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1 INTRODUCTION

While the consumption-based model of asset pricing (C-CAPM) is predom-
inant in macroeconomics and important in finance, its empirical difficulties
when faced with aggregate time series data have been recognized for some
time (see, for example, Grossman and Shiller (1981), Hansen and Singleton
(1983) and Mehra and Prescott (1985)). In this model, equilibrium relations
are derived from the optimizing behaviour of a representative agent whose
intertemporal utility function is both state separable (conforms to expected
utility theory) and time separable (the von Neumann-Morgenstern index is
intertemporally additive). A number of researchers have considered more

*We are grateful to the Social Scdences and Humanities Research Coundl of Canada
for financial support and to Phillipe Weil for helpful discussions.



general utility functions in an attempt to remedy the noted empirical fail-
ures. The class of generalizations known as recursive utility (Epstein and
Zin(1989)), that relaxes the assumption of state separability, is the focus of
this paper.

Recursive intertemporal utility permits a degree of separation between
certainty preferences (the elasticity of intertemporal substitution) and risk
preferences (the degree of risk aversion). A number of papers have, with
mixed results, tested the equilibrium relations implied by various paramet-
ric functional forms for each of these components of recursive utility. In
this paper, we are concerned with the empirical restrictions implied by the
recursive utility model itself, unaccompanied by ad hoc functional form spec-
ifications. We argue below that the problem of functional form specification
is particularly problematic for risk preferences. Therefore, we adopt the
common CES specification for certainty preferences, but we impose only
qualitative restrictions, such as monotonicity and risk aversion, on risk pref-
erences. Comsequently, our model is nonparametric with respect to risk
preferences and semiparametric overall.

Our prinicipal contribution is to determine the exhaustive implications of
this semiparametric recursive utility model for the law of motion of the joint
stochastic process governing consumption growth and asset returns, that
is, for the one-step ahead joint probability distribution for these variables.
These implications form the counterpart for our model of the strong axiom of
revealed preference in consumer demand theory. Moreover, our arguments
are constructive. Therefore, when our revealed preference conditions are
satisfied, we can describe the complete class of recursive utility functions
that rationalize the data. In particular, we can describe the set of elasticity
of intertemporal substitution-risk aversion pairs that are implied by the data
with ‘minimal’ interference from ad hoc functional form specifications.

An alternative direction in which to generalize the standard expected ad-
ditive utility specification is to weaken the assumption of time separability,
in order to model habit formation or the durability of consumption goods
(see Constantinides(1990), Heaton(1993) and Gallant and Tauchen(1989),
for example). It is a still unresolved empirical question whether time or
state nonseparability is more useful for explaining and organizing the ob-
served behavior of consumption and asset returns. (While the studies just
cited report results that support their models, Cochrane and Hansen (1992)
show that they fail in other dimensions.) From a theoretical perspective,
we point out that the relaxation of time separability does not permit a
separation between the two conceptually distinct aspects of preference, sub-



stitution and risk aversion, while such separation seems important for the
proper understanding of numerous issues in macroeconomics. (See Epstein
(1992) for further discussion and also for arguments that this separation is
achieved via recursive utility at a reasonable ‘cost’ in terms of axiomatic
underpinnings. For instances where such separation has been used to ad-
vantage see Epstein(1988), Kandel and Stambaugh (1991), Obstfeld(1992),
Hansen and Sargent(1992) and Hansen, Sargent and Tallarini (1993).) This
paper’s revealed preference characterization provides another theoretical ‘ar-
gument’ in support of the recursive utility route; a comparable theoretical
result is not available for the time-nonseparable models.

Hansen and Jagannathan (1991) and Cochrane and Hansen (1992) pro-
vide a ‘nonparametric’ approach to testing dynamic asset pricing models
that has been widely used. It is worthwhile, therefore, to clarify the differ-
ences from our approach. The above authors consider a very general class of
pricing models, those for which pricing relations can be expressed in terms
of stochastic discount factors, and derive moment restrictions that must be
satisfied by these discount factors if they are to be consistent with a given
set of data. These restrictions can then be checked for any specific model
of discount factors. In particular, they can be examined for any parametric
recursive utility model. However, if the restrictions are violated, then one
is left wondering whether it is the particular functional form or the recur-
sive utility model that is to blame. Secondly, even if the restrictions are
satisfied, since they are only necessary (but not sufficient) for the pricing
relations to hold, the test is inconclusive regarding the validity of the model.
In contrast, the revealed preference implications derived here are both nec-
essary and sufficient for consistency with some recursive utility model in
our semiparametric class. On the other hand, of course, our analysis is not
relevant to pricing models outside this recursive utility class.

A further important limitation of our analysis is that it is nonstatistical.
The empirical implications of our model take the form of a lack of stochastic
dominance in pairwise comparisons of conditional probability distributions
for consumption growth and asset returns, while data typically consist of
sample realizations for these variables rather than their law of motion. One
can employ seminonparametric statistical techniques of Gallant and Tauchen
(1989), for example, to estimate the law of motion and then check whether
or not the stochastic dominance conditions are satisfied by the estimated
law, but there do not appear to be statistical methods available that take
sampling error into account. We feel, nevertheless, that there are several
ways in which our analysis makes a contribution to the empirical asset pric-



ing literature. Firstly, a set of exhaustive implications, especially when as
simple as below, can help to assess the vailidity of the model on informal
grounds and clarify dimensions where the model fails. Secondly, there exist
statistical techniques for testing stochastic dominance in related but simpler
settings, (see McFadden (1989) and Klecan and McFadden (1991), for ex-
ample), and our analysis may help to motivate suitable extensions of these
techniques. Finally, our stochastic dominance conditions are tractable in
the context of simple calibration exercises such as conducted by Mehra and
Prescott(1985). Indeed, below we apply our revealed preference conditions
to a simple general equilibrium model in order to clarify the potential of re-
cursive utility for resolving the ‘equity premium puzzle'. In so doing, we also
provide perspective on Weil(1989) and Epstein and Zin(1990), who exam-
ine the equity premium puzzle in the context of parametric recursive utility
models.

Finally, we emphasize that our principal contribution is to the asset
pricing literature rather than to the theory of revealed preference, whether
at the level of abstract choice theory or more particularly, at the level of
choice under risk (see Fishburn(1975) and Border(1992), for example). OQur
contribution is to recognize the relevance of revealed preference theory for
our intertemporal framework and to adapt the arguments in the above lit-
erature appropriately. On the other hand, it should be pointed out that
the intertemporal framework facilitates empirical applications of revealed
preference tests. That is because the repeated choice observations that are
called for are available from observations of behavior over time, while they
are less readily available in the atemporal frameworks adopted in the papers
cited above and in Dybvig and Ross(1982), Varian(1983) or Green and Sri-
vastava(1986), all of which deal with (one-shot) portfolio choice problems.
We suspect that it is for this reason that we have not found any empirical
investigations of the revealed preference conditions derived in these-studies.

