecified MLE for σ2, including its RMSE, can be obtained

from

E
£
σ̂2
¤
=

1

T

NX
i=1

E
£
Y 2i
¤

V ar
£
σ̂2
¤
=

1

T 2

NX
i=1

V ar
£
Y 2i
¤
+
2

T 2

NX
i=1

i−1X
j=1

cov
¡
Y 2i , Y

2
j

¢
.

Specific expressions for all these quantities depend upon the assumptions of the particular structural

model under consideration: for instance, in the Glosten (1987) model (see his Proposition 6), the U 0s
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remain stationary, the transaction noise Uτ i is uncorrelated with the return noise during the previous

observation period, i.e., Uτ i−1 − Uτ i−2 , and the efficient return σ
¡
Wτ i −Wτ i−1

¢
is also uncorrelated

with the transaction noises Uτ i+1 and Uτ i−2 .

With these in hand, the analysis can then proceed as above. The same caveat as in serially

correlated U case applies: having modified the matrix γ2V, the artificial “normal” distribution would

no longer use the correct second moment structure of the data. Thus the theorems should be modified

accordingly.

11. Conclusions

Our first finding in the paper is that there are situations where the presence of market microstruc-

ture noise makes it optimal to sample less often than would otherwise be the case in the absence

of noise. We then addressed the issue of what to do about it, and showed that modelling the noise

term explicitly restores the first order statistical effect that sampling as often as possible is optimal.

We also demonstrated that this is true even if one misspecifies the assumed distribution of the noise

term. If the econometrician assumes that the noise terms are normally distributed when in fact they

are not, not only is it still optimal to sample as often as possible (unlike the result when no allowance

is made for the presence of noise), but the estimator has the same asymptotic variance as if the noise

distribution had been correctly specified.

We purposefully adopted the simplest possible setup to demonstrate that our results are not driven

by the complexity of the model, but rather are likely to be genuine features facing the econometrics

of high frequency data. Our robustness results suggest that attempts to incorporate the market

microstructure noise when estimating continuous-time models based on high frequency data should

have beneficial effects.
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Appendix A: Proof of Proposition 1

The estimator (2.2) has the following mean

E
£
σ̂2
¤
=
1

T

NX
i=1

E
£
Y 2
i

¤
=

N
¡
σ2∆+ 2a2

¢
T

= σ2 +
2a2

∆
. (A.1)

Given the form of the bias, one would in fact want to select the largest ∆ possible to minimize the bias (as
opposed to the smallest one as in the no-noise case of Section 2).

The estimator’s variance is

V ar
£
σ̂2
¤
=
1

T 2
V ar

"
NX
i=1

Y 2
i

#
=
1

T 2

Ã
NX
i=1

V ar
£
Y 2i
¤
+ 2

NX
i=2

cov
¡
Y 2
i , Y

2
i−1
¢!

.

Since the Y 0i s are normal with mean zero, V ar
£
Y 2
i

¤
= 2V ar[Yi]

2 = 2γ4(1 + η2)2 and

cov
¡
Y 2i , Y

2
i−1
¢
= cov(ε2i + 2ηεiεi−1 + η2ε2i−1, ε

2
i−1 + 2ηεi−1εi−2 + η2ε2i−2)

= η2V ar
£
ε2i−1

¤
= 2η2γ4

so that

V ar
£
σ̂2
¤
=

1

T 2
©
2Nγ4(1 + η2)2 + 4(N − 1)η2γ4ª

=
1

T 2
©
2Nγ4

¡
1 + 4η2 + η4

¢ª− 1

T 2
©
4η2γ4

ª
=

2γ4
¡
1 + 4η2 + η4

¢
T∆

− 4η
2γ4

T 2

=
2
¡
σ4∆2 + 4σ2∆a2 + 6a4

¢
T∆

− 4a
4

T 2
(A.2)

Note that these are exact small sample expressions, valid for all (T,∆). Asymptotically in T, V ar
£
σ̂2
¤ → 0,

and hence the RMSE of the estimator is dominated by the bias term.
In finite samples, the expression for the RMSE given in (3.6) follows from those for the expected value

and variance(A.1) and (A.2). The optimal value ∆∗ of the sampling interval given in (3.7) is obtained by
minimizing the RMSE (3.6) over ∆.

Appendix B: Proof of Proposition 2

The partial derivatives of the log-likelihood function (4.1) have the form

l̇η = −1
2

∂ ln det(V )

∂η
− 1

2γ2
Y 0

∂V −1

∂η
Y, (B.1)

and
l̇γ2 = − N

2γ2
+

1

2γ4
Y 0V −1Y. (B.2)

so that the MLE for γ2 is

γ̂2 =
1

N
Y 0V −1Y. (B.3)
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At the true parameters, the expected value of the score vector is zero: E
h
l̇η
i
= E

h
l̇γ2
i
= 0. Hence it

follows from (B.1) that

E

·
Y 0 ∂V

−1

∂η
Y

¸
= −γ2 ∂ ln det(V )

∂η
= −γ2 2η

¡
1− (1 +N) η2N +Nη2(1+N)

¢
(1− η2)

¡
1− η2(1+N)

¢
thus as N →∞

E

·
Y 0

∂V −1

∂η
Y

¸
= − 2ηγ2

(1− η2)
+ o(1).

Similarly, it follows from (B.2) that
E
£
Y 0V −1Y

¤
= Nγ2.

