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ABSTRACT

Empirical evidence shows that changes in aggregate labor income and stock market returns exhibit

only weak correlation at short horizons. As we document below, however, this correlation increases

substantially at longer horizons, which provides at least suggestive evidence that stock returns and

labor income are cointegrated. In this paper, we investigate the implications of such a cointegrated

relation for life-cycle optimal portfolio and consumption decisions of an agent whose non-tradable

labor income faces permanent and temporary idiosyncratic shocks. We find that, under economically

plausible calibrations, the optimal portfolio choice for the young investor is to take a substantial {\em

short} position in the risky portfolio, in spite of the large risk premium associated with it. Intuitively,

this occurs because the cointegration effect makes the present value of future labor income flows

s̀tock-like' for the young agent. However, for older agents who have shorter times-to-retirement, the

cointegration effect does not have sufficient time to act, and the remaining human capital becomes

more b̀ond-like.' Together, these effects create a hump-shaped optimal portfolio decision for the

agent over the life cycle, consistent with empirical observation.
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1 Introduction

The optimal portfolio choice problem over the life cycle has received considerable attention from

political, financial, and academic circles. In spite of the vast work on this topic, there is still much

discord between empirical observation, ‘conventional wisdom,’ and the predictions of most of the

academic literature.

Although the level of stock market participation has increased significantly over the decades,

some empirical features have remained robust. In particular, several studies report that risky asset

holdings are typically low at young ages, and then are either increasing or hump-shaped as the

agent ages (see, e.g., Ameriks and Zeldes (2001), Faig and Shum (2002), Heaton and Lucas (2000),

and Poterba and Samwick (2001)). In contrast, conventional wisdom maintains that, for reasonable

levels of risk aversion, young agents should place a large proportion of their wealth into the market

portfolio, and that this proportion should drop as the agent nears retirement. Indeed, one often-

quoted strategy suggested by financial advisors is that investors should place (100 - age)% of their

wealth in a well-diversified equity portfolio (see, e.g., Malkiel (1996, p. 418)).

Both empirical observation and conventional wisdom are at odds with early academic studies

such as Merton (1969) and Samuelson (1969), who conclude that a long-lived agent should hold a

constant fraction of her wealth in the risky asset throughout her life. Moreover, when calibrated

using historical values for the equity premium and the stock market return volatility, as well as

a ‘reasonable’ risk-aversion coefficient, these models predict that the appropriate proportion of

wealth placed in the risky asset is a counterfactually large number, as high as 100%. These results,

however, are derived under many restrictive assumptions, including power utility, independent and

identically distributed returns on the risky and riskfree investments, the absence of market frictions

and, perhaps most importantly, the absence of labor income.

In an attempt to reconcile theory and observation, many of the restrictive assumptions underly-

ing the Merton (1969) and Samuelson (1969) results have been progressively relaxed.1 For instance,

several studies have examined the effect of labor income on portfolio choice over the life-cycle. For

many agents, the ‘wealth’ (i.e., the certainty-equivalent present value) tied up in terms of future

wages dwarfs their financial wealth. As such, one might suspect that optimal portfolio choice ac-
1Some papers in this direction examine the implications of time-variation in the riskless interest rate, in the equity

premium, and/or different utility functions for the portfolio choice problem. See, e.g., Balduzzi and Lynch (1999),
Barberis (2000), Brandt (1999), Brandt et al. (2004), Brennan, Schwartz, and Lagnado (1997), Brennan and Xia
(2000), Campbell, Chacko, Rodriguez, and Viceira (2004), Campbell and Viceira (1999, 2001), Dammon, Spatt, and
Zhang (2003), Kim and Omberg (1996), Liu (2001), Michaelides (2003), Samuelson (1991), Schroder and Skiadas
(1999), Wachter (2002), and Xia (2001).

1



counting for labor income may generate significantly different predictions. Interestingly, however,

most existing studies find that incorporating labor income into the optimal portfolio decision only

serves to strengthen the puzzle. Indeed, most models attribute ‘bond-like’ qualities to the future

flow of labor income. That is, these models predict that, through their labor income, agents im-

plicitly hold a large position in the risk-free asset, implying that they should take an even more

aggressive position in the risky asset with their cash-on-hand, compared to those models that ignore

labor income. Early papers in this direction include Bodie, Merton, and Samuleson (1992), who

consider portfolio choice in the context of an endogenous leisure/labor trade-off. More recently,

researchers have used micro data to calibrate the individual labor income process. (See, e.g., Camp-

bell et al. (2001, CCGM), Cocco, Gomes, and Maenhout (2002, CGM), Davis and Willen (2000),

Haliassos and Michaelides (2003), Jagannathan and Kocherlakota (1996), and Viceira (2001)).2

With the particular distributional assumptions made in those papers (essentially, labor income and

stock returns follow autonomous Markov i.i.d. or AR(1) processes), they find that only counter-

factually high correlations between shocks to labor income and stock returns, or the possibility of

disastrous labor income shocks (see, e.g., CGM), can explain the low holdings of the risky asset

observed for young investors.

We note, however, that the labor income specifications of these models may be unnecessarily

restrictive. In particular, if the contemporaneous correlation ρ
R

M
,L

between market returns and

changes to aggregate labor income flow is specified to be low, consistent with the data, then these

models also force longer-term correlations to be low as well. Closely related, such specifications

also force the correlation ρ
R

M
,R

L
between the returns to the market portfolio and returns to human

capital (which equals the sum of the current labor income, i.e., ‘the dividend’, and the unobservable

‘capital gain’) to be low. In contrast, below we provide evidence suggesting that the correlation

between market returns and labor income is an increasing function of the time interval. Note that

such a result is consistent with capital flows and flows to labor income being cointegrated, which

in turn generates high correlation between the returns to human capital and to the stock market.

The notion that human capital and market returns should be highly correlated is not new. For

example, Baxter and Jerman (1997, BJ) test for the existence of cointegration by using data on
2Several other contributions investigate the implications of human capital for asset pricing and portfolio choice.

For instance, Bodie, Detemple, Otruba, and Walter (2004), Chan and Viceira (2000), and Dybvig and Liu (2004)
examine the portfolio choice problem in economies with flexible labor supply or voluntary retirement. Telmer (1993)
investigates the variability of the intertemporal marginal rate of substitution in an incomplete market economy
with uninsurable labor income shocks. Heaton and Lucas (1996) and Lucas (1994) study the equity premium in
economies with aggregate and idiosyncratic labor income shocks, transaction costs, as well as borrowing and short-
sales constraints.

2



aggregate employee compensation and GDP growth (in contrast to using market returns, as is done

in this paper). Although the evidence in support of cointegration is statistically weak, as is often

the case in tests of cointegration, they proceed under the economically plausible assumption that

such a relation indeed exists, and investigate the implications for international portfolio choice.

Assuming a constant discount rate, they find that the present values of capital income and labor

income exhibit high correlation, in excess of 90%. Campbell (1996) also estimates a similar high

correlation between human capital and market returns, but using a very different argument. In

particular, he assumes that labor income follows an AR(1) process with low contemporaneous

correlation with the stock dividends. However, he assumes that the same (highly time varying)

discount factor should be used to discount both labor income and dividends. In his model, the

high correlation between human capital and market returns is effectively due to the common highly

varying discount factor.3

In this paper, we investigate the implication of cointegration between labor income and market

returns for life-cycle portfolio choice. Such a specification is consistent with the notion of ‘trickle-

down’ labor income. That is, future labor income flows are affected by past profitability of the

economy, so that returns to labor and physical capital are highly correlated, even though the

contemporaneous correlations between market returns and changes in labor income might be low.4

Although related to the work of BJ, our analysis differs significantly from theirs in many aspects.

First, they consider an infinitely-lived representative agent who has a claim to aggregate labor

income. Thus, their analysis does not generate implications for the life-cycle behavior of finitely-

lived individual agents. Furthermore, their analysis ignores the fact that individual agents face

significant idiosyncratic labor income shocks (see, e.g., Carroll and Samwick (1997, CS), CGM, and

Gourinchas and Parker (2002, GP)) that are not captured by looking at aggregate averages alone.

Second, they do not solve for the optimal portfolio choice. Rather, they focus on the one-period

return of an investor desiring a world value weighted (i.e., diversified) portfolio. Finally, they

estimate human capital by exogenously setting the discount rate used to discount labor income to

a constant.
3The assumption that market returns and returns to labor should be highly correlated is also common to many

macroeconomic models. While the early paper of Fama and Schwert (1977) had dismissed the empirical relevance
of labor income for asset prices (Mayers (1974)), a new strand of literature has recently revisited this point (Black
(1995), Jagannathan and Wang (1996), Santos and Veronesi (2004), Campbell (1996), Lettau and Ludvigson (2001)).
These recent papers find that labor income can be an important conditioning variable, which improves the predictive
power of asset pricing models substantially.

4Other papers use the assumption that labor income and dividend flows are cointegrated. For example, Santos
and Veronesi (2004) and Menzly, Santos, and Veronesi (2004) investigate economies where the proportion of output
paid out as labor income is stationary.
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In contrast, we solve the optimal life-cycle portfolio choice problem of an agent with constant

relative risk-aversion who earns non-tradable labor income. The latter is cointegrated with stock

returns and exhibits both temporary and permanent idiosyncratic labor income shocks, which we

model as in CCGM and CGM. Using a dynamic programming approach we solve for the consump-

tion and portfolio allocation rules, and also obtain endogenously the ‘shadow’ present value of

labor income for the optimizing agent (effectively discounting future labor income at her marginal

utility).

