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ABSTRACT

If investors are myopic mean-variance optimizers, a stock's expected return is linearly related to its

beta in the cross section. The slope of the relation is the cross-sectional price of risk, which should

equal the expected equity premium. We use this simple observation to forecast the equity-premium

time series with the cross-sectional price of risk. We also introduce novel statistical methods for

testing stock-return predictability based on endogenous variables whose shocks are potentially

correlated with return shocks. Our empirical tests show that the cross-sectional price of risk (1) is

strongly correlated with the market's yield measures and (2) predicts equity-premium realizations

especially in the first half of our 1927-2002 sample.
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1 Introduction

The Capital Asset Pricing Model (CAPM) predicts that risky stocks should have
lower prices and higher expected returns than less risky stocks (Sharpe, 1964, Lintner,
1965, Black, 1972). The CAPM further specifies the beta (the regression coefficient
of a stock’s return on the market portfolio’s return) as the relevant measure of risk.
According to the Sharpe-Lintner CAPM, the expected-return premium per one unit
of beta is the expected equity premium, or the expected return on the value-weight
market portfolio of risky assets less the risk-free rate.

We use this CAPM logic to construct a class of simple variables to forecast the eq-
uity premium. We compute a number of simple cross-sectional association measures
between the stocks’ expected-return proxies (including the book-to-market equity
ratio, earnings yield, etc.) and the stocks’ estimated betas. Low values of the cross-
sectional association measures should on average be followed by low realized equity
premia and high values by high realized equity premia. Should this not be the case,
there would be an incentive for a myopic mean-variance investor to dynamically allo-
cate his/her portfolio between high-beta and low-beta stocks. Since not all investors
can overweight either high-beta or low-beta stocks in equilibrium, prices must ad-
just such that the cross-sectional price of risk and the expected equity premium are
consistent.

Our cross-sectional beta-premium variables are empirically successful, as evident
from the following two results. First, the variables are highly negatively correlated
with the price level of the stock market. Since a high equity premium almost nec-
essarily manifests itself with a low price for the market, negative correlation between
our variables and the S&P 500’s valuation multiples is reassuring. In particular,
our cross-sectional measures have a correlation as high as 0.8 with “the Fed model’s”
ex-ante equity-premium forecast (defined by us as the smoothed earnings yield minus
the long-term Treasury bond yield.)

Second, the cross-sectional beta-premium measures forecast the excess returns on
the CRSP value-weight index. For the 1927:5-2002:12 period, most of our cross-
sectional beta premium variables are statistically significant predictors at a better
than 1% level of significance, with the predictive ability strongest in the pre-1965
subsample. Although predictability is less strong later in the sample, a positive asso-
ciation between future market returns and our cross-sectional beta-premiummeasures
is always covered within the 95% confidence interval in all sample partitionings we
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have tried. As with most prediction exercises, the predictability is more extreme
for the CRSP equal-weight index, which gives a heavier weight to low-capitalization
stocks. These predictive results are also robust to a number of alternative methods
of constructing the measure of cross-sectional price of risk: Any cross-sectional mea-
sure that compares the betas of value stocks to those of growth stocks will provide
predictability results that are consistent to those we report in this paper.

We obtain similar predictive results in an international sample. Because of data
constraints (we only have portfolio-level data for our international sample), we define
our cross-sectional risk premium measure as the difference in the local-market beta
between value and growth portfolios. If the expected equity premium is high (and the
CAPM holds), a sort on valuation measures will sort a disproportionate number of
high-beta stocks into the value portfolio and low-beta stocks into the growth portfolio.
Thus a high beta of a value-minus-growth portfolio should forecast a high equity
premium, holding everything else constant. In a panel of 22 countries, the past
local-market beta of value-minus-growth is a statistically significant predictor of the
future local-market equity premium, consistent with our alternative hypothesis. In
individual country regressions, the sign of the coefficient is as predicted for 17 of the
22 countries we study. Nine of these 22 coefficients are statistically significant at the
10% level. In a pooled regression with a homogenous predictive coefficient across
countries, we always reject the null at better than the 5% level of significance.

In multiple regressions forecasting the equity premium, the cross-sectional beta
premium beats the term yield spread (for all measures), but the horse race between
the market’s smoothed price-earnings ratio and the cross-sectional beta premium is
a draw. This, of course, is not inconsistent with the theory. Campbell and Shiller
(1988a) show that if growth in a cash-flowmeasure is nearly unpredictable, the ratio of
price to the cash-flow measure is mechanically related to the long-run expected stock
return, regardless of the economic forces determining prices and expected returns.
Since our variables are based on an economic theory and cross-sectional measures
that are not mechanically linked to the market’s expected return, the fact that the
two different types of variables track a common predictable component in the equity
premium is not surprising if the logic underlying our variables is correct.

In the second post-1965 subsample, the predictive ability of our cross-sectional
beta-premium measures is less strong than in the first subsample. Furthermore, the
market’s smoothed earnings yield and our cross-sectional beta-premium measures are
much less correlated in the second subsample than in the first subsample, strongly
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diverging in the early 1980’s. If the market’s smoothed earnings yield is indeed a
good predictor of the market’s excess return and the cross-sectional beta premium a
good predictor of the return of high-beta stocks relative to that of low-beta stocks, the
divergence of the two types of equity-premiummeasures implies a trading opportunity.
Consistent with this hypothesis, we document statistically significant forecastability
of returns on a hedged market portfolio, constructed by buying the market portfolio
and “beta hedging” it by selling high-beta and buying low-beta stocks. According
to our point estimates, the annualized Sharpe ratio on this zero-beta zero-investment
portfolio was close to one in early 1982. To summarize, most of the time the cross-
sectional beta-premium measures closely track the market’s smoothed earnings yield
and the expected equity premium. In the rare occasions when our measure diverges
from the market’s smoothed earnings yield, the divergence implies an attractive cross-
sectional investment opportunity.

Of course, neither the theory we rely on (the CAPM) or our empirical tests provide
insight into why the expected equity premium and cross-sectional beta premium vary
over time. Our claim is only that, for the most part of our sample period, the
pricing of risk appears consistent enough between the cross section and time series
to yield a useful variable for forecasting the equity premium. Whether the expected
equity premium is due to time-varying risk aversion (Campbell and Cochrane, 1999),
investor sentiment (Shiller, 1981, 2000), investor confusion about expected real cash-
flow growth (Modigliani and Cohn, 1979, Ritter and Warr, 2002), or some unmodeled
hedging demand beyond our myopic framework (Merton, 1973, Fama, 1998) remains
an unanswered question.

We also tackle a statistical question that is important to financial econometrics.
In many time-series tests of return predictability, the forecasting variable is persistent
and shocks to the forecasting variable are correlated with return shocks. It is well
known that in this case the small-sample p-values obtained from the usual student-t
test can be misleading (Stambaugh, 1999, Hodrick, 1992, and others). Even in the
Gaussian case, complex Monte-Carlo simulations such as those performed by Ang and
Bekaert (2001) have been the main method of reliable inference for such problems.

We describe a method for computing the small-sample p-values for the Gaussian
error distributions in the presence of a persistent and correlated forecasting variable.
Our method is an implementation of Jansson andMoreira’s (2002) idea of conditioning
the critical value of the test on a sufficient statistic of the data. Specifically, we
implement a function with a neural network (essentially a fancy look-up table) that
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maps the sufficient statistics of the data to the critical value for the usual OLS t-
statistic. Our Monte Carlo experiments show that this conditional-critical-value
function produces a correctly sized test (i.e., the error is less than the Monte Carlo
computational accuracy). While calibration of this function is a computationally
intensive task, once the function is calibrated the user only needs to compute some
simple statistics of the data to find the correct critical values for the t-statistic.

The organization of the paper is as follows. In Section 2, we recap the CAPM and
the link between the cross-sectional beta premium and the expected equity premium.
In Section 3, we describe the construction of our cross-sectional beta-premium mea-
sures. Section 4 describes the statistical method. In Section 5, we present and
interpret our empirical results. Section 6 concludes.

2 CAPM can link the time series and cross section

According to the Sharpe-Lintner CAPM, the expected-return premium per one unit
of beta is the expected equity premium, or the expected return on the value-weight
market portfolio of risky assets less the risk-free rate:

Et−1(Ri,t)−Rrf,t−1 = βi,t−1[Et−1(RM,t)−Rrf,t−1] (1)

In the above equation (1), Ri,t is the simple return on asset i during the period t.
Rrf,t−1 is the risk-free rate during the period t known at the end of period t−1. RM,t
is the simple return on the value-weight market portfolio of risky assets. βi,t−1, or
“beta” of stock i, is the conditional regression coefficient of Ri,t on RM,t, known at
time t− 1.
Et−1(RM,t)−Rrf,t−1 is the expected market premium, which we assume to be well

approximated by the equity premium. In our empirical implementation, we use the
CRSP value-weight portfolio of stocks as our proxy for the market porfolio. Roll
(1977) argues that this proxy is too narrow, since it excludes many assets such as
human capital, real estate, and corporate debt. Although Stambaugh (1982) shows
some evidence that the inference about CAPM is insensitive to exclusion of less risky
assets, a cautious reader may choose to interpret our subsequent results within the
arbitrage-pricing-theory framework of Ross (1976).
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Intuitively, a high expected return on stock i (caused by either a high beta of
stock i or a high equity premium) should translate into a low price for the stock.
Consistent with this intuition, Gordon (1962) proposes a stock-valuation model that
can be inverted to yield an ex-ante equity-premium forecast:

Di,t
Pi,t−1

−Rrf +E(gi) = E(Ri)−Rrf (2)

The above equation states that the expected return on the stock equals the dividend
yield (Di,t/Pi,t−1) minus the interest rate plus the expected dividend growth E(gi).
The Gordon model (2) has the limitation that expected returns and expected growth
must be constant.

Campbell and Shiller (1988a) develope a loglinear approximate present-value re-
lation that allows us to make this intuitive link more formal in the presence of time-
varying expected returns and expected growth. Campbell and Shiller approximate
the definition of log return on a dividend-paying asset, ri,t+1 ≡ log(Pi,t+1 +Di,t+1)−
log(Pi,t), around the mean log dividend-price ratio, (d− p), using a first-order Taylor
expansion. Above, P denotes price, D dividend, and lower-case letters log trans-
forms. The resulting approximation is ri,t+1 ≈ k + ρpi,t+1 + (1 − ρ)di,t+1 − pi,t,
where ρ and k are parameters of linearization defined by ρ ≡ 1

±¡
1 + exp(d− p)¢

and k ≡ − log(ρ) − (1 − ρ) log(1/ρ − 1). A typical value for ρ is 0.97. When the
dividend-price ratio is constant, then ρ = P/(P +D), the ratio of the ex-dividend to
the cum-dividend stock price.

Solving forward iteratively, imposing the “no-infinite-bubbles” terminal condition
that limj→∞ ρj(di,t+j − pi,t+j) = 0, taking expectations, and subtracting the current
dividend, one gets

pi,t−1 − di,t−1 ≈ k

1− ρ
+

∞X
j=0

ρj[Et−1∆di,t+j − Et−1ri,t+j] , (3)

where∆d denotes log dividend growth. This equation says that the log price-dividend
ratio is high when dividends are expected to grow rapidly, or when stock returns are
expected to be low. The equation should be thought of as an accounting identity
rather than a behavioral model; it has been obtained merely by approximating an
identity, solving forward subject to a terminal condition, and taking expectations. If
the price-dividend ratio cannot permanently diverge, the investors must then expect
some combination of high dividends and low stock returns if their expectations are

5



to be consistent with the observed (high) price, and there are no exceptions to this
constraint.

Reorganizing equation (3), substituting the Sharpe-Lintner CAPM’s prediction for
expected return, assuming that betas and the risk-free rate are constant, and ignoring
the time and cross-sectional variation due to the difference between expected log and
simple returns yields:

di,t−1 − pi,t−1 ≈ ct−1 + βi

∞X
j=0

ρjEt−1[RM,t+j −Rrf,t+j−1]− Et−1
∞X
j=0

ρj∆di,t+j, (4)

where ct−1 denotes the collection of constant terms that includes, among other things,
the risk-free rate term. In the reasonable cases in which the expected equity premium
is positive, the dividend yield on stock i can be high for three reasons. First, the
stock may have a high beta. Second, the premium per a unit of beta, that is, the
expected equity premium, may be high. Third, and finally, the dividends of the stock
may be expected to grow slowly in the future.

Equation (4) leads to a natural cross-sectional measure of the equity premium.
Simply regressing the cross-section of dividend yields on betas and expected dividend
growth recovers the long-horizon expected equity premium:

di,t−1 − pi,t−1 ≈ λ0,t−1 + λ1,t−1βi + λ2,t−1

"
Et−1

∞X
j=0

ρj∆di,t+j

#
, (5)

If the expected one-period equity premium Et−1[RM,t+j − Rrf,t+j−1] follows a first-
order autoregressive process, then the expected one-period equity premium is linearly
related to the multiple regression coefficient λ1,t−1. The central idea in our paper is
to measure λ1,t−1 for each period using purely cross-sectional data, and then use the
estimate of λ1,t−1 to forecast the next period’s equity premium.