Turning now to Fisher’s information, we have

E
h
−l̈γ2γ2

i
= − N

2γ4
+
1

γ6
E
£
Y 0V −1Y

¤
=

N

2γ4
, (B.4)

whence the asymptotic variance of T 1/2(γ̂2 − γ2) is 2γ4∆. We also have that

E
h
−l̈γ2η

i
=

1

2γ4
E

·
Y 0 ∂V

−1

∂η
Y

¸
= − η

γ2 (1− η2)
+ o(1), (B.5)

whence the asymptotic covariance of T 1/2(γ̂2 − γ2) and T 1/2(η̂ − η) is zero.
To evaluate E

h
−l̈ηη

i
, we compute

E
h
−l̈ηη

i
=
1

2

∂2 ln det(V )

∂η2
+

1

2γ2
E

·
Y 0

∂2V −1

∂η2
Y

¸
(B.6)

and evaluate both terms. For the first term in (B.6), we have from (4.3):

∂2 ln det(V )

∂η2
=

1

(1− η2+2N)
2

(
2
¡
1 + η2 + η2+2N

¡
1− 3η2¢¢ ¡1− η2N

¢
(1− η2)2

− 2Nη2N
¡
3 + η2+2N

¢− 4N2η2N
ª

=
2
¡
1 + η2

¢
(1− η2)2

+ o(1) (B.7)

For the second term, we have for any non-random N ×N matrix Q:

E [Y 0QY ] = E [Tr [Y 0QY ]] = E [Tr [QY Y 0]] = Tr [E [QY Y 0]]

= Tr [QE [Y Y 0]] = Tr
£
Qγ2V

¤
= γ2Tr [QV ]

where Tr denotes the matrix trace, which satisfies Tr[AB] = Tr[BA]. Therefore

E

·
Y 0 ∂

2V −1

∂η2
Y

¸
= γ2Tr

·
∂2V −1

∂η2
V

¸
= γ2

 NX
i=1

NX
j=1

∂2vij

∂η2
vij


= γ2

Ã
NX
i=1

∂2vii

∂η2
¡
1 + η2

¢
+

N−1X
i=1

∂2vi,i+1

∂η2
η +

NX
i=2

∂2vi,i−1

∂η2
η

!

=
γ2

(1− η2+2N)
2

(
−4

¡
1 + 2η2 + η2+2N

¡
1− 4η2¢¢ ¡1− η2N

¢
(1− η2)

2

+
2N

¡
1 + η2N

¡
6− 6η2 + 2η2+2N − 3η4+2N¢¢

(1− η2)
+ 8N2η2N

)

=
2γ2N

(1− η2)
+ o(N) (B.8)
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Combining (B.7) and (B.8) into (B.6), it follows that

E
h
−l̈ηη

i
=
1

2

∂2 ln det(VN)

∂η2
+

1

2γ2
E

·
Y 0 ∂

2V −1N

∂η2
Y

¸
∼

N−→∞
N

(1− η2)
+ o(N) (B.9)

In light of that and (B.5), the asymptotic variance of T 1/2(η̂ − η) is the same as in the γ2 known case, that
is, (1− η2)∆ (which of course confirms the result of Durbin (1959) for this parameter).

We can now retrieve the asymptotic covariance matrix for the original parameters (σ2, a2) from that of
the parameters (γ2, η). This follows from the delta method applied to the change of variable (3.2)-(3.3):Ã

σ2

a2

!
= f(γ2, η) =

Ã
∆−1γ2(1 + η)2

−γ2η

!
. (B.10)

Hence

T 1/2

ÃÃ
σ̂2

â2

!
−
Ã

σ2

a2

!!
→

T−→∞
N
¡
0, AV AR(σ̂2, â2)

¢
where

AV AR(σ̂2, â2) = ∇f(γ2, η).AV AR(γ̂2, η̂).∇f(γ2, η)0

=

Ã
(1+η)2

∆
2γ2(1+η)
∆

−η −γ2
!Ã

2γ4∆ 0

0 (1− η2)∆

!Ã
(1+η)2

∆ −η
2γ2(1+η)
∆ −γ2

!

=

Ã
4
p
σ6∆ (4a2 + σ2∆) + 2σ4∆ −σ2∆h(∆, σ2, a2)

• ∆
2

¡
2a2 + σ2∆

¢
h(∆, σ2, a2)

!
.

Appendix C: Proof of Theorem 1

Consider two generic symmetric N ×N matrices
£
νi,j
¤
and

£
ωi,j

¤
We are interested in expressions of the

form X
i,j,k,l:M=m+1

(−1)sνi,jωk,l =
N−1X
h=1

X
i,j,k,l:m=h,M=h+1

(−1)sνi,jωk,l (C.1)

=
N−1X
h=1

3X
r=1

X
i,j,k,l:m=h,M=h+1,s=r

(−1)rνi,jωk,l

=
N−1X
h=1

©−2νh,h+1ωh+1,h+1 − 2νh+1,h+1ωh,h+1
+νh,hωh+1,h+1 + νh+1,h+1ωh,h + 4νh,h+1ωh,h+1

−2νh+1,hωh,h − 2νh,hωh+1,hª
It follows that if we set

Υ(ν, ω) =
NX

i,j,k,l=1

νi,jωk,lCumtrue(Yi, Yj , Yk, Yl) (C.2)

then Υ(ν, ω) = Cum4(U) Ψ(ν, ω) where

ψ(ν, ω) = 2
NX
h=1

νh,hωh,h +
N−1X
h=1

©−2νh,h+1ωh+1,h+1 − 2νh+1,h+1ωh,h+1
+νh,hωh+1,h+1 + νh+1,h+1ωh,h + 4νh,h+1ωh,h+1 (C.3)

−2νh+1,hωh,h − 2νh,hωh+1,hª
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If the two matrices
£
νi,j
¤
and

£
ωi,j

¤
satisfy the following reversibility property: νN+1−i,N+1−j = νi,j and

ωN+1−i,N+1−j = ωi,j (so long as one is within the index set), then (C.3) simplifies to:

ψ(ν, ω) = 2
NX
h=1

νh,hωh,h +
N−1X
h=1

©−4νh,h+1ωh+1,h+1 − 4νh+1,h+1ωh,h+1
+2νh,hωh+1,h+1 + 4νh,h+1ωh,h+1

ª
This is the case for V −1 and its derivative ∂V −1/∂η, as can be seen from the expression for vi,j given in (4.4),
and consequently for ∂vi,j/∂η.

