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A considerable amount of evidence has been amassed regarding the conditional and
unconditional moments of exchange rate processes, from time series studies and from option prices.
It is undisputed that volatility is time-varying, as evinced in plots of implicit volatitities over time
and in the extensive literature on ARCH and GARCH models. Time series studies also indicate
that the unconditional distribution of log-differenced exchange rates is leptokurtic, and that there
is an inverse relationship between excess kurtosis and the length of the holding period.! Conditional
leptokurtosis has also been found, in time series studies (fat-tailed residuals from ARCH/GARCH
models) and implicit in option prices.’ The evidence regarding unconditional and conditional
skewness is more ambiguous, with time series estimates sensitive to the currency and period used.
Studies of option prices have found evidence of substantial positive implicit skewness in options on

toreign currencies during 1983-85, but less evidence during more recent periods.’

'For instance, Hsieh (1988) estimated unconditional kurtosis of 12.8 for daily changes in the 3/DM
exchange rates, while Meese (1986) estimated kurtosis of 42 for monthly returns.

“The U-shaped pattern in implicit volatilities across different strike prices documented in Shastri and
Wethyavivorn (1987) and Ben Khelifa (1991) is evidence of a conditionally leptokurtic distribution implicit
in forejgn currency options. Model-specific daily estimates of the implicit distribution in Bates (1988a)
found excess kurtosis in options on DM futures over 1984-87.

’Bodurtha and Courtadon (1987} document the tendency of an American option version of the Black-
Scholes model to overprice in- and at-the-money calls and underprice out-of-the-money calls on foreign
currencies during 1983-85, indicating an implicit distribution more positively skewed than the lognormal,
Bates (1988a), using a jump-diffusion model, found substantial positive implicit skewness in options on
Deutschemark futures during 1984-85 but not during 1986 and 1987.




Different time series models have been employed to capture these salient features. Assorted
stationary fat-tailed distributions such as the stable Paretian (Westerfield 1977), Student-t (Rogalski
and Vinso 1978) and jump-diffusions (Akgiray and Booth 1988) have improved on the unconditional
distribution relative to a Gaussian benchmark. Stochastic volatility/ ARCH models have been used
to capture the time-varying variances and some -- though not all -- of the leptokurtosis.* More
recent approaches in the time series literature have tended to combine fat-tailed distributions and
time-varying variances; for instance the Student-t/GARCH model of Baillie and Bollerslev (198%)

and the jump-diffusion/ARCH model of Jorion (1989).

Option theory has developed in parailel with the various time series models of exchange
rates. Stochastic volatility models have been used by Melino and Turnbull (1990) and Chesney and
Scott (1989) to price foreign currency options, while Bates (1988a) and Jorion (1989) have used
Merton’s (1976) jump-diffusion model to capture the conditional leptokurtosis. Given substantial
computing costs in pricing options, a standard approach when testing option pricing models has

been to take time series estimates and to examine their implications for the resulting option prices.*

The objective of this study is to proceed in the opposite direction, and to examine the
evidence from option prices regarding the conditional distribution of log-differenced exchange rates.
Given that foreign currency options involve direct bets on the distribution of exchange rate changes,
option prices offer valuable insights into the perceived conditional distribution that are not

necessarily available from time series studies. For instance, implied velatilities from option prices

‘Bollerslev, Chou, and Kroner (1992) provide an excellent survey of the ARCH/GARCH literature,
including the applications to foreign exchange rates.

*Examples include Chesney and Scott (1989), Jorion (1989), Melino and Turnbull (1990), and Cao
(1992).




could theoretically summarize all relevant information regarding expected future volatilities, whereas
univariate ARCH and GARCH approaches can exploit only the subset of that information
embodied in the past history of asset prices. Equally, option prices should reflect any perceptions
of low-frequency large-amplitude jump risk, whereas time series studies lack the power in the small

samples typically available to reliably pick up any low-frequency jump component.

Extending the Fourier inversion option pricing methodology of Stein and Stein (1991) and
Heston (1993), a tractable and efficient model for pricing American options on combined stochastic
volatility /jump-diffusion processes in the presence of systematic volatility and jump risk is developed
in Section I. The model and various submodels are then fitted to transactions data for

Deutschemark currency options traded on the Philadelphia Stock Exchange, in Section II.

The paper also develops Fourier inversion techniques for evaluating the likelihood of
observed sample paths given specific implicit parameter estimates. Using these, the consistency of
the distributions implicit in option prices with the time series properties of implicit volatilities and
the §/DM futures price is tested in Section II. Given an internally consistent stochastic
volatility /jump-diffusion model, it is possible to examine rigorously some of the option pricing
anomalies discovered by others using an ad hoc Black-Scholes model. For instance: whether the
term structure of implicit volatilities is consistent with the time series properties of implicit
volatilities (Stein 1991), and whether implicit velatilities are unbiased predictors of future volatility.
Joint estimation and likelihood ratio tests are used, in contrast to the two-stage estimation approach
of previous studies. Furthermore, a careful distinction is drawn between the "risk-neutral"
distributions implicit in option prices and the actual distributions relevant for time series analysis.

Section ITI concludes.




I. A proposed stochastic volatility/jump-diffusion model

Al)

A2)

A3)

where

The following assumptions will be maintained throughout this paper:

Markets are frictionless: there are no transactions costs or differential taxes, trading can
take place continuously, there are no restrictions on borrowing or selling short.

The instantaneous risk-free interest rate r and domestic/foreign interest differential
b = r - r* are known and constant.

The exchange rate § (3/DM) follows a geometric jump-diffusion with the instantaneous
conditional variance ¥, following a mean-reverting square root process:

dsts - (p - Ak)dr + JVdZ + kdg
dvV - (e - BV)dt + o, /VdZ, a
CowdZ, dZ)) - pdt

Prob(dg - 1) - Ads, In(1+k) - N( In{1+k) - %32, &%)
4 is the instantaneous rate of appreciation of the foreign currency;

A is the annual frequency of jumps;

k is the random percentage jump conditional on a jump occurring; and

dg is a Poisson counter with intensity X,

The above process for volatility has been used for pricing options under two polar

assumptions about interest rate processes. Bailey and Stulz (1989) and Bossaerts and Hillion (1993)

price stock index and stock options using the Cox, Ingersoll, and Ross (1984) general equilibrium

production economy, which implies instantaneous conditional variances and interest rates are

proportional and foliow the square root process above. On the other hand, Hull and White (1988)

and Heston (1993) price options off the above stochastic volatility process under the more tractable

assumption of constant interest rates. Since Scott (1993) shows that interest rate volatility has little

impact on short-term option prices such as those examined in this study, the latter assumption of

constant domestic and foreign interest rates will be maintained in this study.




The stochastic volatility process behaves fairly similarly to the alternate popular specification

of an Ornstein-Uhlenbeck process in the log of the variance,

din(V) =~ [a' - p'In(V)]dt + ¢ dZ (2)

used by Hull and White (1987) and Scott (1987), and which is the continuous-time limit of Nelson's
(1990) EGARCH model. There are two major differences, however. First, the instantaneous
variance conditional on no jumps under the former specification can hit a reflecting barrier of zero
if 2ex < 02, whereas under (2) it can never reach zero (although it can get arbitrarily close). Second,
the volatility of variance increases at a lower power of variance under (1) than under (2). Whether

these differences are empirically important is an open issue.

