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Abstract 

In this paper, we modify a number of new biased estimators of seemingly unrelated regression 

(SUR) parameters which are developed by Alkhamisi and Shukur (2008), AS, when the 

explanatory variables are affected by multicollinearity. Nine ridge parameters have been 

modified and compared in terms of the trace mean squared error (TMSE) and (PR) criterion. 

The results from this extended study are the also compared with those founded by AS. A 

simulation study has been conducted to compare the performance of the modified ridge 

parameters. The results showed that under certain conditions the performance of the 

multivariate ridge regression estimators based on SUR ridge RMSmax is superior to other 

estimators in terms of TMSE and PR criterion. In large samples and when the collinearity 

between the explanatory variables is not high the unbiased SUR, estimator produces a smaller 

TMSEs.   
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1. Introduction 

The main purpose of this paper is to propose some new ridge regression parameters applied to 

systems of regression equations, in particular the seemingly unrelated regressions (SUR) 

model proposed by Zellner (1962). The SUR method has shown to be superior (in term of 

most efficient) to the more traditional Ordinary Least Squares (OLS) method when the error 

terms between the equations in the system are highly correlated. In such cases the OLS will 

not produce Best Linear Unbiased Estimates (BLUE) while the SUR will do. This 

methodology has applications in many areas, e.g., panel data analysis, allocation models, 

consumption or demand functions for a number of commodities, investment functions for a 

number of firms, income distributions between different generations and different countries, 

consumption functions for subsets of populations or different regions.  

 

Most of the time the exploratory variables for models that are studied in the applications 

mentioned above are highly correlated. This means there is a linear relationship between some 

of the exploratory variables. The separate effects of these variables may be confounded. As a 

result the estimated parameters may not be statistically significant and/or have different signs 

than expected. This would render misleading statistical inferences. Multicollinearity is  a  

problem that arises from the data itself rather than the model being used for the analysis. A 

unique solution to the multicollinearity problem does not exist. There are many possible 

solutions; the most popular one is ridge regession. The study of ridge regression was 

pioneered by Hoerl and Kennard (1970). Later work may be found in Vinod (1978), Brown 

and Zidek (1980), Haitovsky (1987), Saleh and Kibria (1993), and Kibria (2003). Simulation 

studies of  the properties of some newly proposed ridge type estimators and the comparison of 

their mean square errors with popular existing estimators were later done by Khalaf and 

Shukur (2005), Alkhamisi et. al. (2006), and Muniz and Kibria (2009). All of the results in 

these studies were for ridge estimators in a single model. 

 

In general, ridge regression estimation is quite uncommon in systems of equations. This may 

partly be due to the lack of availability of standard methodology. A few exceptions might be 

found, however, see Srivastava and Giles (1987), Firinguetti, 1997, and Alkhamisi and 

Shukur (2008), AS hereafter. In AS the authors developed ridge parameters for SUR models 

and discussed more thoroughly the problems associated with system-wise ridge estimation 



 3 

using different multivariate ridge parameters. As a whole, 9 different parameters were 

developed and compared in term of Trace MSEs (TMSE). The investigation was done using 

Monte Carlo simulations for models with sample sizes equal to 30 and 100 observations and 

systems with 3 and 10 equations. The main results found were that 3 parameters, namely the 

RSarith, RSqarith and RSmax have shown to be superior to other estimators in terms of TMSE and 

(PR) criterion. The PR is the proportion of replications (out of 1,000) for which the SUR 

version of the generalised least squares, (SGLS) estimator has a smaller TMSE than the 

others. The authors also found that the SUR ridge estimators based on SKR , SHKR and 

SharmR  performed extremely poorly when compared to the other estimators (for formal 

definition of these parameters we refer to the next section). 

 

The aim of this paper is to modify the SUR ridge estimators mentioned in AS by applying a 

transformation on these parameters by raising them to a specific power factor given in page 6. 

We partly produce results according to the same Monte Carlo design as in AS in order to 

show the merits of our new modified parameters. Then we extend this design to cover a wide 

range of sample sizes, i.e. 10, 20, 30, 50 and 100 observations. We also extend the dimension 

of the systems to include 5 and 7 equations. Proceeding in this manner we can get better 

insight into the performance of these estimators.  

 

The rest of the paper is organized as follows: In Section 2 we present the model, and define 

our modified SUR ridge regression parameters. Section 3, describes the Monte Carlo 

experiment together with the factors that can affect the properties of the proposed parameters. 

In Section 4, we present the results concerning the various ridge parameters in terms of TMSE 

and PR criterion. Some concluding remarks are presented in Section 5. 

 

2. Methodology 

In our analysis and design methodology we use the same model as in AS. Suppose we have a 

system of M  equations, as follows. 

i i i i= +Y X B e ,  1,2, ,i M= K ,  (1) 
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where iY  is a 1T ×  vector of observations on the dependent variable, ie  is a 1T ×  vector of 

random errors with ( )iE =e 0  and 2( )i i i TE σ′ =e e I  (homoscedastic and non-autocorrelated), 

iX  is a iT k×  matrix of observations on explanatory variables including the intercept, iΒ is a 

1ik ×  vector of unknown parameters, M  is the number of equations in the system, T  is the 

number of observations per equation and ik  is the number of rows of iB . 

The M  equations in (1) can be rewritten compactly as  

= +Y XB e ,     (2) 

where 1 2( , , , )M′ ′ ′ ′=Y Y Y YK  and 1 2( , , , )M′ ′ ′ ′=e e e eK  are both of dimension 1TM × , 

( )i j ij TE σ′ =e e I , ( )1 2diag , , , M=X X X XK  of dimension TM k×  and 1 2( , , , )M′ ′ ′ ′=Β Β Β ΒK  

of dimension 1k × , for 
1

M

i
i

k k
=

=∑ . 

The OLS estimator of Β  in (2) is 

 1ˆ ( )−′ ′=Β X X X Y , with 

 1 1ˆcov( ) ( ) ( ) ( )T
− −′ ′ ′= ⊗Β X X X Σ I X X X    (3) 

where  [ ]ijσ=Σ  is the matrix of constant contemporaneous variances and covariances of the 

errors both within and between equations, with ( ) TE ′ = ⊗ee Σ I , since the temporal 

covariances both within and between equations are zero. 

Srivastava and Giles (1987) defined the general ridge estimator of Β  in (2) as  

 1
OR

ˆ ( )−′ ′= +Β X X R X Y     (4) 

where R  is a k k×  matrix of non-negative elements. The ridge estimator in (4) however 

abandons the information included in the correlation matrix of cross equation errors. The 

following transformation is more helpful to retain that information (see Srivastava and Giles 

1987). 