We proceed as follows: Section 2 provides an outline of recursive util-
ity and Section 3 contains our main results. An application to the equity

!Another difference from our study is that the cited papers deal exclusively with ex-
pected utility preferences. For a revealed preference analysis that is more thoughtful about
the data requirements for implementation, but in other respects differs substantially from
this paper, see Green and Osband (1991). Finally, some papers consider the uniqueness of
preferences that rationalize a set of portfolio (inverse) demand functions, assuming exis-
tence; see Green, Lau and Polemarchakis (1979) for an atemporal expected utility analysis
and Wang (1993) for an intertemporal, parametric recursive utility analysis. Since we want
to rationalize a finite set of data, as opposed to functions, uniqueness does not hold in our
model.



premium puzzle is provided in Section 4. Formal proofs are collected in an
appendix.

2 RECURSIVE UTILITY?

Consider an infinitely lived agent who receives utility from consumption of
a single good. At time t, current consumption ¢; is deterministic but future
consumption is uncertain. Thus intertemporal utility is defined over random
consumption sequences. We assume that utility is recursive in the sense that
the utility U; derived from consumption at time ¢ and beyond satisfies the
recursive relation

Ue = W(et, p(Ut41)), t2>0, (1)

where: p(U;41) represents the certainty equivalent of random future utility
Ut41 conditional upon period t information; and W is termed an aggregator
since it aggregates c; with a risk-adjusted index of the future.

Before interpreting this structure, it is convenient to define the subclass
of recursive utility models that will be considered below. First, we adopt
the following CES form for the aggregator:

W(c,z) = [(1 - ﬂ)cp + ﬂzpll/p’ (2)

where 0 < 3 < 1is a discount factor and 0 # p < 1. Certainty equivalents
are required to satisfy:

u(b) =15  for all nonegative reals b, and (3)

p(Az) = Ap(z), forall A>0, (4)

and for all random variables z in the domain of p (specified below). The
first condition states simply that the certainty equivalent of a prospect that
yields b with certainty should equal b. The second condition, as will be con-
firmed below, imposes constant relative risk aversion. Its only justification is
_tractability; such linear homogeneity is a feature of all parametric empirical
studies of which we are aware. Further regularity conditions on certainty
equivalents that are specified below impose forms of monotonicity and risk
aversion and thus do not restrict u to lie in a parametric class.

?See Epstein and Zin (1989) and Epstein (1992) for further details regarding recursive
utility.



The structure defined above admits a simple interpretation. First, in the
case of a certain consumption sequence (cq, ¢y, ..., ¢, ...), we derive the CES
form for utility

Ue = [(1- B) TRoB" efyi]'/*. (8)

Therefore, (1 — p)~! is the elasticity of intertemporal substitution. It fol-
lows that only risk attitudes are affected by a change in the specification of
4. The separation permitted in this way between intertemporal substitution
and risk aversion represents an important theoretical argument for the study
of recursive utility functions. Epstein and Zin (1989) show that u represents
the agent’s induced preference ordering over timeless wealth gambles, that
is, gambles that are resolved immediately, before any consumption/savings
decisions are made. Such gambles are the prospects with which subjects are
usually confronted in experimental studies of decision making under risk;
therefore, available experimental evidence reflects upon appropriate specifi-
cations for p. Finally, for any fixed deterministic sequence (cg, €1, ..., €t --)
and for any scalar random rescaling s of future consumption that is measur-
able with respect to time 1 information, the utility of the random consump-
tion sequence (co, 8¢y, ..., 8¢4, ...) equals {(1 — B)cf + Bu?(s)Uf]1Y/*, where U;
is defined by (5). Therefore, 1 represents the preference ranking of any two
such sequences that differ only in the random rescaling, that is,

(co,8'¢1ymny S’y .0) > (o, 8C1, ooy SCty .. ) <= p(8') > u(s).

Combined, the preceeding describes the multiple senses in which it is appro-
priate to interpret p as representing the agent’s ‘risk preferences’.

A number of parametric specializations of (1)-(4) have been adopted
in empirical asset pricing models. The most common and the basis for

empirical analyses of the C-CAPM has

u(z) = (Ez*)'/?, (6)

implying that _
Ue = [(1 - B) Bt S2oB'chy ] 7. (7)

(Here and below E denotes the expected value operator, with the condi-
tioning information set either suppressed in the notation or indicated by a
subscript as in (7).) Since the certainty equivalent u depends on the sub-
stitution parameter p, both risk aversion and intertemporal substitution are
confounded in a single parameter. In terms of empirical performance, we



have already cited in the introduction the failures of this model to rationalize
aggregate consumption and asset return data.

A natural generalization of the standard model introduces a separate
parameter to model risk aversion, that is, u is defined by

u(z) = (Ez*)*,  0#a<l. (8)

While allowing o # p adds statistically significant explanatory power to
the resulting model (see Epstein and Zin{(1991) and Bufman and Leider-
man(1990}), empirical difficulties remain (see Weil (1989)). Similarly, only
limited success has been achieved by adopting specifications for the certainty
equivalent that do not conform to expected utility theory (see Epstein and
Zin (1990, 1992)).

While the above studies provide some information about the potential
explanatory power of the recursive utility model (1), they deal only with
a small number of functional forms. As indicated earlier, in this paper we
continue to adopt the CES aggregator (2), but we weaken substantially the a
priori restrictions on risk preferences. Obviously, there is a case to be made
for being nonparametric also in the specification of W. However, we feel that
functional form specification is more problematic for risk preferences than
for W, as we now elaborate.

In contemplating alternatives to (8), it is natural to seek guidance from
the experimental evidence regarding individual behavior under risk and the
decision theory literature that it has spawned. Due to evidence such as
the Allais paradox contradicting the positive accuracy of expected utility
theory, a large number of generalizations have been developed. However,
no single model clearly stands out in terms of axiomatic underpinnings and
consistency with experimental evidence (see Camerer (1989) and Starmer
(1992) for evidence regarding some of these models).