The major advantages to the former specification for the variance process are twofold. First,
the model can allow for systematic volatility risk, whereas Hull and White (1987) had to impose the
assumption of nonsystematic volatility risk to generate a tractable option pricing model. The issue
is that if the true process is given by (1), then in a representative agent production economy® the
"risk-neutral” processes used in pricing options that incorporate the appropriate compensation for

jump risk and volatility risk are given by

dsis = (b - A'k)dt + JVdZ* + k"dg*
dv - [a - BV + ®(V)]d + ¢ JVdZ,

3)
CoWdzZ", dz)) - pdr

Prob{dg* = 1) = Adi, k - (&', Var(k"))

‘See Bates (1988b).




where b is the continuously compounded domestic/foreign interest differential, and starred variables
represent the risk-adjusted versions of the true variables, taking into account the pricing of jump

risk and volatility risk. In particular:

d w
¢, - Cov{dV, ]
Al
Ao J.E[l+ J‘“] (4)

- 3 Cov(k, AJ 1J)
E[1 « AJ_}J.1

where J, is the marginal utility of dollar wealth of the world-average representative investor, AJ_/J.
is the random percentage jump conditional on a jump occurring, and dJ 4, is the percentage shock
in the absence of jumps.™® As usual, isoelastic utility is a convenient assumption to make at this
stage, and implies that the volatility risk premium ®, = (V) depends only on V, In{1+k*) is

normally distributed with the same variance & as the actual jumps, and A* and k* are constant.’

A no-arbitrage constraint on the functional form of the volatility risk premium &,(V) is that

"Issues of heterogenous international investors and deviations from purchasing power parity, which
would involve including additional state variables for the distribution of wealth across heterogeneous agents,
are being ignored here. More precisely, such effects are assumed here to affect only the foreign currency
risk premium E(dS/S) - (r - ¥*) = g - b, and therefore to have no effect upon options prices. The
potential general equilibrium effects of the omitted state variables on interest rates and upon volatility are
ruled out by the imposed distributional assumptions. For an illustration of the (limited) general equilibrium
impact of investor heterogeneity upon interest rates, see Dumas (1989).

"The specification of the risk-neutral process depends upon the choice of numeraire. The above
specification (3) is the risk-neutral process for $/FC to be used in generating dollar-denominated prices
of foreign currency aptions. For foreign-currency denominated options prices it is necessary to use the
marginal utility of foreign-currency denominated wealth J,. when computing ®,, A* and k*. An Ito’s lemma-
based transformation of variables of the process (3) using z = S* is not correct.

"Tl_le additional restriction that the process for optimally invested wealth follow a geometric stochastic
volatmry/jump-diffusion process with constant parameters is also required here.
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€,(0) = 0." This restriction precludes modelling the volatility risk premium as proportional to
In(V) when the log of volatility follows an Ornstein-Uhtenbeck process, and necessitated Hull and

White's (1987) assumption of nonsystematic volatility risk (%, = 0} for analytic tractability. In the

case of the square root volatility process, however, the volatility risk premium can plausibly be

modelled as proportional to the conditional variance V,:"

V) - LV, (5}

The result is that the "risk-neutral” process for the instantaneous conditional variance resembles the
true process in form:
dV - (a - BV + EWV)dt + o /VdZ,

(6)
= (a-pV)dt + o Vdz, .

Note, however, that the steady-state level (e/g*) towards which variance tends to revert implicit in

option prices is not the true steady-state level, but rather differs by an amount that depends on the

volatility risk premium.

The second major advantage Lo the square root process for variance is that the process

generates an analytically tractable method of pricing options without sacrificing accuracy or

“See Ingersoll (1987, Chapter 18) for a discussion of a similar issue with regard to the term structure
of interest rates.

“Strict linearity of the volatility risk premium can be supported under log utility when exchange rate
volatility and market risk have a common component of a particular form. The linear specification will not
typically emerge under more general preferences (e.g., time-separable power utility) and should be viewed
for such preferences as an approximation to the true functional form. Cox, Ingersoll, and Ross (1984) use
a similar approximation when modelling the risk premium on interest rates.
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requiring undesirable restrictions (such as p=0) on parameter values.” European options that can
be exercised only at maturity are priced as the expected value of their terminal payoffs under the

"risk-neutral” probability measure:

¢ = ¢’'T E'max(S; - X, 0)
- T s prispas, - X f7p(spds,| M
~ ¢'T(FP - XP,)

where E® is the expectation with respect to the risk-neutral probability measure;
F = E*(S;) = §,¢" is the forward price on foreign currency;
P, = Prob*(§; > X) is cne minus the risk-neutral distribution function; and
P = [T [S:/E*(S7)] p*(Sy) dS; is also a probability (since the integrand is
nonnegative, and the integral over [0,o) is one),
For instance, the Garman-Kohlhagen version of the Black-Scholes formula for foreign currency
options under the assumption of constant-volatility geometric Brownian moticn for the exchange

rate is

¢ = ¢'T[FN() - XN(d,)) (8
where

d, = [In(F/X) + %o’T}/eJT, and d, = d, - &/T?

“Hull and White (1988) give an analytical approximation for pricing European options on the sguare
root stochastic volatility process that is quite accurate for small (and plausible) values of g, A jump-
diffusion extension of this approximation was developed and used as an independent check on the option
pricing formulas given below.

""The foreign-currency options traded on the Philadelphia Stock Exchange trade up through the
Friday preceding the third Wednesday of the contract month -- that Wednesday being the delivery
date for the underlying currency. Given the delay between the last trading day and the delivery day,
the correct Black-Scholes formula for PHLX European calls is
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The Eurapean aption evaluation problem is to evaluate P, and P, under the distributional
assumptions embedded in the risk-neutral probability measure. The difficulty is that the cumulative
distribution function for maost distributions is messy and, in many cases, we do not have any idea
of what it looks like. Even the Black-Scholes model has a distribution related to the error function,
which is nontrivial to evaluate. When it comes to stochastic volatility models, the distribution
function is unknown. The difficulty in evaluating P, and P, is responsible for a bias towards series

solutions far pricing options."

Heston (1993) pointed out that it is much easier to solve for the moment generating
functions associated with P, and P,. Essentially, one can view the moment generating function as
a contingent claim to be solved using the standard contingent claims’ partial differential equation
under relatively easy boundary conditions; details are in Appendix I. (The P’s also solve the
equation -- subject, however, to discontinuous boundary conditions that preclude easy solutions.)
Once one has the moment generating function, there exist fast numerical procedures for evaluating
P, and P,. The resulting moment generating functions of In($;/S, ) for the two probabilities P, and

P, when exchange rates follow a combinaticn stochastic volatility/jump-diffusion process are given

by

PRty

[FNW@,) - XNd,)]

where
Tis the time until the Friday preceding the third Wednesday;
Ar, = 5/365 is the time between the last trading day and the delivery day;
F is the forward price for currency delivered on the third Wednesday:;
d, = [InfF/X) + ¥e'T)foyT, and d, = d, - oJT.