Contrary to much of the previous literature, and to ‘conventional wisdom,’ our model predicts

that a young agent should take a short position in the risky asset. However, as the agent ages,

the optimal proportion of wealth in risky stocks increases. Intuitively, the inverse of the mean

reversion coefficient controlling the cointegration provides a time-scale for the agent: if the number

of years of remaining employment is larger than this time scale (i.e., if the agent is young), then the

return on their human capital is highly exposed to market returns. Furthermore, most of the young

agent’s ‘wealth’ is tied up in future labor income. As such, they will find themselves overexposed

to market risk, and it will be optimal to short the market portfolio, analogous with the infinitely

lived representative agent in BJ who faces no idiosyncratic labor shocks. However, if the number of

years of remaining employment is smaller than this time scale (i.e., if they are middle aged), then

the return on their human capital is not highly exposed to market returns—that is, their future

labor income is more bond-like than stock-like. As such, they find it optimal to invest more in

the risky asset than a retired individual. Combined, these results generate a hump-shaped optimal

portfolio decision over the life cycle, consistent both qualitatively and quantitatively with empirical

evidence.

We emphasize that our results are obtained without specifying any type of fixed entry costs to

participate in the equity market. This contrasts considerably with other papers in the literature

that can only explain this non-participation by assuming a rather large entry cost (see, e.g., Abel

(2001), CGM, and GM). Further, as we demonstrate below, the qualitative conclusions of our

findings are very robust across a wide range of parameter inputs. The most important parameter

is κ, the mean-reversion coefficient controlling the cointegration between labor income and market

returns. Our point estimate for κ ranges from 0.1 to 0.2 depending upon the data set used, and

is consistent with the estimates of BJ. Our benchmark case of κ = 0.15 provides a time-scale of
1

0.15 = 6.67 years for the cointegration to take effect. For times-to-retirement significantly larger

than this, the cointegration effect makes the present value of future labor income flows highly

correlated with market returns, in turn making it optimal for the young agent to short the risky
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asset. Interestingly, even when we consider the case κ = 0.05 (and hence, a time scale on the order

of 1
0.05 = 20 years), the same qualitative solution is found for a risk premium of 4% (a number that

is often used in the literature).

We acknowledge that we cannot provide irrefutable empirical evidence in support of cointegra-

tion (i.e., κ > 0) over the null hypothesis of a unit root (i.e., κ = 0). That is, the Dickey-Fuller

τ -statistics for unit root tests do not possess the level of significance usually expected in the liter-

ature.5 We note, however, that, as is well known, it is econometrically very difficult to distinguish

between these two hypotheses—unit root tests are notorious for lacking power. Still, we consider

investigating the implication of such a cointegrated relation for life-cycle portfolio choice a worth-

while endeavor for several reasons. First, we find such a relation economically plausible. As BJ

point out, if the labor and capital income were allowed to have independent trends, then the ratio of

labor income to capital income would either grow without bound or approach zero asymptotically,

and the labor share would approach either zero or one. This seems unlikely (and counterfactual).

Second, we provide some additional empirical support for cointegration by demonstrating that cor-

relation between stock returns and labor income are an increasing function of the horizon. Third,

we note that our model specification reduces to traditional models (i.e., no cointegration) in the

limit κ → 0. Econometrically, it is difficult to distinguish between κ = 0 and, say, κ = 0.05 given

only a few decades of data. Indeed, for κ = 0.05, we only expect to see the effects of cointegration

over a time frame of 1
0.05 ≈ 20 years, implying that with 60 years of data, we only have about 60

20 ≈ 3

independent data points. Yet, as we show below, the models with κ = 0 or κ = 0.05 generate signif-

icantly different predictions for the optimal portfolio decision of a young agent.6 Since both models

are difficult to distinguish econometrically, it seems important to investigate the implications of

both.

Our conclusions hold for reasonable levels of the agent’s risk aversion coefficient. Following

CCGM, CGM, and Gomes and Michaelides (2004, GM), we choose γ = 5 for our baseline case.

Qualitatively similar results are obtained if γ = 4. However, a less risk-averse agent (e.g., γ = 3)

finds it optimal to invest heavily in stocks in spite of the long-run cointegration effect. Hence,

we find that even small differences in relative risk aversion can generate substantially different

predictions. This result is consistent with empirical observation that asset holdings and stock

market participation exhibit a high degree of heterogeneity. In contrast, most models that do not
5We note that both our estimates of κ and its statistical significance are very much in line with those obtained by

BJ, even though we use stock returns and they use capital flows.
6In some respects, this is analogous to the approach of Bansal and Yaron (2004) who show that consumption

dynamics with small but persistent drifts are econometrically difficult to distinguish from i.i.d. consumption dynamics,
but generate significantly different risk premia.
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account for this long-run cointegration conclude that young agents over a wide range of risk-aversion

levels should hold a large proportion of their financial wealth in risky securities.

The recent literature has offered many alternative explanations for the limited stock market

participation puzzle.7 The explanation we offer here, while different, can be viewed as complemen-

tary to these. Indeed, our paper emphasizes that if, in fact, labor income and market returns are

cointegrated over the long run, then such a relation has a first-order effect on the optimal portfolio

decisions of an agent over the life cycle.

The rest of the paper is organized as follows. In Section 2, we present the life-cycle portfolio

choice model. We explain the details of the model calibration in Section 3. In Section 4 we

determine optimal portfolio and consumption choice by numerically solving the Hamilton-Jacobi-

Bellman equation. Sensitivity analysis is performed suggesting that the main qualitative result is

robust to a wide range of parameter calibrations. We conclude in Section 5.

2 A Model with Cointegrated Aggregate Labor Income

We specify the date-t price of the risky asset as S(t). More accurately, S should be interpreted

as the gain process, that is, the value of a portfolio that continually reinvests any dividends paid

out by the risky asset. As such, we specify the dynamics of S as if the risky asset does not make

dividend payments:
dS(t)
S(t)

= µ dt + σ dz3(t) . (1)

Here z3 is a standard Brownian motion. It is convenient to define the log-stock price as s ≡ log S.

From Ito’s lemma it follows that its dynamics are

ds(t) =
(

µ − 1
2
σ2

)
dt + σ dz3(t). (2)

Next, we specify the dynamics for the labor income process. Define the current labor income

flow for an individual as L(t). It is convenient to introduce log-labor as �(t) = log L(t). Since

CCGM, CGM, CS, and GP find idiosyncratic labor shocks to be proportional to the level of labor

income, it follows that an individual’s income is a product of two numbers: L1(t), the ‘aggregate

income’ associated with this agent’s career choice, and L2(t), her idiosyncratic shocks. As such,

her log-labor flow is a sum of these two factors:

�(t) = �1(t) + �2(t), (3)
7See, for example, Abel (2001), Davis, Kubler and Willen (2003), Faig and Shum (2002), GM, Guo (2004), Heaton

and Lucas (1997, 2000), Hsu (2003), Hong, Kubik and Stein (2004), and Storesletten et al. (2001).
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where �1(t) = log L1(t) and �2(t) = log L2(t).

We now need to specify the dynamics for �1(t) and �2(t). We choose the process for the aggregate

state variable �1(t) to capture two empirical observations: First, contemporaneous correlations

between market returns and aggregate shocks to labor income are low. Second, as we report below,

this correlation increases substantially with the time horizon.8

Thus, we assume that the difference between labor income and the ‘gain’ process is trend-

stationary.9 (We provide below some empirical evidence that this is indeed consistent with the

data.)

Define the difference between the logs of these two variables as y(t):

y(t) ≡ �1(t) − s(t). (4)

To capture the notion of cointegration (i.e. long-run dependence) between labor income and stock

returns, we assume that y(t) is a mean-reverting process with a mean reversion κ and long-run

central tendency of θ t

dy(t) = κ (θ t − y(t)) dt + ν1 dz1(t) − ν3 dz3(t) , (5)

where z1 is a standard Brownian motion independent from z3 .
10

Note that the time-dependence in the central tendency implies that �1(t) and s(t) are not

cointegrated in the strict sense of the word for non-zero θ. However, we emphasize that one should

expect such a time trend in the ratio of gain process to income flow (i.e., to find θ �= 0). To illustrate

this point, consider a simple exchange economy where aggregate output is equal to $1 per year, and

the present value of the output is constant and equal to $20. The price-dividend ratio is stationary

(in fact constant) and equal to 1/20=0.05. It follows that the gain process (value of the stock plus

reinvested dividends) at date t is simply 20 ∗ (1.05)t. The gain process-to-dividend ratio at date-t

is 20∗(1.05)t

1 , which is clearly non-stationary. In particular, note that the log gain-dividend ratio
8The latter is also consistent with the results of Campbell (1996) and BJ, that the returns to human and physical

capital are more highly correlated.
9We note that an alternative modeling approach would be to assume that the flow of aggregate labor income and

the flow of aggregate dividends are cointegrated, as in, for example, Menzly, Santos, and Veronesi (2004). However,
since we are in a partial equilibrium framework, this would force us to specify both the aggregate dividend process
and the pricing kernel of the economy in order to determine aggregate stock returns. To avoid this extra layer of
structure, rather than specifying a cointegration relation between labor income and dividends,we assume that the
difference between labor income and the ‘gain’ process is ‘trend-stationary,’ which is also consistent with our empirical
results reported below.