1 2( )T
∗ −= ⊗Y Σ I Y , 1 2( )T

∗ −= ⊗X Σ I X , and 1 2( )T
∗ −= ⊗e Σ I e . 

Using this transformation, the model (2) becomes 

∗ ∗ ∗= +Y X B e .    (5) 
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The OLS estimator of Β in (5), which is the GLS estimator of Β in (2), and its ridge estimator 

as in (4) are respectively as follows, 

1 1 1 1
G

ˆ ( ) ( ( ) ) ( )T T
′ ′∗ ∗ − ∗ ∗ − − −′ ′= = ⊗ ⊗Β X X X Y X Σ I X X Σ I Y   (6) 

1 1 1 1
GR

ˆ ( ) ( ( ) ) ( )T T
′ ′∗ ∗ − ∗ ∗ − − −′ ′= + = ⊗ + ⊗Β X X R X Y X Σ I X R X Σ I Y . (7) 

Generally, ∑ is unknown and must be estimated from sampled data. In our simulations we use 

the most common approach to estimating ∑ by the unrestricted residuals obtained from the 

OLS method.  

Let Λ  be a diagonal matrix of eigenvalues and Ψ  a matrix whose columns are eigenvectors 

of 
′*

X X . The canonical version of model (5) is 

∗ ∗= +Y Zα e ,    (8) 

where = *
Z X Ψ , ′=α Ψ Β  and *' *' ( ' )  = =Z Z ΨX X Ψ Λ . 

 

The OLS estimator of α  in (8) is  

1ˆ ( )−′ ′= *α Z Z Z Y     (9) 

with its associated SUR-ridge regression parameter estimator as, 

1
SURˆ ( )−′ ′= + *α Z Z R Z Y ,    (10) 

where 1 2diag( , , , )MR R R=R K , 1 2diag( , , , )
ii i i ikR r r r= K  and 0ijk > , for 1,2, ,i M= K  and 

1,2, , ij k= K . 

The bias vector, the mean squared error (MSE) matrix and the trace of the means squared 

error (TMSE) of SURα̂ are respectively follows as, 

 1
SURˆ( ) ( )E

−′− = − +α α Z Z R Rα    (11) 

1 1
SURˆ( ) ( ) ( )( )MSE

− −′= + + +α Λ R Λ Rαα Λ R   (12)  

i
2 2

SUR 2
1 =1

ˆ( ( ))
( )

kM
ij ij ij

i j ij ij

r
TMSE

r

λ α

λ=

+
=

+
∑∑α R    (13) 

Minimizing the TMSE in (13) with respect to rij gives us 
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2

1

ˆ
ij

ij

r
α

=      (14) 

Moreover, the following conditions ensure the superiority of SURα̂  over α̂  with respect to the 

MSE matrix. 

 

Result 1. 

As a special case of the Bayesian estimators of Gruber (1998) and Gruber (2010) we have the 

following results for the SUR-ridge regression. 

a. MSE(α̂ ) – MSE( )R(ˆSURα ) is a positive semidefinite matrix iff  

                     1 -1 1'( 2R )     1α α− −Λ + ≤     (15) 

b. Sufficient conditions for (15) to hold are 

(i)  1  ' ≤Λαα             (ii)  2  R' ≤αα .  (16) 

c. Set R = rI in (10), to show that MSE (α̂ ) – MSE( )R(ˆSURα ) is  a positive semidefinite 

matrix if   
αα '

2
 r ≤ . 

 

Result 2. 

For 1,2, ,i M= K  and 1,2, , ij k= K ,  assume eq. (14) holds, we can modify the SUR ridge 

parameters presented in AS by imposing our new transformation (i.e. by raising the 

parameters to the power of 1/ k , for 
1

/
M

i
i

k k M
=

=∑ ) and get the following modified versions.  

1. MSKR . Is a modified version of the ij-th component of this matrix given by (14), (see 

Srivastava and Giles, 1987 and Firinguetti, 1997). 

2. MSHKR . Denotes the modified SUR version of Hoerl and Kennard (1970a) ordinary 

ridge parameter.    1/
ij(MSHK) 2

ij

ij

1
r  ( )

ˆmax( )

k

α
=  (18) 

3. MSharmR . Designates the modified SUR version to the harmonic mean proposed by 

Hoerl, Kennard and Baldwin (1975) 
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i i

1/ 1/
ij(MSham) n nM M

2
ij

iji 1 j 1 i 1 j 1

n n
r   ( )   ( )

1
ˆ

r

k k

α
= = = =

= =

∑∑ ∑∑

  (19)  

4. MSarithR . Is a modified SUR extension to the single equation arithmetic mean proposed 

by Kibria (2003).     
inM

1/
ij(MSarith) 2

i 1 j 1 ij

1 1
r  ( )

n ˆ

k

α= =

= ∑∑   (20) 

5. MSgeomR . Is a modified generalization to the single equation geometric mean proposed 

by Kibria (2003).   
i

1/
ij(MSgeom) 1nM

2 n
ij

i 1 j 1

1
r   ( )

ˆ( )

k

α
= =

=

∏∏

  (21) 

6. 
MSkmed

R . The modified median of ijr  in (14) is used to define this parameter, (see 

Kibria, 2003 for a single equation version). 

  1/
ij(MSmed) 2

ij ij

1
r   (median( ))

ˆ

k

α
=    (22) 

7. 
MSqarith

R . Is a modified version of a new proposed ridge parameter using the 

arithmetic mean of ijr , with ijr as defined in (14).       

    1/
ij(MSqarith)

2ij
ij

1
r   (mean( ))

ˆ

k

α
=    (23) 

8. MSqmaxR . Is a modified version of a new proposed ridge parameter based on the 

maximization of ijr , with ijr as defined in (14). 

1/
ij(MSqmax)

2ij
ij

1
r   (max( ))

ˆ

k

α
=    (24) 

9. MSmaxR . A modification of the generalization to the single equation ridge parameter 

HK
maxK  proposed by Alkhamisi et. al. (2006).      

  1/
ij(MSmax) 2

ij ij

1
r   (max( ))

ˆ

k

α
=    (25) 

Clearly all of the ridge estimators defined by eqs. (18) - (22) and eq. (25) are identical to 

MSHKR  when 2
ijα̂  is replaced by max( 2

ijα̂ ). The estimators in eqs. (18) - (19) have already 

been considered by Firinguetti (1997). In order to assess the performance of multivariate ridge 
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regression estimators defined in terms of the above proposed multivariate ridge estimators we 

performed a Monte Carlo experiment to compare them in terms of TMSE with the GLS 

estimator, (see eq. 6) and the general ridge regression estimator defined by eq. (7) and eq. 