“Examples include Cox and Rubinstein’s (1985) constant elasticity of variance option pric_:ing
model, Merton’s (1976) formula for options on jump-diffusions processes and Hull and White’s
(1988) analytic approximation for options on square root stochastic volatility processes.
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F@IV, Ty = E'*™ 1 p1 (-1,2)

9
- expl C(T; @) » DAT; @)V + AT[(1+F)eM®® % _
where
(T @) - (- 1E)eT - o0 -p,-y)
a
’ . (10)
-eV
- 2L i1+ (o, @-p,-y) L]
2
o, Y,
D(T; @) - -2 h,Q v el
o ® 1+ (11
po,® - B, + Y’l-g‘f’
Y, - \/(Pﬂ.ﬁ' -8 - Zoi(p.j@ + %BB) (12)

no= ¥ = -'ﬁ; B, = 8* - po,, and §, = B*.

Given the above solutions for the moment generating functions, the relevant tail probabilities
Fi(2]5,.T) = Prob*(S;¢*>X |F)) for evaluating PHLX options can be determined numerically

via Fourier inversion of the complex-valued characteristic function F(i®|5.T):

1 1 -
Prob* (S, et s xI1Fy - 1 L
(57 R A I

F (i®)e'**

dv , (13)
id

where x = In(Xe**/5,) and A1, = 5/365 is the lag between the last trading day .and the delivery
day on PHLX options. By the properties of characteristic functions,” the integral is real-valued

and the probability can also be written as

“The real part of F(i®) is an even function of &, the imaginary part is an odd function (Feller
(1971), v.II, p.499).
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- Imag[F,(i®)e'**
Prob'(STCM" >X|Fj) - l . _lf mag[ 1(1 }e ]dd’ (14)
2 x -0 ¢
The probability density function of In(§,/5,) under the risk-neutral probability measure hus a similar
form:
. 1 - . T
P - o [T R o) de

1 (15)
- -f Real[F,(i®)e™'®*] d®
w 40

where z = In{S;/5,).

The integrals in (14} or (15) can be evaluated efficiently via Gaussian quadrature. A Gauss-
Kronrod rule based upon IMSL subroutine DQDNG that evaluated F(i®) at up to 87 points aver
a truncated domain was found to be accurate to 10° times the spot exchange rate (4 orders of
magnitude less than the minimum price change), except for extreme and implausible jump
parameters.’® Since pricing call and put options of a common maturity require the same values
of F{i®} regardless of the strike price/spot price ratio, enormous efficiency gains can be realized

by evaluating such all options simultaneously.”

“Extreme values of k (e.g., 30,000%) made F{i%) highly oscillatory, and reduced accuracy to 10°

x 8, which is still an order of magnitude less than the minimum tick size. Accuracy was measured
by comparing option prices with those evaluated to 107 accuracy using IMSL's adaptive Gaussian
quadrature subroutine DQDAGI for integrating functions over a semi-infinite domain,

“An earlier version of this paper used a Fast Fourier Transform (FFT) approach, which
intrinsically involves trapezoidal integration. However, the relative efficiency of Gaussian
quadrature in requiring fewer function evaluations appears to dominate the computational
advantages with regard to multiplication of the FFT.
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The above procedure gives the price of a European option as a function of state variables

and parameters:

oS, V, T X, 0 - ¢ 7 [Fp - XP) (16)

for © = <A* k*, 5, o, 8*, a., p>. However, since the PHLX options on foreign currency are

American in nature, it is in principle important to take into account the extra value accruing from

the ability to exercise the options prior to maturity. This study uses the constant-volatility analytic

approximation from Bates (1991) for jump-diffusions, modified for the 4 business day lag between

early exercise of a PHLX option and delivery of the underlying currency:

where

%
(S, V,T.X) + m,[ﬂ] for SIX < y;

L4

CS,V, T X) = an

e (s’ - X) for SIX = y;

Al is the delivery lag (4/365 if Monday, 6/365 otherwise);
Ay = e (e - 1) - o VT L)
g, is the positive root to

Vgl + (b- 1K -nV)g - + AT[(1+ )TN _ 1) o g, (18)

1-¢"

V is the expected average variance over the lifetime of the option conditional on no jumps:

1 T a " 1-¢27
= —El'Vd - = - - (19)
rEl T T e

and the critical spot price/exercise price ratio y* = 1 above which the call is exercised

immediately is given implicitly by
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ey -1 - eV, T 1) + ,
2

(¥ Loy, V. T D] . (20)

A similar approximation exists for the put early-exercise premium.

Strictly speaking, the approximation for the early-exercise premium was derived for constant-
volatility jump-diffusions. A comparison with option prices computed via finite-difference methods
revealed a maximal approximation error of around 0.01 ¢/bM for 6-month in-the-money put
options. The approximation error is substantially smaller for shorter-maturity put options and for
puts with different strike prices, and is negligible for call options of all maturities considered (given
U.S. interest rates substantially higher than German rates over most of the data sample). Given
that the data set considered below consists predominantly of short-maturity out-of-the-money
options and contains relatively few in-the-money puts, the approximation error in the early-exercise

premium was not felt to be of major concern.
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I1. Estimation
A. Data

Transactions data for Deutschemark foreign currency options were obtained for January
1984 to June 1991 from the Philadelphia Stock Exchange." Prior to September 26, 1987, only
options maturing in March, June, September or December were traded, with contract specifications
geared to the corresponding IMM foreign currency futures contracts in size (62,500 Deutschemarks,
half the size of the IMM futures contracts) and maturity (third Wednesday of the contract month).
Trading in contracts maturing the nearest other two months began on September 27, 1987. The
options are American, and could be exercised at any time up to and including the Saturday

preceding the third Wednesday of the contract month,

Roughly 1% of the records mildly violated early-exercise constraints, presumably due to
measurement error in matching up the underlying futures price. Since discarding these data would
bias upward average in-the-money option prices, influencing the implicit parameter estimation, these
data were retained. There was also no attempt to weed out thinly traded option contracts, apart
from the fact that those contracts by their nature received a low weighting in the regressions. A

few obviously erroneous data (0.1% of the total data) were discarded.

Only a subset of the full data set was used in this study. First, only trades on Wednesdays
were considered, yielding a weekly frequency panel data set. Daily sampling would place extreme
demands on computer memory and time, and would involve issues of modelling day-of-the-week

volatility effects that I do not wish to explore at this time. Second, only morning trades (9-12 EST)

.“Dala were also available for options on British pounds, Canadian dollars, Japanese yen and
Swiss francs, and will be examined at a later stage. Options on French francs, though also available,
are too thinly traded to merit scrutiny.
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were considered -- a tradeoff between shortening the interval for greater synchronicity, and
lengthening it to get more observations.” Third, only options with March/June/September/
December maturities and with 6 months or less to maturity were used -- for a maximum of wo
option maturities per day. The resulting data set consists of 19,689 transactions (11,952 calls; 7,737
puts) on 372 Wednesday mornings over January 4, 1984 - June 19, 1991; an average of 53 trades
per morning. Not all Wednesdays are included, owing to data collection problems at the

Philadelphia Stock Exchange during February 1985, November 1985, and September 1988.