10It might seem more general to define the y-dynamics as dy = κ (θ0 + θ t − y) dt + ν1 dz1 − ν3 dz3 . However, one
can then replace the state variable y with y∗ ≡ (y − θ0), whose dynamics from Ito’s lemma follow equation (5) above.
Such a transformation of state variables would not affect the definition of y (up to an ‘irrelevant constant’).
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=
(
log 20 + t log 1.05

)
is a linear function of time, consistent with the specification of the central

tendency in equation (5).

The crucial coefficient in equation (5) is κ, which measures the speed of mean-reversion of the

deviations between labor income and stock prices towards a deterministic time trend θt. Roughly

speaking, we can think of 1
κ as a time-scale for which stock returns and labor income are coupled.

More formally, τ ≡ log(2)/κ is the half-life for which deviations from the steady-state value decays.

Since a young middle class agent might have, say, 45 years of labor income in front of her before

retirement, even a small positive κ implies that the present value of her labor income is strongly

affected by market movements, as we demonstrate below.

The AR(1) specification implies that y(T ) is normally distributed, with expected value

E0 [y(T )] =
[
y(0) +

θ

κ

]
e−κT + θT − θ

κ
. (6)

This equation shows that the steady state value of y(t) is not θt but rather θt − θ
κ . Hence, below

we choose for our benchmark case y(0) = − θ
κ .

Finally, we specify the dynamics of the logarithm of the idiosyncratic shocks to be arithmetic

Brownian motion:

d�2(t) =
(

α(t) − ν2
2

2

)
dt + ν2 dz2,i(t) , (7)

where z2,i is a standard Brownian motion independent from both z1 and z3 . The subscript (i) is

used to emphasize that this shock is idiosyncratic, in contrast to the aggregate shocks z1 and z3 .

That is, we follow CCGM, CGM, CS, GP, and many others and we assume that the idiosyncratic

labor income component is subject to permanent shocks. Further, we introduce a time-dependence

in the drift in (7) to capture the findings in the literature that the drift of an individual’s labor

income is a function of her age. Specifically, we choose

α(t) = α0 + α1t − α , (8)

where α0 and α1 are calibrated to capture the hump-shape of earnings over the life cycle (see, e.g.,

CGM and CS). However, we note that the combination of �1(t) and �2(t) effectively ‘double counts’

the expected increase in labor income over time. As such, the term α is subtracted so that the

total labor income process �(t) conforms well to the empirical findings of, e.g., CGM.11

From its definition �(t) = y(t) + s(t) + �2(t), we find

d�(t) =
(

κθt − κy(t) + µ − σ2

2
+ α(t) − ν2

2

2

)
dt + ν1 dz1(t) + ν2 dz2,i(t) + (σ − ν3) dz3(t). (9)

11Obviously, only the difference (α0 − α) is econometrically identifiable. However, we found it to be convenient for
intuitive purposes to distinguish them.
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We note that, since the z1 and z2,i shocks are orthogonal to the stock return shock z3 , the contempo-

raneous correlation between stock market and labor income shocks is corr(ds, d�) = (σ−ν3 )√
ν2
1
+ν2

2
+(σ−ν3 )2

.

Thus, in the special case (σ − ν3) = 0, labor income is contemporaneously uncorrelated with market

returns. We will choose this case as our benchmark case to emphasize that short-term correlations

are unnecessary for generating labor income dynamics that are ‘stock-like’. Instead, what is crucial

is the long-term cointegration.

Equation (9) implies that �(t) is normally distributed. Straightforward but tedious algebra gives

E0 [�(T )] = �(0) −
(

y(0) +
θ

κ

)(
1 − e−κT

)
+

(
θ + µ − σ2

2
+ α0 − α − ν2

2

2

)
T +

α1

2
T 2 (10)

Var0 [�(T )] =
(

ν2
1

2κ
+

ν2
2

2κ

)(
1 − e−2κT

)
+

(
σ2 + ν2

2

)
T − 2ν3σ

κ

(
1 − e−κT

)
. (11)

Normality implies that

E0 [L(T )] = E0

[
e�(T )

]
= e

E0 �(T ) + 1
2
Var0 �(T )

. (12)

We use this formula to choose α to best fit the empirical findings of CGM.

2.1 Comparison with Standard Labor Income Process Specification

Standard approaches typically choose to specify the labor process using levels rather than changes.

Furthermore, it is common to consider only discrete time intervals, rather than use a continuous-

time specification as above. In order to clarify how our approach relates to the extant literature,

here we compare our specifications (9) and (2) for the labor income and stock price with more

standard models in the literature. In particular, we demonstrate that in the limit κ → 0, our

specification is nearly equivalent to the standard model.

For example, CCGM assume that investor’s i age t labor income, Yi,t , is exogenously given by

log(Yi,t) = f(t, Zi,t) + νi,t + εi,t , (13)

where f(t, Zi,t) is a deterministic function of age and other individual characteristics Zi,t , εi,t is an

idiosyncratic temporary shock uncorrelated across households and distributed as N(0, σ2
ε
), and νi,t

is given by

νi,t = νi,t−1 + ui,t . (14)
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Here, ui,t is distributed as N(0, σ2
u
) and is uncorrelated with εi,t . Moreover, ui,t is decomposed into

an aggregate component ξt and an idiosyncratic component ωi,t, uncorrelated across households:

ui,t = ξt + ωi,t . (15)

Further, CCGM assume that the excess return on the risky asset is given by

Rt+1 − R
f

= µ + ηt+1 , (16)

where the innovations ηt are assumed to be i.i.d. over time and distributed as N(0, σ2
η
). They allow

for correlation between the aggregate component of labor income shocks, ξt, and innovations to

stock returns, ηt ; they denote the correlation coefficient ρ
η,ξ

.

Using equation (13) at date-t and date-(t + ∆t), and then using (14), we can write the change

in labor income as

log(Y
i,t+∆t

) − log(Yi,t) =
[
f(t, Z

i,t+∆t
) − f(t, Zi,t)

]
+

[
ν

i,t+∆t
− νi,t

]
+

[
ε

i,t+∆t
− εi,t

]
=

[
f(t, Z

i,t+∆t
) − f(t, Zi,t)

]
+ u

i,t+∆t
+

[
ε

i,t+∆t
− εi,t

]
=

[
f(t, Zi,t+∆t) − f(t, Zi,t)

]
+ ωi,t+∆t + ξt+∆t +

[
εi,t+∆t − εi,t

]
. (17)

This labor income specification closely matches our specification in equation (9) after some re-

labeling and some minor changes. Let us ignore for now the temporary shock term
[
ε

i,t+∆t
− εi,t

]
.

This is done for two reasons. First, we cannot capture this temporary shock in continuous time

in the way that CCGM do without introducing another state variable, which would increase sig-

nificantly the difficulty of obtaining convergence numerically. Instead, we capture the notion of

temporary shocks by placing them into the wealth dynamics rather than the labor income dynam-

ics, as will be seen below in equation (22). Second, and more importantly, we emphasize that

both CCGM and us find this term to have negligible effect on optimal portfolio decisions. We

then relabel ∆�(t) ≡ log(Y
i,t+∆t

) − log(Yi,t), ω
i,t+∆t

≡ ν2 ∆z2,i(t) and
[
f(t, Z

i,t+∆t
) − f(t, Zi,t)

] ≡(
µ − σ2

2 + α(κ=0)(t) − ν2
2
2

)
. Finally, since CCGM allow aggregate labor income shocks ξ to be cor-

related with innovations in market returns η, we decompose ξ into two terms ξ⊥ ≡ ν1 ∆z1 and

ξ‖ ≡ (σ − ν3) ∆z3 , which are ‘orthogonal’ and ‘parallel’ to stock market shocks ηt , respectively.

Thus, we write ξt ≡ ξ⊥ + ξ‖ = ν1 ∆z1 + (σ − ν3) ∆z3. With this relabeling and the dropping

of the temporary component term, the CCGM and our labor income dynamics can be written,

respectively, as

∆�CCGM =
(

µ − σ2

2
+ α(κ=0)(t) − ν2

2

2

)
∆t + ν1 ∆z1 + ν2 ∆z2,i + (σ − ν3) ∆z3 (18)

∆� =
(

κ (θt − y) + µ − σ2

2
+ ακ(t) − ν2

2

2

)
∆t + ν1 ∆z1 + ν2 ∆z2,i + (σ − ν3) ∆z3 .(19)
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Here, the superscript ακ(t) emphasizes that we calibrate α(t) for a given κ to match the labor income

profile of CGM. Clearly, the two models differ only in the conditional drift, and are identical in the

limit where the mean reversion parameter κ → 0. Below, we demonstrate that even though these

two models are extremely difficult to distinguish econometrically for ‘small’ values of κ, they have

enormously different predictions for the optimal portfolio choice of young agents. Indeed, even for

an estimate of κ as low as 0.05, which implies a time-scale of 1
0.05 = 20 years, and a risk premium of

four percent (the same risk premium assumed by, e.g., CCGM, CGM, and GM), we find it optimal

for the young agent to short the market portfolio.