(14).  

 

3. The Monte Carlo Experiment 

A number of factors obviously can affect the properties of these parameters in terms of 

TMSE. The number of equations (M), the sample size (T), correlation among the explanatory 

variables and the dependency between equations are four such factors. For computational 

simplicity, we however hold other factors constant in our investigation, namely, the number 

of X variables, mean of X variables, covariance Matrix of X variables and the parameters of X 

variables. For more details about these factors, see Tables 1 and 2 below.   

 

Table 1. Values of Factors that Vary for Different Models - Size Calculations 

Factor Symbol Design 

Number of equations M 3 5 7 10 

Number of observations Τ 10, 20, 30, 50, 100 

Correlation among the 

explanatory variables 

ρX 0,75, 0.90, 0.97, 0.99 

Dependency between 

equations 

ρΣ                               0.35, 0.75  

 

 

Table 2. Values of Factors Held Constant that Do Not Affect the BG Tests 

Factor Symbol Value 

Constant term  1 

Number of X variables ki 4 

Mean of X variables µµµµ
x
 0 

Covariance Matrix of X variables ΣΣΣΣ
x
  

Parameters of X variables ΒΒΒΒ E 

X represents the exogenous variables excluding the constant term and E represents the matrix 

consisting merely of ones. 
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The Monte Carlo experiment has been performed by generating data according to following 

algorithm: 

a. Generate the explanatory variables from  MVN4(0, Σx). 

b. Set initial value of B either to (1,  1, 1, 1, 1) ' . 

c. Simulate the vector random error e from MVNM(0, Σe), M = 3, 5, 7, 10. 

d. As outlined earlier, for a given X structure, transform the original model (2) to an 

orthogonal form given by eq. (8) and calculate the SGLS estimator along with 

),R(ˆ
SURα  R= MSKR , MSHKR , MSharm, MSarith MSgeom R R ,  R ,  MSkmed MSqarith MSqmax R ,  R ,  R . 

and MSmaxR .Then compute the corresponding total mean squared error for the above 

case respectively. 

e. Repeat this process 1,000 times and then calculate the average of the mean squared 

error and the (PR) for each ridge parameter R, under consideration.  

 

Since the main objective of this study is to evaluate the modified SUR-ridge parameters in a 

systemwise perspective, the number of equations to be estimated is of central importance. At 

this stage it is important to mention that as the size of the system increases, the performance 

of the feasible GLS is likely to deteriorates and loos efficiency, see Fiebig and Kim (2000). 

Moreover, as the number of equations grows the computation time becomes longer, and we 

took a system with 10 equations as our largest model when considering the properties of these 

parameters. This represents a fairly large consumption model of the type that is used in, for 

example, agricultural economics. Medium size models are represented by 5- and 7-equation 

systems, while 3-equation systems are typical of the small models.  

 

Another prime factor that affects the performance of these parameters is the number of 

observations. We have investigated samples typical for small, medium and large sizes with 

number of observations equal to 10, 20, 30, 50 and 100. Note that in the case when the 

number of equations in the system is equal to 10, using a number observations equal to 10 

will lead to a situation of undersized sample problem. This situation will be avoided in this 

paper.  

 

Another factor that may affect the performance of the suggested SUR-ridge parameters is the 

strength and type of dependency among the explanatory variables. The explanatory variables 

were generated from a multivariate normal distribution, MVN4(0, Σx). The variance-

covariance matrix Σx is defined as diag(Σx) = 1 and off-diag(Σx)= xρ . The strength of 
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collinearity among these variables took on these values xρ = 0.75, 0.90, 0.97 and 0.99, (for 

moderate to  high collinearity).  

 

The random errors were generate from a multivariate normal distribution MVNM(0, Σe), 

where M = 3, 5, 7, or 10 equations. The variance covariance matrix Σe is defined as diag(Σe) = 

1 and off-diag(Σe) = Σρ . Two different degrees of interdependency among these equations 

were considered. These values are 0.75 and 0.35  =Σρ , for low and high interdependency 

respectively.  

 

A final consideration is the criterion to be used when judging the properties of these 

parameters. In this study we use the same criterion as in AS to compare the performance of 

the SUR-ridge type estimators of the unknown vector parameter B. The criterion proposed to 

measure the goodness of an estimator of B, say B
~

, are the TMSE and the PR criterion. The 

total mean square error is defined as 

 

 TMSE( B
~

) = Trace[ B)' - B
~

B)( - B
~

E( ].                              

 

The PR criterion counts the proportion of replications,(out of 1000), for which the SUR 

version of generalized least square estimator (SGLS) produces a smaller TMSE than the 

remaining multivariate ridge estimators. In Tables 1-8 these numbers are placed in 

parenthesis. The performance of the different SUR ridge estimators, under consideration, are 

examined via Monte Carlo simulations. The Monte Carlo experiment has been performed by 

generating data in accordance with the following equation 

  ∑
=

==+=
5

1j

 tiijtijti M,,2, 1,i T;,2, 1,    t,e  x y LLβ   (26) 

where 1 ti1x = . The explanatory variables are generated from MVN4(0, Σx). The random errors 

were generated from MVNM(0, Σe), M = 3, 5, 7 and 10. For each model we have performed 

1,000 replications using the statistical software S-plus version 6.0.  

 

4. Simulation Results 

In this section we present the results of our Monte Carlo experiment along with the main 

dominating factors affecting the properties of the different multivariate ridge parameters 
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SUR-ridge parameters. Since we are modifying the ridge parameters mentioned in AS, our 

main intention was to compare our results directly with those obtained by AS. However, when 

determining the manner of presentation, some account has to be taken to the results obtained. 

Our study is more extended than that of the AS and hence we will only compare a subset of 

our results that match those in AS (see Tables A1 and A2 in the appendix for 3 and 10 

equations, respectively). Complete results from this study (see Tables 3–6) will be discussed 

thereafter. We as in AS did not find big differences in the results when   0.35 ρΣ = compare 

with when   0.75. ρΣ = We hence only present results for   0.35. ρΣ = We however present, 

in Tables 7 and 8, some results (using our parameters) that match those in AS when 

  0.75. ρΣ = Complete results for all combinations can be ordered from the authors upon 

request. 

 

Now, when comparing our findings with those are in AS, we find that when M, xρ , and Σρ  

increases the TMSE and PR increases, while when T increases the TMSE decreases and PR 

increases.  