Of course, the regression of valuation multiple on betas need not be based on
dividend yields and dividend growth rates. A similar logic can be applied to the log-
linear book-to-market model by Vuolteenaho (2000, 2002). In the log-linear book-to-
market model, the current log book-to-market ratio is equal to the discounted sum of
future log returns minus the discount sum of future log returns on equity. (Return
on equity, or ROE, is defined as clean-surplus earnings divided by the beginning of
the period book equity). Applying the above steps to the log-linear book-to-market
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model will give an analogous regression equation for recovering the cross-sectional
beta premium:

bi,t−1 − pi,t−1 ≈ λ0,t−1 + λ1,t−1βi + λ2,t−1

"
Et−1

∞X
j=0

ρj(roei,t+j)

#
, (6)

where b is log book value of equity and roe is log(1 +ROE).

It is well known that the CAPM does a poor job describing the cross section
of stock returns. However, that failure does not invalidate our approach. First,
Cohen, Polk, and Vuolteenaho (2002) show that though the CAPMmay do a poor job
describing cross-sectional variation in average returns, that model does a reasonable
job describing the cross-section of stock prices, which is essentially our left-hand side
variable in equations (5) and (6). Second, even if market beta does a poor job of
completely describing the cross section of stock returns because other state variables
are priced (Merton, 1973), investors will still demand a premium to be exposed to
market bets. Our method does not depend on whether that premium only reflects
compensation for endowment risk or also includes additional compensation because
market beta is correlated with sensitivity to hedging demands.2 The approach only
relies on the pricing of beta being consistent between the cross section and time series
and our ability to extract that pricing information.

3 Data and construction of variables

We construct a number of alternative proxies for the cross-sectional risk premium.
The first set of proxies, λSRC , λREG, and λMSCI are based on various ordinal associ-
ation measures between a stock’s or portfolio’s beta and its valuation ratios. These
ordinal measures have the advantage of being robust to outliers in the underlying
data and they also never take extreme values themselves. This robustness comes at
a cost, however, since the ordinal measures have the disadvantage of throwing away
some of the information in the magnitude of the cross-sectional spread in valuation

2In related work, Polk (2003) shows how a general version of the CAPM holds once assets are
orthogonalized to Merton (1973)’s hedging demands. Polk uses this insight to measure the degree
of risk aversion implicit in multifactor models by splitting the market premium into the piece due
to pure aggregate endowment risk and the piece due to the market portfolio’s sensitivity to state
variable hedging demands.
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multiples. The second set of cross-sectional risk-premium proxies, λDP , λDPG, λBM ,
and λBMG, are measured on a ratio scale and thus relate more closely to equations (5)
and (6). To alleviate the outlier problem with firm-level regressions, these ratios are
computed from cross-sections of value-weight portfolios sorted on valuation multiples.
The third type of proxy that we use, λER, is perhaps most directly connected to the
CAPM market premium but perhaps the least robust to errors in data. This proxy
pre-estimates the function that maps the various firm characteristics into expected
returns and then regresses the current fitted values on betas, recovering the market
premium implied by the firm-level return forecasts. In construction of these prox-
ies, we avoid any look-ahead bias and all of these proxies are thus valid forecasting
variables in our equity-premium forecasting regressions.

3.1 λSRC measure of the cross-sectional price of risk

We construct our first measure of the cross-sectional price of risk, λSRC, in three
steps. First, we compute a number of valuation ratios for all stocks. In our empirical
implementation, the main challenges are related to selecting appropriate proxies for
the valuation multiple. Since dividend policy is largely arbitrary at the firm level, it
would be ill-advised to use firm-level dividend yield directly as the only variable on the
left-hand-side of regression (5). Instead, we will use a robust composite measure of
multiple different valuation measures. An additional complication in construction of
the left-hand-side variable is that there are likely structural breaks in the data series,
due to changes in dividend policy, accounting rules, and sample composition. To
avoid these pitfalls, we use an ordinal composite measure of the valuation multiple by
transforming the valuation ratios into a composite rank, with a higher rank denoting
higher expected return.

We calculate four raw firm-level accounting ratios, dividend-to-price ratio (D/P ),
book-to-market equity (BE/ME, the ratio of the book value of common equity to
its market value), earnings/price (E/P ) and cash flow/price (C/P ). The raw cross-
sectional data comes from the merger of three databases. The first of these, the Center
for Research in Securities Prices (CRSP) monthly stock file, provides monthly prices;
shares outstanding; dividends; and returns for NYSE, AMEX, and NASDAQ stocks.
The second database, the COMPUSTAT annual research file, contains the relevant
accounting information for most publicly traded U.S. stocks. The COMPUSTAT
accounting information is supplemented by the third database, Moody’s book equity
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information for industrial firms as collected by Davis, Fama, and French (2000).
Detailed data definitions are the following. We measure D as the total dividends paid
by the firm from June year t−1 to May year t. We define BE as stockholders’ equity,
plus balance sheet deferred taxes (COMPUSTAT data item 74) and investment tax
credit (data item 208) (if available), plus post-retirement benefit liabilities (data item
330) (if available), minus the book value of preferred stock. Depending on availability,
we use redemption (data item 56), liquidation (data item 10), or par value (data item
130) (in that order) for the book value of preferred stock. We calculate stockholders’
equity used in the above formula as follows. We prefer the stockholders’ equity
number reported by Moody’s, or COMPUSTAT (data item 216). If neither one is
available, we measure stockholders’ equity as the book value of common equity (data
item 60), plus the book value of preferred stock. (Note that the preferred stock is
added at this stage, because it is later subtracted in the book equity formula.) If
common equity is not available, we compute stockholders’ equity as the book value of
assets (data item 6) minus total liabilities (data item 181), all from COMPUSTAT.
We calculate E as the three-year moving average of income before extraordinary items
(data item 18). Our measure of C is the three-year moving average of income before
extraordinary items plus depreciation amd amortization (data item 14). In both the
calculation of E and C, we require data to be available for the last three consecutive
years. We match D along with the BE, E, and C for all fiscal year ends in calendar
year t − 1 (1926-2001) with the firm’s market equity at the end of May year t to
compute D/P , BE/ME, E/P , and C/P .

Next, we transform these accouting ratios into a single annual ordinal composite
measure of firm-level valuation. Specifically, each year we independently transform
each ratio into a percentile rank, defined as the rank divided by the number of firms
for which the data are available. After computing these four relative percentile
rankings, we average the available (up to four) accounting-ratio percentile ranks for
each firm. This average is then reranked across firms (to spread the measure for
each cross section over the interval from zero to one), resulting in our expected return
measure, V ALRANKi,t. High values of V ALRANK correspond to low prices and
— according to the logic of Graham and Dodd (1934) and the empirical findings of
Ball (1978), Banz (1981), Basu (1977, 1983), Fama and French (1992), Lakonishok,
Shleifer, and Vishny (1994), Reinganum (1981), and Rozenberg, Reid, and Lanstein
(1985) — also to high expected subsequent returns.

Second, we measure betas for individual stocks. Our monthly measure of risk is
estimated market beta, bβi,t. We estimate the betas using at least one and up to three
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years of monthly returns in an OLS regression on a constant and the contemporaneous
return on the value-weight NYSE-AMEX-NASDAQ portfolio.3 As we sometimes
estimate beta using only twelve returns, we censor each firm’s individual monthly
return to the range (-50%,100%) in order to limit the influence of extreme firm-specific
outliers. In contrast to the value measures, we update our beta estimate monthly.
Our results are insensitive to small variations in the beta-estimation method.

Third, we compute the association between valuation rank and beta, and use
this association measure as our measure of the cross-sectional beta premium. Our
first proxy is the Spearman rank correlation coefficient, λSRCt , at time t between
V ALRANKi,t and bβi,t. The resulting monthly series for the proxies begins in May
1927 and ends in December 2002.

The λSRC proxy has the following advantages mostly due to simplicity and ro-
bustness: First, missing data for some valuation multiples are dealt conveniently by
averaging the ranks on available multiples. Second, the use of ranks eliminates any
hardwired link between the level of the market’s valuation and the magnitude of the
cross-sectional spread in valuation levels. Third, ranks are a transformation of the
underlying multiples that is extremely robust to outliers. The proxy also has the
following disadvantages. First, in computing λSRC we do not control for expected
growth and profitability that may be cross-sectionally related to betas, causing an
omitted-variables bias in the estimates. Second, if the independent variation in
expected firm-level growth and profitability explains a small fraction of the cross-
sectional spread in valuation multiples, the ordinal nature of λSRC may cause us to
throw away some significant information related to expansions and contractions of
the cross-sectional spread in betas and valuation multiples.

3.2 λREG measure of the cross-sectional price of risk

Our second measure, λREG, modifies λSRC to control for growth opportunities. In
order to control for growth opportunities, we need proxies for expected future growth
(5) and profitability (6) to serve as control variables in our empirical implementation.
A textbook treatment of the Gordon growth model shows that two variables, return
on equity and dividend payout ratio, drive a firm’s long-term growth. Thus, we use

3We skip those months in which a firm is missing returns. However, we require all observations
to occur within a four-year window.
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as our primary profitability controls those selected by Fama and French (1999) to
predict firm level profitability, excluding variables that have an obvious mechanical
link to our valuation measures.

Our first profitability control is D/BE, the ratio of dividends in year t to year
t − 1 book equity, for those firms with positive book equity. Fama and French mo-
tivate this variable by the hypothesis that firms target dividends to the permanent
component of earnings (Lintner, 1956, Miller and Modigliani, 1961, and others). We
censor each firm’s D/BE ratio to the range (0,0.15) to limit the influence of near-
zero book equity firms. Following Fama and French (1999), our second profitability
control is a non-dividend-paying dummy, DD, that is 0 for dividend payers and 1
for those firms not paying dividends. Including DD in the regression in addition to
D/BE helps capture any nonlinearity between expected profitability and dividends.
As Fama and French (1999) document substantial mean reversion in profitability, our
third and fourth profitability controls are past long-term profitability and transitory
profitability. We calculate long-term profitability as the three-year average clean-
surplus profitability, ROE ≡ (BEt − BEt−3 +Dt−2 +Dt−1 +Dt)/(3× BEt−3). We
define transitory profitability as ROE − ROE, where ROE is current profitability
and is equal to (BEt − BEt−1 + Dt)/(BEt−1). Our fifth profitability control is a
loss dummy. Firms losing money typically continue to do poorly in the future. We
motivate our final profitability control from the extensive Industrial Organization
literature on product market competition. This proxy is the Herfindahl index of eq-
uity market capitalizations for the top five firms in the two-digit SIC-code industry.
Low concentration within industry should signal intense competition and thus lower
profitability. Since the selection of growth proxies is a judgement call, it is fortu-
nate that our main subsequent results are insensitive to the inclusion or exclusion of
expected-growth measures.

λREGt is the cross-sectional regression coefficient, λREGt of V ALRANKi,t on bβi,t
and growth/profitability controls, estimated with OLS:

V ALRANKi,t = λ0,t + λREGt
bβi,t + 6X

g=1

λgtGROWTHRANK
g
i,t + εi,t (7)

GROWTHRANKg
i,t is the corresponding percentile rank for six firm-level profitabil-

ity controls. Since Cohen, Polk, and Vuolteenaho (2003) show that the majority of
the cross-sectional variation in valuation ratios across firms is due to differences in
expected future profitability, not differences in future expected returns, these controls
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have the potential to improve our measurement of the cross-sectional beta premium
significantly.

3.3 λMSCI measure of the cross-sectional price of risk

We also measure the cross-sectional price of risk for an international sample of 22
countries using an ordinal measure. Since we do not have security-level data for our
international sample, only portfolio returns, we work with value and growth portfolios
constructed by Kenneth French and available on his web site. We take the top-30%
and bottom-30% portfolios sorted on four of Morgan Stanley Capital International’s
value measures: D/P , BE/ME, E/P , and C/P . We then estimate the betas for
these portfolios using a three-year rolling window, and define the predictor variable
λMSCI as the average beta of the four value portfolios minus the average beta of
the four growth portfolios. The subsequent international results are insensitive to
changing the beta-estimation window to four or five years (longer windows actually
improve the results), and to selecting a subset of value measures for constructing
λMSCI .

3.4 λDP and λDPG measures of the cross-sectional price of risk

We also construct cross-sectional risk premium measures that use valuation multiples
on a ratio scale. The first two such measures, λDP and λDPG, are implemented
using five value-weight dividend-yield sorted portfolios. We sort stocks into five
portfolios on the end-of-May dividend yield. Then, for each portfolio we measure
value-weight average dividend yield (computed as aggregate dividends over aggregate
market value) and the value-weight average past estimated beta using the rolling
betas updated each month. We then regress these five portfolio-level dividend yields
in levels on the portfolios’ betas, and denote the regression coefficient by λDP .