If we wish to compute the sums in equations (5.4), (5.5), and (5.6), therefore, we need, respectively, to
find the three quantities ψ(∂v/∂η, v), ψ(∂v/∂η, ∂v/∂η), and ψ(v, v) respectively. All are of order O(N), and
only the first term is needed. Replacing the terms vi,j and ∂vi,j/∂η by their expressions from (4.4), we obtain:

ψ(v, v) =
2

(1 + η2) (1− η)
3¡1− η2(1+N)

¢2 n− (1 + η)
¡
1− η2N

¢ ³
1 + 2η2 + 2η2(1+N) + η2(2+N)

´
+ N(1− η)

¡
1 + η2

¢ ³
2 + η2N + η2(1+N) + 6η1+2N + 2η2+4N

´o
=

4N

(1− η)2
+ o(N) (C.4)

ψ

µ
∂v

∂η
, v

¶
=

2
¡
O(1) + 2N(1− η)

¡
1 + η2

¢
η
¡
1 + η2 +O(η2N)

¢
+N2O(η2N)

¢
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1− η2(1+N)

¢3
=
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(1− η)3
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ψ

µ
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¶
=

4
³
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´
3η2 (1 + η) (1 + η2)3(1− η)5

¡
1− η2(1+N)

¢4
=

4N

(1− η)4
+ o(N) (C.6)

The asymptotic variance of the estimator (γ̂2, η̂) obtained by maximizing the (incorrectly-specified) log-
likelihood (4.1) that assumes Gaussianity of the U 0s is given by

AV ARtrue(γ̂
2, η̂) = ∆

¡
D0S−1D

¢−1
where, from (B.4), (B.5) and (B.9) we have

D = D0 = − 1
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h
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h
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i

=

Ã
1
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Nγ2(1−η2) + o
¡
1
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¢
• 1

(1−η2) + o(1)

!
(C.7)

and, in light of (5.4), (5.5), and (5.6),

S =
1

N
Etrue

h
l̇l̇0
i
= − 1

N
Etrue

h
l̈
i
+Cum4(U) Ψ = D +Cum4(U) Ψ (C.8)
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where

Ψ =
1

4N

 1
γ8ψ (v, v) − 1

γ6ψ
³
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´
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γ4ψ
³
∂v
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!
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from the expressions just computed. It follows that

AV ARtrue(γ̂
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−1Ψ
¢
D−1

= ∆
¡
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¢
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2, η̂) +∆ Cum4(U) D

−1ΨD−1

where Id denotes the identity matrix and
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!
, D−1ΨD−1 =
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• (1+η)2
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!

so that

AV ARtrue(γ̂
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+∆Cum4(U)

Ã
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(1−η)2
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!
.

By applying the delta method as in the previous section, we now recover the asymptotic variance of the
estimates of the original parameters

AV ARtrue(σ̂
2, â2) = ∇f(γ2, η).AV ARtrue(γ̂2, η̂).∇f(γ2, η)0

=

Ã
4
p
σ6∆ (4a2 + σ2∆) + 2σ4∆ −σ2∆h(∆, σ2, a2)

• ∆
2

¡
2a2 + σ2∆

¢
h(∆, σ2, a2) +∆Cum4(U)

!
.

Appendix D: Derivations for Section 6

To see (6.4), let “orig” (D.7) denote parametrization in (and differentiation with respect to) the original
parameters σ2 and a2, while “transf” denotes parametrization and differentiation in γ2 and η, and finv denotes
the inverse of the change of variable function defined in (B.10), namelyÃ

γ2

η

!
= finv(σ

2, α2) =

 1
2

n
2a2 + σ2∆+

p
σ2∆ (4a2 + σ2∆)

o
1
2a2

n
−2a2 − σ2∆+

p
σ2∆ (4a2 + σ2∆)

o  . (D.1)

and ∇finv its Jacobian matrix. Then, from l̇orig = ∇finv(σ2, α2)0.l̇transf , we have

l̈orig = ∇finv(σ2, α2)0.l̈transf.∇finv(σ2, α2) +H[l̇transf]
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where H[l̇transf ] is a 2 × 2 matrix whose terms are linear in l̇transf and the second partial derivatives of finv .
Now Etrue [l̇orig ] = Etrue [l̇transf ] = 0, and so Etrue [H[l̇transf ]] = 0 from which it follows that

Dorig = N−1Etrue [−l̈orig ]
= ∇finv(σ2, α2)0.Dtransf .∇finv(σ2, α2)

=

 ∆1/2(2a2+σ2∆)
2σ3(4a2+σ2∆)3/2

∆1/2

σ(4a2+σ2∆)3/2

• 1
2a4

µ
1− ∆

1/2σ(6a2+σ2∆)
(4a2+σ2∆)3/2

¶ + o(1) (D.2)

with Dtransf = N−1Etrue[−l̈transf] given in (C.7). Similarly, l̇orig l̇0orig = ∇finv(σ2, α2)0.l̇transf l̇0transf .∇finv(σ2, α2)
and so

Sorig = ∇finv(σ2, α2)0.Stransf .∇finv(σ2, α2)
= ∇finv(σ2, α2)0.(Dtransf +Cum4(U) Ψ).∇finv(σ2, α2)
= Dorig +Cum4(U)∇finv(σ2, α2)0.Ψ.∇finv(σ2, α2) (D.3)

with the second equality following from the expression for Stransf given in (C.8).
To complete the calculation, note from (C.9) that

Ψ = gtransf .g
0
transf + o(1),

where

gtransf =

Ã
γ−4 (1− η)−1

−γ−2 (1− η)−2

!
.