 

Moreover, the results in AS show a slight increase in the TMSE values for 

Sarith Sqarith Smax
ˆ ˆ ˆ(R ) ,  (R )  and  (R )α α α  as the sample size increases. Theses multivariate ridge 

regression estimators have shown to have the best performance in terms of TMSE and PR 

criterion when compared with the remaining proposed multivariate ridge regression 

estimators. In our study, we find that almost the same pattern but that the MSmax
ˆ(R )α  is 

superior to the other in terms of TMSE and PR. In large samples and low correlation between 

the explanatory variables the SGLS has shown to have somewhat smaller TMSE. 

 

On the other hand, the multivariate ridge regression estimators based on SKR , SHKR and 

SharmR  have produced the highest TMSE and the worst PR values among other estimators in 

AS. With M = 3 and T = 30, the TMSE for the SKR  and SHKR  could vary between 16 to 

278 for different strength of correlations. When M = 10 and T = 30, the TMSE for the SKR  

and SHKR  vary between 162 to 2715 (see Table A1 and A2 in the appendix). Now when 

using our modified parameters the TMSEs for the MSKR  and MSHKR  only vary between 12 - 
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26. In other words, the TSMEs of these parameters have been considerably modified 

compared with the SKR  and SHKR  in the AS. Moreover, the TMSEs for the MSKR  and 

MSHKR  shown to be very close to the other parameters in the study and accordingly they can 

in fact also be considered as useful parameters in empirical works. Unfortunately, for M = 10 

and T = 10, the TMSEs are not computable and hence we do not comment this case. 

 

The results show that the TMSEs of almost all of the different parameters are considerably 

smaller than those of the SGLS. With high degree of collinearity, small samples and large 

systems, the TMSE of the SGLS can be as high as 7404, while our parameters for the same 

situations produce TMSEs between 89 to 269. However, our main results is that the MSmaxR  

has shown to be superior, in terms of TMSE and PR criterion, when compared with the 

remaining proposed multivariate ridge regression estimators, especially when the sample size 

is small and the strength collinearity is high. In some cases, e.g. large sample and low 

collinearity, the SGLS produces slightly smaller TMSEs than our parameters. Occasionally, 

when the number of equations increases, we can see that the MSarith produces a somewhat 

smaller TMSE than the MSmaxR , but that the differences between them are extremely small. 

 

5.  Concluding Remarks 

In this paper we modify a number of parameters that are developed in Alkhamisi and Shukur 

(2008), AS. The modified parameters are then compared with those in AS in terms of TMSEs 

and PR criteria. The investigation has been done by means of Monte Carlo simulations where 

10 multivariate parameters are studied and compared. This investigation used the TMSE and 

the PR criterion to measure the goodness of SUR ridge-type estimators. The results have 

shown that our new modified ridge parameters produce smaller TMSEs that those mentioned 

in AS. Moreover, some parameters like the MSKR  and MSHKR  have shown to be almost useless 

in the AS, while our modified counterpart proved that they are still useful and produce 

TMSEs that almost lay near to our best parameters. 

 

We as in the AS, find three main factors that affect the properties of the SUR ridge estimators, 

namely, the number of equations, the number of observations per equation and the correlation 

among explanatory variables. It is noticed that the unbiased estimator, SGLS, has occasionally 

(in large sample and low correlation among explanatory variables) shown to have the smallest 
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TMSE when compared with the others. However for high correlation, xρ  and small samples 

the SUR ridge estimators based on MSmaxR  performs better than the remaining estimators.  
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TABLE 3. System-wise estimated TMSEs for the different methods, M =3 equations, ρΣ = 0.35. 

                  T = 10 

ρρρρX SGLS MSK MSHK MSharm MSarith MSgeom MSkmed MSqarith MSqmax MSmax 

0.75 66.42 

 

21.78 

(11.6) 

23.09 

(12.2) 

20.37 

(10.6) 

16.27 

(6.9) 

18.17 

(8.6) 

18.40 

(8.8) 

16.52 

(7.2) 

17.59 

(8.3) 

15.44 

(6.1) 

0.90 169.44 

 

27.17 

(2.4) 

30.07 

(2.7) 

25.86 

(2.2) 

20.08 

(1.4) 

22.45 

(2.1) 

22.67 

(2.0) 

20.20 

(1.5) 

21.47 

(1.8) 

19.04 

(1.3) 

0.97 568.76 

 

33.55 

(0.3) 

39.51 

(0.3) 

33.20 

(0.1) 

24.38 

(0) 

27.66 

(0) 

27.86 

(0.1) 

24.33 

(0) 

25.84 

(0) 

23.14 

(0) 

0.99 1709.22 

 

37.52 

(0) 

47.55 

(0) 

38.83 

(0) 

26.60 

(0) 

30.73 

(0) 

30.79 

(0) 

26.44 

(0) 

28.01 

(0) 

25.38 

(0) 

 

                  T = 20 

ρρρρX SGLS MSK MSHK MSharm MSarith MSgeom MSkmed MSqarith MSqmax MSmax 

0.75 20.04 

 

14.41 

(31.4) 

14.85 

(32.9) 

13.90 

(30.1) 

12.42 

(26.4) 

13.15 

(28.1) 

13.24 

(28.3) 

132.57 

(26.8) 

13.03 

(27.5) 

12.12 

(25.5) 

0.90 46.17 

 

19.78 

(16.9) 

20.74 

(18.2) 

19.21 

(16.3) 

17.15 

(14.3) 

18.07 

(15.0) 

18.22 

(15.4) 

17.25 

(14.4) 

17.78 

(14.9) 

16.84 

(14.1) 

0.97 147.41 

 

25.11 

(2.9) 

27.33 

(3.5) 

24.94 

(2.8) 

21.91 

(2.5) 

23.09 

(2.6) 

23.31 

(2.6) 

21.95 

(2.5) 

22.54 

(2.6) 

21.58 

(2.5) 

0.99 436.53 

 

27.36 

(0.5) 

30.78 

(0.5) 

27.70 

(0.4) 

24.09 

(0.4) 

25.29 

(0.4) 

25.48 

(0.4) 

24.07 

(0.4) 

24.55 

(0.4) 

23.87 

(0.4) 

 

                  T = 30 

ρρρρX SGLS MSK MSHK MSharm MSarith MSgeom MSkmed MSqarith MSqmax MSmax 

0.75 13.39 

 

12.38 

(44.1) 

12.69 

(46.1) 

12.01 

(43.0) 

10.91 

(37.1) 

11.43 

(39.3) 

11.48 

(39.7) 

11.05 

(37.6) 

11.40 

(39.3) 

10.69 

(36.9) 

0.90 28.71 

 

18.72 

(33.0) 

19.32 

(34.4) 

18.22 

(32.1) 

16.75 

(28.6) 