λDPG modifies λDP by controlling for past dividend growth. In addition to the
dividend yield, we also compute the value-weight one-year dividend growth for the
portfolios. λDPG is the multiple regression coefficient of the portfolio’s dividend yield
on its beta, controlling for its one-year dividend growth.
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3.5 λBM and λBMG measures of the cross-sectional price of
risk

We construct book-to-market based proxies λBM and λBMG analogously to λDP and
λDPG. We sort stocks into five portfolios based on end-of-May BE/ME. Then,
for each portfolio we measure value-weight average BE/ME (computed as aggregate
book value of equity over aggregate market value) and the value-weight average past
estimated beta using the rolling betas updated each month. We then regress these
five portfolio-level book-to-market ratios in levels on the portfolios’ betas, and denote
the regression coefficient by λBM . λBMG is the multiple regression coefficient of the
portfolio’s BE/ME on its beta, controlling for the portfolios one-year past value-
weight ROE.

3.6 λER measure of the cross-sectional price of risk

In contrast to our other measures of cross-sectional risk premium that relate price
levels to betas, we also measure the cross-sectional price of risk based on how well be-
tas explain estimates of one-period expected returns. We extract this measure using
a two-stage approach. Our first stage is as follows. Each month, using a rolling ten-
year panel of data over the period t−120 to t−1, we regress cross-sectionally demeaned
firm-level returns on lagged cross-sectionally demeaned characteristics: V ALRANK;bβ; the raw valuation multiples D/P , BE/ME, E/P , and C/P ; and the raw prof-
itability controls used in construction of λREG. Note that in this regression we replace
missing values with cross-sectional means and drop E/P and C/P from the specifi-
cation in subperiods in which data for those measures are not available for any firm.
The resulting coefficient estimates in conjunction with the time t observations on the
associated characteristics produce forecasts of firm-level expected returns at time t.
In our second stage, we regress these forecasts on our beta estimates as of time t. We
repeat this process each month, generating our λER series as the coefficients of these
cross-sectional regressions.
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3.7 Other variables

We use two measures of the realized equity premium. The first measure is the ex-
cess return on the value-weight market portfolio (ReM), computed as the difference
between the simple return on the Center for Research in Securities Prices (CRSP)
value-weight stock index (RM) and the simple risk-free rate. The risk-free-rate data
are constructed by CRSP from Treasury bills with approximately three months to ma-
turity. The second measure (Rem) is the excess return on the CRSP equal-weight stock
index. For the international sample, we use an equity-premium series constructed
from MSCI’s stock-market data and interest-rate series from Global Financial Data.

We also construct variables that should logically predict the market return if the
expected equity premium is time varying. Previous research shows that scaled price
variables and term-structure variables forecast market returns. We pick the smoothed
earnings yield and term yield spreads as examples of such variables, and horse race
them against our variables.

The log earnings-price ratio (ep) is from Shiller (2000), constructed as a ten-year
trailing moving average of aggregate earnings of companies in the S&P 500 index
divided by the price of the S&P 500 index. Following Graham and Dodd (1934),
Campbell and Shiller (1988b, 1998) advocate averaging earnings over several years
to avoid temporary spikes in the price-earnings ratio caused by cyclical declines in
earnings. We follow Campbell and Vuolteenaho’s (2003) method of constructing
the earnings series to avoid any forward-looking interpolation of earnings. This
ensures that all components of the time t earnings-price ratio are contemporaneously
observable by time t. The ratio is log transformed.

The term yield spread (TY ) is provided by Global Financial Data and is computed
as the yield difference between ten-year constant-maturity taxable bonds and short-
term taxable notes, in percentage points. The motivation of the term yield spread
as a forecasting variable, suggested by Keim and Stambaugh (1986) and Campbell
(1987), is the following: TY predicts excess returns on long-term bonds. As stocks
are also long-term assets, it should also forecast excess stock returns, if the expected
returns of long-term assets move together.

In our informal illustrations, we also use the dividend-price ratio, computed as the
ratio of trailing twelve-month dividends and the price for the S&P 500 index. We also
use simple (not log) smoothed earnings yield, which is defined simply as exp(ep). In
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the Gordon (1962) model computations, any interest rate adjustments are performed
using the same ten-year constant-maturity taxable bond yield (Y 10) as is used in the
computation of the term yield spread.

4 Conditional tests for predictive regressions

This section describes the statistical methodology for computing the correct small-
sample critical values of the usual t-statistic in those situations where the forecasting
variable is persistent and shocks to the forecasting variable are potentially correlated
with shocks to the variable being forecast.

Consider the one-period prediction model

yt = µ1 + θxt−1 + ut (8)

xt = µ2 + ρxt−1 + vt

with Eut = E vt = 0, Eu2t = σ2u, E v
2
t = σ2v and Corr (ut, vt) = γ. In a practical

example introduced by Stambaugh (1999), y is the excess stock return on a stock
market index and x is the index dividend yield. Since dividends are smooth and
returns cumulate to price, we have strong a priori reasons to expect the correlation γ
to be negative.

We wish to test the null hypothesis θ = 0, indicating that x does not predict
y, or in Stambaugh’s (1999) example that the dividend yield does not predict stock
returns. The usual t-statistic for this hypothesis is

bt = bσ−1u qX (xt−1 − x)2bθ, (9)

where bθ is the least squares estimate of θ and bσ2u is an estimator of σ2u. Classical
asymptotic theory states that in a large sample the t-statistic is approximately distrib-
uted standard normal. It is well known, however, that this is a poor approximation to
the true sampling distribution of bt. For example, Stambaugh (1999) shows that when
x is the dividend yield and y is the market excess return, the null distribution of bt is
centered at a positive number, leading to over-rejection of a true null hypothesis.

In order to get the size of the test right, we want a critical value q equal to the
95% quantile of the null distribution of bt. When the errors are normal, the exact null
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distribution of bt depends on the parameter ρ. Thus there exists a function k(ρ) so
that under the null, Pr[bt > k(ρ)] = .05. One can calculate k(ρ) by the bootstrap or
using methods described by Imhof (1961). We cannot directly use k(ρ) as a critical
value because we do not know ρ, and evaluating k(ρ) at the least squares estimate bρ
leads to size distortions.

Recently Michael Jansson and Marcelo Moreira have proposed a solution to this
problem (Jansson and Moreira, 2002). Suppose that the covariance parameters σ2u,
σ2v and γ are known. Under the null that θ = 0, the statistics

S =

½P
(xt−1 − x) (xt − σvγyt/σu)P

(xt−1 − x)2
,
X

(xt−1 − x)2 , x, y, x1, y1
¾

(10)

are sufficient statistics for the parameter ρ, where x = (T − 1)−1PT
t=2 xt−1 and y =

(T − 1)−1PT
t=2 yt. Recall the definition of a sufficient statistic: a statistic S is

sufficient for a parameter ρ if the conditional distribution of the data given S is
independent of ρ. While the unconditional distribution of bt depends on the unknown
ρ, the conditional distribution does not. So set the critical value to a quantile of
the conditional distribution. Let q(s,α) denote the α-quantile of the conditional null
distribution of bt given S = s:

Pr[bt > q(s,α) | S = s, θ = 0] = α. (11)

When the covariance parameters are known, a test which rejects the null when bt >
q(S,α) will have the correct null rejection probability in any sample size and for any
value of ρ.

Jansson and Moreira (2002) do not provide a closed form expression for the con-
ditional distribution of t given the sufficient statistics. Our contribution is to devise
a computationally feasible implementation of their procedure. We approximate the
critical function qα with qnnα , a neural network:

qα(S,α) ≈ qnnα (X,
bψ, bφ), (12)

qnnα (X,ψ,φ) ≡ ψ0 +
5X
j=1

ψjg
¡
φ0jX

¢
,
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with φj = (φj1, φj2, φj3, φj4)
0 and

X =

µ
1, T

µP
(xt−1 − x) (xt − bσvbγyt/bσu)P

(xt−1 − x)2
− 1
¶
, log

³
T−2

X
(xt−1 − x)2 /bσ2v´ , bγ¶0 .

(13)
The hatted variables are the usual least-squares estimators of the covariance parame-
ters. g is called the activation function. We use the tanh activation function

g(x) = tanh(x) =
ex − e−x
ex + e−x

. (14)

ψ and φ are parameters of the neural net. As White (1992) has shown, this network
is a universal approximator: given enough activation functions, qnnα can approximate
any nonlinear function to an arbitrary degree of accuracy.

We choose ψ and φ to closely approximate the critical function qα. Fitting the net
is a computationally demanding task. We describe the algorithm used to fit the net
in the Appendix. Once the net has been estimated, it is very easy to apply, since the
approximate critical values are known in closed form. As an example, we provide one
these functions in Appendix. Matlab code for calculating the others will be made
available from the authors upon request.4

The vector X differs from the sufficient statistics in several ways. X transforms
some of the sufficient statistics, and omits the statistics x, y, x1 and y1. X uses
parameter estimates bσv, bγ and bσu in place of the known covariance parameters. The
X vector was chosen for computational convenience. The algorithm that fits the net
searches over all relevant parameter values. The test statistic bt and each element of
X is exactly invariant to σ2u and σ2v, so the fitting algorithm does not need to search
over all possible variances. Furthermore, the omitted statistics x, y, x1 and y1 are
not particularly informative about the nuisance parameter ρ. We will see that size
distortions caused by omitting the statistics are within the simulation error of our
Monte Carlo study.

The Jansson-Moreira theory delivers an exact test when the covariance parameters
are known. In practice one must use parameter estimates. We designed the neural
net training algorithm to correct for estimation error in the covariance parameters.
This is not a completely clean application of the statistical theory. It may be the case

4Contact Samuel Thompson at sthompson@harvard.edu.
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that no exact test exists in this model. However, we will see that any size distortions
caused by unknown covariance parameters are quite small and within the simulation
error of our Monte Carlo study. Furthermore, estimation error for the covariance
parameters is asymptotically negligible, whether the xt process is stationary or not.
While classical asymptotic theory requires stationarity, the conditional testing theory
is not sensitive to “unit root” problems. See the argument by Jansson and Moreira
(2002) for details.

A Monte Carlo experiment demonstrates the accuracy of our approximation. Fig-
ure 1 reports empirical rejection frequencies over a range of values for ρ and Corr(u, v).
For each (ρ,Corr(u, v)) pair, we simulate 50000 samples of 120 observations each, and
perform a t-test of the null θ = 0 against the alternative θ > 0. Nominal test size is
5%. The plot on the left reports results for the classical critical value of 1.65, and the
plot on the right uses the conditional critical function qnnα .

When ρ is close to 1, the classical critical value underrejects for positive Corr(u, v)
and overrejects for negative Corr(u, v). When ρ = 1 and the correlation is −.9 the
usual critical value rejects a true null about 38% of the time. Our conditional
critical function leads to accurate rejection frequencies over the entire range of ρ and
Corr(ut, vt) values, with rejection rates ranging from 4.70% to 5.18%. X and the
t-statistic are exactly invariant to σ2u and σ2v, so these results hold for any variance
parameters.

The conditional critical values are also superior to critical values generated by the
parametric bootstrap. When x is the dividend yield, Stambaugh estimated Corr(u, v)
to be −.90 and ρ to be .972. We “bootstrap the bootstrap” at similar parameter
values: we simulated 10000 samples of 120 observations each, setting Corr(u, v) =
−.90 and varying ρ over the range .95, .975, and 1.00. For each simulated sample
we bootstraped 5000 new data sets from the model with normal errors, setting θ = 0
and the other parameters to their least squares estimates. We set the bootstrapped
critical value equal to the 95th percentile of bootstrapped t-statistics. The rejection
frequencies were 7.93, 9.97 and 15.55% for ρ equal to .95, .975 and 1.00. Rejection
frequencies from using the conditional quantile function were essentially equal to 5%;
the differences were within the Monte Carlo error.

Although the above experiments show that size of the test is correct, we make no
guarantees about its power. It is possible that tests designed by Lewellen (2002) and
Campbell and Yogo (2002) may have more power under some circumstances.
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Figure 1: Size of the test in a Monte Carlo experiment.

Consider the data-generating process
yt = µ1 + θxt−1 + ut
xt = µ2 + ρxt−1 + vt.
We are interested in testing the hypothesis θ = 0 against θ > 0. On the left we
see empirical rejection frequencies from using the usual critical value of 1.65 for a
one-tailed t test. On the right we see results from the conditional critical function
qnnα . The conditional critical function leads to rejection frequencies very close to
the nominal 5%. The grid values range over Corr(u, v) ∈ {−.9, −.8, ..., .8, .9} and
ρ ∈ {0, .025, ..., .975, 1}. For each grid point there are 50000 Monte Carlo trials of
T = 120 observations.
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4.1 Constructing confidence intervals

Confidence intervals consist of all the nulls we fail to reject. We construct confidence
intervals for θ by inverting a sequence of hypothesis tests. LetΦ = (µ1, µ2, θ, ρ,σ

2
u,σ

2
v, γ)

0

denote the parameters of the model. A 100α% confidence set C for θ has the property
that it contains the true parameter value with probability at least α:

inf
Φ
Pr [θ ∈ C;Φ] ≥ α for all Φ. (15)

C is a random interval, since it is a function of the data, and Pr [θ ∈ C;Φ] denotes
the probability that θ is in C given the parameters Φ. Suppose that, for each point
θ in the parameter space, we carry out the conditional t test of size 1 − α for the
hypothesis θ = θ. We define C as the set of all θ that we fail to reject. C is a valid
interval because it contains the true θ with probability equal to α:

Pr
£
θ ∈ C;Φ¤ ≡ Pr £fail to reject null θ = θ when null is true;Φ

¤
= 1− α for all Φ.