Thus
∇finv(σ2, α2)0.Ψ.∇finv(σ2, α2) = gorig .g

0
orig + o(1), (D.4)

where

g = gorig = ∇finv(σ2, α2)0.gtransf =

 ∆1/2

σ(4a2+σ2∆)3/2

1
2a4

µ
1− ∆

1/2σ(6a2+σ2∆)
(4a2+σ2∆)3/2

¶  (D.5)

which is the result (6.5). Inserting (D.4) into (D.3) yields the result (6.4).
For the profile likelihood λ, let â2σ2 denote the maximizer of l(σ

2, a2) for given σ2. Thus by definition
λ(σ2) = l(σ2, â2σ2). From now on, all differentiation takes place with respect to the original parameters, and
we will omit the subscript “orig” in what follows. Since 0 = l̇a2(σ

2, â2σ2), it follows that

0 =
∂

∂σ2
l̇a2(σ

2, â2σ2)

= l̈σ2a2(σ
2, â2σ2) + l̈a2a2(σ

2, â2σ2)
∂â2σ2

∂σ2
,

so that
∂â2σ2

∂σ2
= − l̈σ2a2(σ

2, â2σ2)

l̈a2a2(σ2, â
2
σ2)

(D.6)

The profile score then follows

λ̇(σ2) = l̇σ2(σ
2, â2σ2) + l̇a2(σ

2, â2σ2)
∂â2σ2

∂σ2
(D.7)
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so that at the true value of (σ2, a2),

λ̇(σ2) = l̇σ2(σ
2, a2)− Etrue [l̈σ2a2 ]

Etrue[l̈a2a2 ]
l̇a2(σ

2, a2) +Op(1), (D.8)

since â2 = a2 +Op(N
−1/2) and

∆l̈σ2a2 ≡ N−1 l̈σ2a2(σ2, â2σ2)−N−1Etrue [l̈σ2a2 ] = Op(N
−1/2)

∆l̈a2a2 ≡ N−1 l̈a2a2(σ2, â2σ2)−N−1Etrue[l̈a2a2 ] = Op(N
−1/2)

as sums of random variables with expected value zero, so that

−∂â
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∂σ2
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³
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while
l̇a2(σ

2, a2) = Op(N
1/2)

also as a sum of random variables with expected value zero.
Therefore

Etrue[λ̇(σ
2)] = Etrue [l̇σ2(σ

2, a2)]− Etrue[l̈σ2a2 ]

Etrue [l̈a2a2 ]
Etrue

h
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= O(1)

since Etrue [l̇σ2(σ2, a2)] = Etrue
h
l̇a2(σ

2, a2)
i
= 0. In particular, Etrue [λ̇(σ2)] = o(N) as claimed.

Further differentiating (D.7), one obtains

λ̈(σ2) = l̈σ2σ2(σ
2, â2σ2) + l̈a2a2(σ

2, â2σ2)

µ
∂â2σ2

∂σ2

¶2
+2l̈σ2a2(σ

2, â2σ2)
∂â2σ2

∂σ2
+ l̇a2(σ
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∂2â2σ2

∂2σ2

= l̈σ2σ2(σ
2, â2σ2)−

l̈σ2a2(σ
2, â2σ2)

2

l̈a2a2(σ2, â
2
σ2)

+ l̇a2(σ
2, â2σ2)

∂2â2σ2

∂2σ2

from (D.6). Evaluated at σ2 = σ̂2, one gets â2σ2 = â2 and l̇a2(σ̂
2, â2) = 0, and so

λ̈(σ̂2) = l̈σ2σ2(σ̂
2, â2)− l̈σ2a2(σ̂

2, â2)2

l̈a2a2(σ̂
2, â2)

=
1h

l̈(σ̂2, â2)−1
i
σ2σ2

(D.9)

where
h
l̈(σ̂2, â2)−1

i
σ2σ2

is the upper left element of the matrix l̈(σ̂2, â2)−1. Thus (6.7) is valid.
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Alternatively, we can see that the profile likelihood λ satisfies the Bartlett identity to first order, i.e., (6.8).
Note that by (D.8),

N−1Etrue [λ̇(σ2)2] = N−1Etrue

Ãl̇σ2(σ2, a2)− Etrue [l̈σ2a2 ]

Etrue[l̈a2a2 ]
l̇a2(σ

2, a2) +Op(1)

!2
= N−1Etrue

Ãl̇σ2(σ2, a2)− Etrue [l̈σ2a2 ]

Etrue[l̈a2a2 ]
l̇a2(σ

2, a2)

!2+ o(1)

= N−1Etrue

l̇σ2(σ2, a2)2 +ÃEtrue[l̈σ2a2 ]

Etrue [l̈a2a2 ]
l̇a2(σ

2, a2)

!2

−2Etrue [l̈σ2a2 ]
Etrue [l̈a2a2 ]

l̇a2(σ
2, a2)l̇σ2(σ

2, a2)

#
+ o(1)

so that

N−1Etrue[λ̇(σ2)2] = Sσ2σ2 +

µ
Dσ2a2

Da2a2

¶2
Sa2a2 − 2Dσ2a2

Da2a2
Sa2σ2 + op(1)

=

Ã
Dσ2σ2 +

µ
Dσ2a2

Da2a2

¶2
Da2a2 − 2Dσ2a2

Da2a2
Da2σ2

!