From a more practical ‘curve-fitting’ perspective, Kandel and Stambaugh
(1989, 1991) have raised the issue of ‘functional form flexibility’. They point
out the limited ability of the specification (8) to model “plausible” risk
attitudes over a broad range of gambles. Roughly, the risk premia implied for
hypothetical small gambles are plausible only if 1 — a is large, but then risk
premia for moderately sized gambles are unrealistically large. This feature
is of particular concern if, as advocated by Mehra and Prescott (1985), for
example, the success of the empirical model is evaluated in part on the basis
of the plausibility of the risk premia for a range of gambles implied by the
estimated certainty equivalent. The functional forms employed by Epstein



and Zin (1990, 1992) are more flexible in the above respect, but not uniquely
SO.

Yet another argument for being nonparametric in risk preferences may
be derived from Epstein and Wang (1993). They show that some deviations
from (6) or (8) are appropriate if the agent does not know the underlying
law of motion precisely, but only imprecisely or ‘vaguely’ in a sense cor-
responding intuitively to ‘Knightian uncertainty’. Since there are a large
number of ways in which such uncertainty could be modeled, the class of
conceivable functional forms is enormous and a nonparametric approach has
obvious advantages.

3 IMPLICATIONS FORCONSUMPTION AND
ASSET RETURNS

Let a representative agent have recursive utility defined by (1)-(4). The
agent operates in a standard competitive environment. There are N assets
and the i*® has gross real return r;;4; over the interval [t, t + 1]. Write
rt41 = (T1241y - *Nt+1) and denote by Miy; the return to the market
portfolio over the same interval.

Epstein and Zin (1989) show that intertemporal optimization implies
the following conditions:® For all ¢, and conditional upon the information
available at ¢,

p(B# (et fer) oD MYR) = 1 and ©)

p((cer1/Magr) /o Myyy) =
max{p((ce41/Mes1) P~V %0r 1) 1w € RN Sw; = 1,w; > 03},

(10)
The first condition reflects the optimum trade-off between consumption at ¢
and ¢+ 1, while the second asserts the optimality of the market portfolio. In
the latter, £ < 0 defines an exogenous limit on short sales. It is customary
to replace the maximization (10) by its associated first-order conditions and
to refer to the resulting set of equations as Euler equations. However, at the
present level of generality, the objective function may not be differentiable
with respect to w or the first-order conditions may not be sufficient for

3These conditions are derived under the assumptions that the stochastic environment
is time-homogeneous and that the return to the market portfolio coincides with the return
to total wealth.



an optimum. Therefore, we focus on (9)-(10) and refer to them as Euler
equations.

Readers for whom these Euler equations are unfamiliar may find some
reassurance in verifying that when the common specification (6) is substi-
tuted and the first-order conditions for (10) are computed, one obtains the
Euler equations familiar from the consumption-CAPM literature, that is,

ﬂEg[(Ct+1/Cg)p—1Mt+1] =1 and

Ee(chii (riger — rige1)] = 0, L,j=1,...,N.
Understanding of the general case of (10) is also aided by noting the fac-
tor (ce41/Meg1)P~1)/? appearing in the objective function. If this factor is
absent (or constant), the optimization problem reduces to an atemporal or
one-shot portfolio choice problem such as in the revealed preference anal-
yses cited in the introduction. Its appearance above reflects the fact that
portfolio choices at each t are made as part of an intertemporally optimal
consumption/savings plan.

If the Euler equations are satisfied, we say that p rationalizes the law
of motion for consumption and asset returns, for the given 8 and p. Thus
in common with the bulk of the parametric literature, we ignore the infor-
mation contained in the transversality condition associated with the repre-
sentative agent’s optimization problem; it is testable in any case only given
knowledge of the joint conditional distributions for the infinite sequence of
future consumption and other variables, while we assume the analyst knows
only the one-step ahead conditional distributions. Qur objective is to char-
acterize the laws of motion that can be rationalized for some yu. First, how-
ever, we narrow further, but in an uncontentious way, the class of admissible
certainty equivalents.

We assume that u assigns the same value to any two random variables
that share a common cumulative distribution function (cdf). Therefore, we
specify the formal domain of g as the following set of cdf’s:

D = {cdf's F on [0,0<): F hascompact support in (0,00)}.  (11)

Thus all distributions are assumed to be bounded both above and below
away from zero. (We assume that the law of motion for consumption and
asset returns is restricted accordingly so that the Euler equations (9)-(10)
are well defined.) Any F in D is the cdf F; for some random variable z
and we generally write u(z) rather than u(F;). More generally, we identify
z and F;.



Further restrictions on risk preferences are expressed in terms of stochas-
tic dominance. Let »; and >, denote the first and second order stochastic
dominance relations on D :

z >y if Eu(z)> Eu(y) for all u satisfying v’ > 0; (12)

z>y if Eu(z)> Fu(y) for all u satisfying v’ > 0, v" < 0. (13)

These relations and their characterization in terms of cumulative distribu-
tion functions are well understood (Hadar and Russell (1969), for example).
We employ the following nonstandard strict form of these relations: 4 For
1=1,2,

z>y if z>r;ky forsomex > 1. (14)

Finally, say that u respects >; if
>y = p(z) 2 pu(y) and z »;y = p(z) > u(y)- (15)

For obvious reasons, we will be interested in certainty equivalents that are
monotone (respect >;) or are monotone and risk averse (respect >;).

We assume that the analyst observes both the law of motion and real-
izations of consumption ¢;, and asset returns ryy1 and My, over the time
framet = 1,...,7. In order to describe the implications of our model for such
‘data’, define for each t = 1, ..., T, the random variable z; by

2 = YP(copr/ce) e~ Ve Mgl-}/-fa (16)
and the set of random variables (or associated cdf’s) B; by
B, = {a:tMt;ll Wrep): wE RN Yw; = 1,w; > £ for all i}. an

Then we see in referring to (10) that B; can be thought of as the ‘budget
set’ facing the agent at ¢, and the Euler equations can be rewritten simply
in the form

1= p(ze) 2 p(ye)s Yye € By, t=1,..,T. (18)

* A more customary notion of strict dominance simply replaces all weak inequalities in
the definitions by strict ones. The distinction between the alternative notions of strict
dominance is likely to be empirically insignificant in any statistical framework. Our speci-
fication is attractive because it leads to the simple and elegant characterization of Theorem
1. :

10



If we further define zg = 1 and By = {z¢}, then we obtain
w(z5) 2 pulye), forallt,s=0,...,7 and all y; € B;. (19)

If we assume, for the moment only, that 8 and p are also known to the
analyst, then {z., B;}] constitute the ‘data’ to be rationalized and a ratio-
nalization consists of a certainty equivalent u satisfying (19).