17.40 

(30.7) 

17.50 

(30.7) 

16.84 

(29.1) 

17.25 

(30.2) 

16.52 

(29.7) 

0.97 88.08 

 

23.75 

(7.8) 

25.27 

(8.6) 

23.50 

(7.5) 

21.20 

(6.3) 

22.14 

(7.0) 

22.34 

(7.1) 

21.27 

(6.4) 

21.77 

(6.7) 

20.93 

(6.1) 

0.99 257.64 

 

26.20 

(.5) 

28.71 

(.5) 

26.34 

(.5) 

23.56 

(.4) 

24.53 

(.4) 

24.74 

(.5) 

23.56 

(.4) 

23.99 

(.4) 

23.37 

(.4) 

 

                  T = 50 

ρρρρX SGLS MSK MSHK MSharm MSarith MSgeom MSkmed MSqarith MSqmax MSmax 

0.75 9.08 

 

10.30 

(56.1) 

10.53 

(58.2) 

10.13 

(55.0) 

9.42 

(49.9) 

9.76 

(51.7) 

9.79 

(52.0) 

9.53 

(50.5) 

9.76 

(51.6) 

9.30 

(49.5) 

0.90 17.20 

 

17.06 

(55.9) 

17.4 

(56.6) 

16.68 

(54.5) 

15.57 

(49.9) 

16.07 

(51.8) 

16.15 

(52.7) 

17.69 

(50.3) 

16.00 

(51.4) 

15.43 

(48.9) 

0.97 48.63 

 

22.42 

(18.7) 

23.43 

(19.7) 

22.16 

(18.7) 

20.40 

(16.6) 

21.17 

(17.5) 

21.36 

(18.1) 

20.51 

(16.5) 

20.92 

(17.1) 

20.20 

(16.5) 

0.99 138.39 

 

24.58 

(3.0) 

26.43 

(3.1) 

24.62 

(2.9) 

22.37 

(2.6) 

23.21 

(2.7) 

23.45 

(2.7) 

22.42 

(2.6) 

22.81 

(2.7) 

22.22 

(2.5) 

 

                  T = 100 

ρρρρX SGLS MSK MSHK MSharm MSarith MSgeom MSkmed MSqarith MSqmax MSmax 

0.75 6.29 

 

8.66 

(72.8) 

8.82 

(75.6) 

8.61 

(71.9) 

8.19 

(66.2) 

8.38 

(68.8) 

8.39 

(69.0) 

8.27 

(67.5) 

8.40 

(69.3) 

8.14 

(65.2) 

0.90 9.94 

 

16.31 

(85.6) 

16.55 

(86.2) 

16.05 

(84.5) 

15.23 

(81.2) 

15.60 

(82.3) 

15.63 

(82.4) 

15.35 

(81.2) 

15.59 

(82.3) 

15.13 

(80.5) 

0.97 24.07 

 

21.66 

(49.7) 

22.22 

(52.1) 

21.35 

(48.9) 

19.97 

(45.3) 

20.62 

(46.6) 

20.77 

(47.2) 

20.13 

(45.7) 

20.49 

(46.4) 

19.77 

(44.7) 

0.99 64.41 

 

23.45 

(13.5) 

24.62 

(14.3) 

23.32 

(12.8) 

21.42 

(11.2) 

22.24 

(11.9) 

22.51 

(12.2) 

21.54 

(11.2) 

21.95 

(11.8) 

21.25 

(10.7) 
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TABLE 4. Estimated TMSEs and PRS for the different methods, M = 5 equations, ρρρρΣΣΣΣ = 0.35. 

                  T = 10 

ρρρρX SGLS MSK MSHK MSharm MSarith MSgeom MSkmed MSqarith MSqmax MSmax 

0.75 181.58 

 

56.95 

(1.1) 

63.00 

(1.2) 

52.64 

(0.8) 

38.64 

(0.2) 

45.283 

(0.4) 

45.88 

(0.5) 

39.06 

(0.3) 

42.74 

(0.4) 

35.89 

(0.1) 

0.90 465.51 

 

69.04 

(0.1) 

80.30 

(0.1) 

64.99 

(0.1) 

45.66 

(0.1) 

53.87 

(0.1) 

54.33 

(0.1) 

45.77 

(0.1) 

49.76 

(0.1) 

42.73 

(0.1) 

0.97 1565.88 

 

81.51 

(0) 

101.98 

(0) 

80.13 

(0) 

53.34 

(0) 

63.33 

(0) 

63.56 

(0) 

53.11 

(0) 

57.18 

(0) 

50.34 

(0) 

0.99 4708.47 

 

87.51 

(0) 

118.04 

(0) 

90.84 

(0) 

56.87 

(0) 

68.50 

(0) 

69.01 

(0) 

56.57 

(0) 

60.41 

(0) 

54.23 

(0) 

 

                  T = 20 

ρρρρX SGLS MSK MSHK MSharm MSarith MSgeom MSkmed MSqarith MSqmax MSmax 

0.75 59.50 

 

39.24 

(15.4) 

41.16 

(1775) 

37.61 

(14.1) 

33.26 

(10.1) 

35.34 

(11.5) 

35.64 

(11.9) 

33.50 

(10.1) 

34.78 

(11.3) 

32.63 

(9.9) 

0.90 138.26 

 

47.54 

(1.8) 

50.80 

(1.8) 

45.96 

(1.7) 

40.56 

(1.3) 

42.80 

(1.6) 

43.13 

(1.6) 

40.70 

(1.3) 

41.92 

(1.4) 

39.99 

(1.3) 

0.97 443.46 

 

57.39 

(0) 

63.13 

(0) 

57.01 

(0) 

50.20 

(0) 

52.70 

(0) 

53.02 

(0) 

50.24 

(0) 

51.33 

(0) 

49.76 

(0) 

0.99 1315.05 

 

59.35 

(0) 

67.46 

(0) 

60.47 

(0) 

52.84 

(0) 

55.26 

(0) 

55.48 

(0) 

52.82 

(0) 

53.65 

(0) 

52.61 

(0) 

 

                  T = 30 

ρρρρX SGLS MSK MSHK MSharm MSarith MSgeom MSkmed MSqarith MSqmax MSmax 

0.75 38.45 

 

36.23 

(42.2) 

37.28 

(45.5) 

35.04 

(39.5) 

32.17 

(31.6) 

33.51 

(35.0) 

33.71 

(35.4) 

32.35 

(32.4) 

33.26 

(32.4) 

31.86 

(30.8) 

0.90 82.39 

 

45.77 

(8.9) 

47.78 

(9.8) 

44.37 

(8.2) 