+Cum4(U)

Ã
g2σ2 +

µ
Dσ2a2

Da2a2

¶2
g2a2 − 2

Dσ2a2

Da2a2
gσ2ga2

!
+ op(1)

by invoking (6.4).
Continuing the calculation,

N−1Etrue[λ̇(σ2)2] =

µ
Dσ2σ2 −

D2
σ2a2

Da2a2

¶
+Cum4(U)

µ
gσ2 − Dσ2a2

Da2a2
ga2

¶2
+ o(1)

= 1/
£
D−1

¤
σ2σ2

+ o(1) (D.10)

since from the expressions for Dorig and gorig in (D.2) and (D.5) we have

gσ2 − Dσ2a2

Da2a2
ga2 = 0. (D.11)

Then by (D.9) and the law of large numbers, we have

N−1Etrue [λ̈(σ2)] = −1/
£
D−1

¤
σ2σ2

+ o(1), (D.12)

and (6.8) follows from combining (D.10) with (D.12).

Appendix E: Proof of Lemma 1

ΣΣ−1 ≡ Id implies that
∂Σ−1

∂β1
= −Σ−1 ∂Σ

∂β1
Σ−1 (E.1)

and, since Σ is linear in the parameters σ2 and a2 (see (7.2)) we have

∂2Σ

∂β2∂β1
= 0 (E.2)
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so that

∂2Σ−1

∂β2∂β1
=

∂

∂β2

µ
∂Σ−1

∂β1

¶
= Σ−1

∂Σ

∂β2
Σ−1

∂Σ

∂β1
Σ−1 +Σ−1

∂Σ

∂β1
Σ−1

∂Σ

∂β2
Σ−1 −Σ−1 ∂2Σ

∂β1∂β2
Σ−1

= Σ−1
∂Σ

∂β2
Σ−1

∂Σ

∂β1
Σ−1 +Σ−1

∂Σ

∂β1
Σ−1

∂Σ

∂β2
Σ−1 (E.3)

In the rest of this lemma, let expectations be conditional on the ∆0s. We use the notation E[ ·|∆] as a
shortcut for E[ ·|∆N , ...,∆1]. At the true value of the parameter vector, we have,

0 = E[ l̇β1

¯̄̄
∆]

= −1
2

∂ ln detΣ

∂β1
− 1
2
E

·
Y 0

∂Σ−1

∂β1
Y

¯̄̄̄
∆

¸
. (E.4)

with the second equality following from (7.3). Then, for any nonrandom Q, we have

E [Y 0QY ] = Tr [QE [Y Y 0]] = Tr [QΣ] . (E.5)

This can be applied to Q that depends on the ∆0s, even when they are random, because the expected value
is conditional on the ∆0s. Therefore it follows from (E.4) that

∂ ln detΣ

∂β1
= −E

·
Y 0

∂Σ−1

∂β1
Y

¯̄̄̄
∆

¸
= −Tr

·
∂Σ−1

∂β1
Σ

¸
= Tr

·
Σ−1

∂Σ

∂β1

¸
, (E.6)

with the last equality following from (E.1) and so

∂2 ln detΣ

∂β2∂β1
=

∂

∂β2
Tr

·
Σ−1

∂Σ

∂β1

¸
= Tr

·
∂

∂β2

µ
Σ−1

∂Σ

∂β1

¶¸
= −Tr

·
Σ−1

∂Σ

∂β2
Σ−1

∂Σ

∂β1
+Σ−1

∂2Σ

∂β2∂β1

¸
= −Tr

·
Σ−1

∂Σ

∂β2
Σ−1

∂Σ

∂β1

¸
, (E.7)

again because of (E.2).
In light of (7.3), the expected information (conditional on the ∆0s) is given by

E
h
− l̈β2β1

¯̄̄
∆
i
=
1

2

∂2 ln detΣ

∂β2β1
+
1

2
E

·
Y 0 ∂

2Σ−1

∂β2β1
Y

¯̄̄̄
∆

¸
.

Then,

E

·
Y 0

∂2Σ−1

∂β2β1
Y

¯̄̄̄
∆

¸
= Tr

·
∂2Σ−1

∂β2β1
Σ

¸
= Tr

·
Σ−1

∂Σ

∂β2
Σ−1

∂Σ

∂β1
+Σ−1

∂Σ

∂β1
Σ−1

∂Σ

∂β2

¸
= 2Tr

·
Σ−1

∂Σ

∂β2
Σ−1

∂Σ

∂β1

¸
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with the first equality following from (E.5) applied to Q = ∂2Σ−1/∂β2β1, the second from (E.3) and the third
from the fact that Tr[AB] = Tr[BA]. It follows that

E
h
− l̈β2β1

¯̄̄
∆
i
= −1

2
Tr

·
Σ−1

∂Σ

∂β2
Σ−1

∂Σ

∂β1

¸
+ Tr

·
Σ−1

∂Σ

∂β2
Σ−1

∂Σ

∂β1

¸
=

1

2
Tr

·
Σ−1

∂Σ

∂β2
Σ−1

∂Σ

∂β1

¸
= −1

2

∂2 ln detΣ

∂β2β1
.

Appendix F: Proof of Theorem 2

In light of (7.2) and (7.5),
Σ = Σ0 + σ2Ξ (F.1)

from which it follows that

Σ−1 =
¡
Σ0
¡
Id+ σ2Σ−10 Ξ

¢¢−1
=

¡
Id+ σ2Σ−10 Ξ

¢−1
Σ−10

= Σ−10 − σ2Σ−10 ΞΣ
−1
0 + 2σ4

¡
Σ−10 Ξ

¢2
Σ−10 +O( 3) (F.2)

since
(Id+ A)

−1 = Id− A+ 2A2 +O( 3).

Also,
∂Σ

∂β1
=

∂Σ0
∂β1

+
∂σ2

∂β1
Ξ.