(16)

Thus we have an algorithm for constructing confidence intervals. We 1) construct
a grid of J null hypotheses θ1 < θ2 < · · · < θJ , 2) test each null θ = θj versus the
two-sided alternative θ 6= θj and 3) take the confidence interval to be all the θj’s that
are not rejected.5

The conditional tests we have described so far are designed to test the null that θ
is zero. To test the general null θ = θj, transform the model so that the null is again
zero. Create the variable eyt = yt − θjxt−1, so the first equation becomes

eyt = µ1 + eθxt−1 + ut, (17)

with eθ = θ − θj. Then compute a conditional test of the null eθ = 0.
5Throughout the paper a size 1 − α test rejects the null θ = θj in favor of θ 6= θj when bt >

q (S, (1 + α)/2) or bt < q(S, (1− α)/2).
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4.2 Inference in multivariate regressions

This section extends the Janssen-Moreira methodology to a simple vector autoregres-
sion. Consider the bivariate regression

yt = µ1 + θ0xt−1 + ut (18)

xt = µ2 +Kxt−1 + Vt,

where xt, µ2 and θ are 2-dimensional column vectors, K is a 2×2 matrix, and Vt is a
2-dimensional vector of mean zero errors. For example we could take the elements of
xt to be the index dividend yield and price earnings ratio, in which case the coefficient
vector θ determines the predictive content of each variable controlling for the other.
We wish to test the null hypothesis that the first element of θ is zero. The usual
approach is to run a multivariate regression and reject the null for large values of the
t-statistic bt = bθ1√

V11
. (19)

bθ1 is the ordinary least squares estimate of θ1, the first element of θ, and V11 is an
estimate of the variance of bθ1 - it is the (1, 1) element of V = bσ2u ¡Pxt−1x0t−1

¢−1
.

Classical asymptotic theory approximates the null distribution of bt with a standard
normal variable. It is well known that this is a poor approximation when the elements
of xt are highly serially correlated. In many cases of interest, classical theory leads
to over rejection of a true null hypothesis.

In principle it is easy to extend the Janssen-Moreira methodology to this model.
Suppose that the errors (ut, V 0t )

0 are iid mean zero normal variables with known
covariance matrix Σ = E

£
(ut, V 0t )

0 (ut, V 0t )
¤
. The null distribution of bt depends on

the unknown matrix K. However the conditional null distribution of bt given sufficient
statistics for K does not depend on unknown parameters. To construct the sufficient
statistics, define the transformed variables (eyt, ex0t)0 = Σ−1/2 (yt, x0t)

0, where Σ1/2 is
the lower diagonal choleski decomposition of Σ and satisfies Σ1/2

¡
Σ1/2

¢0
= Σ. The

sufficient statistics for K are

S =
n eK, X (xt−1 − x) (xt−1 − x)0 , x, y, x1, y1

o
, (20)

where x = (T − 1)−1PT
t=2 xt−1, y = (T − 1)−1

PT
t=2 yt, and eK is the 2× 2 matrix of

least squares estimates from regressing ext on xt−1 and a constant, and premultiplying
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the result by Σ1/2. The t-test will have correct size for any sample size if we reject
the null when bt is bigger than the 1− α quantile of the conditional null distribution
of bt given S.
Computing the quantiles of the conditional null distribution for a multivariate sys-

tem is a daunting computational problem. In the univariate model (8) with just one
regressor, the t-statistic has a null distribution that depends on the two parameters ρ
and γ. Our neural net approximation qnnα “learns” the conditional quantile function
by searching over a grid of ρ and γ values. In the two dimensional case, it is compu-
tationally feasible to search over all grid points that are close to empirically relevant
cases. In the multivariate setting the null distribution depends on the four elements
of K as well as the correlation terms in Σ. It does not appear to be computationally
feasible for our neural net to learn all possible cases of this high dimensional parame-
ter space. We experimented with different algorithms for fitting the neural net but
were unable to achieve the accuracy attained for the univariate model.

In order to carry out conditional inference in the multivariate setting, we propose
a modified version of the usual parametric bootstrap. If we could simulate from
the conditional distribution of bt given S, we could use the empirical quantile of the
simulated bt draws as the critical value. While we cannot directly simulate from the
distribution of bt given S, it is straightforward to simulate from their joint distribution
- for fixed parameter values simulate data sets from the model and compute bt and S.
We simulate from the conditional null of bt given S using a nearest neighbor estimator:
we simulate B draws of bt and S, and construct a sample of N conditional draws by
choosing the bt statistics corresponding to the N draws of S that are closest to the
sufficient statistics observed in the data. We call this procedure the “conditional
bootstrap.” Details are given in the appendix.

A small Monte Carlo experiment suggests that the conditional bootstrap leads
to smaller size distortions than the usual parametric bootstrap. We simulated 5000
samples of 120 observations each, setting θ1 = 0 and the rest of the model parameters
equal to the unrestricted least squares estimates when y is ReM , the value-weighted
CRSP excess return, and xt contains the two predictors λSRCt and ept. For each
simulated sample we tested the null θ1 = 0 against the one-sided alternative θ1 >
0. We computed critical values using the parametric bootstrap and the conditional
bootstrap. For the parametric bootstrap we simulated 20000 new data sets from
the model with normal errors, setting θ1 = 0 and the other parameters to their
unrestricted least squares estimates. The conditional bootstrap was computed taking

22



B = 20000 and N = 1000.

The above experiment yields the following results. When θ1 is the coefficient on
λSRCt , the parametric bootstrap rejected the null 5.48% of the time and the conditional
bootstrap rejected 3.84% of the time. When θ1 is the coefficient on ept the rejection
frequencies were 11.46% and 4.78%. We then simulated from the model with K = I,
to see how the bootstraps perform when the predictors follow unit roots. When θ1 is
the coefficient on λSRCt , the parametric bootstrap rejected 6.36% of the time and the
conditional bootstrap rejected 3.32% of the time. When θ1 is the coefficient on ept
the rejection frequencies were 15.64% and 7.80%.

4.3 Generated regressors in predictive regressions

It is well known that the usual OLS coefficient estimate will be biased and the usual
OLS standard errors will be incorrect, if the regressor is generated with another
regression from the same sample of data. To alleviate potential confusion about the
genereated-regressors problem, in this section we explain why our hypothesis tests
seeking to reject the null of no predictability are valid, as long as our generated
regressor only uses past information in its construction.

Put aside for a moment the problem of bias, and focus instead on the standard
error of bθ. Let It denote the set of all data available at time t and at all preceeding
times. Assume that xt is a function only of data in It. For example, if xt depends
on an estimated vector bβ, then the estimates bβ must be constructed only from data
available up to time t. To clarify this point we write xt = xt(bβt). Therefore, xt−1
is a function only of information available at time t − 1, and the usual assumption
E(ut|It−1) = 0 implies that E (ut|xt−1) = 0. This is the only necessary assumption for
OLS to deliver the asymptotically correct standard errors for bθ. Under stationarity
and conditional homoskedasticity, so Et−1 u2t = σ2, the variance of the OLS estimate
is

T Var
hbθi = T Var ·P(xt−1 − x)utP

(xt−1 − x)2
¸
≈ T−1

P
u2t

T−1
P
(xt−1 − x)2 , (21)

which is consistently estimated by the usual OLS formula per the standard GMM
asymptotics.

Why does the predictive problem differ from other problems with generated regres-
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sors? Outside of predictive regressions, generated regressors are usually correlated
with the regression errors, so E (ut|xt−1) 6= 0. For example, if bβ is calculated from
data available from time t = 1 to T , then bβ will usually be correlated with all the
errors u1, ..., uT and therefore xt−1(bβ) will be correlated with ut. This correlation be-
comes small as the sample size grows, so the estimator remains consistent. However,
this correlation usually affects the standard error, even asymptotically.

Let us return to the problem of bias caused by generated regressors in the predic-
tive equation of (8) with Et−1 ut = 0. xt−1 is a generated regressor, but is generated
only from data available up to time t− 1, thus E(ut|xt−1) = 0. OLS delivers a con-
sistent estimate of θ, the coefficient of the best linear predictor of the market return
yt with the (generated) predictive regressor xt−1. Of course, in many cases xt−1 is a
proxy variable for E∗t−1yt, which is market participants’ expected market return next
period given information available today. Ideally, we would like to run the regression

yt = µ
∗
1 + θ∗

¡
E∗t−1yt

¢
+ u∗t . (22)

There is no reason to expect the OLS estimate bθ to converge to θ∗ even in large
samples. Hence, while bθ is a biased estimate of the coefficient on the true, unknown
market expectation, it is a consistent estimator of the coefficient on the proxy variable
xt−1.

Finally, note that our test of the null hypothesis of constant expected returns
remains valid even if our forecasting variable is a generated regressor as long as the
forecasting variable is generated from past information only. (Naturally, regressing
future equity-premium realizations on xt−1 may lead to a less accurate forecast and
thus to a lower power than regressing them on E∗t−1yt, if we wish to test the null
hypothesis that the future returns are unpredictable.)

5 Empirical results

Our empirical results can be summarized with two findings. First, the cross-sectional
price of risk is highly negatively correlated with the market price level and highly
positively correlated with popular ex-ante equity-premium measures derived from
the Gordon (1962) growth model, such as the smoothed earnings yield minus the
long-term Treasury bond yield.
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Second, the cross-sectional beta-premium forecasts future excess-return realiza-
tions on the CRSP value-weight index. For the 1927:5-2002:12 period, the cross-
sectional beta premium is statistically significant at a level better than 1%, with
most of the predictive ability coming from the pre-1965 subsample. We also de-
tect predictability in a largely independent international sample, indicating that our
results are not sample specific.

5.1 Correlation with ex-ante equity-premium measures

As an informal illustration, we graph the time-series evolution of popular ex-ante
equity-premium measures and our first cross-sectional measure, λSRCt , in Figure 2.
(We focus on λSRCt in these illustrations to save space, but similar results can be
obtained for our other cross-sectional variables.) One popular ex-ante measure is
based on the comparison deemed the “Fed model,” where the equity risk premium
equals the equity yield (either dividend yield or smoothed earnings yield) minus the
long-term Treasury bond yield. This measure is often called the Fed model, since the
Federal Reserve Board supposedly uses a similar model to judge the level of equity
prices.6

The Fed model and its variations provide an intuitive estimator of the forward-
looking equity risk premium. The earnings-yield component of the Fed model is
easily motivated with the Gordon (1962) growth model. As for the interest-rate
component, there are two related logical bases to the argument that low interest
rates should coincide with low earnings yields. First, if one is interested in the
equity premium instead of the total equity return, one has to subtract the interest
rate from earnings yield to compare apples to apples. Second, many argue that an
environment of low interest rates is good for the economy and thus raises the expected
future earnings growth.

Asness (2002) points out that, while seeming plausible, these arguments are flawed
in the presence of significant and time-varying inflation. In the face of inflation, cash

6The Federal Reserve Board’s Monetary Policy Report to the Congress of July 1997 argues:
“Still, the ratio of prices in the S&P 500 to consensus estimates of earnings over the coming twelve
months has risen further from levels that were already unusually high. Changes in this ratio have
often been inversely related to changes in long-term Treasury yields, but this year’s stock price gains
were not matched by a significant net decline in interest rates.” Of course, the Federal Reserve has
not officially endorsed any stock-valuation model.
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flows for the stock market should act much like a coupon on a real bond, growing with
inflation. Holding real growth constant, low inflation should forecast low nominal
earnings growth. In a sense, stocks should be a long-term hedge against inflation.
(Modigliani and Cohn, 1979, and Ritter and Warr, 2002, argue that the expected real
earnings growth of levered firms in fact increases with inflation.) Thus, in the presence
of time-varying inflation, the Fed model of equity premium should be modified to
subtract the real (instead of nominal) bond yield, for which data unfortunately do
not exist for the majority of our sample period.

An alternative to the implicit constant-inflation assumption in the Fed model is
to assume that the real interest rate is constant. If the real interest rate is constant
and earnings grow at the rate of inflation, the earnings yield is a good measure of
the the forward-looking expected real return on equities. Under this assumption, the
earnings yield is also a good measure of the forward-looking equity premium. Figure
2 also plots the smoothed earnings yield without the interest-rate adjustment.

The three variables in Figure 2 are demeaned and normalized by the sample
standard deviation. Our sample period begins only two years before the stock market
crash of 1929. This event is clearly visible from the graph in which all three measures
of the equity premium shoot up by an extraordinary five sample standard deviations
from 1929 to 1932. Another striking episode is the 1983-1999 bull market, during
which the smoothed earnings yield decreased by four sample standard deviations.
However, in 1983 both the smoothed earnings yield less the bond yield (i.e., the
Fed model) and our cross-sectional beta-premium variable are already low, and thus
diverged from the earnings yield.