40.74 

(7.6) 

42.21 

(7.9) 

42.46 

(8.0) 

40.84 

(7.5) 

41.70 

(7.8) 

40.51 

(7.5) 

0.97 252.67 

 

54.61 

(0.4) 

58.27 

(0.4) 

54.03 

(0.4) 

49.49 

(0.3) 

51.15 

(0.4) 

51.47 

(0.4) 

49.53 

(0.3) 

50.31 

(0.3) 

49.31 

(0.3) 

0.99 738.94 

 

55.99 

(0) 

61.09 

(0) 

56.42 

(0) 

51.51 

(0) 

53.04 

(0) 

53.30 

(0) 

51.48 

(0) 

52.03 

(0) 

51.50 

(0) 

 

                  T = 50 

ρρρρX SGLS MSK MSHK MSharm MSarith MSgeom MSkmed MSqarith MSqmax MSmax 

0.75 26.17 

 

34.25 

(83.6) 

34.94 

(86.6) 

33.51 

(81.0) 

31.50 

(73.0) 

32.44 

(76.1) 

32.58 

(77.0) 

31.68 

(73.5) 

32.35 

(75.8) 

31.34 

(72.3) 

0.90 49.09 

 

44.22 

(40.2) 

45.50 

(43.1) 

43.09 

(38.2) 

40.36 

(33.3) 

41.49 

(35.5) 

41.74 

(36.0) 

40.48 

(33.8) 

41.17 

(34.6) 

40.27 

(32.8) 

0.97 137.89 

 

52.88 

(2.5) 

55.32 

(2.7) 

52.19 

(2.3) 

48.71 

(2.2) 

50.05 

(2.2) 

50.38 

(2.2) 

48.79 

(2.2) 

49.47 

(2.2) 

48.60 

(2.0) 

0.99 391.48 

 

54.15 

(0) 

57.71 

(0) 

54.24 

(0) 

50.44 

(0) 

51.71 

(0) 

52.03 

(0) 

50.42 

(0) 

50.95 

(0) 

50.43 

(0) 

 

                  T = 100 

ρρρρX SGLS MSK MSHK MSharm MSarith MSgeom MSkmed MSqarith MSqmax MSmax 

0.75 18.58 

 

33.41 

(99.93) 

33.88 

(99.4) 

33.05 

(99.0) 

31.67 

(97.5) 

32.33 

(98.0) 

32.40 

(98.2) 

31.84 

(97.7) 

32.34 

(98.0) 

31.60 

(97.4) 

0.90 28.98 

 

44.19 

(94.9) 

44.95 

(95.8) 

43.34 

(93.4) 

41.19 

(88.2) 

42.11 

(90.7) 

42.31 

(90.9) 

41.35 

(88.9) 

41.98 

(90.2) 

41.11 

(87.7) 

0.97 69.42 

 

52.29 

(25.2) 

53.82 

(27.0) 

51.45 

(24.5) 

48.64 

(21.5) 

49.81 

(22.8) 

50.15 

(23.5) 

48.79 

(21.6) 

49.43 

(22.6) 

48.54 

(21.3) 

0.99 184.90 

 

52.93 

(0.9) 

55.32 

(0.9) 

52.64 

(0.9) 

49.52 

(0.7) 

50.69 

(0.7) 

51.03 

(0.7) 

49.60 

(0.7) 

50.13 

(0.7) 

49.51 

(0.7) 
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TABLE 5. Estimated TMSEs and PRS for the different methods, M = 7 equations, ρρρρΣΣΣΣ = 0.35. 

                  T = 10 

ρρρρX SGLS MSK MSHK MSharm MSarith MSgeom MSkmed MSqarith MSqmax MSmax 

0.75 286.99 

 

100.99 

(0.6) 

113.85 

(0.9) 

93.88 

(0.3) 

66.47 

(0) 

80.26 

(0.1) 

81.42 

(0.1) 

67.07 

(0) 

74.78 

(0) 

60.59 

(0) 

0.90 733.50 

 

127.22 

(0) 

151.80 

(0) 

119.40 

(0) 

77.83 

((0) 

96.56 

(0) 

97.64 

(0) 

77.87 

(0) 

87.07 

(0) 

70.91 

(0) 

0.97 2463.48 

 

160.54 

(0) 

207.34 

(0) 

155.68 

(0) 

90.51 

(0) 

117.13 

(0) 

118.20 

(0) 

90.01 

(0) 

100.77 

(0) 

82.73 

(0) 

0.99 7404.02 

 

184.97 

(0) 

260.99 

(0) 

187.48 

(0) 

96.82 

(0) 

130.12 

(0) 

132.60 

(0) 

96.16 

(0) 

107.16 

(0) 

89.12 

(0) 

 

                  T = 20 

ρρρρX SGLS MSK MSHK MSharm MSarith MSgeom MSkmed MSqarith MSqmax MSmax 

0.75 99.65 

 

66.39 

(10.8) 

70.39 

(13.2) 

63.22 

(8.9) 

54.52 

(6.2) 

58.72 

(7.0) 

59.27 

(7.2) 

54.94 

(6.2) 

57.49 

(7.0) 

53.32 

(5.7) 

0.90 232.36 

 

79.19 

(0.2) 

86.14 

(0.3) 

75.89 

(0.1) 

65.21 

(0.1) 

69.61 

(0.1) 

70.22 

(0.1) 

65.41 

(0.1) 

67.71 

(0.1) 

64.26 

(0.1) 

0.97 746.55 

 

92.80 

(0) 

103.81 

(0) 

91.38 

(0) 

78.96 

(0) 

83.40 

(0) 

83.96 

(0) 

79.04 

(0) 

80.86 

(0) 

78.35 

(0) 

0.99 2214.99 

 

94.34 

(0) 

108.24 

(0) 

95.45 

(0) 

82.51 

(0) 

86.55 

(0) 

86.97 

(0) 

82.49 

(0) 

83.77 

(0) 

82.25 

(0) 

 

                  T = 30 

ρρρρX SGLS MSK MSHK MSharm MSarith MSgeom MSkmed MSqarith MSqmax MSmax 

0.75 65.02 

 

61.74 

(41.4) 

64.20 

(46.1) 

59.55 

(37.1) 

53.84 

(28.5) 

56.60 

(33.0) 

57.03 

(33.2) 

54.17 

(29.1) 

55.96 

(31.6) 

53.28 

(28.0) 

0.90 139.46 

 

75.47 

(4.3) 

79.81 

(5.5) 

73.01 

(4) 

66.05 

(2.9) 

68.90 

(3.5) 

69.45 

(3.4) 

66.21 

(3.0) 