Note that if, as is often assumed in applications such as in Section 4, the
law of motion for consumption and asset returns involves only finitely many
conditional one-step ahead joint probability distributions for these variables,
then it may occur that (z, B;) = (z, B,) for distinct t, 7 between 0 and T.
In that case, one of these data points is redundant and may be discarded. It
is then convenient to renumber the data so that the subscript ¢ in {z;, B;}T
indexes distinct conditional distributions rather than time.

It is apparent that the following condition is necessary for {z:, B;}3 to
be rationalizable by some u respecting >;, t+ =1,2:

v/, z, forallt,s=0,...T andally € B,. (20)

That it is also sufficient is the central result of the paper and is established
in the following theorem:

Theorem 1 For eachi = 1,2,0 < 8 < 1 and 0 # p < 1, the ‘data’
{z¢, B}¥ can be rationalized by a certainty equivalent p respecting >; if
and only if (20) is satisfied.

Moreover, in that case there ezist two such certainty equivalents y, and
p*, with p.(z) < u*(z) on D, such that: a certainty equivalent u respecting
>; rationalizes {z¢, B;}¥ if and only if

p(z) S p(z) < p'(x)  on D. (21)

Thus, given 3 and p, (20) represents the exhaustive implications of the
recursive utility model (1)-(2) if risk preferences are required only to satisfy
monotonicity and possibly risk aversion, in addition to the constant relative
risk aversion property (4). Typically, § and p are unknown and the theorem
would be applied by searching over (4, p) pairs to determine if (20) is satisfied
for some pair. If such a pair is found, then (21) describes all the certainty
equivalents that rationalize the data. In particular, the indicated inequality
represents all the information about risk aversion that can be inferred from
the data, giver 3 and p, in the absence of additional assumptions about

11



4. Fortunately, the proof of the theorem is constructive and the upper and
lower bounds p* and u, can in principle be constructed from the data.
The conditions (20) can be expressed alternatively in the form

z, is i-efficient in Ug B, s=0,..T, (22)

where, consistent with common terminology, i-efficiency means undominated
(strictly) with respect to >;. This efficiency condition is, naturally, different
from others that have been studied in portfolio theory. First, since mean-
variance efficiency and efficiency with respect to second degree stochastic
dominance are distinct notions (see Hanoch and Levy (1969)), the above
is not comparable to the condition that each z, be mean-variance efficient.
Second, (22) does not imply any form of efficiency for the market portfolio, as
would an atemporal portfolio analysis. Only in the case p = 1 and therefore
an infinite elasticity of intertemporal substitution, does z, reduce to SM;y,
and does (22) impose efficiency of the market portfolio.

A formal proof of the theorem is provided in the appendix. However,
the essence of the argument is easily conveyed informally with the aid of
Figure 1, which deals with the case T' = 1 and where all random variables
are defined on a probability space having two equally likely states. Random
variables are identified with points in the plane and two such points induce
the same cdf if and only if they are mirror images of one another with
respect to the certainty line. Therefore, each cdf can be identified with a
unique point in the cone below the 45° line, where >; coincides with the
usual partial ordering of vectors in the plane. Adopting this identification,
it follows that the (open) set S. shown equals the collection of all points
that dominate some z; in the sense of »; and that the data shown satisfy
the conditions (20) for ¢ = 1. From (18), any monotone rationalizing u
must be such that (%) all z{s lie on a single indifference curve that has
nonpositive slope and lies on or above every budget set B;. The boundary
of S, satisfies these requirements and lies everywhere above (weakly) any
other curve that satisfies them. Further, by the linear homogeneity (4), the
single indifference curve defined by the boundary of S, defines uniquely an
entire indifference map and therefore a certainty equivalent p. that both
rationalizes the data and serves as a lower (and not upper, as one might
guess at first glance) bound in the sense of (21). For the upper bound,
note that the boundary of the (open) set §*, where S* consists of all points
that are >;-dominated by seme point in UBy, also satisfies the criteria (%)
and lies below any other curve that does. Next apply linear homogeneity.

12



Finally, the case of monotone and risk averse certainty equivalents can be
illustrated similarly.

To conclude this section, we consider the consequences of adding further
Testrictions on risk preferences. One possibility is to restrict the degree of
risk aversion embodied in u in conformity with prior information, derived
from observations of choice behavior in settings other than the specific one
dealt with in Theorem 1. The use of such information is advocated by Mehra
and Prescott and defines the meaning for ‘plausibility’ of the degree of risk
aversion as an additional criterion in rationalizing a set of consumption and
asset return data. In our nonparametric framework, such information could
take the form

a; < p(z;) < b;, 1=1.4J, (23)

where each z;, an element of D, represents a timeless wealth gamble for
which it is known that the risk premium Ez; — u(z;) lies between Ez; — b;
and Fz; — a;.5 Since u is linearly homogeneous, the above inequalities are
equivalent to

p,(Zj/bJ') S 1, ,u(zj/a]-) 2 1, ] = 1,...,J.

Therefore, the consequences of the added restrictions (23) are covered by
the following theorem:

Theorem 2 For each 1 = 1,2,0 < 8 < 1 and 0 # p < 1, the ‘data’
{zt, B¢} can be rationalized by a certainty equivalent u respecting >=; and
satisfying the set of inequalities

p() <1, pw(z) 21, 5=1,..J,
if and only if (20) is satisfied and for all j,k,t and y; € By,
Zifi Yz end 2z (24)

The necessity of the conditions (24) is obvious. The proof of sufficiency
is similar to that for Theorem 1 and is sketched in the appendix. Note that,
by the nature of the bounding certainty equivalents p, and u* provided

*Recall that u represents the induced ordering over timeless wealth gambles (see Section
2). Note also that if 4 is monotone and risk averse, then (23) is necessarily satisfied if
a; = inf z; and b; = E'z;. Thus one would typically want to impose a larger value for a;
and a smaller one for b,.

13



by Theorem 1, the first two conditions can be expressed in the simple and
intuitive fashion p.(2}) <1 and p*(z¥) > 1 for all j.