It is evident from the figure that our cross-sectional risk premium tracks the Fed
model’s equity-premium forecast with an incredible regularity. This relation is also
shown in Table 1, in which we regress the cross-sectional premium λSRC on exp(ep)
and exp(ep)−Y 10. Essentially, the regression fits extremely well with an R2 of 72%
where the explanatory power is entirely due to the Fedmodel (exp(ep)−Y 10). (Please
note that the OLS t-statistics in the table do not take into account the persistence of
the variables and errors, and are thus unreliable.) Our conclusion from Table 1 and
Figure 2 is that the market prices the cross-sectional beta premium to be consistent
with the equity premium implied by the Fed model.

There is potentially a somewhat mechanical link between the market’s earnings
yield and our cross-sectional measure. Recall that our λ measures are cross-sectional
regression coefficients of earnings yields (and other such multiples) on betas. If
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Figure 2: Time-series evolution of the ex-ante equity-premium forecasts.

This figure plots the time-series of three equity-premium measures: (1) λSRC,
the cross-sectional Spearman rank correlation between valuation levels and estimated
betas, marked with a thick solid line; (2) exp(ep), the ratio of a ten-year moving
average of earnings to price for S&P500, marked with a dash-dotted line; and (3)
exp(ep)−Y 10, the ratio of a ten-year moving average of earnings to price for S&P500
minus the long-term Government bond yield, marked with triangles. All variables
are demeaned and normalized by their sample standard deviations. The sample
period is 1927:5-2002:12.
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the market has recently experienced high past returns, high-beta stocks should have
also experienced high past returns relative to low-beta stocks. The high return
on high-beta stocks will imply a lower yield on those stocks, if earnings do not ad-
just immediately. Therefore, high returns on the market cause low values of our
cross-sectional beta premium, which might explain the strong link between market’s
valuation multiples and our cross-sectional measures.

Unreported experiments confirm that our results are not driven by this link. We
first regressed λSRC on five annual lags of the annual compound return on the CRSP
value-weight index. The coefficients in this regression are negative, but the R2 is low
at 12%. Then, we took the residuals of this regression, and compared them to the
earnings yield and Fed model’s forecast. Even after filtering out the impact of past
market returns, the residuals of λSRC plot almost exactly on top of the Fed model’s
forecast, with a correlation of approximately 0.8. Furthermore, using the residuals
of λSRC in place of λSRC in the subsequent predictability tests does not alter our
conclusions. Thus, we conclude that our results are not driven by a mechanical link
between the market’s past returns and our cross-sectional measures.

Figure 2 also casts light on Franzoni’s (2002), Adrian and Franzoni’s (2002), and
Campbell and Vuolteenaho’s (2003) result that the betas of value stocks have declined
relative to betas of growth stocks during our sample period. This trend has a natural
explanation if the CAPM is approximately true and the expected equity premium has
declined, as suggested by Fama and French (2002), Campbell and Shiller (1998), and
others. Value stocks are by definition stocks with low prices relative to their cash-flow
generating ability. On the one hand, if the market premium is large, it is natural
that many high beta stocks have low prices, and thus end up in the value portfolio.
On the other hand, if the market premium is near zero, there is no obvious reason to
expect high beta stocks to have much lower prices than low beta stocks. If anything,
if growth options are expected to have high CAPM betas, then growth stocks should
have slightly higher betas. Thus, the downward trend in the market premium we
document provides a natural explanation to the seemingly puzzling behavior of value
and growth stocks’ betas identified by Franzoni (2002) and others.

5.2 Univariate tests of predictive ability in the US sample

While the above illustrations show that the cross-sctional price of risk is highly cor-
related with reasonable ex-ante measures of the equity premium, it remains for us to
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Table 1: Explaining the cross-sectional risk premium with the Fed model’s equity
premium forecast and smoothed earnings yield variables
The table shows the OLS regression of cross-sectional risk-premium measure, λSRC

, on exp(ep) and exp(ep) − Y 10. λSRC is the Spearman rank correlation between
valuation rank and estimated CAPM beta. Higher than average values of λSRC

imply that high-beta stocks have lower than average prices and higher than average
expected returns, relative to low-beta stocks. ep is the log ratio of S&P 500’s ten-
year moving average of earnings to S&P 500’s price. Y 10 is the nominal yield on
ten-year constant-maturity taxable bonds in fractions. The OLS t-statistics (which
do not take into account the persistence of the variables and regression errors) are
in parentheses, and R2 is adjusted for the degrees of freedom. The regression is
estimated from the full sample period 1927:5-2002:12, 908 monthly observations.

Variable Const. exp(ept) exp(ept)− Y 10t adj. R2

λSRCt = -.1339 .0628 4.6292 71.87%
(-10.54) (.30) (36.54)

λSRCt = -.3996 5.561 30.45%
(-24.39) (19.95)

λSRCt = -.1303 4.6536 71.90%
(-34.02) (48.19)
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show that our variable actually forecasts equity-premium realizations. Below, we use
the new statistical tests introduced in Section 4 to conclusively reject the hypothesis
that the equity premium is unforcastable based on our variables.

Table 2 shows descriptive statistics for the variables used in our formal predictabil-
ity tests. To save space we only report the descriptive statistics for one cross-sectional
risk-premium measure, λSRC. Recall that a high cross-sectional beta premium sug-
gests that at that point in time high-beta stocks were cheap and low-beta stocks
expensive. The correlation matrix in Table 2 shows clearly that the variation in
the cross-sectional measure, λSRC, appears positively correlated with the log earn-
ings yield, high overall stock prices coinciding with low cross-sectional beta premium.
The term yield spread (TY ) is a variable that is known to track the business cycle, as
discussed by Fama and French (1989). The term yield spread is very volatile during
the Great Depression and again in the 1970’s. It also tracks λSRC with a correlation
of .31 over the full sample.

Table 3 presents the univariate prediction results for the excess CRSP value-weight
index return, and Table 4 for the excess CRSP equal-weight index return. The first
panel of the tables forecasts the equity premium with the cross-sectional risk-premium
measure λSRC. The second panel uses the log smoothed earnings yield (ep) and the
third panel the term yield spread (TY ) as the forecasting variable. The fourth panel
shows regressions using alternative cross-sectional risk-premium measures. While the
first three panels also show subperiod estimates, the fourth panel omits the subperiod
results to save space.

The regressions of value-weight equity premium in Table 3 reveal that our cross-
sectional risk-premium measures do forecast future market returns. For all measures
except λDPG, we can reject the null hypothesis of a zero coefficient in favor of a
positive coefficient with a p-value better than 1% in full-sample tests. Comparing
the small-sample p-values to the usual critical values for t-statistics, it is clear that
the usual t-test would perform adequately in this case. This is not surprising, since
the correlation between equity-premium shocks and our cross-sectional forecasting-
variable shocks is small in absolute value.

The subperiod results for λSRC show that the predictability is stronger in the first
half of the sample than in the second half. The coefficient on λSRC drops from .0368
for the 1927:5-1965:2 period to 0.0088 for the 1965:2-2002:12 period. The similar
drop is observed for other cross-sectional measures, except for λER, which performs
well in all subsamples (results unreported). However, the 95%-confidence intervals
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Table 2: Descriptive statistics of the VAR state variables
The table shows the descriptive statistics estimated from the full sample period
1927:5-2002:12, 908 monthly observations. ReM is the excess simple return on the
CRSP value-weight index. Rem is the excess simple return on the CRSP equal-weight
index. λSRC is the Spearman rank correlation between valuation rank and estimated
CAPM beta. Higher than average values of λSRC imply that high-beta stocks have
lower than average prices and higher than average expected returns, relative to low-
beta stocks. ep is the log ratio of S&P 500’s ten-year moving average of earnings
to S&P 500’s price. TY is the term yield spread in percentage points, measured as
the yield difference between ten-year constant-maturity taxable bonds and short-term
taxable notes. “Stdev.” denotes standard deviation and “Autocorr.” the first-order
autocorrelation of the series.

Variable Mean Median Stdev. Min Max
ReM,t .0062 .0095 .0556 -.2901 .3817
Rem,t .0097 .0114 .0758 -.3121 .6548
λSRCt -.0947 -.1669 .2137 -.5272 .5946
ept -2.8769 -2.8693 .3732 -3.8906 -1.4996
TYt .6232 .5500 .6602 -1.3500 2.7200

Correlations ReM,t Rem,t λSRCt ept TYt

ReM,t 1 .9052 .1078 .0305 .0474
Rem,t .9052 1 .1333 .0658 .0798
λSRCt .1078 .1333 1 .5278 .3120
ept .0305 .0658 .5278 1 .2223
TYt .0474 .0798 .3120 .2223 1
ReM,t−1 .1048 .2052 .0825 -.0475 .0428
Rem,t−1 .1070 .2059 .1075 -.0010 .0726
λSRCt−1 .0930 .1321 .9748 .5196 .3011
ept−1 .1140 .1509 .5359 .9923 .2279
TYt−1 .0469 .0812 .3219 .2188 .9131
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Table 3: Univariate predictors of excess value-weight CRSP return (ReM)
These are results from the model

ReM,t = µ1 + θxt−1 + et; xt = µ2 + ρxt−1 + ut

with E et = σ21, Eut = σ22, Corr (et, ut) = γ. “t-stat” is the usual t-statistic for
testing the null that θ = 0. The p-values and confidence intervals are based on the
conditional critical functions. The p-value tests the null θ = 0 against the one-sided
alternative θ > 0. The confidence interval is a two-sided interval for θ. The hatted
variables are unrestricted OLS estimates.

Specification bθ t-stat p-value 95% conf int bρ bγ bσ1 bσ2
Prediction by the cross-sectional beta premium, xt = λSRCt

1927:5-2002:12 .0242 2.811 <.01 [.008, .041] .975 .0773 .0553 .0477
1927:5-1965:2 .0368 2.450 <.01 [.008, .066] .960 -.0152 .0633 .0562
1965:2-2002:12 .0088 .413 .309 [-.031, .054] .931 .278 .0460 .0368
1927:5-1946:3 .0663 1.967 .030 [-.001,.131] .934 -.0413 .0823 .0585
1946:3-1965:2 .0395 3.113 <.01 [.016, .065] .957 .080 .0348 .0534
1965:2-1984:1 .0147 .6027 .240 [-.03, .065] .942 .188 .0458 .0429
1984:1-2002:12 -.0190 -.4181 >.5 [-.099, .089] .885 .416 .0462 .0292

Prediction by log smoothed earnings/price, xt = ept
1927:5-2002:12 .0170 3.454 .014 [.003, .024] .993 -.669 .0552 .0464
1927:5-1965:2 .0317 3.282 .018 [.003, .046] .987 -.671 .0630 .0549
1965:2-2002:12 .00756 1.319 >.5 [-.009, .011] .996 -.668 .0459 .0359
1927:5-1946:3 .0410 2.670 .096 [-.006, .061] .981 -.659 .0817 .0707
1946:3-1965:2 .0294 2.344 .168 [-.009, .043] .994 -.727 .0351 .0322
1965:2-1984:1 .0204 1.817 .291 [-.012, .028] .987 -.662 .0455 .0362
1984:1-2002:12 .0105 1.251 >.5 [-.012, .013] .990 -.668 .0460 .0352

Prediction by term yield spread, xt = TYt
1927:5-2002:12 .00396 1.413 .075 [-.001, .009] .917 .0111 .0555 .269
1927:5-1965:2 .00489 1.015 .178 [-.005, .013] .968 -.156 .0636 .151
1965:2-2002:12 .00270 .862 .150 [-.003, .008] .871 .111 .0460 .346
1927:5-1946:3 .00497 .711 .316 [-.010, .017] .969 -.174 .0829 .184
1946:3-1965:2 .0201 1.978 .030 [.000, .039] .886 -.0707 .0352 .108
1965:2-1984:1 .00868 1.677 .043 [-.001, .019] .765 .218 .0455 .378
1984:1-2002:12 -.00221 -.521 >.5 [-.010, .005] .918 .00463 .0462 .301

Full sample predictive results for alternative cross-sectional measures:
xt = λREGt .0908 3.605 <.01 [.042, .141] .937 .0644 .0552 .0255
xt = λDPt .03539 2.53 <.01 [.007, .062] .926 -.167 .0554 .0498
xt = λDPGt .02419 1.75 .044 [-.003, .051] .917 -.107 .0555 .0531
xt = λBMt .001121 2.63 <.01 [.0003, .0019] .942 -.236 .0554 1.440
xt = λBMG

t .001449 2.98 <.01 [.0005, .0023] .919 -.222 .0553 1.500
xt = λERt 2.175 3.15 <.01 [.80, 3.53] .979 -.0331 .0459 .0005
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Table 4: Univariate predictors of excess equal-weight CRSP return (Rem)
These are results from the model

Rem,t = µ1 + θxt−1 + et; xt = µ2 + ρxt−1 + ut

with E et = σ21, Eut = σ22, Corr (et, ut) = γ. “t-stat” is the usual t-statistic for
testing the null that θ = 0. The p-values and confidence intervals are based on the
conditional critical functions. The p-value tests the null θ = 0 against the one-sided
alternative θ > 0. The confidence interval is a two-sided interval for θ. The hatted
variables are unrestricted OLS estimates.