67.77 

(3.1) 

65.74 

(3) 

0.97 427.88 

 

87.84 

(0) 

94.62 

(0) 

86.64 

(0) 

78.86 

(0) 

81.62 

(0) 

82.13 

(0) 

78.89 

(0) 

80.08 

(0) 

78.75 

(0) 

0.99 1251.55 

 

88.96 

(0) 

97.61 

(0) 

89.50 

(0) 

81.53 

(0) 

83.96 

(0) 

84.35 

(0) 

81.47 

(0) 

82.27 

(0) 

81.66 

(0) 

 

                  T = 50 

ρρρρX SGLS MSK MSHK MSharm MSarith MSgeom MSkmed MSqarith MSqmax MSmax 

0.75 43.72 

 

58.38 

(91.0) 

59.81 

(92.8) 

56.96 

(87.8) 

53.24 

(77.1) 

55.00 

(88.2) 

55.30 

(83.4) 

53.50 

(78.8) 

54.74 

(81.6) 

53.07 

(76.2) 

0.90 82.57 

 

74.05 

(135.8) 

76.70 

(39.8) 

72.06 

(33.5) 

67.24 

(26.7) 

69.21 

(28.8) 

69.66 

(29.7) 

67.39 

(26.8) 

68.59 

(28.2) 

67.21 

(27.0) 

0.97 233.13 

 

84.77 

(0.5) 

88.99 

(0.7) 

83.44 

(0.5) 

78.11 

(0.5) 

80.00 

(0.5) 

80.53 

(0.5) 

78.14 

(0.5) 

79.05 

(0.5) 

78.22 

(0.5) 

0.99 663.12 

 

85.18 

(0) 

90.75 

(0) 

85.15 

(0) 

79.67 

(0) 

81.37 

(0) 

81.81 

(0) 

79.62 

(0) 

80.25 

(0) 

79.96 

(0) 

 

                  T = 100 

ρρρρX SGLS MSK MSHK MSharm MSarith MSgeom MSkmed MSqarith MSqmax MSmax 

0.75 31.04 

 

58.45 

(99.6) 

59.31 

(99.7) 

57.71 

(99.6) 

55.22 

(98.7) 

56.44 

(99.2) 

56.62 

(99.2) 

55.47 

(98.9) 

56.40 

(99.3) 

55.17 

(98.7) 

0.90 48.49 

 

73.55 

(96.5) 

75.16 

(97.7) 

72.10 

(95.2) 

68.35 

(91.3) 

69.99 

(93.8) 

70.39 

(94.1) 

68.58 

(91.7) 

69.67 

(93.5) 

68.36 

(91.5) 

0.97 116.18 

 

83.51 

(15.7) 

86.36 

(17.9) 

82.10 

(15.3) 

77.66 

(12.4) 

79.40 

(13.8) 

79.94 

(14.3) 

77.81 

(12.5) 

78.75 

(13.3) 

77.70 

(12.2) 

0.99 309.51 

 

83.85 

(0) 

87.62 

(0) 

83.24 

(0) 

78.84 

(0) 

80.36 

(0) 

80.84 

(0) 

78.86 

(0) 

97.53 

(0) 

79.06 

(0) 
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TABLE 6. Estimated TMSEs and PRS for the different methods, M = 10 equations, ρρρρΣΣΣΣ = 0.35. 

 

                  T = 20 

ρρρρX SGLS MSK MSHK MSharm MSarith MSgeom MSkmed MSqarith MSqmax MSmax 

0.75 161.86 

 

111.36 

(7.0) 

120.39 

(10.4) 

105.75 

(5.1) 

88.30 

(2.6) 

97.06 

(3.5) 

98.09 

(3.5) 

89.05 

(2.6) 

94.34 

(3.3) 

85.69 

(2.2) 

0.90 378.77 

 

134.00 

(0.1) 

150.34 

(0.2) 

127.95 

(0.1) 

105.15 

(0.1) 

114.86 

(0.1) 

115.99 

(0.1) 

105.54 

(0.1) 

110.47 

(0.1) 

103.15 

(0.1) 

0.97 1219.32 

 

152.59 

(0) 

177.53 

(0) 

149.37 

(0) 

123.62 

(0) 

132.80 

(0) 

133.80 

(0) 

123.75 

(0) 

127.43 

(0) 

122.37 

(0) 

0.99 3619.82 

 

153.30 

(0) 

183.39 

(0) 

154.26 

(0) 

128.23 

(0) 

136.30 

(0) 

137.21 

(0) 

128.20 

(0) 

130.70 

(0) 

127.65 

(0) 

 

                  T = 30 

ρρρρX SGLS MSK MSHK MSharm MSarith MSgeom MSkmed MSqarith MSqmax MSmax 

0.75 106.38 

 

100.95 

(39.7) 

106.17 

(47.5) 

97.04 

(33.5) 

86.31 

(22.1) 

91.53 

(26.9) 

92.26 

(27.5) 

86.81 

(22.8) 

90.18 

(25.8) 

85.31 

(21.3) 

0.90 230.55 

 

122.99 

(1.7) 

132.53 

(2.2) 

118.58 

(1.4) 

105.05 

(1.0) 

110.58 

(1.1) 

111.51 

(1.1) 

105.33 

(1.0) 

108.29 

(110) 

104.58 

(1.0) 

0.97 711.65 

 

140.70 

(0) 

154.75 

(0) 

138.13 

(0) 

123.89 

(0) 

128.68 

(0) 

129.55 

(0) 

123.95 

(0) 

125.93 

(0) 

123.84 

(0) 

0.99 2085.61 

 

140.40 

(0) 

156.71 

(0) 

140.58 

(0) 

127.01 

(0) 

130.86 

(0) 

131.58 

(0) 

126.93 

(0) 

128.09 

(0) 

127.39 

(0) 

 

                  T = 50 

ρρρρX SGLS MSK MSHK MSharm MSarith MSgeom MSkmed MSqarith MSqmax MSmax 

0.75 70.94 

 

97.05 

(94.4) 

100.07 

(96.1) 

94.54 

(92.3) 

87.77 

(81.8) 

91.06 

(88.8) 

91.59 

(89.5) 

88.16 

(82.6) 

90.46 

(87.5) 

87.53 

(81.1) 

0.90 134.69 

 

120.05 

(31.1) 

125.64 

(38.3) 

116.74 

(27.6) 

107.99 

(19.9) 

111.55 

(22.9) 

112.32 

(23.6) 

108.16 

(20.1) 

110.27 

(21.9) 

108.12 

(20.5) 

0.97 381.78 

 

134.82 

(0) 

143.39 

(0) 