Other data needed in pricing foreign currency options include the underlying asset price, a
risk-free discount rate, and the domestic/foreign interest rate differential. Transactions prices for
IMM foreign currency futures were obtained from the Chicago Mercantile Exchange, and the
nearest preceding futures price of comparable or shorter maturity was used as the underlying asset
price -- provided the lapsed time was less than 5 minutes. Otherwise, the aption record was
discarded. The futures data were of higher quality than the Telerate time-stamped spot exchange
rate quotes provided by the Philadelphia Stock Exchange, which were occasionally egregiously
wrong.® Daily 3-month Treasury bill yields were used for the risk-free discount rate. The daily
domestic/foreign interest rate differential was inferred from synchronously recorded spot rates and
1- and 3-month forward rates, using covered interest parity and adjusting for weekend and end-of-

month effects on the maturity of the forward contract.

*50% of the daily trades over 1984-1991 took place between 9 and 12. The greatest activity was
between 9 and 10:30, when U.S. and European markets were open simultaneously.

®Another oddity of the Philadelphia Stock Exchange data base is that prior to September 28,
1984, every record appears twice. The duplicate data were discarded.

15




B. Unconstrained Implicit Parameter Estimation
Implicit parameters were initially estimated via nonlinear equal-weighted least squares on the
panel data set of call and put prices for all observed strike prices and (quarterly cycle) maturities

on Wednesday mornings over January 4, 1584 - June 19, 1991:

min  SSEC(V,), ) - ¥ (2] _ o v (X) Lol
11 = s - ] L ] s “9 (21)
(v,),e

where
f is an index over Wednesday mornings within the specified period;
m is an index over at most 2 maturities on a given Wednesday morning;

i is an index over transactions (calls and puts of assorted strike prices) for a given day and
maturity;

(0/5), is the observed call or put option price/spot price ratio for a given transaction, using
an implicit spot from a synchronous futures transaction;

O() is the theoretical American option price given the contractual terms of the option
(call/put, time to maturity T,, strike price/spot price ratio (X/5),, ) and given that day’s

instantaneous variance V,, other parameters © of the model, and that day's interest rate r,
and interest differential b, = r, - r*

For the full stochastic volatility /jump-diffusion model, @ was the set of jump and stochastic volatitity

parameters;

Q= <h* k5 a8 0, 0>

The following subcases of the general model were also estimated:

16




Model Estimated Parameters

1. "Black-Scholes" model (American option version), {V,}
with the same implicit volatility for all maturities
on a given day

2. Deterministic volatility model, allowing daily an {V}, « 8*
downward or upward sloping term structure
of implicit volatilities (depending on whether

V. 2 of8*)
3. Stochastic volatility model {V}, &, 8% 0.0
4. Stochastic volatility/jump-diffusion model {V), o 8% 0, p A*, k* &

Note that the average Wednesday morning realizations of the instantaneous variance {V,} must also
be estimated. Intradaily movements in instantaneous variance were ignored in the estimation

procedure.

Twa points should be made regarding the above regression. First, the usual time series
objection to estimating the set of instantaneous variance realizations {V,} and thereby having an
additional free parameter for each new day does not arise when options are used. In essence, the
daily realization of V, is observable from option prices, whereas it is not under time series

estimation.

Second, the restriction that the process {V)} actually be drawn from its postulated
distribution -- in particular, that volatility follow a diffusion -- has not been imposed at this stage.
Non-zero parameter estimates are being generated cross-sectionally off the observed m.oneyness and
maturity biases of the option prices relative to the benchmark Black-Scholes model, and not off the
time series properties of {V}. The regression is in essence a "method of moments” estimator in

which transformations of the moments -- the option prices -- are observed with almost no noise.
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The separate case in which ¥, estimates are constrained by the postulated diffusion will be examined

below.

Parameters were estimated using GQOPT quadratic hill-climbing software, methods
GRADX and DFP, with multiple starting values. First and second derivatives of the loss function

were computed numerically, coded to eliminate irrelevant computations.

Estimates of implicit
parameters on the full data set took between 8 hours and 3 days on a dedicated Hewlett-Packard

Apollo 720 workstation, depending upon which model was used.

For full sample estimation over 1984-91, allowing for stochastic volatility and for jumps
reduced standard errors only by about 0.006% of the spot rate relative to the ad hoc Black-Scholes
procedure of estimating a different implicit volatility for every day in the sample (see Table 1).
With an average exchange rate around 50 ¢/DM over the sample, this represents a reduction in
standard errors of about 0.003 ¢/DM -- less than ¥ price tick. Over half of this improvement was
attributable to relaxing the daily constraint of a flat term structure of volatilities, and instead
allowing for a monotonically decreasing or increasing term structure (depending on whether V, 2
a/8*) under the deterministic volatility model. Reduction of remaining moneyness and maturity
biases using the stochastic volatility and stochastic volatility/jump-diffusion models reduced standard
- errors by a further 1/10 of a price tick. Allowing for jumps created a statistically but not
economically significant increase in the model's ability to match option prices relative to the

stochastic volatility model.

“In particular, 3SSE/3V, 3*SSE/a(V)?, and 32SSE/(3V, 30,) were computed numerically using
date-t options only, while 32SSE/(3V, aV) = Ofors = t,
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Estimates of implicit parameters for two-year subsamples revealed substantial and
statistically significant subsample instability. Root mean squared error for the stochastic volatility
and stochastic volatility /jump-diffusion models fell 0.06% of the spot price (¥ price tick) relative
to the full-sample parameters, ending up 0.012% (¥: price tick) below the ad hoc "Black-Scholes"
estimates. Three-quarters of the improvement relative to Black-Scholes was again attributable to
a better modelling of the term structure of implicit volatilities. The stochastic volatility model’s
ability to explain residual moneyness and maturity biases was of secondary importance, reducing
standard errors only by a further % price tick. The combined stochastic volatility /jump-diffusion
model had a substantially identical performance in subsamples to the stochastic volatility model.
Allowing for jumps increased explanatory power during the strong-dollar early years of the sample

-- particularly 1984-85.

Full-sample estimation of the general mode! yields a high-frequency low-amplitude jump
component that is observationally equivalent to geometric Brownian motion.® In effect, a
geometric Brownian motionfstochastic volatifity process is being estimated. The instantaneous

variance process consists of a constant plus a mean-reverting component:

Var(d$/5) = + Vv,

Viump

where V,,. = A* { [In(1+k*) - ¥:82]* + 87}, the variance attributable to jumps, was estimated at
(6.6%)° per year. The mean-reverting component V, under the SVID model had generally plausible
parameters: a steady-state level of (13.4%)? per year, a half-life to volatility shocks of 7.5 months.
The estimated mean reversion reflected the tendency of the term structure of implicit volatilities

to be upward sloping for low short-term volatilities, and to be inverted for high values. Parameters

Z[nspection of the moment generating function (9) for small values of § reveals the equivalence
of low-amplitude jumps and geometric Brownian motion, except at intradaily frequencies.

19




for the stochastic volalility model were comparable. The estimated instantaneous conditional
variances were indistinguishable for both models (Figure 1). However, the sample path for
Var(d5/5) estimated under the SVJD model involved a reflection off the minimum value of Vv,

Jops

whereas the path estimated under the SV model never approached the reflecting barrier at V, = 0.