The decision theory literature suggests alternative added restrictions for
4. To express them, recall first that each z in D is identified with its cdf.
Accordingly, by LX; * y; with ZA; = 1 and A; > 0 for all 4, we shall mean
the corresponding mixture of cdf’s. With this notation in mind, say that u
is quasiconcave (in cdf’s or probabilities) if

pz)2k and py) 2k = p(frz+isy) >k

Quasiconvexity is defined by reversing all inequalities. Finally, say that u
satisfies betweeness if it is both quasiconcave and quasiconvex, or equiv-
alently, if each indifference set {x € D : p(z) = k} is a convex set with
Tespect to the mixture operation. The betweeness axiom is a weakening of
the independence axiom that can accomodate some behavior contradicting
the latter, such as that exhibited in the Allais paradox (see Chew (1983,
1989) and Dekel (1986)). In the probability simplex corresponding to gam-
bles having three fixed outcomes, (see Figure 2), betweeness requires that
indifference curves be linear while the independence axiom forces them also
to be parallel to one another. Note also that whether or not betweeness
holds, monotonicity of a certainty equivalent implies that its indifference
curves in the probability simplex are upward sloping, while risk aversion
implies further that they are everywhere steeper than the constant mean
loci.®

The next theorem characterizes data that can be rationalized by a cer-
tainty equivalent that is monotone and risk averse and also satisfies one of
the three properties just described. In each case, the appropriate strength-
ening of (20) is provided. Let A = {A = (Ag, ..., A7) € RTt1: )\, > Oallt and
¥A; = 1} and denote by »,,q the standard strict second order dominance
relation (see footnote 4). Clearly, z >3 y => = »,,4 ¥ but the converse is
false in general.

Theorem 3 For each 0< f < 1 and 0 # p < 1, the following conditions
are necessary and sufficient for the data {z;, B;}% to be rationalized by a
certainty equivalent respecting >, and satisfying

®See Machina (1987) for more details on probability triangles as a tool for analysing
risk preferences.
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S —

(a) quasiconcavity, or (b) quasiconvezity, or (c) betweeness:

(a) ytﬁ'22As*za Vt,ygEBt,)\eA
(b) TA %y, g 24 Vi,ys € By, A €A (25)
(C) EAa*yak2(ﬁud) Ly, *z, Yys € By, A€ A,y €A,

where in (c), the condition involving (#2) is necessary for the indicated
rationalization while the stronger condition involving (¥,.,a) is sufficient for
such a rationalization. '

The betweeness class (c) contains the parametric models estimated by
Epstein and Zin (1990,91,92) as well as the standard expected utility model
estimated by Hansen and Singleton (1983) and many others. Part (c) falls
short of providing a characterization in light of the gap between ¥, and ¥,,q
. However, as noted earlier, that gap is likely to be empirically insignificant
in a statistical framework. Note that in the context of Figure 1 with y
and z denoting vectors in the lower cone, y >,,0 z if ¥y # z, y2 > z and
1 + y2 > 21 + 72, while y >, z only if the inequalities are strict.

Figure 2 illustrates, in the context of the three-outcome probability sim-
plex, a data set that cannot be rationalized by a certainty equivalent sat-
isfying any of the conditions in Theorem 3, but that is compatible with a
monotone and risk averse certainty equivalent as in Theorem 1.

4 AN APPLICATION

We illustrate our analysis by applying it to the equity premium puzzle posed
by Mehra and Prescott (1985). Using a Lucas style endowment economy, a
‘simple’ consumption process calibrated to U.S. data and a representative
agent with isoelastic expected utility preferences, Mehra and Prescott found
that they could not match historically observed average returns on both eq-
uity and Treasury bills. The parametric studies by Weil (1989) and Epstein
and Zin (1990) suggest that the generalization to recursive preferences can-
not alone resolve the puzzle, while Bonomo and Garcia (1993) report that,
in conjunction with a distinction between consumption and dividends and
the specification of rich processes for each, recursive preferences can match
the first two moments of equity returns and the risk free rate.” Here we

"Other ‘explanations’ of observed returns that have been examined in the literature
include habit formation and incomplete markets. See references in the three cited papers.
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show that without a priori functional form restrictions on risk preferences,
recursive utility can contribute substantially to resolving the puzzle even
with a simple process for consumption such as considered by Mehra and
Prescott. Further, we illustrate some limitations of a parametric approach
and thereby provide a useful perspective on the above studies.

We assume that the endowment process for consumption is such that
the growth rate gry; = cip1/c; follows a first-order Markov process. The
ex-dividend price of ‘equity’, that is, of the endowment stream, is described
by the time-invariant and positive function p(g:, ¢;) of the ‘state’ variables
g+ and ¢;. From the homogeneity of preferences, it follows that the price is
linearly homogeneous in consumption, that is,

p(g,¢)=p(g,1)c= P(g)ec. (26)

Similarly, the risk free rate, or the return to a one period discount bond,
can be expressed in terms of the function r(g;). Finally, the return to equity
or the market portfolio from time t to ¢t + 1, is given by

Most = Plge+1,ce41) + €41 Plgepr) +1
t+1 = -

h P(gt, Ct) P(g:) et (27)

The usual approach specifies a preference ordering and uses the asso-
ciated Euler equations, the given endowment process and (26)-(27), which
embody additional implications of the transversality condition and general
equilibrium, to solve for the functions P and r. We reverse this procedure
and ask whether ‘given’ functions P and r can be rationalized by some re-
cursive utility function in our class. More precisely, we begin by finding a
price-dividend function P such that the joint distribution of consumption
growth and market returns can be rationalized for some pair (8, p). At this
stage, we can impose additional restrictions on the price-dividend function
to achieve desired properties for the joint distribution; for example, we can
Testrict attention to functions that yield a value for the average return to
equity that approximates historical values, or we can require the realized re-
turn to equity to vary monotonically with the realized consumption growth
rate. Given P, and p as above, we proceed to solve for admissable values
of the risk free rate function r(g) by checking the appropriate versions of the
stochastic dominance conditions (20). At this stage, we exploit the following
two implications of Theorem 1: (i) For each state g, the set of admissable
values for the risk free rate is an interval; and (ii) any rate in the interval
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for state g can be chosen, regardless of the rates chosen in other states, that
is, ‘admissability’ is determined for each state separately.®

For simplicity and to maintain comparability with previous authors, we
restrict attention to processes featuring only two possible rates of growth, a
low growth rate g, and a high rate g;. In this case the functions P and r are
each summarized by a pair of numbers. Because of its analytical simplicity,
we first consider the case of i.i.d. consumption growth before allowing some
autocorrelation in growth rates. Throughout we consider rationalization by
a monotone and risk averse certainty equivalent. Finally, the short sales
constraint imposed in (10) is defined implicitly by the requirement that the
resulting random variables are everywhere positive.