2.2 Empirical Motivation for the Model

BJ use the augmented Dickey-Fuller (ADF) approach to test whether the ratio of labor income to

capital income is a stationary random variable. As it is often the case when testing for unit roots,

they are unable to find decisive evidence to rule out nonstationarity. As discussed in BJ, these

findings can be explained by the fact that unit root tests lack power, i.e., they tend not to reject

the unit root null hypothesis when it is false.

We perform similar ADF tests to check whether the variable y = �1 − s is trend stationary.

When measuring y, we use return realizations on the U.S. value-weighted market index as a proxy

for s, instead of relying on GDP growth data as in BJ. We use average U.S. employee compensation

data to construct a proxy for �1 . We obtain the total annual ‘Compensation of employees’ and the

number of ‘Full-time and part-time employees’ from the National Income and Product Accounts

(NIPA) Tables. Each year, we divide the number of ‘Full-time and part-time employees’ by one

minus the average yearly unemployment rate to obtain a proxy for the number of individuals

who are either holding or seeking a full- or part-time employee position. Our proxy for �1 is the

logarithm of the ratio of ‘Compensation of employees’ and the number of individuals either seeking

or holding a full- or part-time employee position.12 Further, in our model the y variable has a time

trend. Thus, we follow Oularis et al. (1989) and we include a second-order time trend in the ADF

regression model

∆y = ξ1 + ξ2t + ξ3t
2 + ξ4y + Φ(L)∆y−1 + ε , (20)

which we estimate by ordinary least squares (OLS). Comparing equation (5) and equation (20),

we see that if we ignore the effects of the terms
(
ξ3t

2
)

and
(
Φ(L)∆y−1

)
, then ξ4 would provide

12The value-weighted market index returns are from the Center for Research in Security Prices (CRSP) data-
base. We convert stock market prices and aggregate labor income from nominal to real terms by use of the
consumer price index (CPI). The NIPA Tables are available from the Bureau of Economic Analysis web site at
http://www.bea.doc.gov/bea/dn1.htm, while the CPI index, the unemployment rate, and the civilian participation
rate data are available from the St. Louis Federal Reserve Bank web site at http://research.stlouisfed.org/fred2/.
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an estimate of (−κ∆t) after one accounts for the transformation from discrete time to continuous

time.

Not surprisingly, our analysis suffers from the same problems as those reported in BJ. The ADF

test results for the 1948-2001 sample are in Table 2.2 below. The Dickey-Fuller 10% asymptotic

Table 1: ADF test results for the 1948-2001 sample period.

Number of lags in Φ(L) ξ4 ADF τ statistic Centered Adjusted R2

0 -0.1651 -2.54 0.11
1 -0.1672 -2.39 0.09
2 -0.1520 -2.09 0.14

critical value for the ADF test based on (20) is -3.55 (see, e.g., Davidson and MacKinnon (1993), p.

708). Consistent with BJ (our results are very similar to those that BJ report in their unpublished

Appendix), we cannot reject the null hypothesis that the y series has a unit root.

These results are robust to the proxy we use for the aggregate labor income component. For

instance, we have also measured �1 as the logarithm of ratio of ‘Compensation of employees’ and

the number of ‘Full-time and part-time employees,’ without adjusting the denominator using the

unemployment rate. Further, we have projected changes in �1 against the lagged average yearly job

market participation rate of the civilian U.S. population, and we have performed the ADF tests on

�1 minus its predictable component. In each case, we have obtained similar ξ4 and τ estimates.

Finally, these findings are robust to the sample period. Since unemployment and participation

rates are available only from 1948, during the sample period from 1929 to 2001 we can only mea-

sure �1 as the ratio of ‘Compensation of employees’ and the number of ‘Full-time and part-time

employees,’ without adjusting the denominator using the unemployment rate. This approach yields

a ξ4 = −0.1858 estimate with a τ = −2.73 ADF statistic.

To provide additional motivation for the model, we further investigate the properties of the

long-run correlations between stock returns and labor income. In Table 2.2, Panel A, we report the

correlations between the jth-order differences in log-labor income and log-stock prices, j = 1, . . . , 5,

computed using overlapping intervals from 1948 to 2001. First, we note that these correlations are

particularly difficult to pin down. For instance, the 1-year correlations range from 16% to 37%

depending on the proxy we use for �1 . Further, these estimates vary depending on the choice of

the sample period (not reported). This evidence is consistent with the rest of the literature. For

12



instance, CCGM and CGM find that the 1-year correlation is small and insignificant, while they

report that the same correlation estimated with returns lagged one year is as large as 52%. Similarly,

Davis and Willen find no evidence for a relation between income innovations and contemporaneous

aggregate equity returns. Further, Campbell (1996) estimates a VAR model for stock and T-Bill

returns, labor income, dividend yields, and term premia. He finds a 17% correlation between the

contemporaneous innovations to labor income and stock returns. Clearly, longer-term correlations

may be even more imprecisely estimated, as the number of ‘independent observations’ drops linearly

with the time interval for which the correlation is measured.13 Still, we find two results which seem

robust. First, the estimate of the κ coefficient is relatively insensitive to the choice of the proxy

for labor income, and is approximately equal to 0.15. Second, and related, we systematically find

that correlations are increasing in the time interval. This pattern is at odds with previous labor

income models, but is consistent with the notion of cointegration between labor income and stock

market performance. To illustrate this point, in Panel B we report the correlations implied by

our model (5) and (2) for a realistic calibration of its coefficients (we explain the details of the

calibration in Section 3 below). Different rows report long-run correlations for different values of κ

and corr(d�, ds), the coefficient of contemporaneous correlation between changes in � and changes

in s. For κ ≈ 0.15, the value we use in our baseline calibration, the model produces long-run

correlations that are consistent with the empirical evidence. Instead, for κ → 0, the model reduces

to the standard labor income specifications previously considered in the literature, and produces

constant long-run correlations that are at odds with the empirical evidence.

In sum, as in BJ, we cannot provide conclusive evidence to reject the unit root hypothesis in the

y series. However, we note that the cointegration effect can act at very low frequencies. For small

values of κ, it might take many decades for an agent’s wages to catch up with the performance of the

economy. Thus, given the relatively short sample period it is not surprising that such effect might

go undetected by the ADF test, which is notorious for its lack of power. Further, we emphasize that

the stylized evidence on the patterns of the long-run correlations between labor income and stock

returns are at odds with the labor income models previously considered in the literature, while

they closely match the correlation pattern implied by our model. Finally, we note that economic

intuition provides strong support to the notion that labor and capital income are cointegrated. For

all these reasons, we proceed under the assumption that the y variable is trend-stationary.

13Indeed, this is why we do not report correlations over longer time intervals. For example, with (2001 - 1948 =
53) annual observations, even a 5-year time interval already leaves us with only 53

5
≈ 10 independent observations.
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Table 2: Long-run correlations between stock returns and labor income.

κ C(1) C(2) C(3) C(4) C(5)
I 0.13 0.1566 0.3415 0.4126 0.4583 0.4551
II 0.15 0.3713 0.4624 0.5063 0.5904 0.6341
III 0.16 0.1701 0.3878 0.5085 0.6100 0.6438

Panel A: C(j) is the correlation between the jth-order differences in aggregate log-labor income, �1 ,
and in log-stock prices, s, computed using overlapping intervals. The sample period is 1948-2001.
Different rows report correlations for different measures of labor income, which are constructed as
follows:

I: �1 is the logarithm of the average real employee compensation (total number of employees adjusted
for the unemployment rate).
II: �1 is the logarithm of the average real employee compensation minus its component predicted
by the lagged job market participation rate among the civilian population.
III: �1 is the logarithm of the average real employee compensation (total number of employees
adjusted for the unemployment rate) minus its component predicted by the lagged job market
participation rate among the civilian population.

κ corr(d�, ds) C(1) C(2) C(3) C(4) C(5)
0.15 0 0.0725 0.1377 0.1955 0.2463 0.2907
0.15 0.13 0.1875 0.2421 0.2898 0.3313 0.3674
0.10 0 0.0491 0.0950 0.1377 0.1770 0.2132
0.10 0.13 0.1677 0.2065 0.2421 0.2746 0.3043
0.05 0 0.0249 0.0491 0.0725 0.0950 0.1168
0.05 0.13 0.1470 0.1677 0.1875 0.2065 0.2247

κ → 0 0 0 0 0 0 0
κ → 0 0.13 0.13 0.13 0.13 0.13 0.13

Panel B: C(j) is the correlation between the jth-order differences in aggregate log-labor income,
�1 , and in log-stock prices, s, implied by our model, equations (5) and (2). Different rows report
correlations for different values of the κ coefficient and the contemporaneous correlation between
changes in � and changes in s, corr(d�, ds). We obtain different values of corr(d�, ds) by changing
the value of the ν3 coefficient. The other model coefficients are calibrated to realistic values, as we
explain in Section 3 below.
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2.3 The agent

The current financial wealth of the agent is stored in two securities. In particular, the agent owns

θ0(t) shares of the riskless asset, whose date-t price is B(t), and θ(t) shares of the risky asset, whose

date-t price is S(t). Hence, her wealth and wealth dynamics follow

W (t) = θ0(t)B(t) + θ(t)S(t) (21)

dW (t) = −C(t)dt + θ0(t)dB(t) + θ(t) dS(t) + L(t) dt + βW (t)dz4,i(t). (22)

The last term captures the notion of transient shocks to the agent’s wealth. In contrast to most

discrete-time models, it is simpler in our continuous-time model to capture these transient shocks

in the wealth process rather than in the labor income process. Consistent with intuition, and the

numerical results of CGM, we report below that this term has a negligible effect on the agent’s

consumption and portfolio choices for a wide range of reasonable parameter estimates for β.