Full-sample parameter estimates from the SVJID model indicate a distribution slightly more
positively skewed than the lognormal distribution underlying the Black-Scholes and deterministic
volatility option pricing models (Figure 2}, at all but extremely short horizons. Implicit skewness
did not appear 1o be stable over time, however, with positive implicit skewness in the first half of
the sample relative to the lognormal distribution, and predominantly negative implicit skewness in
the second half. A substantial volatility of variance implied moderate leptokurtosis at longer
horizons relative to the lognormal distribution. The excess kurtosis is present in all biannual
subsamples. No evidence of substantial excess kurtosis for daily or weekly holding horizons was
found, contrary to the evidence from time series studies cited in Bolierslev, Chou, and Kroner
(1992). Instead, the profile of kurtosis across maturities was almost entirely driven by the stochastic

volatility process, with a direct rather than inverse relationship evident.

Decomposition of the residuals of the stochastic volatility/jump-diffusion mode] estimated
over 1984-1991 in Table III reveals that the model tended to overprice out-of-the-money call and
put options of all maturities and underprice in-the-money put options of ali maturities. At first
glance, it appears surprising that the pricing errors for calls and puts of comparable strike prices
should diverge in sign, given that put-call parity (for the European portion of the option prices)
implies that the pricing errors should be comparable in sign and magnitude. Further scrutiny of the
residuals reveals that the divergent moneyness biases for calls versus puts was attributable to the

parameter instabiliy noted above, combined with the fact that calls were relatively heavily traded
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in the first half of the 1984-91 period while puts were more heavily traded in the second haif.

C. Consistency with the time series properties of implicit volatilities

As noted by Cox, Ingersoll and Ross (1984), the transition density of y = 2¢V,, ,, conditional
on V, is noncentral chi-squared x*(4a/o2 2cV,e™), where ¢! m V02 (1 - ¢*¥)/8 and B is the actual
rate of mean reversion of the volatility process (as distinct from the risk-adjusted parameter g*
implicit in option prices);

e-‘/l(y‘.\) y'}w-l - (VlyA)l (22)
At = T[(Yev +j) jl

p(ylv,) -
where v = 4afol A = 2cV,e®, and ['(*) is the gamma function. However, the non-central chi-
squared density function has infinite vajue at 2¢V,,,, = 0 when the reflecting barrier is attainable
{*:v < 1), yielding nonsensical results when the sample path {V} is among the parameters to be
estimated. Consequently, the applications below use the trapsition density of the monotonic

transformation In(V,,,,), which has finite density everywhere:

grAlet v &) (e:)Vw

i {(Vae'AY 23)

nV, V) -
ARC 24 = T(Av+j) 1

where e’ = 2¢V,, ..

Maximum likelihood estimates of the parameters {a, 8, 0,} estimated from the time series
of implicit instantaneous conditional volatilities {V,} diverge substantially from the parameters {c,
8%, 0.} estimated cross-sectionally from option prices, as is shown in Table IV. In particular, the
volatility of variance g, implicit in option prices is substantially higher than the supposedly identical

parameter estimated off the time series properties of {V,}. The parameters a and § affecting the
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drift are estimated with less precision; nevertheless, there is a significant deviation in estimated a's.

Given measurement error in option prices, however, the above two-step estimation
procedure does not constitute a formal test of the hypothesis of identical {a, ¢,} parameters for
option prices and time series. Under the assumptions that the cross-sectional measurement error
In option prices is homoskedastic Gaussian white noise® and is independent of volatility

realizations, the appropriate loss function for testing hypotheses is

L({v}. 6,8) = L

where
Lois = #“NOBS + %NOBS In{ 2z SSE({V}, ©)] is a function of the sum of squared
errors in option prices from equation (21),

and

Ly = Elnp(in(2cV) | o, B, 0,;V,,) is the log-likelihood of an estimated {V,} sample path
given p() from equation (23).

The joint hypothesis of identical {c, ¢,} parameters for options and time series was tested
using a likelihood ratio test;

Unconstrained parameter estimates: < {{V}, x5 % 6, a, 8* 0., P }eptionsr 1% B 0, hime seri >

Constrained parameter estimates: < {{V}}, A", k%, §, &, 8, §*, o.. P} opions £ time sericn >

PThe assumption that measurement error is homoskedastic regardless of strike price, maturity,
and whether the option is a call or a put is clearly a strong and implausible assumption. However,
the parameter estimates are consistent under the null hypothesis of correct model specification.
Increasing efficiency by adjusting for heteroskedastic measurement error would just increase the
already substantial weight given to options prices relative to time series observations, and is unlikely
to change the conclusions below. Serial correlation in measurement errors is a more relevant
concern ~ and more difficult to resolve given the varying maturity structure of the options data.
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Table V reports the results of unconstrained versus constrained estimation for the stochastic
volatility (SV) and stochastic volatility/jump-diffusion (SVID) models. Constraining the volatility
process brought the volatility of variance parameter ¢, more in line with the time series behavior
of {V,}, and smoothed somewhat the estimated sample path of {V)}. In fact, constrained estimation
actually increased the jointlog-likelihood of the SVID maodel, given that the estimated unconstrained
{V.} sample path was highly implausible. Nevertheless, both the SV and SVID models are internally
inconsistent. ‘The constraint of identical {w, 0,} parameters in the options and resulting {V,} time
series data for the SV model is strongly rejected, based on two criteria:

| 1} the worsening of the joint log-likelihood (110,308 versus 110,369 -- P-value < 107°);
2) the inconsistency of the constrained {V,} implicit parameters {a, ¢,} and the constrained

sample path {V} (log-likelihood 97 versus 158 -- P-value < 10''%).

The latter criterion also yields rejection of the SVID model, at a P-value less than 107 A
comparison of the constrained S8V and SVJID models indicates that the hypathesis of no jumps

cannot be rejected.

The rejections are predominantly attributable to inconsistencies in the volatility of variance
parameter ¢,. The implausibility of the high g, implicit in option prices is particularly evident when
one compares the unconditional gamma distribution of {V,} implicit in the SV parameter estimates
with the sample distribution of {V} (Figure 4). A high volatility of variance implies frequent
reflections off zero and substantial clustering of implicit instantaneous variances near @, contrary
ta what is observed. The SVJD model erroncously predicts an even greater degree of clustering

near zero.

Previous studies have argued that the term structure of implicit volatilities is inconsistent

with the time series properties of implicit volatilities -- in particular, that the term structure is too
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flat given observed mean reversion of implicit volatilities® In this model, the term structure of
implicit expected average variances for 0-3 month versus 3-6 month options depends upon the

parameters o and §*:

VD - LE[TVd - wDY, - [ wDLE L D - 1-77 ¢ o

(24

Since the expected average variance is roughly the implicit variance from the Black-Scholes
model,” the issue is equivalent to the issue of whether the <&, 8*> parameters implicit in option
prices are consistent with the <, 8> parameters derived from the AR(1) time series properties

of implicit variances.

The two sets of parameters do in fact diverge in unconstrained parameter estimation.
However, the parameters can in principle diverge because of a volatility risk premium.
Furthermore, the standard errors suggest that the divergence is predominantly attributable to
diverging «'s rather than to diverging 8's. In fact one cannot reject the no volatility risk premium
hypothesis H,: §* = 8 at standard significance levels for either the SV or the SVID model when
the o’s (and ¢,’s) are constrained to be identical. Consequently, it is the mean variance level a/§*
implicit in option prices (equivalently, the level of long-maturity implicit variances) that is primarily
incompatible with the time series properties of implicit variances, rather than the rate of mean

reversion towards that average level.

¥Stein (1989) makes this argL;ment with regard to implicit volatilities from S&F 100 options,

while Campa and Chang (1993) make a similar point with regard to interbank foreign currency
options.