4.1 Li.d. consumption growth

Suppose that the consumption growth rate process is i.i.d. Then P(ge) =
P(gh), denoted simply P, so the return on the market portfolio is perfectly
correlated with consumption growth and

Mt+1 = th+1, K= (P+ 1)/P > 1. (28)

Further, the risk free rate is also constant across states at a level denoted r.
Simple calculation based on Theorem 1 shows that the values for K consis-
tent with 8, p and a monotone and risk averse certainty equivalent are those
satisfying

(BE)"g <1< (BK)Y2E(g). (29)

Given such a K, one can further rationalize the risk free rate r if and only
if

Kg <t <K/ (BK)'. (30)
Note that the lower bound for the risk free return is the lowest possible
return to holding equity. To elaborate, (29) is necessary and sufficient for
the data {z,, B;}} to be rationalizable where following Section 3 and (28),
zo = 1, By = {1}, z; has the distribution of (BK)/#g and B; = {z1},
that is, equity is the only asset. Similarly, (29) and (30) are necessary and
sufficient for the rationalizability of {z, B{}}, where B}, = By and Bj is the

*More precisely, we exploit: (i) Yw, 1, s, {r : wz, + (1-w)z: M\ r /-, 2.} is convex for
1 =1,2; (id) if the two data sets {z(, B¢} and {z., B{} are each rationalizable, then so is
{z¢, B: U B{}.
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budget set (17) corresponding to trading in equity at return My 1 = Kge g
and in a bond with return r, that is,

B = {yi(w) = (Li‘K)l/"[mrK_1 + (1 ~w)g}: nw) >0}

If we match the consumption process to the first two moments of ag-
gregate U.S. data, then E(g) = 1.018 and o(g) = .036. Assuming that the
two growth rates are equally likely yields g, = .982 and g5 = 1.054. His-
torically, the average return to equity is about 1.07. With our simple DGP
for consumption, we can find many choices for K and hence P that yield
this average return and that can be rationalized for some (4, p). However,
in all cases we must have r > g,E(M)/E(g) because of (30), so r must
exceed 1.032. Since the historical average for r is about 1.008, we have an
example of the equity premium puzzle, or the associated risk free rate puzzle
emphasized by Weil (1989). Adding points of support to the consumption
growth process can only help if they lead to lower possible growth rates and
hence to lower possible rates of return to equity, a suggestion first proposed
by Reitz (1989) in an expected utility-based model. The addition of ‘low’
growth rates may also be playing a role in resolutions of the puzzle, such
as Bonomo and Garcia (1993), that employ more complicated DGP’s for
consumption.

4.2 Autocorrelated consumption growth

The situation is very different if we admit heterogeneity of the conditional
distribution for consumption growth. Even with the same points of support
for g, the returns to holding equity can be very volatile. If realized payoffs
to equity vary monotonically with realized consumption growth rates, then
the lowest value of these payoffs is also the infimum of admissable values for
the risk free rate in each state. But with volatile equity returns, these lower
bounds provide plenty of room for low risk free rates. Indeed, it is not hard
to construct economies that match the average equity return and in which
the predicted average risk free rate is lower than the historical average!
Table 1 reports some examples. We consider two economies. In both
economies the consumption endowment process is as above, except that the
conditional probability of ‘staying in the same state is assumed to be .45.
(The unconditional probability of each state is 1/2, as in the i.i.d. case.)
Both economies are populated by a representative agent with monotone and
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risk averse preferences and with discount factor fixed at 8 = .99. The price-
dividend ratios in the low and high growth states, denoted P; and Py, are
determined by specifying the mean and standard deviation of the return to
equity. We maintain the same mean equity return but allow the standard
deviation to vary across the two economies.

In the first economy, we match both the mean (1.07) and the standard
deviation (.165) of equity returns to their historical values as estimated by
Mehra and Prescott (1985). There are two pairs of price-dividend ratios
that will generate these moments. We restrict attention to the case where
the return to equity is procyclical, that is, (P, + 1)g; <(Py + 1)gx, so that
we obtain a unique pair P, = 23.42 and P, = 27.89. Then we calculate the
set of values for p that, in conjunction with the assumed value of .99 for
B, allow us to rationalize the joint consumption and equity price process.
From Theorem 1, this amounts to checking that there is no second order
dominance among the {z,} for a given value of p. (In this two state model,
T = 2, with t = 1,2 corresponding to the low and high growth states
respectively.) Numerically, the set of admissible values for p appears to be
an interval with no lower bound. Because the elasticity of intertemporal
substitution (IES) is (1 — p)~?, all of the admissible values for p suggest
very little willingness to substitute intertemporally. For each admissible p
and each state, we can compute (again via Theorem 1, with budget sets
expanded to include a risk free asset) the interval of risk free rates that are
consistent with the above joint process for consumption and equity prices.
It can be shown that the lower bound of each interval does not vary with p
and equals the lowest possible return to equity conditional on the state. The
upper bounds for the risk free rates do vary with p. The maximum value of
r¢ increases with p, while the maximum value of rj, decreases.

For each admissible 4, any candidate pair {7, #4} from the nonparamet-
rically determined intervals indicated in the Table can be rationalized in
this economy by a representative agent with utility parameters g, § = .99
and some monotone and risk averse certainty equivalent. We see, therefore,
that this economy produces a “risk free rate puzzle” but of quite a different
sort than that described by Weil (1989). Risk free rates are too low and
hence the equity premium is too high! Even if we take #, and T4 to be their
maximum admissible values, the average net risk free rate is negative. At
p = —16, the average risk free rate is almost 2.5% below its historical value.
The average rate can be increased by taking a lower value for p, but this
relationship is not globally monotonic. For a wide range of values for p, we
can rationalize an average risk free rate that is about 1% below its historical
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value and a standard deviation roughly 2/3 higher than its historical value.

What are the attitudes towards risk implied by these various choices
for asset returns? Consider the gamble, denoted Z, in which the agent
begins with 75 units of wealth and receives £25 units with equal probability.
For any given admissible 5, we can compute, as in the proof of Theorem
1, the upper and lower bounds for the certainty equivalent of this gamble
that are implied by the asset return data. The difference between these
bounds provides a measure of the information about risk attitudes that
can be inferred from the data. In all examples, the lower bound u. (Z) is
slightly above 50. With g = —16, the upper bound u*(Z) equals 56.5, while
u* (Z) = 62.7 if we take p = —50. By way of comparison, the coefficients
of relative risk aversion that yield these certainty equivalent values in an
expected utility model are approximately 6.5 and 4, respectively.