It is convenient to define:

c =
C

W
(23)

π =
θS

W
(24)

X =
L

W
. (25)

That is, c is optimal consumption as a percentage of wealth, X represents the ratio of labor income

as a percentage of wealth, and π is the optimal proportion of wealth placed in the risky asset. The

wealth dynamics can then be written as

dW (t)
W (t)

=
(
r + π(t) (µ − r) + X(t) − c(t)

)
dt + π(t)σ dz3(t) + β dz4,i(t). (26)

We assume that the agent has standard constant relative risk aversion utility function. As such,

her objective function is:

J(t, w(t), L(t), y(t)) ≡ max
c,π

Et

[∫ T

t
du e−δu (c(u)ew(u))1−γ

1 − γ
+ εγe−δT ew(T )(1−γ)

1 − γ

]
, (27)

where w ≡ log W .

The Hamilton-Jacobi-Bellman equation is (dropping time arguments to simplify notation):

0 = e−δt C
1−γ

1 − γ
+ Jt + WJ

W

(
− C

W
+ r + π(µ − r) +

L

W

)
+

1
2
W 2J

WW

(
σ2π2 + β2

)
(28)

+LJ
L

(
κθt − κy + µ − σ2

2
+ α(t) − ν2

2

2
+

1
2

(
ν2

1
+ ν2

2
+ (σ − ν3)

2
))
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+
1
2
L2J

LL

(
ν2

1
+ ν2

2
+ (σ − ν3)

2
)

+ Jy (κθt − κy) +
1
2
Jyy

(
ν2

1
+ ν2

3

)
+WLJWL (σ − ν3)πσ − ν3σπWJWy + LJLy

(
ν2

1
− ν3 (σ − ν3)

)
.

The first order conditions for the two controls are

0 = e−δtC−γ − JW (29)

0 = WJ
W

(µ − r) + W 2J
WW

σ2π + WLJ
WL

σ (σ − ν3) − σν3WJ
Wy

, (30)

leading to the conditions:

C =
(
eδtJ

W

)− 1
γ (31)

π = −WJW (µ − r) + WLJWLσ (σ − ν3) − ν3σWJWy

W 2J
WW

σ2
. (32)

Note that equation (31) provides a simple mapping between consumption and J
W

. Below, we take

advantage of this relation by performing our numerical analysis on partial derivatives on C rather

than on J . This is done mostly to improve the stability of our numerical procedure. The added

stability can be understood by noting that equation (32) implies that the proportion of wealth

placed into the risky asset must be estimated from numerical estimates of the second derivative of

the value function. Rather, by using equation (31), we can rewrite equation (32) as:

π =
C
W (µ − r) − L

W CLσ (σ − ν3) γ + 1
W γν3σCy

γσ2C
W

(33)

Note that this relation allows us to determine π by using only first derivatives of C.

As is well known, the CRRA utility function possesses a scaling feature which allows us to

eliminate one of the state variables. In particular, for any value of λ, we can write

C(λW,λL, y, t) = λC(W,L, y, t). (34)

Intuitively, this states that if an agent were twice as rich and had twice the labor income, then she

would optimally choose to consume twice as much. If we choose λ = 1
W , then we can write

C(1,
L

W
, y, t) =

1
W

C(W,L, y, t). (35)

Recall that we have previously defined X ≡ L
W and c(X = L

W , y, t) ≡ C(1, L
W , y, t). Thus, we can

interpret c as the consumption scaled by wealth:

c(X =
L

W
, y, t) =

C(W,L, y, t)
W

. (36)
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Using standard rules to change variables, we find the optimal portfolio decision can be written in

terms of c as

π =
c (µ − r) − γσ (σ − ν3)Xcx + γν3σcy

γσ2 (c − Xc
X

)

=
µ − r

γσ2
+

(
µ − r

γσ2
+

ν3

σ
− 1

)
Xc

X

(c − Xc
X

)
+

ν3

σ

cy

(c − Xc
X

)
. (37)

The first term is the well known result from Merton (1969). The other terms capture the effects

of stochastic labor income and cointegration. Note in particular that for the case where there is

no cointegration (i.e., where κ = 0), it is straightforward to see that the y-state variable is not

‘needed,’ i.e., cy = 0 and the last term drops out.14

Further, we note that it might be difficult for an agent to short-sell securities. Thus, we follow

GM, Storesletten et al. (2001), and many others, and we impose the constraint that π lies within

the πmin = 0 and πmax = 1 bounds. In Section 4, we relax this constraint and allow the agent to

take short positions up to 100% of her financial wealth, i.e., πmin = −1 and πmax = 2.

Just as we have used equation (31) to rewrite the first order condition on π, we can also use

this equation to rewrite the Bellman equation. Straightforward but tedious algebra produces the

dynamics

0 = −ct +
(

r − δ

γ

)
c − (−c + r + π(u − r) + X) (c − Xc

X
) (38)

−1
2

(
π2σ2 + β2

) [
−(γ + 1)c−1 (c − Xc

X
)2 + X2c

XX

]
−XcX

[
κθt − κy + µ − σ2

2
+ α(t) − ν2

2

2
+

1
2

(
ν2

1
+ ν2

2
+ (σ − ν3)

2
)]

−1
2
X2

[− (γ + 1) c−1c2
X

+ c
XX

] [
ν2

1
+ ν2

2
+ (σ − ν3)

2
]

−cy (κθt − κy) − 1
2

(
ν2

1
+ ν2

3

) [
− (γ + 1) c−1c2

y
+ cyy

]
−πσ (σ − ν3)X

[− (γ + 1) c−1 (c − Xc
X

) c
X
− Xc

XX

]
+ν3σπ

[− (γ + 1) c−1 (c − Xcx) cy +
(
cy − XcXy

)]
− (

ν2
1
− ν3 (σ − ν3)

)
X

[− (γ + 1) c−1c
X

cy + c
Xy

]
.

14Further, note that for the special case where µ − r = γσ2 and ν3 = 0 we find π(t) = 1. In that case, the agent
invests 100% of her wealth in risky assets irrespective of the correlation between labor income and stock returns,
which is driven by ν1 , ν2 ! This is a very specific case, where absent any labor income investors would want to invest
everything in the stock market (the Merton portfolio is (µ − r)/(γσ2) = 1). With ν3 = 0 we can think of labor
income as giving the agent a random number (determined by ν1 , ν2) of shares of stock—the agent has no incentive
to deviate from his position. Alternatively, we can think in terms of the two effects on the agent’s risky asset holding
decision that play a role when increasing exposure to labor income risk: background risk vs. diversification motive.
They offset each other exactly in this special case.
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The ‘final condition’ is

c(X, y, T ) = ε−1 ∀(X, y). (39)

2.4 Present Value of Labor Income

The first order condition with respect to consumption for the Hamilton-Jacobi-Bellman equation

yields

J
W

= U
C

= e−δt C−γ . (40)

Thus, the time-t present value of the agent’s labor income is

Vt = Et

[∫ T

t

ds e−δ(s−t)

(
C(s)
C(t)

)−γ

Ls

]
. (41)

Below, we estimate the present value to labor income in equation (41) by using the Monte Carlo

method.

Given that Vt is a function of only three state variables, namely y, L, and W , we can write the

stochastic component of dV as

dV
stochastic

= Vydy
stochastic

+ V
L
dL

stochastic
+ V

W
dW

stochastic
(42)

=
(
ν1Vy + ν1LVL

)
dz1 + ν2LVL dz2,i

+
(−ν3Vy + (σ − ν3)LV

L
+ πσWV

W

)
dz3 + βWV

W
dz4,i .

Although there are no traded securities that correlate with the z1 , z2,i , and z4,i sources of risk, we

can, as a thought experiment, introduce three ‘pseudo-securities’ Xj , j = 1, 2, and 4 such that

dXj (t)
Xj (t)

= r dt + σdzQ
j,i

(t) (43)

=
(
r + λj(t)σ

)
dt + σdzj,i(t) , j = 1, 2, 4.