®In principle, there are Jensen’s inequality biases relevant to the choice of implicit volatilities
versus implicit variances and to the choice of the moneyness of the options used in computing
Implicit volatilities. These biases do not appear empirically important.
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E. Consistency with the time series properties of futures prices

A further test of the stochastic volatility and stochastic volatility/jump-diffusion models is
their consistency or inconsistency with observed realizations of exchange rates and foreign currency
futures prices. To examine this, the actual (as opposed to "risk-neutral”) futures price process was

parameterized as follows:

dFIF = [cg + ¢(r,-r)) + ¢, V, - Ak}dt + JV, a2 + kdq
av = - pV)dr VdzZ

(a pV) + cv\/_ " 25)
Cov(dZ, dZ)) - pdt

Prob(dg - 1) - Adt, In(1+k) - N(In(1+k) - e 82, &%) .

The inclusion of interest differentials in the instantaneous cond-itional mean nests two alternative
hypotheses: that the futures price follows a martingale (c, = ¢, = ¢, = 0) and that the underlying
spot exchange rate follows a martingale (¢, = ¢, = 0, ¢, = -1). The inclusion of the instantaneous
variance allows for instantaneous "GARCH-in-mean"-type interactions between volatility and the
futures price, although higher moments are also affected in discrete time. The resulting probability

density of the log-differenced futures price conditional upon instantaneous variance V, is

F, 1 ¢- _ .
P[ln[F )IV._,] - n f__ exp{C(®, At,) + D@®, AV, (26)

n-1

+ AAL[(L+k)e ™™ &) _ 11 - i®In(F,/F, )} d®

where

C(@; A = ey + ey(rr)) - AE1@A - EBE (o0 - p - y)
o @n

— T
- 221+ (po,@-p-y) 5

a

v




-2{c -'A)D - @2

D(®, Aty ~ T 28)
po,® -p + _—
1-e7 ¥
Y = J(po,® - P) - 203[%®? + (c,-%)D] . (29)
The log-likelihood function is therefore

Fy 30
Ly - Y WInpjn F vl | (30)

a-1

The stochastic volatility parameters {«, ¢, p} and the set of instantaneous variance
realizations {V,} should theoretically be common to both the option prices and the futures price
process. To test for bias in implicit variance forecasts, however, the conditional instantaneous
variance was modelled as a linear transform of the instantaneous variance realization implicit in

option prices:
V, - o v oV a2 0 Gy

where the coefficients cv, and cv, were estimated. The actual (as opposed to risk-neutral) jump
parameters were also estimated, as were the influences of interest differentials and instantaneous
volatility. Since option prices provide no direct information about the true rate of variance mean

reversion, § was initially treated as a free parameter to be estimated.

The futures data were short-maturity (0 to 3 months) noon quotes on Wednesdays for which
there were options data available. The typical time interval was therefore one week, although there
were five occasions in which missing options data resulted in a longer time interval. Weeks in which

the maturity of the short-maturity futures contract jumped were excluded.
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Maximum-likelihood estimates of the parameters are presented in Table VIA. As has been
found elsewhere, estimates of the conditional mean suggest that it is the spot exchange rate rather
than the futures price that follows a martingale, although neither hypothesis can be rejected in this
single-currency regression. No statistically or economically significant jump component was
found. The hypothesis that implicit volatilities provide na useful information in forecasting future
volatilities was strongly rejected for {V*™} sample paths estimated from bath the stochastic
volatility (SV) and stochastic volatility/jump-diffusion (SVID) models. The hypothesis that the
implicit volatility is a linearly unbiased forecast of future volatility (typically over a one-week holding
period) was rejected at the 10% level but not the 5% level for the SV model, and not at all for the

SVID model.

The inability to reject unbiasedness in the variance forecasts was in part attributable to the
existence of a free parameter §. Consequently, the future price process was re-estimated
conditional on the constrained < {V¥}, «, 8, 0., p> stochastic volatility parameter estimates from
Table V -- i.e,, taking into account the time series properties of implicit volatilities. The result
(Table VIB) is borderline rejections of unbiasedness for the SV and SVID models. With an
average implicit instantaneous variance of (.13)? from the 8V model, the average optimal linear
transform of (.12)? indicates that implicit instantaneous variances were typically biased wpwards
relative to subsequent weekly futures price volatility, but not substantially. The bias in variance
forecasts is most pronounced in the early part of the 1984-91 sample, and appears to decline

somewhat over time,

*See Hodrick (1987) and Froot and Thaler (1990) for surveys of the extensive literature on
rejections of uncovered interest parity, which is equivalent to rejection of the hypothesis that the
futures price follows a martingale. The strongest rejections of uncovered interest parity have been
within a multi-currency framework; e.g., Hsieh (1984).
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Section F. Consistency with the joint futures and volatility processes

The above evidence regarding the futures price process was of course based upon two-stage
estimation, taking the implicit variance and stochastic volatility parameters as given, It is, however,
possible to compute the joint transition density p(In F,,,, In V,,, |F,. V) using Fourier inversion

techniques; details are in Appendix I1. Using the associated log-likelihood function

_ (32)
In Lipy(LV ) A Kk 8, & B,o,.8,¢6,¢,c) - E' Inp(mF, WV I|F_, V)

the hypothesis that the distributions implicit in option prices are consistent with the joint futures
and variance series can be examined using the methodology of section IIC. In particular, whether
the implicit correlation p between futures price innovations and variance innovations is consistent

with the time series properties of the two series can be tested.

The parameter estimates in Table VII indicate that futures and implicit volatility innovations
typically have a small negative correlation that is not statistically significant, in contrast to the small
positive correlation implicit in option prices. The hypothesis of consistent processes is again
strongly rejected for the stochastic volatility, given the criteria of unconstrained versus constrained
joint options/time series estimation (log-likelihood of 111,225 versus 111298; P-value < 107%) and
the comparison of the constrained {F, V} implicit time series parameters {a, a,, p} with the
constrained {F, V} sample path (1010 versus 1077: P-value < 10'%). The latter but not the former

criterion also leads to rejection of the stochastic volatility/jump-diffusion model.

Parameter estimates indicate that the conditional futures and implicit variance processes are

approximately independent:
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P F IV I Fa V) = p(F I F, V) p(lnV,, | F, V) (33)

The parameter estimates essentially reflect the variance-constrained estimates of Table IV,
combined with the futures process estimated in Table VIB condirional on those variance-constrained
esumates. Consequently, the inconsistency of the {F, V} parameters implicit in option prices with
the time series properties of the futures and implicit variance processes can again be attributed
primarily to the implicit variance parameters. There is no evidence in support of the existence of

a fat-tailed jump component.

Table VIB also presents stochastic volatility /jump-diffusion parameters estimated under the
additional constraints A\ = A*, k = k*, While in principle the parameters can deviate because of
a jump risk premium, calibrations such as in Bates (1991) suggest that it is implausible that the
parameters should deviate substantially even when jump risk is fully systematic. Again, no evidence

of jumps is found in estimation under these additional constraints.