The bottom half of Table 1 shows the risk free rates implied by two
parametric examples. The Kreps-Porteus certainty equivalent is defined
by (8); it is applied to the equity premium puzzle by Weil (1989). For a
binary gamble with outcomes Z; < Z;, the Yaari certainty equivalent, that
is applied and described more completely in Epstein and Zin (1990), is given
by

W (Z)=p121 +(1-p]) Z2,

where p; is the probability of the inferior outcome Z; and where 7 is a pa-
rameter in the unit interval. For the Kreps-Porteus calculations, we choose
the parameters (p, a) to match the given pair of price-dividend ratios. The
parameters (p,7) in the second model are chosen in the same way. Both
models imply unique choices for the risk free rates, but for comparison we
also report the nonparametric range of values for the risk free rate consistent
with the chosen values of p.

The Kreps-Porteus parameters produce risk free rates around the mid-
point of the admissible intervals. They yield a standard deviation for 7
about 1.5 times the historical value and an average rate that is about 5%
below the historical value. Although the fit is poor, this example is never-
theless interesting. As noted above, the equity premium is too large and the
average risk free rate is too low. Further, since the candidate values of p and
a are roughly equal, it is not surprising that we can get almost the same
values for returns using an expected utility specification of preferences (7)
with p about -35. Previous authors, with the notable exception of Kandel
and Stambaugh (1991), have ignored this region of the parameter space be-
cause of a priori beliefs about reasonable levels of risk aversion. Indeed, the
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Kreps-Porteus functional form assigns an implausibly low certainty equiva-
lent value of 51 to our ‘litmus’ gamble Z. But this reflects functional form
rather than substance. The same predictions about asset returns can be
obtained from a variety of certainty equivalents that assign anything from

0.7 to 62.8 to the gamble Z. The Kreps-Porteus functional form yields a
value near the bottom of this range.

Turning to the Yaari certainty equivalent, in the i.i.d. case it generates
risk free rates at the maximum of the nonparametric range and this prop-
erty seems to hold in our examples. Epstein and Zin (1990) did not consider
such a low value for the IES (they never went below p = —9), and concluded
that they could account for an equity premium of roughly 2%. With our
parameter values we match the historical mean return to equity and gen-
erate a risk free rate that is on average only 1% below the historical value.
On the other hand, although the Yaari functional form matches the first
moments well and the standard deviation of equity returns by construction,
the standard deviation of the risk free rate is about 2/3 larger than the
historical value. Finally, the Yaari functional form assigns a value of 62.3
to the gamble Z, which is very close to the largest possible value (given p).
Note that in all of the examples, the upper bound u*(Z) is sensitive to short
selling constraints. If we rule out borrowing at the risk free rate, the value
of pu*(Z) rises in each example to about 73.5.

The right half of Table 1 looks at the second economy that has the same
consumption endowment process and mean equity return, but less volatil-
ity in equity returns. The price-dividend ratios in this economy are again
uniquely determined if we require further that equity returns are procyclical.
With less volatile equity returns, higher values of p are admissible, but the
implied IES is still small by conventional standards. For any value of p in
(-40,-15], we can match the first two moments of the risk free rate exactly to
their historical values. The certainty equivalents that do so are slightly more
risk averse than those of the first economy in that u*(Z) tends to be about
60 over this range for p. The two parametric examples are again calibrated to
the economy’s price-dividend ratios. Both functional forms provide a good
match to the standard deviation of the risk free rate. The Kreps-Porteus
functional form yields a mean risk free rate that is still too low, while the
Yaari form delivers a mean rate that is too high, but neither discrepancy
is large. However, the two parametric examples present vastly different im-
pressions about risk attitudes, assigning certainty equivalent values for the
litmus gamble that are at opposite ends of the nonparametric range.

We take several lessons from these examples. First, with recursive pref-
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erences, there is no equity premium puzzle, at least involving first moments.
With a low IES, we can match the mean risk free rate and return on equity
to their historical values. Moreover, this does not require an implausibly
large degree of risk aversion. If there is a puzzle, it involves both first and
second moments. With equity returns as volatile as their historical values,
it is hard to rationalize a nonnegative average net risk free rate, the diffi-
culty being primarily to produce a sufficiently high value for rs. Further,
models that yield an average net risk free rate close to zero also yield risk
free rates that are too volatile. We suspect that we could match both the
mean and standard deviation of the risk free rate in the first simple economy
if we admitted preferences that are risk seeking for some gambles, though
we have no reason to believe that the required deviations from global risk
aversion would be ‘intuitive’ or consistent with psychological evidence that
people often are risk seeking in the domain of ‘losses’.

A second important lesson is the danger of using a parametric model to
infer attitudes towards risk from asset return data, as such inference is not
robust to the choice of functional form. The same asset return data can be
generated by preferences that assign widely different values to a lottery not
spanned by the asset returns.

A APPENDIX

Proof of Theorem 1: Necessity of (20) is obvious. We prove sufficiency.
Fix ¢ and denote >; and »; simply by > and > .
Define
S.=uUl{zeD:z2>2}) and

pe(z) =sup{A>0: A7'z €S5.}, z¢€D. (31)

0< p.{z) < 0o : Given the nature of the supports of elements of D, for each
z 3),v such that A~z € . and v~z ¢ S..

pa(Te) = 1Vt A7 2y > 2, VA > 1 == pu(z;) 2 1. On the other hand, if
A~lz, > z, for some A > 1, then z; > z,, contradicting (20).

pe(ye) S 1VEVy: € By i pa(ye) > 1 => A7y » z, for some A > 1 ==y, >
z,, contradicting (20).

u. satisfies (8) and (4): Obvious.
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ps respects =1z > y => z > xy for some K> 1 => p.(z) > Kp.(y) >
4e(y). That z > y => p.(z) > p.(y) is obvious.

It follows that u. rationalizes the data and respects > .
Similarly, define

S =Uf{zeD: 3t,y: € By, y: >z} and

p(z)=inf{A>0: A7’z € 5"}, z€D. (32)

We can prove as above that u* rationalizes the data and respects > .

Next let 4 be as in (21). Then u(z) = 1Vt and p(y:) < p*(w) < 1
if y» € B:. Conversely, let u rationalize the data and prove (21). Fix z
and without loss of generality, let u(z) = 1. Then A~z € S, for some
A>1 = 35,271z > z, = u(z) > Au(z,) = X > 1, a contradiction. It
follows that p.(z) < 1 = p(z). Similarly, A-1z € §* for some A < 1 =—>
35,9 € Byyys > A7z = p(z) < Muy,) <A <1, a contradiction.
Therefore, u*(z) > 1 = u(z).