The coefficients λj (t), j = 1, 2, and 4, are the risk premia on these pseudo-securities.15 We note that

if all these claims were traded, then these risk-premia would be pinned down by the observable price

processes. In that case markets would be complete and the portfolio problem would have a simple

solution (e.g., Duffie (2001)). It is well-known that when markets are incomplete, the incomplete

markets portfolio problem can be characterized by a complete markets problem in a fictitiously

completed market where the risk premia of the added securities are such that, at the optimum,

the agent does not want to hold them (He and Pearson (1991), Karatzas, Lehoczky, Shreve and
15For simplicity, we assume these securities pay no dividends and we normalize their diffusion coefficients to be

constant (equal to σ). This insures that the securities span all sources of risk.
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Xu (1991)). The corresponding risk premia, given the optimal value function, are determined by

λj (t)dt = −dXj (t)

X
j
(t) · dJ

W
(t)

J
W

(t) . Using equation (40), we obtain

λj(t)dt = − 1
e−δtC(t)−γ

d
(
e−δtC(t)−γ

)
· dZj (t) . (44)

We then consider a replicating portfolio consisting of an investment θ
S

in the stock S, θ
B

in the

riskfree asset B, and θ
Xj

in Xj , j = 1, 2, and 4:

V Rep = θ
S
S + θ

B
B + θ

X1
X1 + θ

X2
X2 + θ

X4
X4 . (45)

The stochastic component of dV Rep is

dV Rep
stochastic

= θSSσdz3 + θX1
X1σdz1 + θX2

X2σdz2,i + θX4
X4σdz4,i . (46)

Thus, by matching coefficients in (42) and (46) we conclude that the proportion of the agent’s

human capital implicitly tied up in the stock market is

θ
S
S

V
=

−ν3Vy + (σ − ν3)LV
L

+ πσWV
W

σ V
. (47)

Finally, we determine the correlation coefficient between returns to human capital and stock returns,

which we denote by ρ. By combining (2) with (42), we obtain

ρ =
−ν3Vy + (σ − ν3)LV

L
+ πσWV

W

σ
V

, (48)

where σ2
V

= (ν1Vy + ν1LVL)2 + (ν2LVL)2 + (−ν3Vy + (σ − ν3)LVL + πσWVW )2 + (βWVW )2.

In Section 4, we evaluate (41), (47), and (48) for reasonable model coefficients, and illustrate

the effect of ‘trickle down’ labor income risk on the agent’s human capital.

3 Model Calibration

To illustrate the implications of our model, we consider a realistic calibration of its coefficients.

1. Risky Asset and Riskfree Bond:

Consistent with Mehra and Prescott (1985), we fix the real riskfree interest rate at 1% and

we assume a 6% risk premium for the risky asset investment, i.e., r = 1% and µ = 7% in real

terms. As we will show later, lower estimates of the risk premium make our results stronger

in that optimal stock holdings are even lower. Finally, we set σ = 16%.
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2. Aggregate Labor Income Dynamics:

By discretizing (2) and (5), we obtain:

∆s = a0 + ξ1 (49)

∆y = a1 + a2t + a3y + ξ2 , (50)

where ξ1 and ξ2 are normal error terms and, as defined earlier, s = log(S) and y = �1 − s.

As we explained in more detail in Section 2.2, we consider two sample periods: 1929-2001 and

1948-2001. When measuring y, we use return realizations on the CRSP U.S. value-weighted

market index as a proxy for s. For the 1929-2001 sample period, our proxy for �1 is the

logarithm of the ratio of ‘Compensation of employees’ and the number of ‘Full-time and part-

time employees,’ both from the NIPA Tables. For the 1948-2001 sample period, it is the

logarithm of the ratio of ‘Compensation of employees’ and the number of individuals either

seeking or holding a full- or part-time employee position. We convert stock market prices and

labor income from nominal to real terms using the CPI index.

We proceed under the assumption that the y variable is trend-stationary. Thus, we first de-

trend y by estimating the OLS regression y = γ1 + γ2t + εy . Then, we evaluate the residuals

ε̂y and use OLS to fit the linear model

∆ε̂y = a3 ε̂y + ξ2 . (51)

With this approach, we immediately obtain an estimate for the a3 coefficient in (50), while a1

and a2 are determined by a1 = γ2 −a3γ1 and a2 = −a3γ2 . Furthermore, we use the time-series

of the residuals ξ̂1 and ξ̂2 to estimate the variance terms var(ξ1) and var(ξ2), as well as the

covariance cov(ξ1 ,ξ2).

Finally, we map the coefficients of the discretized model (49)-(50) into those of the continuous-

time diffusions (2) and (5). Specifically, the κ coefficient in (5) is given by κ = − log(a3 +1) =

0.2 (κ = 0.13 when we estimate the model using 1948-2001 data). As for the other model

coefficients, after making the appropriate conversions we obtain θ = −0.0518, ν1 = 0.0598,

and ν3 = 0.1721 when using 1929-2001 data (θ = −0.0522, ν1 = 0.0362, and ν3 = 0.1447

when using 1948-2001 data).

We use κ = 0.15 for our baseline case. Interestingly, we document below that even when κ is

as small as 0.05 and the market risk premium is fixed at 4% (a value commonly used in the

literature), the same qualitative solution is found. Further, we fix θ = −0.0518, ν1 = 0.05,
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and ν3 = σ = 0.16. From equations (2) and (9), we see that imposing ν3 = σ yields a zero

contemporaneous correlation between labor income growth and stock market returns. A low

correlation is consistent with the empirical evidence reported in, e.g., CGM, Davis and Willen

(2000), and Fama and Schwert (1977).

3. Permanent Idiosyncratic Labor Income Shocks:

The variance of the �2 term is determined by the ν2 coefficient, which we calibrate to match

the magnitude of the typical permanent income component variance, as measured in previous

contributions that have modeled the labor income process of individual households by using

micro data from the Panel Study of Income Dynamics (PSID). For instance, CGM report

values for the standard deviations of the permanent idiosyncratic shocks that range from 0.1

to 0.13, depending on the household’s education level. CS’s and GP’s estimates range from

0.11 to 0.21, depending on the household’s occupation and education level. Storesletten et al.

(2002) document that the conditional standard deviation of the permanent shocks increases

from 0.12 to 0.21 as the economy moves from peak to trough. In our baseline case, we set

ν2 = 0.15. In the next section, we document the sensitivity of our results to different values

of ν2.

To gather a better sense for the relative magnitude of the ν2 coefficient in our calibration,

it is worth noting that from equation (9) the total variance of the labor income process is

ν2
1

+ (σ − ν3)
2 + ν2

2
, which equals 0.025 in our baseline case. The total variance can be

decomposed into an aggregate and an idiosyncratic component. The aggregate component

is ν2
1

+ (σ − ν3)2 = 0.0025, while the idiosyncratic component is ν2
2

= 0.0225. Thus, in our

baseline case the ratio of aggregate to permanent idiosyncratic variance shocks is very small,

consistent with the evidence in CCGM. In the next section, we document that a larger value

of ν2 , which implies an even smaller ratio of aggregate to permanent idiosyncratic variance

shocks, also yields qualitatively similar risky asset holdings.

4. Deterministic Life-Cycle Labor Income Profile:

We calibrate the coefficients in the drift term α(t) in (7) to reproduce the typical income

pattern due to the predictable growth component described in CS. We consider a twenty year

old college-educated agent, t = 0, who will work till her retirement date at age 65, T = 45.

We assume that her t = 0 annual labor income is $15,000 in 1992 USD and we set α0 = 0.0722

and α1 = −0.0024, which imply the deterministic labor income profile depicted in Figure 1.

Further, we subtract the term α = 0.0142 in (8) to compensate for the expected increase in
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the aggregate labor income component �1, so that the total labor process � = �1 +�2 conforms

well to the typical deterministic labor income pattern estimated by, e.g., CGM using PSID

households data.

5. Transitory Income Shocks:

The transitory income component documented in CGM, CS, GP, and others is built into our

model through the term proportional to dz4,i in the wealth dynamics (22). For our baseline

case, we fix β = 0.02, which implies that most transient fluctuations are within ±2β, i.e.,

±4%, of the current value of wealth. Thus, for an average wealth of, say, $300,000, most

transient shocks will be within ±$12, 000 per year, with a typical yearly shock of ±$6, 000,

consistent with the results of, e.g., CGM.

6. Preferences:

The critical parameter in the CRRA utility function is the risk aversion coefficient γ. Mehra

and Prescott (1985) argue that reasonable values of γ are smaller than 10. As in CCGM,

CGM, and GM, we use γ = 5 for our baseline case. In the next section, we document the

sensitivity of our results to different γ values.

The magnitude of the remaining coefficients in the value function (27) is less controversial.

We follow CCGM, CGM, and GM and we fix δ = 0.04. Cagetti (2003), Dyann, Skinner,

and Zeldes (2004), and Hurd (1989) examine the implications of a bequest motive on lifetime

saving and consumption decisions. In our application, we follow an approach similar to that of

GP and do not explicitly model the agent’s behavior during her retirement years. In this case,

ε determines the number of years of retirement consumption that the investor wants to save

for. Accordingly, we calibrate ε to generate a wealth accumulation profile over the life cycle

that is consistent with the evidence documented in, e.g., Cagetti (2003) for college-educated

households. This approach results in ε = 8.

7. Initial Conditions:

We consider a twenty year old agent endowed with $5,000 of cash-on-hand in 1992 USD, i.e.,

W (0) = 5. As mentioned previously, the agent’s t = 0 annual labor income is $15,000 in

1992 USD, i.e., L(0) = 15. Finally, we fix y(0) at its ‘steady state’ most likely value, i.e.,

y(0) = −θ/κ, and without loss of generality we initialize the logarithm of the stock market

gain process at zero, i.e., s(0) = 0.
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4 Simulation Results

With the exception of a few special cases,16 analytic solutions for the life-cycle portfolio choice

problem are typically not available. We solve our problem numerically, by using standard finite-

difference methods; see, e.g., Ames (1977) and Candler (1999).