The absence of a statistically significant jump component in the $/DM futures price and
implicit in the DM option prices over 1984-91 is inconsistent with previous time series studies of
the /DM exchange rate. Akgiray and Booth (1988) and Jorion (1989) both found statistically
significant jump compaonents, while Bollarslev, Chou and Kroner (1992) cite other studies that have
found fat-tailed residuals in the $/DM exchange rate even after adjusting for ARCH/GARCH
effects. However, Table VIII indicates that the distribution of the $/DM exchange rate has changed,
with less excess kurtosis for weekly returns over 1984-91 than was the case over 1974-85.
Consequently, the distributions implicit in DM/$ option prices are in fact qualitatively consistent

with the time series with respect to the lack of abnormalities.




IIL. Conclusions

Overall, the Deutschemark options traded on the Philadelphia Stock Exchange appear
substantially consistent with the time series properties of the underlying exchange rates. Based on
estimation over the full 1984-1991 period, there is no evidence of a leptokurtic jump component
implicit in option prices -- which accords with the absence of such components in weekly futures
price changes over that period. Implicit variances are definitely useful in predicting future volatility

and are not strongly biased on average, although the hypothesis of unbiased forecasts is rejected.

The major discrepancy between DM options and time series data is that the implicit
parameters of the variance process are sharply inconsistent with the time series of implicit
variances. Tbe major divergence is in the volatility of variance. This originates in a residuul
implicit leptokurtosis directly rather than inversely retated to option maturity, and therefore cannot
be explained away by jumps. The mean variance level implicit in option prices has also been too
high relative to the mean of the time series of implicit variances. This latter divergence is primarily

relevant for long-term rather than short-term exchange rate volatility forecasting.

A further concern is that the parameters of the time series process are not stable over time.
In particular, the steady-state variance level implicit in option prices trended downward over 1984-
1991, while implicit skewness changed sign from positive to negative. Of course, the assumption
of stability is driven by econometric necessity rather than a priori reasoning. Nevertheless, the
evidence of parameter instability suggests that option pricing models based solely on more and more
complicated descriptions of the underlying asset price process may ultimately face the same
limitations as their corresponding discrete-time ARCH/GARCH counterparts. The research
agenda of the future may be to identify those omitted "fundamentals” that are showing uﬁ iy

parameter shifts in current option pricing modeis.
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Appendix I: Analytical salutions for moment generating functions

As noted above, the price of a European call can be written as

¢ - ¢ (FP - XP)) (A1)
where

F = E*§;) = 5, ¢ is the forward price on the asset

P,

Prob?(8;> X) is one minus the risk-neutral distribution function

g

[ % [S/E*(SP] p*(S5) dS; is also a probability (since the integrand is
nonnegative, and the integral over [0,00) is one).

The moment generating function Fy(®|s,, V,, T) associated with the log of the terminal asset price

s7 = In(S;) under the risk-neutral probability measure,
Fy(@lsy, Vou I = E"e®7 o 0T Er[f7 %] (A2)
can be viewed as the current price of a contingent claim that pays off ¢ * * at time 7. The price of a

related contingent claim G(s,. V,, T} &) that pays off * must satisfy the standard condition for contingent

claims prices:

E'dG - rGdr. (A3)

Since G = ¢ F, a simple transformation of variables indicates that F; must solve the related condition

£* dF, = 0. For the stochastic volatility/jump-diffusion process considered above, this implies that F, solves

“Fp + (b-XF -%V)F, + (a - BV)F,
v WV(F, +2pa,F, + 0 F,) + AE[F(s+y",.¥)-F] - 0 (AQ)

¥* = In(l + k°) - N(In(1+E") - %32, &%),
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subject to the moment generating function boundary condition

Rl - % . (A5)

A related problem is discussed in Ingersoll (1987, Chapter 18) with regard 1o pricing bonds. Using

a similar methodology, the solution is

FZ(Q: S Vo- ) -

- (A6)
exp{ ®s5, + Cy(T; ®) + Dy(T, @) ¥y + A'T[(L+F)en®*- .17}
C, and D, solve two ordinary differential equations,
D, - %o,D* + (po,® - p)D + w(®:-®), D -0 (A7)
C; - (b-2k)® + aD, Cl_, -0 (AB)
and have the solutions
o T .
C(T, @) = (b-2F)OT - 22 (po,® - B - 1)
UV
" (A%
- 2
- 22 w1 e wGpe,0-p -y, LS
oz, 1
o - P2
Dz(Tl 0) = [
1eeh? (A10)
payo - ‘5‘ * 2
1-¢"7
where
Y, = {(po,® - B + o(® - 07 . (A11)
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Solving for 2, = |3 [5:/E*(5;)] p*(5;) d5; is slightly trickier because it is not the probability function

of the risk-neutral probability measure. However,

G - ¢’TFP - 5e4°07p (Al2)

is the price of a contingent claim that pays off 5; at time T conditional on §,> X, and 0 otherwise.

Consequently, & solves the stundard condition (A3). Since

@G b-nae » B L &, ()2 (A13)
G P s)UP
and £*(d5/8) = &5dr, P, must satisfy
E'[dP - %d}’] - 0. (Al14)

Writing P, = P/(s, V. T) as a function of the log of the asset price and using (A14} yields the integro-

differential equation
“Pr o+ (B-RK + WP, + (a- BV +po V)P,
« WV(P, +2p0,Py+ s Pp) + AE{e"[P(s+y,¥V)-PI} - O (aL5)

¥  =In(l + k) - NCIn(1 + &) - %82, 3%) .

The moment generating function F{&; s5,, ¥, T) underlying P, = Prob**( In(S;) > In{X)) must of
course also solve the same equation subject to the moment generating function boundary condition {AS).

Using the properties of normal distributions, the equation can be written as
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-F; + (b - XK « wV)F, « [x - (B~ po))V]F,
+ WV(F, +2p0, F,,+ 0 F,) + AE{[F(x+y*,¥)-Fl} - 0

17 - N(l(1+k) + %82, 8%),

(A16)

which is of the same form as (A4), with modified parameters. The resulting solution for the moment

generating function is

F(®:5.T) - exp{ &5, + C(T @) «+ DT @)V + MT(1+F)eddd®

where
. e eT .
CT @) - (b-1E)eT - —z(pr.rv¢ - B epo, -¥,)
ov
- nT
- E:—lnl-w~‘./’z(,:;ov@—B'+|:>crv—';l,) 1-e¢ ,
o, Lf!
& - @l
DUT, @) - LA :
1ee"
po,® - P+ pa, + vy ——
1-e"”
and

Y - fho,® - B v po)t - ol(® + 07)
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Appendix II: Joint transition densities

The generalized joint processes estimated in Section ILF are of the form
ds - [B - Ak + (c -¥)V]idr + JVdW + In(l+k)dg (B1)

dv - (a - pV)a&r + o JVdW, (B2)

where 5 is the log of the asset price, CodW, dW,) = p dr and In(1+4) is normally distributed. The joint

moment generating function underlying the transition density p(s;, V; [ 5,, V,) is
e, ¢ T) - E[7 "is, v] . (B3)
which solves the partial differential equation

Fr = [p-ak+(c,-WVIF, + (a - PV)F,

(B4)
+ WV(F, +2po,F,, + 0.F,,) + AE[F(s+In(l+k), V) - F]

subject to the boundary condition
F(®, 4,0 - et (BS)
The solution is

F(2, % T) - exp{ @5, + C(T; ®, %) + DT @, y)V, + AT{(1+k)e ™" _1])

(B6)
where
CT: @, %) - (w-r0eT - (a0 -p-y)
° . (87
- 2 i+ %eo,e-b-v) 1| L 28 np - w@yy)
g ki g

v v
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_ ~2(c, - A)® - @* AD) ¥
D(T: 01 'I’) - ]+¢7’" + 1 - K(@)* ’ (Bs)
po,® - P
" P-e'7

Y - Jpo,@ - BY - 203[%0% + (c,- W)O] , (BY)
2
R
A®) - e -1 (B10)
e T4+ B-po,@® 2
e -1 Y
2
x(®) - . (B11)
T4l
eYT_l * I3 - pu'°

The moment generating functions underlying the marginal transition densities of 5, and V; are of course

given by F(&, 0; T) and F(0, ¢; T), respectively.”