Specification bθ t-stat p-value 95% conf int bρ bγ bσ1 bσ2
Prediction by the cross-sectional beta premium, xt = λSRCt

1927:5-2002:12 .0469 4.012 <.01 [.025, .070] .975 .0202 .0752 .0477
1927:5-1965:2 .0786 3.755 <.01 [.037, .119] .960 -.0613 .0882 .0562
1965:2-2002:12 .0345 1.260 .100 [-.017, .092] .931 .226 .0589 .0368
1927:5-1946:3 .147 3.041 <.01 [.048, .238] .934 -.0960 .118 .0585
1946:3-1965:2 .0466 3.256 <.01 [.020, .075] .957 .0603 .0392 .0534
1965:2-1984:1 .0457 1.357 .076 [-.017, .115] .942 .139 .0633 .0429
1984:1-2002:12 .00571 .107 .405 [-.089, .132] .885 .379 .0542 .0292

Prediction by log smoothed earnings/price, xt = ept
1927:5-2002:12 .0307 4.594 <.01 [.011, .040] .993 -.683 .0750 .0464
1927:5-1965:2 .0662 4.943 <.01 [.026, .086] .987 -.683 .0872 .0549
1965:2-2002:12 .0104 1.420 .470 [-.011, .015] .996 -.689 .0589 .0359
1927:5-1946:3 .0839 3.833 .014 [.016, .112] .981 -.683 .117 .0707
1946:3-1965:2 .0285 2.004 .250 [-.015, .045] .993 -.707 .0398 .0322
1965:2-1984:1 .0290 1.866 .300 [-.017, .039] .987 -.705 .0631 .0362
1984:1-2002:12 .00131 .132 >.5 [-.026, .004] .990 -.684 .0542 .0352

Prediction by term yield spread, xt = TYt
1927:5-2002:12 .00935 2.452 <.01 [.002, .016] .915 .0140 .0756 .269
1927:5-1965:2 .0106 1.572 .074 [-.003, .023] .968 -.151 .0893 .151
1965:2-2002:12 .00774 1.933 .026 [.00, .015] .871 .124 .0588 .346
1927:5-1946:3 .00867 .857 .243 [-.013, .026] .969 -.171 .120 .186
1946:3-1965:2 .0208 1.808 .043 [-.002, .043] .886 -.0699 .0398 .108
1965:2-1984:1 .0172 2.410 <.01 [.004, .032] .765 .184 .0628 .378
1984:1-2002:12 .00420 .844 .138 [-.005, .013] .918 .0809 .0541 .301

Full sample predictive results for alternative cross-sectional measures:
xt = λREGt .165 4.811 <.01 [.098, .232] .937 .0238 .0749 .0255
xt = λDPt .07916 4.17 <.01 [.041, .115] .926 -.206 .0751 .0498
xt = λDPGt .06813 3.63 <.01 [.031, .104] .917 -.136 .0753 .0531
xt = λBMt .002609 4.51 <.01 [.0015, .0037] .942 -.245 .075 1.440
xt = λBMG

t .003129 4.76 <.01 [.0018, .0043] .919 -.242 .0749 1.500
xt = λERt 3.371 3.74 <.01 [1.55, 5.12] .979 -.0697 .0599 .0005
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suggest that one should not read too much into these subperiod estimates. The
point estimate for the first subperiod is contained within the confidence interval of
the second subperiod, and the point estimate of the second subperiod within the
confidence interval of the first subperiod. Furthermore, for every subperiod we have
examined, a positive coefficient is contained within the 95%-confidence intervals.

Of the two extant instruments we study, the log smoothed earnings yield is the
stronger forecaster of the equity premium, while the term yield spread has only weak
predictive ability. Consistent with economic logic, the coefficient on ep is positive
for all subsamples, and the t-statistic testing the null of no predictability is 3.45 for
the full sample. Our new statistical methodology maps this t-statistic to a one-sided
p-value 1.4%. Notice that while the t-statistic on ep is higher than on our first cross-
sectional measure λSRC (2.81 vs. 3.45), the p-value for ep is higher than the p-value
for λSRC. Of course this is the motivation for our econometric work in Section 4;
the earnings-yield is quite persistent, and its shocks are strongly negatively correlated
with equity-premium shocks, making standard statistical inference misleading.

As with most return-prediction exercises, the results for equal-weight index are a
more extreme version of those for value-weight index. Table 4 shows that our main
cross-sectional measure, λSRC, forecasts monthly excess equal-weight returns with a
t-statistic of 4.01. Similarly high t-statistics are obtained for the earnings yield (4.59)
and alternative cross-sectional mesures (ranging from 3.63 to 4.81), while the term
yield spread’s is slightly lower (2.45). All t-statistic imply rejection of the null at
a better-than-1% level, even after accounting for the problems due to persistent and
correlated regressors.

In unreported tests, we also examined the robustness of our results to heteroskedas-
ticity. To correct the critical vlaues for possible heteroskedasticity, we carried out con-
ditional inference based on t-statistics computed with Eicker-Huber-White (White,
1980) standard errors. The Eicker-Huber-White t-statistics weaken the case for pre-
dictability. When predicting the value-weight CRSP excess return over the entire
sample, λSRC is significant for a one-side test but not a two-sided test (the one-sided
p-value is .032). ep and TY are not statistically significant predictors, with one-sided
p-values of .162 and .095. Although the combination of Eicker-Huber-White standard
errors and conditional inference appears sensible, these tests come with a caveat: The
conditional distribution of the Eicker-Huber-White t-statistic has not been studied,
and it is not known whether the conditional Eicker-Huber-White t-statistic is robust
to heteroskedasticity.
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Another way of addressing the issue of heteroskedasticity is to note that stock
returns were very volatile during the Great Depression. A simple check for undue
influence of heteroskedasticity is to simply omit this volatile period from estimation.
When we estimate the model and p-values from the 1946-2002 sample, λSRC remains
statistically significant predictor at a better than 1% level, while the log earnings
yield is no longer significant even at the 10% level. Thus, these two experiments
both suggest that our cross-sectional forecasting variables have predictive ability, and
that our results are not just an illusion created by heteroskedasticity.

5.3 Univariate tests of predictive ability in the international
sample

We also examine the predictive ability of cross-sectional risk-premium measures in
an international sample and obtain similar predictive results as in the US sample.
Because of data constraints (we only have portfolio-level data for our international
sample), we define our cross-sectional risk premium measure as the difference in the
local-market beta between value and growth portfolios. We work with value and
growth portfolios constructed by Kenneth French and available on his web site, fo-
cusing on the top-30% and bottom-30% portfolios sorted on four of Morgan Stanley
Capital International’s value measures: D/P , BE/ME, E/P , and C/P . We then
estimate the betas for these portfolios using a 36-month rolling window, and define
the predictor variable λMSCI as the average beta of the four value portfolios minus
the average beta of the four growth portfolios.

If for example the CAPM holds, the beta difference between two dynamic trading
strategies, a low-multiple value portfolio and a high-multiple growth portfolio, is a
natural measure of the expected equity premium. The underlying logic is perhaps
easiest to explain in a simple case in which individual stocks’ growth opportunities
and betas are constant for each stock and cross-sectionally uncorrelated across stocks.
During years when the expected equity premium is high, the high beta stocks will
have low prices (relative to current cash-flow generating ability) and will thus mostly
be sorted into the value portfolio. Symmetrically, low beta stocks will have relatively
high prices and those stocks will mostly end up in the “growth” or high-multiple
portfolio. Consequently, a high expected equity premium will cause the value port-
folio’s beta to be much higher than that of the growth portfolio. In contrast, during
years when the expected equity premium is low, multiples are determined primarily
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by growth opportunities. The high beta and low beta stocks will have approximately
the same multiples and are thus approximately equally likely to end up in either
the low-multiple value portfolio or the high-multiple growth portfolio. Thus during
years when the expected equity premium is low, the beta difference between value
and growth portfolio should be small. This simple logic allows us to construct a
cross-sectional risk-premium proxy without security-level data.

We find that the past local-market beta of value-minus-growth is generally a sta-
tistically significant predictor of the future local-market equity premium. In the
individual country regressions of Table 5, 17 out of 22 countries have the correct sign
in the associated local-market equity premium prediction regression, with nine out
of 22 estimates statistically significant at the 10% level. Moreover, the five negative
estimates are not measured precisely. Finally, the parameter estimates for all the
countries are similar to those obtained for the US (with the exception of Mexico with
its extremely short sample).

In addition to the country-by-country regressions, we also pool the data and thus
constrain the regression coefficients to be equal across countries. Fortunately, our
pooled regression specification does not suffer significantly from the usual problems
associated with equity-premium prediction regressions. This is because of two rea-
sons: First, the shocks to the predictor variable are largely uncorrelated with the
return shocks. In fact, the correlation point estimates are close to 0.05, suggesting
that the usual asymptotic test is slightly conservative. Second, even if the shocks
for a given country were negatively correlated, the cross-sectional dimension in the
data set lowers the pooled correlation between the predictor variable and past return
shocks.

However, the usual OLS standard errors (and hypothesis tests based on them)
suffer from another problem. The OLS standard errors ignore the potential cross-
correlation between the residuals. To deal with this problem, we compute standard
errors that cluster by cross-section. Our Monte Carlo experiments show that for our
parameter values, clustered standard errors provide a slightly conservative hypothesis
test.

Table 6 shows that we can reject the null hypothesis of no predictability in favor of
the alternative that the betas of the country-specific value-minus-growth portfolios are
positively related to the country-specific expected equity premiums. This conclusion
is robust to inclusion/exclusion of the US data and inclusion/exclusion of country
fixed effects in the pooled regression. All p-values are under 5%. Thus we conclude
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Table 5: Predicting the equity premium, country-by-country regressions
These are results from the model

ReM,t,i = µ1,i + θixt−1,i + et,i; xt,i = µ2,i + ρixt−1,i + ut,i

with Corr (et, ut) = γ. xt,i = λMSCIt,i for country i in year t. λMSCIt,i is constructed
by taking the top-30% and bottom-30% portfolios sorted on four of Morgan Stanley
Capital International’s value measures: D/P , BE/ME, E/P , and C/P . We then
estimate the betas for these portfolios using a three-year rolling window, and define
the predictor variable λMSCI as the average beta of the four value portfolios minus the
average beta of the four growth portfolios. The dependent variable in the regressions
is the local-market equity premium, for which the stock market returns are from
Kenneth French’s files and the local risk-free returns are from Global Financial Data.
The regressions are estimated using country-by-country OLS regressions. The “OLS
t-stat” is the homoskedastic t-statistic for testing the null that θ = 0. “White t-stat”
is the t-statistic robust to heteroskedasticity. The p-values in parentheses are based
on the conditional critical functions and test the null θ = 0 against the one-sided
alternative θ > 0. The hatted variables are unrestricted OLS estimates.

Country Time period Obs. bθ OLS t-stat White t-stat bρ bγ
Australia 1975:1 - 2001:12 324 .0237 1.70 (.111) 1.60 (.132) .989 -.229
Austria 1987:1 - 2001:12 180 -.0251 -.61 (.584) -.48 (.540) .935 .241
Belgium 1975:1 - 2001:12 324 .0234 1.36 (.064) 1.43 (.056) .972 .196
Denmark 1989:1 - 2001:12 156 .0149 .78 (.240) .78 (.238) 1.02 .027
Finland 1988:1 - 2001:12 168 -.0150 -.81 (.710) -.78 (.701) 1.00 .151
France 1975:1 - 2001:12 324 .0444 2.08 (.028) 2.08 (.028) 1.00 .033
Germany 1975:1 - 2001:12 324 .0226 1.32 (.078) 1.25 (.089) .985 .018
Hong Kong 1975:1 - 2001:12 324 .0200 .50 (.278) .49 (.282) .977 .11
Ireland 1991:1 - 2001:12 132 .0100 .39 (.374) .36 (.386) .911 -.061
Italy 1975:1 - 2001:12 324 .0268 .92 (.233) .92 (.234) 1.01 .081
Japan 1975:1 - 2001:12 324 .0172 1.40 (.095) 1.66 (.058) .992 -.037
Malaysia 1994:1 - 2001:10 94 .0418 .81 (.089) .76 (.096) .918 .306
Mexico 1982:1 - 1987:12 72 .3490 1.41 (.044) 1.50 (.036) .844 .311
Netherland 1975:1 - 2001:12 324 -.0061 -.37 (.596) -.30 (.573) .984 .105
New Zealand 1988:1 - 2001:12 168 .0456 1.95 (.018) 1.98 (.017) .959 .023
Norway 1975:1 - 2001:12 324 -.0053 -.54 (.708) -.50 (.697) .994 -.024
Singapore 1975:1 - 2001:12 324 .0159 .76 (.201) .66 (.229) .977 .094
Spain 1975:1 - 2001:12 324 .0366 2.76 (.004) 2.79 (.004) .986 -.051
Sweden 1975:1 - 2001:12 324 .0177 1.57 (.046) 1.37 (.068) 1.01 .019
Switzerland 1975:1 - 2001:12 324 -.0025 -.15 (.552) -.15 (.552) .974 .030
UK 1975:1 - 2001:12 324 .0115 .53 (.341) .44 (.372) .971 -.153
US 1926:7 - 2002:12 918 .0166 2.41 (.008) 2.02 (.019) .993 .089
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Table 6: Predicting the equity premium, pooled international regressions
These are results from the model

ReM,t,i = µ1,t,i + θxt−1,i + et,i; xt,i = µ2,t,i + ρxt−1,i + ut,i

with Corr (et,i, ut,i) = γ. xt,i = λMSCIt,i for country i in year t. λMSCIt,i is constructed
by taking the top-30% and bottom-30% portfolios sorted on four of Morgan Stanley
Capital International’s value measures: D/P , BE/ME, E/P , and C/P . We then
estimate the betas for these portfolios using a three-year rolling window, and define
the predictor variable λMSCI as the average beta of the four value portfolios minus the
average beta of the four growth portfolios. The dependent variable in the regressions
is the local-market equity premium, for which the stock market returns are from
Kenneth French’s files and the local risk-free returns are from Global Financial Data.
“FE” denotes fixed effects, meaning we estimate different intercepts µ1,t,i and µ2,t,i
for each country or each country and time point. “No FE” indicates that we estimate
a common intercept for all countries and time points. “tstat, homoskedastic” and
“tstat, heteroskedastic” indicate the usual ols t-statistic and the White t-statistic
which is robust to heteroskedasticity. “tstat, clustering by year” indicates that we
calculated standard errors robust to correlations between firms, but assumed indepen-
dence over time. The p-values in parentheses test the null θ = 0 against the one-sided
alternative θ > 0. p-values are based on the usual standard normal approximation
to the null distribution of a t-statistic. The hatted variables are unrestricted OLS
estimates.