Here, we only sketch the numerical solution approach, postponing more details to Appendix

A. We solve the consumption problem (38) backwards, starting from the time T = 45 terminal

condition (39) and going all the way back to the initial date t=0. At each 1/10 of a year, we

save the values of c and π on an X- and y-grid. To obtain representative wealth, consumption,

investment, and X profiles, we simulate 200,000 W , L, y, and X-paths from their dynamics at the

frequency of 1/10 of a year. In the simulations, we fix the controls π and c at the values obtained

by interpolating our π and c solutions on the points of the X- and y-grid. Then, we average the

realizations of the W , C, π, and X-paths. Finally, we derive analytic solutions for Et [ys ] and Et [Ls ],

t ≤ s ≤ T , and use them to determine the representative y and L life-cycle patterns.

4.1 Baseline Case

In Figure 2, Panel A, we report the representative life-cycle wealth, consumption, and labor income

profiles that result from our baseline calibration of the model. As expected, accumulated wealth

increases over the life of the agent, and her consumption grows proportionally. Finally, the repre-

sentative individual labor income profile exhibits the typical pattern identified by, e.g., CGM for a

college-educated household.

Most interestingly, Panel B of Figure 2 depicts the representative stock holdings, π, over the

life-cycle. Contrary to the findings of much of the previous literature, we find that a young agent

should not invest in the risky asset. However, as the agent ages, the optimal proportion of wealth

in risky stocks increases. Intuitively, the inverse of the mean reversion coefficient controlling the

cointegration provides a time-scale for the agent: if the number of years of remaining employment

is larger than this time scale (i.e., if the agent is young), then the return on their human capital

is highly exposed to market returns. Furthermore, most of the young agent’s ‘wealth’ is tied up

in future labor income. As such, she will find herself overexposed to market risk, and it will be

optimal to short the market portfolio, analogous with the infinitely lived representative agent in BJ

who faces no idiosyncratic labor shocks. Since we impose short-sale constraints, the agent chooses

to invest her entire liquid wealth in the riskfree bond. However, if the number of years of remaining
16Among recent studies, see, e.g., Duffie et al. (1997), Liu and Loewenstein (2002), Liu et al. (2003), Schroder and

Skiadas (2003, 2004).
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employment is smaller than this time scale (i.e., if she is middle aged), then the return on her

human capital is not highly exposed to market returns—that is, her future labor income is more

bond-like than stock-like. As such, she finds it optimal to invest more in the risky asset than a

retired individual. Combined, these results generate a hump-shaped optimal portfolio decision over

the life cycle, consistent both qualitatively and quantitatively with empirical evidence.

Finally, in Figure 2, Panels A and B, we depict the representative paths for the state variables

X and y. It is worth noting the downward sloping X-profile. At a young age, an agent has very

limited cash-on-hand relative to her annual labor income (in our calibration, X = 3 at t = 0). As

the agent grows older, her accumulated wealth exceeds her annual labor income and X decreases.

4.2 Human Capital

We use equation (41) to compute the value of a 20-year old agent’s human capital. Following

the same method discussed previously, we simulate 500,000 wealth and consumption paths and we

average across these simulated paths to evaluate (41). For a twenty-year old agent, in the baseline

case this approach results in a present value of labor income, V , of approximately $175,000. Further,

we numerically differentiate V with respect to y, L, and W , and use our estimates of Vy , V
L
, and

V
W

to compute the fraction of the agent’s human capital tied up in the stock market, as illustrated

in (47). We find this fraction to be as large as 54.5%. At first blush, this fraction might not seem

high enough to generate our findings, since the optimal retired agent holds about that much in

stock, so it would seem that the agent’s implicit holdings match her desired holdings, and therefore

with her remaining cash-on-hand she should also invest about half of it in the risky asset. However,

this estimate does not account for her implicit holdings in the three pseudo-securities X1 , X2 , and

X4 that we introduced in Section 2.4. Figure 4 below shows the decomposition of the replicating

portfolio for human capital into its various holdings of stock, pseudo-securities and risk-free money

market. We find that the position in X1 , X2 , and X4 implicit in the agent’s human capital are

14.4%, 94.2%, and 0.4%, respectively. Clearly, human capital is mostly equivalent to a long position

in the stock market S and in permanent idiosyncratic risk which is hedged with X2. The transient

idiosyncratic shocks driven by z4 and hedged with X4 represents only a very small fraction of

the replicating portfolio. Hence, they do not affect much the shadow value of labor income. We

emphasize that the pseudo-securities have risk-premia determined endogenously, so that agents,

given their labor income, do not want to trade in these securities.17 Interestingly, through her
17An alternative interpretation is the following: suppose the agent had no labor income, but instead could invest

in these pseudo-securities (with risk-premia as determined above), then she would want to invest precisely in the
portfolio represented in Figure 4.
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human capital the agent’s implicit holding in the risk-free asset is approximately -63%. That is,

the agent’s present value of labor income is a very leveraged security. On the other hand, for an

agent approaching retirement human capital becomes small. Thus, her position in these pseudo

securities approaches zero, which explains her long position in the stock market.

Related, we measure the correlation of stock returns and the returns to human capital. Using

equation (48), for a twenty-year old agent we find a correlation coefficient ρ ∼= 50%. That is, due

to the idiosyncratic labor income shocks, the correlation is much lower than what is found by BJ

and Campbell (1996) at the aggregate level. Still, it is sufficiently high to have a first-order effect

on the agent’s portfolio choice decisions.

Finally, in Figure 5, Panel A, we illustrate how the agent’s human capital evolves over the life

cycle. For values of time t from 0 to 45, we use (41) to compute the present value of the future

stream of labor income, Vt . We note that the fraction of the agent’s labor income tied up in the

risky asset is roughly constant at 50% throughout the first half of her life, and it rapidly goes

to zero as she approaches retirement. Further, we note that the present value of human capital

has a hump-shaped profile. That is, although young agents face a larger stream of future labor

income, they discount such cash flows higher than older agents do. This occurs for two reasons.

First, as the agent ages, she faces lower idiosyncratic labor income risk. To validate this intuition,

we use equation (44) to compute the risk premium on the permanent idiosyncratic labor income

shocks over the agent’s life cycle. Figure 5, Panel B, shows that λ2 has a downward sloping profile

and confirms that the risk premium on idiosyncratic shocks approaches zero when the agent retires.

This effect is common to other models with idiosyncratic labor income risk, e.g., CCGM, CGM, CS,

GM, and more. Second, in our model human capital has pronounced ‘stock-like’ features, and thus

it commands a higher discount rate, for young agent, while it acquires ‘bond-like’ properties, and

thus it is discounted at a lower rate, for older agents. Due to this second effect, which is determined

by the long-run cointegration of labor income and stock market performance, the value of human

capital peaks at a later point of the agent’s life, compared to standard models considered in previous

studies. This intuition is confirmed by the evidence in Figure 5, Panel C, which shows that the

correlation of stock returns and the returns to human capital remains high and basically constant

over the first half of the agent’s life, and it rapidly drops as the agent approaches retirement.

4.3 Speed of Mean Reversion and Equity Premium

In Figure 6, we explore the robustness of our results to the magnitude of the κ coefficient. Consistent

with the intuition discussed in Section 4.1, we see that larger values of κ increase the agent’s
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exposure to stock market risk and thus reduce her stock holdings. However, even a small value of

κ has first-order effects on the life-cycle π profile.

CCGM, CGM, and GM set the equity premium equal to 4%, a value that can be motivated

based on the observation that stock prices have tended to increase over recent years relative to

corporate earnings. Thus, in Figure 7 we illustrate the life-cycle π profile when r = 2% and µ = 6%.

Interestingly, a lower value of the equity premium makes our results even stronger. Specifically, it

is worth noting that with this model calibration a young agent chooses not to invest in the stock

market even if the κ coefficient is as low as 0.05, as compared to the κ = 0.15 of the baseline case.

4.4 Contemporaneous Correlation of Stock Returns and Aggregate Labor In-
come Shocks

We noted previously that our baseline calibration implies a zero contemporaneous correlation of

stock returns and growth rates in labor income. In Figure 8, we illustrate the effect of non-zero

contemporaneous correlations. We consider two cases, ν3 = 0.18 and 0.14, which imply correlations

of approximately ±13%, respectively. Consistent with previous studies, we note that even such high

values of correlations have limited impact on the agent’s stock holdings, compared to the long-run

cointegration effect.

4.5 Persistent Idiosyncratic Labor Income Shocks

We note that an increase in the idiosyncratic labor income variance (through an increase in ν2)

has two possibly opposite effects on the investor’s desired portfolio holdings. First, it increases

‘background risk,’ which all else equal leads to a decrease in desired risky asset holdings. Second,

it provides a ‘diversification motive,’ which might induce the agent to increase her demand of

the risky asset. The latter effect could potentially counter-balance the effect due to the long-run

cointegration-like behavior of the aggregate labor income with the market portfolio. In Figure 9,

we show that a value of ν2 as high as 0.20 (the upper end of the empirical range documented in

the literature) attenuates but does not eliminate our main result. Interestingly, the picture shows

that investors with an investment horizon of approximately 12 years are in fact indifferent to a

change in ν2. This ‘duration’ like feature may be due to a near perfect offsetting of the two effects

(diversification motive vs. background risk) noted above.