In principle, the joint transition densities can be evaluated via Fourier inversion of the joint moment

generating function:

1 - e 193y - WV,
p(sy, Vs, V) = A [T FGe v Ty e Tdy do . (B12)

However, it is more efficient to integrate out with respect to

~la
foe o [Aviv
e f__ a - xiy) “-XP[I—_E - iV,

d* - - H
x

2 [2":. 4u “Vo} (B13)
Py :
x gt x

For =0, A = €*Tand x = ¥o? (1 - ¢™)/8.
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where

LY.
Pp(y; v, {) = e n0-0 (%]’(’ ' I {(VyT) (B14)

and /,,_ (-} is the complex-valued modified Bessel function of the first kind of real order -1, Expression
{Bl4) is the complex-valued generalization (given complex-valued «(i®) and A(i®) and real-valued v =
da/et} of the non-central chi-squared density, and has the series representation

LA S S 075 7 9 (BIS)

LY v, C) -
Py 2 & T(av+D

where I'( - } is the gamma function.”

The joint transition density p(s;, ¥y | 5,. V,) can therefore be evaluated by univariate numerical

integration:

psp Vpls, V) -

1 - ) 2 V.  4a ZAGID)V,
—_ F(i®, 0; —— pa § —, ——— ————
el LR Sl brers 2 x(i®)

TR (B16)

v

The result is real-valued, given a symmetric real component and anti-symmetric imaginary component. The

Joint transition density p(s,. In ¥ | 5,. ¥,} used in the estimations is related 1o (B17) by

#IMSL’s routine DCBIS can evaluate the complex-valued Bessel function in (B13), but
unfortunately is not accurate for all parameter values. The applications above consequently evaluate
(B15) using two-sided summation, starting at the nth term where n is approximately the positive
root of

n* o+ n(%Av - 1) - ayif - 0 , )

and |z| is the medulus of z.
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PGp mVlsy, V) = VopGs, Vils, V) (B17)

which has finite density everywhere even when the reflecting barrier at ¥ = 0 is attainable (2a<a3).
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Table [

Performance of various models and submnodels

Root mean squared error (as
a percentage of the underlying
Model Parameters spot exchange rate) H,:
Subsample
stability
Parameters Paramelers (F-stat)
estimated on | estimated on
full sample 2-year sub-
(1984-91) samples
*Black-Scholes” {v} 0955% .0955%
Delerministic vola- {V}, a g* .0916% 0B67% Fga = 357**
tility
Stochastic volatility VY. a8 0.5 .0896% .0838% Fipa = 225%*
Stochastic volatility/ | {¥}, a, 8%, 0., 5, .0893% .0832% F,,. = 136**
jump-diffusion A" k*, b
H,: no jumps (F-stat) F,. = 40.1** | F,a = 214**

**Statistically significant at all standard significance levels.

Parameters were estimated using nonlinear least squares on a panel daia set of 19,689 call and put
transactions for different strike prices and maturities on 372 Wednesday mornings over January 4, 1984 -
June 19, 1991. Implicit instantaneous variances {V,} were estimated daily for all models. Other parameters

© were estimated in two fashions:
1} Constant over the full 1984-91 sample

2) Different estimutes 6, 4, ..., Oy [or biannual subsamples.

With an exchange rale of 50 ¢/DM, a reduction in RMSE of .01% represents an improvement in standard
errors of 0.005 ¢/DM, or Y price tick.
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Table III
Average pricing errors of the stochastic volatility/jump diffusion model,
as a function of the option’s moneyness (F/X) and the time to expiration, in weeks,

Pricing error defined as actual - fitted value, in U.S. cents per DM. Minimum price tick is .01 ¢/DM.
Data set consisted of 11,952 call transactions and 7,737 put transactions.

call options Moneyness (F/X ratio)
Maturity <. .94..98 98-1.02 | 1.02-1.06 > 1.06 all strike prices
<4 weeks 0.008 0.017 0.007 -0.016 -0.017 0.004
5-B weeks 0.0t6 0.006 -0.002 -0.007 -0.035 -0.001
9-12 weeks 0.011 0.001 0.001 -0.008 -0.031 -0.001
13-16 weeks -0.006 -0.007 0.003 -0.011 -0.025 -0.007
17-20 weeks -0.003 0.002 0.006 -0.031 -0.038 -0.004
21-24 weeks 0015 -0.009 0.007 -0.011 -0.042 -0.004
>24 weeks -0.008 -0.002 0.015 -0.001 -0.043 0.004
all maturities 0.002 0.002 0.002 -0.013 -0.029 -0.001
pul options
<4 weeks -0.033 -0.013 0018 0.019 0.013 0.016
5-8 weeks 0.010 -0.016 -0.003 0.013 0.022 0.006
9-12 weeks -0.027 -0.005 -0.002 0.012 0.020 0.007
13-16 weeks -0.062 -0.034 -0.001 0.007 0.016 0.002
17-20 weeks -0.063 -0.061 -0.008 0.007 09012 0.603
21-24 weeks -0.074 -0.032 -0.008 0.001 0.002 -0.003
>24 weeks L0112 -0.143 -0.008 0.002 -0.020 0.014
all maturities -0.038 -0.020 0.004 0.012 0.014 0.007
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Table VIII

Summary statistics for log-differenced weekly exchange rates

Period:

Series:

Number of observations

Mean (percent per annum)

Standard deviation (percent, annualized)
Skewness

Kuriosis

HO: no jumps

* Significant at the 1 percent Jevel.

January 1974 -
December 1985

3/DM exchange
rate
(Jorion 1989)

626
T%
10.3%
251
6.29°

rejected @ 1%
level

January 1984 -
June 1991

$/DM futures price

359
38%
12.0%
88"
3.96*

nol rejected




Figure 1

Implicit instantaneous volatilities
Stochastic volatility and stochastic volatility/jump-diffusion models
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Graph shows
1) the instantaneous ioplicit volatilities /¥, from the stochastic valatility (SV) model

2) the instantaneous implicit volatilities [V, + V]" from the stochastic volatlity/jump-diffusion
(SVID)

model

The two implicit instantaneous volatilities are indistinguishable.

The steady-state level:
CT N for the SV model,
(Vi + (/8] for the SVID model.

The expected average volatility, which corresponds closely 1o the Black-Scholes implicit volatility, is
intermediate berween the instantaneous and steady-state levels.




Figure 2

Figure 3

Implicit skewness of S(t+T)/S(t), by maturity
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Figure 4

Unconditional distribution of instantaneous variances
SV model: sample and theoretical histograms
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