Therefore, recalling (E.6), we have

∂ ln detΣ

∂β1
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Σ−1

∂Σ

∂β1

¸
= Tr

·³
Σ−10 − σ2Σ−10 ΞΣ

−1
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Σ−10 Ξ
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´µ∂Σ0
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+
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∂β1
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∂Σ0
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−σ2Σ−10 ΞΣ−10

∂Σ0
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+
∂σ2
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∂Σ0
∂β1

− σ2
∂σ2
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Σ−10 ΞΣ

−1
0 Ξ

¸
+Op(

3) (F.3)

Two things can be determined from this expansion. Since the ξ0is are iid with mean 0, E[Ξ] = 0, and so,
taking unconditional expectations with respect to the law of the ∆0is, we obtain that the coefficient of order
is

E

·
Tr

·
−σ2Σ−10 ΞΣ−10

∂Σ0
∂β1

+
∂σ2

∂β1
Σ−10 Ξ

¸¸
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·
E

·
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∂Σ0
∂β1

+
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∂β1
Σ−10 Ξ

¸¸
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·
−σ2Σ−10 E [Ξ]Σ−10

∂Σ0
∂β1

+
∂σ2

∂β1
Σ−10 E [Ξ]

¸
= 0.
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Similarly, the coefficient of order 2 is

E

·
Tr

·
σ4
¡
Σ−10 Ξ

¢2
Σ−10

∂Σ0
∂β1

− σ2
∂σ2

∂β1
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σ4E

h¡
Σ−10 Ξ

¢2i
Σ−10

∂Σ0
∂β1

− σ2
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.

The matrix E
£
ΞΣ−10 Ξ

¤
has the following terms

£
ΞΣ−10 Ξ

¤
i,j
=

NX
k=1

NX
l=1

Ξik
£
Σ−10

¤
kl
Ξlj = ∆

2
0ξiξj

£
Σ−10

¤
ij

and since E
£
ξiξj

¤
= δijV ar[ξ] (where δij denotes the Kronecker symbol), it follows that

E
£
ΞΣ−10 Ξ

¤
= ∆20V ar[ξ] diag

£
Σ−10

¤
(F.4)

where diag
£
Σ−10

¤
is the diagonal matrix formed with the diagonal elements of Σ−10 . From this, we obtain that

E

·
∂ ln detΣ
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¸
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¸
+ 2Tr
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σ2Σ−10 E
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∂β1

− ∂σ2
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+O( 3)

= Tr
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Σ−10

∂Σ0
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(F.5)

+ 2∆20V ar[ξ]Tr

·
σ2Σ−10 diag

£
Σ−10

¤µ
σ2Σ−10

∂Σ0
∂β1

− ∂σ2

∂β1
Id

¶¸
+O( 3).

To calculate E
h
l̈β2β1

i
, in light of (7.4), we need to differentiate E [∂ ln detΣ/∂β1] with respect to β2.

Indeed

E
h
−l̈β2β1

i
= E

h
E
h
−l̈β2β1
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ii
= −1
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∂2 ln detΣ

∂β2∂β1

¸
= −1

2

∂

∂β2

µ
E

·
∂ ln detΣ

∂β1

¸¶
where we can interchange the unconditional expectation and the differentiation with respect to β2 because
the unconditional expectation is taken with respect to the law of the ∆0is, which is independent of the β

parameters (i.e., σ2 and a2). Therefore, differentiating (F.5) with respect to β2 will produce the result we
need. (The reader may wonder why we take the expected value before differentiating, rather than the other
way around. As just discussed, the results are identical. However, it turns out that taking expectations first
reduces the computational burden quite substantially.)

Combining with (F.5), we therefore have

E
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≡ φ(0) + 2φ(2) +O( 3) (F.6)
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It is useful now to introduce the same transformed parameters (γ2, η) as in previous sections and write
Σ0 = γ2V with the parameters and V defined as in (3.2)-(3.3) and (4.2), except that ∆ is replaced by ∆0 in
these expressions. To compute φ(0), we start with

Tr

·
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∂Σ0
∂β1

¸
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∂
¡
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+Nγ−2

∂γ2
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(F.7)

with ∂γ2/∂β1 and ∂η/∂β1 to be computed from (3.4)-(3.5). If Id denotes the identity matrix and J the
matrix with 1 on the infra and supra-diagonal lines and 0 everywhere else, we have V = η2Id + ηJ, so that
∂V/∂η = 2ηId+ J. Therefore
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V −1
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Therefore the first term in (F.7) is O(1) while the second term is O(N) and hence
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·
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∂Σ0
∂β1

¸
= Nγ−2

∂γ2

∂β1
+O(1).

This holds also for the partial derivative of (F.7) with respect to β2. Indeed, given the form of (F.8), we have
that
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µ
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since the remainder term in (F.8) is of the form p(N)ηq(N), where p and q are polynomials in N or order
greater than or equal to 0 and 1 respectively, whose differentiation with respect to η will produce terms that
are of order o(N). Thus it follows that
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Writing the result in matrix form, where the (1, 1) element corresponds to (β1, β2) = (σ
2, σ2), the (1, 2)

and (2, 1) elements to (β1, β2) = (σ2, a2) and the (2, 2) element to (β1, β2) = (a2, a2), and computing the
partial derivatives in (F.9), we have
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As for the coefficient of order 2, that is φ(2) in (F.6), define
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so that
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We have
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Next, we compute separately
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Therefore
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which can be differentiated with respect to β2 to produce ∂α/∂β2. As above, differentiation of the remainder
term o(N) still produces a o(N) term because of the structure of the terms there (they are again of the form
p(N)ηq(N).)
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Note that an alternative expression for α can be obtained as follows. Going back to the definition (F.11),
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(F.12)

the first trace becomes
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so that we have
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where the calculation of Tr
£
V −1diag

£
V −1

¤¤
is as before, and where the o(N) term is a sum of terms of the

form p(N)ηq(N) as discussed above. From this one can interchange differentiation and the o(N) term, yielding
the final equality above.