4.6 Transitory Idiosyncratic Labor Income Shocks

It is generally agreed that transient idiosyncratic labor income shocks have negligible implications

for the optimal portfolio choice problem solution. In Figure 10, we confirm this result by considering
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values of β as small as zero, and as large as 0.04 (twice the value used in our baseline case).

4.7 Relative Risk Aversion

In Figure 11, we document the sensitivity of our results to changes in the relative risk aversion

coefficient. We note that even for a young agent with relative risk aversion γ = 4 human capital

has stock-like features. In this case, the stock holdings retain the same hump-shaped profile over

the life-cycle. However, a less risk averse agent (e.g., γ = 3) perceives her human capital to be more

bond-like, in spite of the long-run cointegration effect. Even at a young age she invests heavily in

the risky asset. As she gets older, the present value of her human capital declines relative to the

value of her liquid wealth. Thus, we see her π profile decline as she approaches retirement. We

emphasize that even small differences in relative risk aversion can generate opposite decision as to

whether to participate in the stock market. This result is qualitatively consistent with empirical

evidence, which shows that asset holdings exhibit a high degree of heterogeneity.

4.8 Short-Sale Constraints

The recent development of derivatives markets as well as the proliferation of Exchange Traded

Funds (ETFs) makes it easier for an agent to take short positions in the market portfolio. Thus,

in Figure 12 we illustrate the typical life-cycle investment profile when the short-sale constraint

is relaxed. Consistent with the intuition developed in Sections 4.1 and 4.2, we find that a young

agent chooses to short the market portfolio, to hedge the long position in the stock market implicit

in her human capital.

5 Conclusions

Conventional wisdom maintains that young investors should invest heavily in the stock market.

Most theoretical investigations concur. Furthermore, most models suggest that labor income is

more ‘bond-like’ than ‘stock-like,’ implying even higher optimal proportions of wealth should be

placed into the risky asset if labor income is accounted for. In this paper, however, we claim

that by incorporating two features previously documented in the literature, namely, that aggregate

labor income is cointegrated with aggregate output, and that individual labor income is subject

to significant permanent idiosyncratic shocks, we find the optimal portfolio choice for the young

investor is to take a substantial short position in the risky portfolio. This occurs because our model

implies that the value of the claim to labor income is effectively a highly leveraged security with

large implicit exposure to the market portfolio.
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One obvious extension of our paper is to include housing.18 We note that Quan and Titman

(1997) find that the real estate market is cointegrated with the stock market. This evidence suggests

that if one were to incorporate housing into the portfolio choice and model this cointegration, the

optimal investment in stocks would become even more negative.

Although this paper focuses on the individual’s optimal portfolio and consumption choices

given the risk premium of the market as given, our findings might have important implications

for general equilibrium models that attempt to explain the ‘equity premium puzzle’.19 Indeed, as

pointed out by Basak and Cuoco (1998), by taking as given that a large proportion of investors do

not participate in the stock market, one need only attribute very reasonable levels of risk aversion

to those agents that do invest in stocks in order to explain the historical equity premium. Our

results indicate that it is optimal for a large proportion of agents in the economy to short, or

at least not participate in the equity market. Thus, the exogenous specification of Basak and

Cuoco (1998) might be justifiable in a general equilibrium setting that considers two agent classes

that endogenously choose to participate in the stock market depending on their risk aversion and

long-run exposures to aggregate risk.20

Further, since we find that, in the presence of cointegration, the investment horizon has a

dramatic impact on portfolio holdings, this suggests it would be interesting to understand, within

an equilibrium model, the interaction of various cohorts or overlapping generations of households

whose labor income is cointegrated with long-term market performance.21 Within this setting, it

would be interesting to examine the effect of possible changes to the Social Security system, e.g.,

the possibility of moving to a privatized retirement system in which retirement contributions earn

market-based rates of return (see, e.g., Abel (2001) and CCGM).

Finally, our model suggests that labor income artificially generates a negative net supply of

risk-free securities. This prediction contrasts with the typical approach of assuming that the risk

free security is in zero net supply. We save these interesting questions for future research.

18Several recent studies investigate the implications of real estate holding for asset pricing. See, e.g., Cocco (2000),
Flavin and Yamashita (2002), Hu (2002), Davidoff (2003), and Yao and Zhang (2003).

19Related work includes Mankiw and Zeldes (1991), Polkovnichenko (2004), Vissing-Jørgensen (2002), Guvenen
(2004) and Vissing-Jørgensen and Attanasio (2003). Although not directly related, Bansal and Yaron (2004) inves-
tigate how long run AR(1) processes for earnings flow can explain historical equity premiums.

20More specifically, the fraction of human capital implicitly tied up in the stock market might vary by occupation.
This effect, which is captured by different values of the κ coefficient in our model, has a significant impact on portfolio
holdings. Further, we have demonstrated above that small differences in risk aversion can also yield heterogeneity in
stock market participation in our model.

21For related work, see, e.g., Constantinides, Donaldson, and Mehra (2002), Guvenen (2004), and Storesletten,
Telmer and Yaron (2003).
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Appendix A: Numerical Solution Approach

We solve the optimal portfolio and consumption problem (37), (38), and (39) by using the alternate

direction implicit (ADI) finite-difference method; see, e.g., Ames (1977). We follow Candler (1999)

and treat the non-linear terms in (38) ‘explicitly,’ thus reducing the problem to a sequence of tri-

diagonal systems of linear equations that can be solved easily using standard numerical methods.22

As noted previously, via some transformations we are able to reduce the state space from four

state variables to two, namely, X and y. We evaluate the solution on a discrete state-space grid.

For y, we set the lower bound of the domain at ymin = y0 + θ T − 3σ(y), and the upper bound at

ymax = y0 + 3σ(y), where σ(y) =
√

(ν2
1

+ ν2
3
)/2κ. We then construct the y-grid with a ∆y = 0.05

mesh. For X, we use Xmin = 0 and Xmax = 10, and construct the corresponding X-grid using a

∆X = 0.05 mesh.

We solve the problem backwards, starting from the time T = 45 terminal condition (39) and

going all the way back to the initial date t = 0. We use a time step ∆t = 0.0005, which is further

broken down into time-increments of length ∆t/2 in each of the two steps of the ADI algorithm.

We note that our numerical approach is robust to the choice of the time- and space-grid para-

meters. For instance, we have verified that using a finer ∆X = ∆y = 0.01 mesh, in combination

with different values of Xmax , ymin , and ymax , results in the same numerical solution for c and π.

The boundary conditions are treated as follows. First, we note that at Xmin = 0 labor income is

zero. Thus, the Merton (1969) closed-form solution for optimal consumption holds and provides an

exact boundary condition, which we impose in our finite difference approach. Further, we note that

the second derivative of consumption with respect to the X state variable vanishes as X increases.

Thus, we impose the condition
∂2c(Xmax , y)

∂X2
= 0. (52)

Economic intuition does not offer exact boundary conditions at ymin and ymax . After some

experimentation, we have found that the third derivative of consumption with respect to the y

variable vanishes as y approaches the boundaries of its domain. Thus, we impose the conditions

∂3c(X, y)
∂y3

= 0 , y = ymin and y = ymax . (53)

We check the robustness of the solution to this approach by extending the range of the y-domain,

finding identical results. Further, we note that using a discretization of (38) that relies only on
22We test our numerical approach in the special case of the Merton’s (1969) model, for which a closed-form

solution is known. In that case, the approximation error generated by the numerical solution method for the agent’s
consumption/investment policies is nearly zero.
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internal points at ymin and ymax yields results identical to those obtained by imposing the boundary

condition (53).
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Figure 1: The plot depicts the life-cycle deterministic labor income profile that results from our
calibration of the α(t) term in (7). The agent enters the job market at age 20, earning an annual
income of $15,000 in 1992 USD, and retires at age 65.
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Panel A: Wealth, Consumption, and Labor Income in 1992 USD.
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Figure 2: Life-cycle profiles of wealth, consumption, labor income, and stock holdings for the
baseline case parameters.
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Figure 3: Life-cycle profiles of the model state variables for the baseline case parameters.
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Figure 4: Decomposing the value of human capital into its various components. The graph shows
the proportions invested in various securities (stock market S, pseudo-securities Xj , j = 1, 2, and 4,
and risk-free money market B) that replicates the long position in human capital (i.e., the present
value of future labor income flows).
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Figure 5: The properties of human capital for the baseline case parameters.
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Figure 6: Life-cycle profiles of stock holdings. Sensitivity to the κ coefficient.
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Figure 7: Life-cycle profiles of stock holdings. Sensitivity to the κ coefficient and the risk premium.
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Figure 8: Life-cycle profiles of stock holdings. Sensitivity to the ν3 coefficient.
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Figure 9: Life-cycle profiles of stock holdings. Sensitivity to the ν2 coefficient.
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Figure 10: Life-cycle profiles of stock holdings. Sensitivity to the β coefficient.
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Figure 11: Life-cycle profiles of stock holdings. Sensitivity to the relative risk aversion γ coefficient.
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Figure 12: Life-cycle profiles of stock holdings. Sensitivity to the short sale constraints.
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