No FE Country FE Country, time FE
All Excl. US All Excl. US All Excl. USbθ .0102 .0090 .0132 .0123 .00961 .00756

t-stat, homoskedastic 3.21 2.53 3.76 3.09 3.32 2.34
p-val, homoskedastic (.0007) (.0057) (.0001) (.0010) (.0004) (.0010)
t-stat, heteroskedastic 2.69 2.12 3.31 2.73 2.97 2.14
p-val, heteroskedastic (.0036) (.0171) (.0005) (.0032) (.0015) (.016)
t-stat, clustering by year 2.08 1.65 2.31 1.89 2.57 1.78
p-val, clustering by year (.0189) (.0494) (.0105) (.0295) (.0051) (.0376)bρ .992 .992 .990 .990 .988 .987bγ .0519 .0469 .0545 .0497 .0578 .0483
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that our simple proxy, λMSCI , predicts equity premium realizations in a sample largely
independent of our main US sample, as well as in the US sample.

5.4 Multivariate predictability tests

The above tests demonstrate that our new cross-sectional variables can forecast the
equity premium. In this section, we perform multivariate tests to see whether the
predictive information in our new variables subsume or is subsumed by that in the
earnings yield and term yield spread. We show the results from these “horse races”
for the value-weight index in Table 7. Unreported results for the equal-weight index
are similar but statistically stronger.

The horse race between λSRC and ep is a draw. In regressions forecasting the
value-weight return over the full period, we fail to reject at the 5% level of significance
the hypothesis that λSRC has no predictive ability independent of ep (p-value 15.8%).
Likewise, we cannot reject the hypothesis that ep has no predictive ability controlling
for λSRC (p-value 10.8%). Since these p-values are relatively close to 10% for both
the earnings yield and our cross-sectional measures, we are cautious about drawing
clear conclusions about the independent predictive ability of these variables.

Though the horse race between λSRC and ep is a draw, many of our alternative
cross-sectional measures wins their respective races with ep. When λREG , λBMG, and
λER are raced against ep, the above conclusions change: We now fail to reject the hy-
pothesis that ep has no independent predictive power (p-values ranging from 7.8% to
28.4%), but do reject the hypothesis that λREG , λBMG, and λER have no independent
predictive power (p-values ranging from 1.5% to 5.0%). These conclusions change
slightly in unreported equal-weighted regressions, in which the dependent variable is
the future excess return on an equal-weight portfolio of stocks. For all combinations,
both the cross-sectional risk premium and the market’s earnings yield are statistically
significant. Our result that equal-weight returns are more predictable is consistent
with results in the previous literature.

The term yield spread is unimpressive in multiple regressions. All other variables
beat the term yield spread, and TY is insignificant even in most regressions that
forecast the equal-weight equity premium.
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Table 7: Multivariate predictors of excess value-weight CRSP return (ReM)bθi is the OLS estimate of θi, with θi = (θ1 θ2)
0 in the model

ReM,t = µ1 + θ0xt−1 + ut; xt = µ2 +Kxt−1 + Vt.

“t-stat” is the usual t-statistic for testing the null θi = 0. “p-val” denotes the p-value
for testing the null θi = 0 against θi > 0. “95% conf” denotes a two-sided confidence
interval. “F p-val” denotes the p-value for the F-test of the null θ1 = θ2 = 0. All
p-values are computed using the conditional bootstrap described in Appendix B.

Specification bθ1 t-stat p-val 95% conf bθ2 t-stat p-val 95% conf F p-val

Prediction equation: ReM,t = θ0 + θ1λ
SRC
t−1 + θ2ept−1 + ut

1927:5-2002:12 .012 1.17 .158 [-.009,.031] .013 2.32 .108 [-.004,.021] .020
1927:5-1965:2 .001 .045 .532 [-.043,.041] .031 2.17 .091 [-.010,.049] .056
1965:2-2002:12 .011 .527 .285 [-.030,.057] .008 1.36 .447 [-.009,.013] .592
1927:5-1946:3 -.002 -.030 .573 [-.118,.098] .042 1.79 .176 [-.029,.072] .139
1946:3-1965:2 .037 2.03 .038 [.001,.071] .004 .225 .798 [-.050,.023] .086
1965:2-1984:1 .027 1.08 .183 [-.027,.074] .023 2.03 .172 [-.013,.037] .210
1984:1-2002:12 -.034 -.738 .778 [-.126,.057] .012 1.39 .341 [-.014,.021] .527

Prediction equation: ReM,t = θ0 + θ1λ
SRC
t−1 + θ2TYt−1 + ut

1927:5-2002:12 .023 2.49 .006 [.006,.040] .002 .564 .289 [-.003,.007] .017
1927:5-1965:2 .038 2.23 .017 [.005,.068] -.001 -.132 .604 [-.011,.008] .051
1965:2-2002:12 .005 .233 .357 [-.036,.052] .003 .791 .184 [-.003,.009] .670
1927:5-1946:3 .069 1.84 .043 [-.008,.138] -.001 -.158 .634 [-.017,.012] .160
1946:3-1965:2 .035 2.55 .006 [.009,.060] .010 .912 .201 [-.012,.030] .005
1965:2-1984:1 .010 .398 .280 [-.035,.063] .008 1.61 .038 [.000,.020] .229
1984:1-2002:12 -.012 -.257 .524 [-.098,.095] -.002 -.403 .633 [-.010,.007] .849

Full sample results for alternative cross-sectional risk premium measures
Prediction equation: ReM,t = θ0 + θ1xt−1 + θ2ept−1 + ut

xt = λREGt .066 2.36 .015 [.010,.124] .012 2.12 .151 [-.005,.019] .003
xt = λDPt .0200 1.32 .107 [-.012,.052] .0143 2.69 .056 [-.001,.022] .005
xt = λDPGt .0076 .516 .321 [-.022,.039] .0160 3.02 .027 [.001,.024] .010
xt = λBMt .0005 1.03 .174 [-.001,.002] .0140 2.46 .062 [-.002,.023] .007
xt = λBMG

t .0009 1.71 .050 [.000,.002] .0131 2.44 .078 [-.003,.021] .003
xt = λERt 1.766 2.40 .019 [.082,3.37] .0081 1.57 .284 [-.007,.015] .011

Full sample results for alternative cross-sectional risk premium measures
Prediction equation: ReM,t = θ0 + θ1xt−1 + θ2TYt−1 + ut

xt = λREGt .088 3.35 .000 [.038,.138] .001 .474 .316 [-.003,.007] .001
xt = λDPt .0335 2.38 .013 [.006,.064] .0032 1.13 .136 [-.003,.009] .017
xt = λDPGt .0215 1.53 .066 [-.007,.049] .0032 1.13 .129 [-.003,.009] .121
xt = λBMt .0010 2.39 .012 [.001,.002] .0026 .910 .184 [-.003,.008] .028
xt = λBMG

t .0014 2.82 .003 [.001,.002] .0029 1.03 .159 [-.003,.008] .006
xt = λERt 2.154 3.08 .001 [.700,3.73] .0005 .172 .400 [-.005,.006] .006
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5.5 Implications of premia divergence in the 1980’s

Across specifications, our cross-sectional beta-premium variables show their poorest
performance as predictors of the equity premium in the second subsample, especially
in the 1980’s. Curiously, as Figure 2 shows, the second subsample also exhibits
occasionally large divergences between the market’s smoothed earnings yield and the
cross-sectional beta premium. For example, in 1982 both our cross-sectional measures
and the Fed model forecast a low equity premium, while the smoothed earnings yield
forecasts a high equity premium.

If ep is indeed a good predictor of market’s excess return and λSRC of the return of
high-beta stocks relative to that of low-beta stocks, the divergence implies a trading
opportunity. In 1982, an investor could have bought the market portfolio of stocks
(which had a high expected return), and then hedged this investment by a zero-
investment portfolio long low-beta stocks and short high-beta stocks (which had a
low expected return). At this time, this hedged market portfolio should have had a
high expected return relative to both its systematic and unsystematic risk.

We test this hypothesis by constructing a zero-investment portfolio consisting of
1.21 times the CRSP VW excess return, minus the return difference between the
highest-beta (10) and lowest-beta (1) deciles. The beta-decile portfolios are formed
on past estimated betas, value weighted, and rebalanced monthly. We picked the
coefficient 1.21 to give the portfolio an approximately zero unconditional beta. The
excess return on this beta-hedged market portfolio is denoted by Rearb.

Table 8 confirms this implication of premia difference. When we forecast the beta-
hedged market return with λSRC and ep, the former has a negative coefficient and the
latter a positive coefficient (although ep’s t-statistic is only 1.13.) The variables are
jointly significant for the full period as well as for both subperiods. However, since
λSRC and ep are so highly correlated in the first subsample, the identification for the
partial regression coefficients must come from the second sample. Consistent with this
conjecture, the nulls for both variables are rejected at a better than 10% level in the
second subsample, while the p-values are consderably higher in the first subsample.
Similar conclusions can be drawn from regressions that use other measures of cross-
sectional beta premium.

Even a cursory examination of the fitted values suggests that these predictability
results are also economically significant. In the beginning of year 1982, the pre-
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Table 8: Multivariate predictors of hedged value-weight CRSP return (Rearb)bθi is the OLS estimate of θi, with θi = (θ1 θ2)
0 in the model

Rearb,t = µ1 + θ0xt−1 + ut; xt = µ2 +Kxt−1 + Vt.

Rearb is the return on a zero-investment portfolio consisting of 1.21 times the CRSP
VW excess return, minus the return difference between the highest-beta (10) and
lowest-beta (1) deciles. “t-stat” is the usual t-statistic for testing the null θi = 0.
“p-val” denotes the p-value for testing the null against alternatives θ1 < 0 and θ2 > 0.
“95% conf” denotes a two-sided confidence interval. “F p-val” denotes the p-value for
the F-test of the null θ1 = θ2 = 0. All p-values are computed using the conditional
bootstrap described in Appendix B.

Specification bθ1 t-stat p-val 95% conf bθ2 t-stat p-val 95% conf F p-val

Prediction equation: Rearb,t = θ0 + θ1λ
SRC
t−1 + θ2ept−1 + ut

1927:6-2002:12 -.030 -2.87 .002 [-.049, -.011] .007 1.13 .140 [-.004, .017] .013
1927:6-1965:2 -.018 -.965 .161 [-.056, .018] -.014 -1.10 .877 [-.037, .008] .018
1965:2-2002:12 -.063 -2.29 .016 [-.114, -.004] .010 1.34 .108 [-.004, .023] .022
1927:6-1946:3 .004 .087 .522 [-.082, .088] -.018 -.907 .821 [-.059, .021] .440
1946:3-1965:2 -.016 -1.05 .150 [-.046, .014] .009 .600 .486 [-.026, .032] .605
1965:2-1984:1 -.070 -2.75 .006 [-.111, -.017] .007 .599 .300 [-.017, .029] .012
1984:1-2002:12 -.083 -1.19 .121 [-.213, .065] .025 1.89 .028 [.000, .052] .126

Full sample results for alternative cross-sectional risk premium measures
Prediction equation: Rearb,t = θ0 + θ1xt−1 + θ2ept−1 + ut

xt = λREG -.062 -2.32 .011 [-.110, -.012] .001 .467 .305 [-.003, .007] .062
xt = λDP -.072 -4.66 .000 [-.103,-.042] .0073 1.34 .099 [-.004,.018] .000
xt = λDPG -.066 -4.36 .000 [-.095,-.036] .0064 1.19 .130 [-.005,.017] .000
xt = λBM -.0029 -5.80 .000 [-.004,-.002] .0146 2.53 .007 [.002,.026] .000
xt = λBMG -.0029 -5.31 .000 [-.004,-.002] .0098 1.79 .041 [-.001,.020] .000
xt = λER -2.21 -2.61 .005 [-3.82,-.615] .0114 1.94 .036 [.000,.023] .019

42



dicted value for Rearb is over 20% annualized in the regression that uses λSRC and
ep as forecasting variables. Since the unconditional volatility of Rearb is under 20%
annualized (and various conditional volatility estimates even lower), the fitted values
imply a conditional annualized Sharpe ratio of over one at the extreme point of the
divergence. In summary, the evidence in Table 8 clearly shows that divergence of
λSRC and ep creates a both economically and statistically significant trading oppor-
tunity for an investor who can borrow at the Treasury-bill rate. An alternative but
equivalent way to describe our results is that the zero-beta rate in the universe of
stocks deviates predictably from the Treasury-bill rate.