Therefore
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2
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Writing the result in matrix form and calculating the partial derivatives, we obtain

φ(2) = −1
2
∆20V ar[ξ]

∂α

∂β2
=

N ∆20V ar[ξ]

(4a2 + σ2∆0)
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Ã
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Putting it all together, we have obtained

1

N
E
h
−l̈β2β1

i
=

1

N

³
φ(0) + 2φ(2) +O( 3)

´
≡ F (0) + 2F (2) +O( 3) + o(1) (F.15)

where

F (0) =

 ∆
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3/2

∆
1/2
0
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3/2

• 1
2a4

µ
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¶
 (F.16)

F (2) ≡ ∆20V ar[ξ]

(4a2 + σ2∆0)
3

Ã
−2a2 −(8a

2−2σ2∆0)
2∆0

• −8σ2∆0

!
. (F.17)

The asymptotic variance of the maximum-likelihood estimators AVAR(σ̂2, â2) is therefore given by

AV AR(σ̂2, â2) = E [∆]
³
F (0) + 2F (2) +O( 3)
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µ
Id+ 2

h
F (0)

i−1
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− 2∆0

h
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h
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+O( 3)

≡ A(0) + 2A(2) +O( 3)

where the final results for A(0) = ∆0
£
F (0)

¤−1
and A(2) = −∆0

£
F (0)

¤−1
F (2)

£
F (0)

¤−1
, obtained by replacing

F (0) and F (2) by their expressions in (F.15), are given in the statement of the Theorem.

Appendix G: Proof of Theorem 3

It follows as in (5.4), (5.5) and (5.6) that

Etrue
h
l̇β1 l̇β2 |∆

i
= Covtrue(l̇β1 , l̇β2 |∆)
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¶
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4
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¶
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¶
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i
+
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4
Cum4(U)ψ

µ
∂Σ−1

∂β1
,
∂Σ−1

∂β2

¶
(G.1)
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since Cumtrue(Yi, Yj , Yk, Yl|∆) = 2, ±1, or 0, ×Cumtrue(U), as in (5.8), and with ψ defined in (C.3). Taking
now unconditional expectations, we have

Etrue

h
l̇β1 l̇β2

i
= Covtrue(l̇β1 , l̇β2)

= E
h
Covtrue(l̇β1 , l̇β2 |∆)

i
+Covtrue(Etrue [l̇β1 |∆], Etrue [l̇β2 |∆])

= E
h
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i
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h
l̈β1β2

i
+
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4
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·
ψ

µ
∂Σ−1
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,
∂Σ−1

∂β2

¶¸
. (G.2)

with the first and third equalities following from the fact that Etrue [l̇βi |∆] = 0.
Since
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h
l̈β1β2 |∆

i
= Enormal

h
l̈β1β2 |∆

i
and consequently
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h
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i
= Enormal

h
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i
have been found in the previous subsection (see (F.15)), what we need to do to obtain Etrue

h
l̇β1 l̇β2

i
is to

calculate

E

·
ψ

µ
∂Σ−1

∂β1
,
∂Σ−1

∂β2

¶¸
.

With Σ−1 given by (F.2), we have for i = 1, 2
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∂βi
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∂Σ−10
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and therefore by bilinearity of ψ we have
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+ 2E
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¡
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−1
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¢
,

∂
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¢¶¸
+O( 3), (G.3)

where the “[2]” refers to the sum over the two terms where β1 and β2 are permuted.
The first (and leading) term in (G.3),

ψ

µ
∂Σ−10
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,
∂Σ−10
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= ψ
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¶
corresponds to the equally spaced, misspecified noise distribution, situation studied in Section 5.
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The second term, linear in , is zero since

E

·
ψ

µ
∂Σ−10
∂β1

,
∂

∂β2
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σ2Σ−10 ΞΣ
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µ
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¡
σ2Σ−10 E [Ξ]Σ−10

¢¶
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with the first equality following from the bilinearity of ψ, the second from the fact that the unconditional
expectation over the ∆0is does not depend on the β parameters, so expectation and differentiation with respect
to β2 can be interchanged, and the third equality from the fact that E [Ξ] = 0.

To calculate the third term in (G.3), the first of two that are quadratic in , note that
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·
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∂β1

,
∂

∂β2

¡
σ4Σ−10 ΞΣ

−1
0 ΞΣ

−1
0

¢¶¸
= ψ

µ
∂Σ−10
∂β1

,
∂

∂β2

¡
σ4Σ−10 E

£
ΞΣ−10 Ξ

¤
Σ−10

¢¶
= ∆20V ar[ξ]ψ
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, (G.4)

with the second equality obtained by replacing E
£
ΞΣ−10 Ξ

¤
with its value given in (F.4), and the third by

recalling that Σ0 = γ2V . The elements (i, j) of the two arguments of ψ in (G.4) are

νi,j =
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from which ψ in (G.4) can be evaluated through the sum given in (C.3).
Summing these terms, we obtain

ψ
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The fourth and last term in (G.3), also quadratic in ,
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·
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in its sum form and then taking expectations term by term. Letting now
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we recall our definition of ψ(ν, ω) given in (C.3) whose unconditional expected value (over the ∆0is, i.e., over
Ξ) we now need to evaluate in order to obtain α2.