Proof of Theorem 2: Adopt the notation of the previous proof. Define
S=8.U{zeD: 3j,z> 2}

and define u by the counterpart of (31). The hypotheses imply that z/ T €S
and B;NS = { for all j and t. It follows that u satisfies all the reqmrements

Proof of Theorem 3: Adopt the notation of the proof of Theorem 1.
(a): If p is a quasiconcave rationalization, p(z,) = 1 > pu(y:) Vy: € BiVs =
WEA xz,) 2 ,u(y,) => y: ¥ LA, *z, since u respects > . For the converse,
define

S*={ze€D:3\z,, z> LA, *z,},

and define the certainty equivalent y by the analogue of (31). Since §¢
is convex (with respect to probability mixtures) and coincides with {z :
#(z) > 1}, p is quasiconcave. The remainder of the proof is as above.

(b): The necessity of the condition in (25) is obvious. For the converse, let

={z€D: 3y € B, Sh #y > 7}
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and define p by the analogue of (32). We claim that S is convex: Suppose
that ZX; * y; > z and LA, + y} > z'. Define ¢ = (A + A{)/2 and & =
At/(27¢). Since y; and v are in By, we have y; = z M jwriyy and yf =
a:tMt';llw’r,_H = z; = th;11(6¢w + (1 = 6¢)w')re41 satisfies 2z € B, and
2y = 64+ y+(1—6;)*yi. (The latter property is true only for >3 .) Therefore,
Ty ez = Tyex (Sexye + (1= 6e) *xyl) > %*a:-{-%*z’ = %*z+%*z’
lies in ‘§®. Tt follows that g is quasiconvex. The remainder of the proof is as
above.

(c): Necessity of the condition involving ¥ is straightforward. It might be
expected that one could prove sufficiency of that condition by constructing
a separating hyperplane for the sets 5% and § b, We have already shown that
the sets are convex. That they are disjoint is implied by the- nondominance
hypothesis. However, we have not succeeded in confirming the possibility
of such a separation in the present infinite dimensional setting. On the
other hand, if the condition involving ¥,,s is assumed, then the revealed
preference characterizations in Border(1991,1992) can be applied.

It is worth clarifying the reasons that Border’s analysis is relevant even
though he studies revealed preference implications of expected utility theory,
while we are here dealing with the ‘nonexpected’ utility theory corresponding
to the betweeness axiom. Those reasons are: (i) From (18), rationalization
of the data requires only the construction of a single indifference surface
containing all the z.’s; (ii) an expected utility function cannot be distin-
guished from a betweeness conforming function given knowledge of only a
single indifference surface, since in both cases indifference surfaces are con-
vex sets (or straight lines in the probability triangle). That is not to say that
expected utility based and betweeness conforming certainty equivalents can-
not be distinguished in our framework. That such a distinction is possible
is apparent once one recalls that linear homogeneity of the certainty equiv-
alent is a maintained assumption in our analysis. Therefore, rationalization
by an expected utility certainty equivalent u requires not only that one of
its indifference surfaces be convex, but in fact that u have the parametric
form (8). In contrast, linear homogeneity of p does not restrict any single
indifference surface of u if only betweeness is assumed.

Now proceed with the proof of sufficiency, assuming ¥ ssd - Define coBy,
the convex hull of B; in the sense of probability mixtures, and

Bé = {I ED: 32: € COBt, 2t > ssd Z}'

Then, by the arguments used in (b) to prove the convexity of 5%, B, is convex,
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t =0,1,...,T. Further define B, ; = B}, ,; = convex hull of {zo,z:}, t =
1,...,7. We now have 3T'+1 convex choice sets. Consider the choices z; from
B; given by z; = z,t = 0,...,2T, and = z0,t = 2T + 1,...,37. The ¥,,q
hypothesis implies the ‘nondominance’ condition shown by Border to imply
that the above choices can be rationalized by an expected utility function;
more precisely, there exists a vNM utility index u, continuous and strictly
increasing and concave, such that

Eu(z) > Eu(y:) Vy: € By, t =0,...,37T.

(Border (1992, Theorem 2.4) provides a revealed preference characterization
appropriate for first degree dominance. An extension that includes second
degree dominance and that is adequate for our purposes is provided in (1991,
Section 6).) It follows that

u(1) = Eu(z¢) 2 Eu(y) Vy: € By, t=0,...,T.

The set {z € D : Fu(z) = u(1)} defines the single indifference surface
discussed above. Finally, define the certainty equivalent u by

w(z) =sup{d > 0: w(A71z) > u(1)}.

Then p satisfies all the required conditions.
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Table 1. Asset Return Moments

nom Economy 2
EM) = 1.070 EM) = 1.070
oM) = .165 oM) = .115
P, = 23.42 P, = 20.76
P, = 27.89 P, = 23.16
Nonparametric Examples
NP Range for p [-o»,-15.63) [-e2,-9.78]
p = -16 p = -50 p=-10 p = 40
NP Range for 1, (1.024,1.104] [1.024,1.050] [1.029,1.094] (1.029,1.069]
NP Range for 1, [ .860, .865] [ .860, .905] [ .923, .927] [.923, .961]
i 1.104 1.090 1.089 1.064
ty .865 905 927 .952
E@® 985 997 1.008 1.008
o(t) 119 .093 .081 .056
[u(Z),u”(2)] {50.7,56.5}) [50.7,62.7) [50.8,56.3] [50.8,59.2]
Parametric Examples
7 Kreps-Porteus Yaard Kreps-Porteus Yaan
= -38.02 pY = -41.95 T = -23.08 pY = -25.50
& = -36.66 ¥ = .4057 & = -34.44 ¥ = .4243
NP Range for 1, [1.024,1.092] [1.024,1.091) {1.029,1.082] [1.029,1.082)
NP Range for r, [ .860, .903] [ .860, .903) [ 923, .959) [ 923, .959]
f, 1.045 1.091 1.048 1.082
fy .873 .903 .934 .959
E®) .959 997 1991 1.020
o) .086 .094 .057 .061
u(Z) 51.0 62.3 51.0 62.7
u(Z), 1)1 [50.7,62.8] [50.7,62.7] [50.8,59.4] [50.7,63.2]

M is the return to equity, P is the price-dividend ratio, and r is the risk free rate. NP denotes nonparametrically
determined. Z is a fair binary gamble with outcomes 50 and 100. All the calculations assume B = .99, and the
consumption growth process described in Section 4.