6 Conclusions

This paper tells a coherent story connecting the cross-sectional properties of expected
returns to the variation of expected returns through time. We use the simplest risk
model of modern portfolio theory, the Sharpe-Lintner CAPM, to relate the cross-
sectional beta premium to the equity premium. When the cross-sectional beta pre-
mium is high, Sharpe-Lintner CAPM predicts that the equity premium should also
be expected to be high.

We construct a class of cross-sectional beta-premium variables by measuring the
cross-sectional association between valuation multiples (book-to-price, earnings yield,
etc.) and estimated betas. Consistent with the Sharpe-Lintner CAPM, our time-
series tests show that the cross-sectional beta premium is highly correlated with
the market’s yield measures. Furthermore, the cross-sectional variable forecasts
the equity premium, both on its own and in a multiple regression with smoothed
earnings yield, although the high correlation between the two variables makes the
multiple-regression results less conclusive. Results obtained from an international
sample support our main conclusions drawn from the US sample.

Since equity-premium realizations are very noisy, forecasting the equity premium
with univariate methods is a nearly impossible task. Fortunately, simple economic
logic makes predictions about the equity premium, such as high stock prices should
imply a low equity premium (Campbell and Shiller, 1988a, Fama and French, 1989),
the equity premium should usually be positive because of risk aversion (Merton,
1980), and the cross-sectional pricing of risk should be consistent with the time-series
pricing of risk. We join others in arguing that imposing such economically reasonable
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guidelines can be of great practical utility in formulating reasonable equity-premium
forecasts.

Beyond simply forecasting the equity premium, our results provide insight into the
process by which the market prices the cross-section of equities. According to our
estimates, the stock market prices one unit of beta in the cross-section with a premium
that is equal to the equity premium derived from “the Fed model,” the earnings yield
minus the long-term bond yield. In our sample, the Fed model explains 72% of the
time-series variation in our main cross-sectional risk-price measure. Of course, our
claim is not that one should use the CAPM and the Fed model for relative valuation
of stocks. We merely document that the cross-section prices are set approximately
as if the market participants did so.

We also provide a practical solution to a long-standing inference problem in finan-
cial econometrics. A volume of studies have asked the question whether the equity
premium can be predicted by financial variables such as the dividend or earnings yield
(Rozeff, 1984, Keim and Stambaugh, 1986, Campbell and Shiller, 1988ab, Fama and
French, 1988 and 1989, Hodrick, 1992, and others). Although the usual asymptotic p-
values indicate a statistically reliable predictability, Stambaugh (1999) notes that the
small-sample inference is complicated by two issues. First, the predictor variable is
often very persistent, and, second, the shocks to the predictor variable are correlated
with the unexpected component of the realized equity premium. Together, these two
issues can cause large small-sample size distortions in the usual tests. Consequently,
elaborate simulation schemes (e.g., Ang and Bekaert, 2001) have been necessary for
finding reasonably robust p-values even in the case of Gaussian errors.

We solve for the exact small-sample p-values using a novel method. The method
is based on Jansson and Moreira’s (2002) idea of reducing the data to a sufficient
statistic, and then creating the nonlinear mapping from the sufficient statistic to the
correct critical value for the OLS t-statistic. For a single forecasting variable and
the now-usual setup proposed by Stambaugh (1999), we provide the community with
a function that enables an applied finance researcher to implement a correctly-sized
test of predictability in seconds.
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7 Technical Appendix A: Algorithm for comput-
ing qnnα

In this appendix we describe the algorithm for computing qnnα , the neural network
approximation to the critical values. We choose the parameters of the neural net to
minimize the sum of squared size distortions over a grid of (ρ, γ) values:

³bψ, bφ´ = argmin(ψ,φ) NX
i=1

Ã
α−B−1

BX
b=1

1h
£btb,i > qnnα (Xb,i,ψ,φ)¤

!2
. (23)

i = 1, ..., N indexes a grid of (ρi, γi) pairs. For each i, we simulate B data sets from
the null model, with θ = 0, iid normal errors, µ1 = µ2 = 0, and σ2u = σ2v = 1. btb,i is
the t-statistic for the bth simulated sample generated from (ρi, γi), and Xb,i is the X
vector generated from this sample. We can estimate the rejection frequency based on
the critical value qnnα by averaging over the simulated draws:

Pr
£bt > qnnα (X,ψ,φ) ; ρi, γi¤ ≈ B−1 BX

b=1

1
£btb,i > qnnα (Xb,i,ψ,φ)¤ . (24)

1(x) is the indicator function, equal to 1 when x ≥ 0 and zero otherwise. Thus our
minimization problem is a simulation-based way to minimize the sum of squared size
distortions. Since the indicator function is not differentiable, we replace it with the
differentiable function

1h (x) =
¡
1 + e−x/h

¢−1
. (25)

As h goes to zero, 1h converges pointwise to the indicator function. Since our objective
function is differentiable in ψ and φ, we can use efficient minimization methods.

The neural net critical values used in this paper were computed setting B = 20000
and h = .01. The grid points were all possible combinations of ρ ∈ ρ and γ ∈ Γ,
where

ρ = (−100,−75,−50,−30,−20,−15,−12,−10,−8,−6,−4,−2, 0) /T (26)

Γ = (0,−.2,−.4,−.5,−.6,−.7,−.8,−.85,−.86,−.88,−.90,−.92,−.94,−.96,−.98) .
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We do not need to simulate over different values of µ1, µ2, σ
2
u or σ

2
v because both btb,i

and Xb,i are exactly invariant to these parameters.

Since we only simulated over negative correlations, qnnα is valid only when γ < 0.
When bγ > 0, we replace xt by−xt, thus reversing the sign of the estimated correlation.
This transformation also reverses the sign of θ, so instead of testing the null θ = 0
against the positive alternative θ > 0, we instead test the null θ = 0 against the
negative alternative θ < 0. Instead of rejecting when the t-statistic is greater than
the 95% quantile of the conditional null distribution, we reject when the transformed
t-statistic is less than the 5% quantile of the conditional null.

It is well known that minimizing objective functions in neural networks is com-
putationally demanding. The objective function is not convex in the parameters and
has many local minima. We used the following algorithm, which draws on suggestions
in Bishop (1995) (chapter 7), White (1992) (chapter 11) and Masters (1993) (chapter
9). After generating all the X and bt values, we standardize them to have zero sample
means and unit variances. Following Bishop (1995) (page 262), we randomly draw
each element of φ from an independent Normal(0, 1/2) distribution. Given φ, the
neural network is a linear function of ψ. Therefore we generate sensible initial esti-
mates of ψ by linear quantile regression of btb,i on (1, g (φ01Xb,i) , ..., g (φ05Xb,i)) (see
Koenker and Portnoy (1997)). We then iterate from the starting values for φ and ψ
using the Broyden-Fletcher-Goldfarb-Shanno optimization algorithm. All computa-
tions were done using Ox 3.00, a programming language described in Doornik (2001),
and quantile regression programs provided by Roger Koenker and Daniel Morillo.

We repeated this algorithm for many different randomly drawn starting values
for φ. Most of the starting values led to solutions with small size distortions - the
rejection frequencies were visually quite similar to those in figure 2. A few of the
starting values converged at parameters that did not lead to accurate solutions.

We have fit neural nets for various sample sizes n and quantiles α. Please contact
Samuel Thompson at sthompson@harvard.edu for Matlab code that uses the fitted
nets to carry out conditional testing. As an example we provide the nets used to
construct Figure 1, where n = 120. The approximation to the .95 conditional quantile
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is

qnn.95(X,
bψ, bφ) ≡ .6513− 1.0909g £¡ −.7415 −.0046 −.7617 1.7743

¢
X
¤

−1.8609g £¡ .3212 .0209 .0738 .4704
¢
X
¤

+1.9257g
£¡
2.7021 −.0015 .6348 .1664

¢
X
¤

−1.7405g £¡ .2764 −.0030 .4126 −.7780 ¢X¤
+.9304g

£¡ −.1779 .0011 .0905 −1.0458 ¢X¤ .
The approximation to the .05 conditional quantile is

qnn.05(X,
bψ, bφ) ≡ −2.0121− 1.9305g £¡ −.1226 −.0000 .3373 .4493

¢
X
¤

+1.4384g
£¡ −.0586 −.0085 .6109 .4962

¢
X
¤

+1.6166g
£¡ −.0519 .0021 .2616 −.3020 ¢X¤

+1.7194g
£¡
1.7480 −.0158 1.1703 .5165

¢
X
¤

+2.7767g
£¡ −.9747 .0037 −.8420 −.8134 ¢X¤ .

Recall that these functions are only valid when the correlation between the innovations
is negative. So when the estimated correlation bγ is negative, we reject the null that
θ = 0 versus the alternative θ > 0 when the t-statistic is greater than qnn.95(X, bψ, bφ).
When bγ is positive, we replace xt with −xt and again calculate the sufficient statistics
X and the t statistic bt. In this case we reject the null when −bt is greater than
−qnn.05(X, bψ, bφ).
8 Technical Appendix B: conditional bootstrap al-

gorithm

In this section we describe the conditional bootstrap used to carry out inference in
the multivariate model.

1. Compute bΣ, the unrestricted regression estimate of Σ. Compute the trans-
formed vector (eyt ex0t)0 = bΣ−1/2 (yt x0t)0, where bΣ1/2 is the lower diagonal choleski
decomposition of bΣ and satisfies bΣ1/2 ³bΣ1/2´0 = bΣ. Compute bθ2,R by regressing eyt on
the second element of ext−1 and a constant. Compute bKR by regressing ext on xt−1
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and a constant, and premultiplying the result by bΣ1/2. bθ2,R and bKR are the maximum
likelihood estimators for θ2 and K when bΣ is the known covariance matrix and the
null θ1 = 0 is imposed. Define the vector

X =

µ
vec

³ bKR

´0
se (x1) se (x2) dCorr (x1, x2)¶0 , (27)

where xt = (x1,t, x2,t), [se (x1)]
2 = 1

T−1
P
(x1,t−1 − x1)2 is the estimated variance of

the first element of, [se (x2)]
2 is the estimated variance of the second element, anddCorr (x1, x2) is their estimated covariance.

2. Simulate B data sets from the parameter values θ1 = 0, bθ2,R, bKR, and bΣ. Let
tb denote the t-statistic for the bth simulated data set, and let Xb denote the X vector
for the bth sample.

3. Create the variable db = maxi |(Xi −Xb,i) /si|, where Xi and Xb,i are the ith
elements of X and Xb, and s2i = (B − 1)−1

P
b(Xb,i−Xi)

2, the standard deviation of
Xb,i. db is a measure of the distance between the sufficient statistics computed from
the actual and the simulated data.

4. Let d(b) denote the bth sorted d value, sorted in ascending order, so d(1) ≤ d(2) ≤
· · · ≤ d(B). Let D denote the set of btb where the corresponding Xb is among the N
which are nearest to the actual sufficient statistics:

btb ∈ D iff d(b) ≤ d(N). (28)

5. The set of draws D are treated as draws from the conditional distribution ofbt given S. We estimate the 100αth quantile of the conditional distribution with the
100αth empirical quantile of the sample of draws D.
This bootstrap procedure computes a nonparametric nearest neighbor estimate

of the conditional quantile of bt given X. Chauduri (1991) shows that as B and N
increase to infinity, with N becoming large at a slower rate than B, the boostrapped
quantile converges in probability to the true conditional quantile. However, sinceX is
a high-dimensional vector the curse of dimensionality requires B to be extraordinarily
large, possibly in the billions. Thus if we take Chauduri’s (1991) theory literally it
is not computationally feasible to precisely estimate the conditional quantile. The
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Monte Carlos in section 4.2 suggest that the conditional bootstrap accomplishes the
more modest goal of improving on the parametric bootstrap.

We choose the N and B used in Tables 5 and 6 to match the Monte Carlos in
section 4.2. For the p-values that test the nulls θ1 = 0, θ2 = 0, and θ1 = θ2 = 0, we
set N = 200000 and B = 10000. For the confidence intervals we chose N = 20000
and B = 1000.
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