We are thus led to consider four-index tensors λijkl and to define
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o

where λijkl is symmetric in the two first and the two last indices, respectively, i.e., λijkl = λjikl and λijkl =

λijlk. In terms of our definition of ψ in (C.3), it should be noted that ψ(ν,ω) = ψ̃(λ) when one takes
λijkl = νi,jωk,l. The expression we seek is therefore
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where λijkl is taken to be the following expected value
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with the third equality following from the interchangeability of unconditional expectations and differentiation
with respect to β, and the fourth from the fact that E [ΞrsΞtu] 6= 0 only when r = s = t = u, and
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Thus we have
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and
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Summing these terms, we obtain
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Putting it all together, we have

E

·
ψ

µ
∂Σ−1

∂β1
,
∂Σ−1

∂β2

¶¸
= ψ

µ
∂Σ−10
∂β1

,
∂Σ−10
∂β2

¶
+ 2 (α1[2] + α2) +O( 3)

Finally, the asymptotic variance of the estimator (σ̂2, â2) is given by
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is given by the expression in the correctly specified case (F.15), with F (0) and F (2) given in (F.16) and (F.17)
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Since, from (G.3), we have

E

·
ψ

µ
∂Σ−1

∂β1
,
∂Σ−1

∂β2

¶¸
= ψ

µ
∂Σ−10
∂β1

,
∂Σ−10
∂β2

¶
+ 2α1[2] +

2α2 +O( 3),

it follows that Ψ(0) is the matrix with entries 1
4Nψ

³
∂Σ−10
∂β1

,
∂Σ−10
∂β2

´
, i.e.,

Ψ(0) =


∆0

σ2(4a2+∆0σ2)
3

∆
1/2
0

2a4

µ
1

σ(4a2+∆0σ2)
3/2 − ∆

1/2
0 (6a2+∆0σ2)
(4a2+∆0σ2)

3

¶
• 1

2a8

µ
1− ∆

1/2
0 σ(6a2+∆0σ2)
(4a2+∆0σ2)

3/2 − 2a4(16a2+3∆0σ2)
(4a2+∆0σ2)

3

¶
+ o(1),

and
Ψ(2) =

1

4N
(α1[2] + α2) .

with

1

4N
α1[2] = V ar[ξ]

 2∆
3/2
0 (−4a2+∆0σ

2)
σ(4a2+∆0σ2)

9/2

∆0

³
(−4a2+∆0σ

2)(4a2+∆0σ
2)

3/2−∆1/2
0 σ(−40a4+2a2∆0σ2+∆20σ4)

´
2a4(4a2+∆0σ2)

9/2

• 8∆0σ
2
³
(4a2+∆0σ

2)3/2−∆1/20 σ(6a2+∆0σ2)
´

a4(4a2+∆0σ2)
9/2


+o(1),

1

4N
α2 = V ar[ξ]

 ∆
3/2
0 (40a8−12a4∆0

2
σ4+∆0

4σ8)
2σ(2a2+∆0σ2)

3(4a2+∆0σ2)
9/2

∆
3/2
0 σ(−44a6−18a4∆0σ2+7a2∆0

2
σ6+3∆0

3σ6)
(2a2+∆0σ2)

3(4a2+∆0σ2)
9/2

• 2∆
3/2
0 σ3(50a22+42a2∆0σ2+9∆02σ4)
(2a2+∆0σ2)

3(4a2+∆0σ2)
9/2


+o(1).

It follows from (G.8) that
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is the result given in Theorem 2, namely (7.6).
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The correction term due to the misspecification of the error distribution is determined by Cum4(U) times
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where the matrices The asymptotic variance is then given by

AV ARtrue(σ̂
2, â2) =
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with the terms A(0), A(2), B(0) and B(2) given in the statement of the Theorem.

Appendix H: Proof of Proposition 3

From

E
£
Y 2
i

¤
= E

£
w2i
¤
+E

£
u2i
¤
= σ2∆+

c2
¡
1− e−b∆

¢
b

it follows that the estimator (2.2) has the following expected value

E
£
σ̂2
¤
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1

T

NX
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E
£
Y 2
i

¤
=

N

T

Ã
σ2∆+
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1− e−b∆

¢
b

!

= σ2 +
c2
¡
1− e−b∆

¢
b∆

=
¡
σ2 + c2

¢− bc2

2
∆+O(∆2). (H.1)

The estimator’s variance is

V ar
£
σ̂2
¤
=

1

T 2
V ar

"
NX
i=1

Y 2i

#

=
1

T 2

NX
i=1

V ar
£
Y 2i
¤
+
2

T 2

NX
i=1

i−1X
j=1

cov
¡
Y 2
i , Y

2
j

¢
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Since the Y 0i s are normal with mean zero,

V ar
£
Y 2
i

¤
= 2V ar[Yi]

2 = 2E
£
Y 2
i

¤2
and for i > j

cov
¡
Y 2
i , Y

2
j

¢
= 2 cov (Yi, Yj)

2
= 2 E [uiuj ]

2

since
cov (Yi, Yj) = E [YiYj ] = E [(wi + ui) (wj + uj)] = E [uiuj ] .

Now we have

E [uiuj ] = E
£¡
Uτ i − Uτ i−1

¢ ¡
Uτj − Uτj−1

¢¤
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2b

so that
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2
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¢2
e−b∆(i−j−1)

2b

!2

=
c4e−2b∆(i−j−1)

¡
1− e−b∆

¢4
2b2

and consequently

V ar
£
σ̂2
¤
=
1

T 2

c4
¡
1− e−b∆

¢2 ¡
Ne−2b∆ − 1 + e−2Nb∆

¢
b2 (1 + e−b∆)2

+ 2N

Ã
σ2∆+
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¡
1− e−b∆

¢
b

!2 (H.2)

with N = T/∆. The RMSE expression follows from (H.1) and (H.2). As in Proposition 1, these are exact
small sample expressions, valid for all (T,∆).
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Figure 1
Various Discrete Sampling Modes — No Noise (Section 2), With Noise (Sections 3-6)

and Randomly Spaced with Noise (Section 7).
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Figure 2
RMSE of the Estimator σ̂2 When the Presence of the Noise is Ignored
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Figure 3
Comparison of the Asymptotic Variances of the MLE σ̂2 Without and With Noise

Taken into Account
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Figure 4
RMSE of the Estimator σ̂2 When the Presence of Serially Correlated Noise is Ignored
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