132.53 

(0) 

123.44 

(0) 

126.46 

(0) 

127.24 

(0) 

123.43 

(0) 

124.79 

(0) 

123.85 

(0) 

0.99 1087.44 

 

134.97 

(0) 

144.97 

(0) 

134.61 

(0) 

126.07 

(0) 

128.45 

(0) 

129.09 

(0) 

125.92 

(0) 

126.70 

(0) 

126.76 

(0) 

 

                  T = 100 

ρρρρX SGLS MSK MSHK MSharm MSarith MSgeom MSkmed MSqarith MSqmax MSmax 

0.75 50 

 

97.98 

(99.9) 

99.58 

(100) 

96.57 

(99.9) 

92.13 

(99.7) 

94.36 

(99.9) 

94.72 

(99.9) 

92.50 

(99.8) 

94.19 

(99.8) 

92.18 

(99.7) 

0.90 78.63 

 

120.66 

(98.8) 

123.95 

(99.3) 

118.23 

(99.9) 

111.74 

(94.3) 

114.57 

(96.4) 

115.30 

(96.8) 

111.99 

(94.4) 

113.88 

(96.0) 

111.98 

(94.2) 

0.97 189.73 

 

132.88 

(0) 

138.56 

(0) 

130.54 

(0) 

123.32 

(0) 

125.92 

(0) 

126.76 

(0) 

123.35 

(0) 

124.70 

(0) 

123.80 

(0) 

0.99 507.02 

 

133.04 

(0) 

139.79 

(0) 

131.94 

(0) 

125.22 

(0) 

127.30 

(0) 

128.00 

(0) 

125.10 

(0) 

125.97 

(0) 

125.92 

(0) 

* Na, means that the results are not computable for ten equations when we only have ten observations. 
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TABLE 7. System-wise estimated TMSEs for the different methods, M =3 equations, ρρρρΣΣΣΣ = 0.75. 

                 T = 30, ρρρρΣΣΣΣ = 0.75 

ρρρρX SGLS MSK MSHK MSharm MSarith MSgeom MSkmed MSqarith MSqmax MSmax 

0.75 12.98 

 

13.77 

(52.5) 

14.09 

(53.7) 

13.34 

(50.9) 

11.94 

(45.8) 

12.56 

(48.2) 

12.63 

(48.3) 

12.15 

(46.6) 

12.50 

(48.0) 

11.78 

(45.6) 

0.90 27.63 

 

18.31 

(72.2) 

18.81 

(82.8) 

17.76 

(36.1) 

16.37 

(43.3) 

16.87 

(29.3) 

16.99 

(29.8) 

16.45 

(36) 

16.75 

(30.6) 

16.34 

(51.9) 

0.97 84.4 

 

19.59 

(40.1) 

20.75 

(57.6) 

19.26 

(6.1) 

17.43 

(8.6) 

18.07 

(4.41) 

18.27 

(4.4) 

17.48 

(6.8) 

17.80 

(4.8) 

17.40 

(12.1) 

0.99 246.5 

 

21.96 

(25.9) 

23.98 

(40) 

22.11 

(1.0) 

19.70 

(0.9) 

20.50 

(0.6) 

20.76 

(0.6) 

19.73 

(0.6) 

20.05 

(0.6) 

19.68 

(1.8) 

                  T = 100, ρρρρΣΣΣΣ = 0.75 

ρρρρX SGLS MSK MSHK MSharm MSarith MSgeom MSkmed MSqarith MSqmax MSmax 

0.75 6.12 

 

13.10 

(89.6) 

13.30 

(90.8) 

13.03 

(89.3) 

12.46 

(86.3) 

12.68 

(87.3) 

12.71 

(87.5) 

12.55 

(86.8) 

12.70 

(87.4) 

12.45 

(85.9) 

0.90 9.47 

 

20.45 

(94.4) 

20.68 

(94.9) 

20.16 

(93.8) 

19.21 

(91.3) 

19.57 

(92.5) 

19.65 

(93.1) 

19.31 

(91.6) 

19.54 

(92.4) 

19.21 

(91.1) 

0.97 22.46 

 

18.10 

(43.6) 

18.53 

(45.6) 

17.75 

(42.9) 

16.64 

(39.6) 

17.05 

(40.8) 

17.22 

(41.8) 

16.71 

(40.0) 

16.94 

(40.6) 

16.63 

(39.4) 

0.99 59.54 

 

20.78 

(11.3) 

21.63 

(11.7) 

20.59 

(11.0) 

19.06 

(9.6) 

19.67 

(10.6) 

19.92 

(10.8) 

19.16 

(9.9) 

19.43 

(10.1) 

19.02 

(29.6) 

 

 

TABLE 8. Estimated TMSEs and PRS for the different methods, M = 10 equations, ρρρρΣΣΣΣ = 0.75. 

                 T = 30, ρρρρΣΣΣΣ = 0.75 

ρρρρX SGLS MSK MSHK MSharm MSarith MSgeom MSkmed MSqarith MSqmax MSmax 

0.75 104.38 

 

106.39 

(51.3) 

111.53 

(62.1) 

102.55 

(44.7) 

92.12 

(31.6) 

96.91 

(36.4) 

97.69 

(37.6) 

92.98 

(31.8) 

95.58 

(34.8) 

91.56 

(30.8) 

0.90 225.54 127.39 

(2.1) 

136.62 

(3.1) 

122.92 

(1.7) 

110.14 

(1.3) 

114.90 

(1.5) 

115.87 

(1.5) 

110.30 

(1.3) 

112.80 

(1.5) 

110.15 

(1.5) 

0.97 695.00 

 

132.97 

(0) 

146.05 

(0) 

130.07 

(0) 

117.36 

(0) 

121.11 

(0) 

121.98 

(0) 

117.31 

(0) 

118.76 

(0) 

117.74 

(0) 

0.99 2035.7 

 

139.54 

(0) 

154.68 

(0) 

139.50 

(0) 

126.98 

(0) 

130.30 

(0) 

130.95 

(0) 

126.85 

(0) 

127.78 

(0) 

127.64 

(0) 

                  T = 100, ρρρρΣΣΣΣ = 0.75 

ρρρρX SGLS MSK MSHK MSharm MSarith MSgeom MSkmed MSqarith MSqmax MSmax 

0.75 49.28 

 

115.87 

(100) 

117.38 

(100) 

114.51 

(100) 

110.41 

(100) 

112.33 

(100) 

112.72 

(100) 

110.71 

(100) 

112.23 

(100) 

110.78 

(100) 

0.90 76.98 

 

140.38 

(99.7) 

143.50 

(99.8) 

138.02 

(99.6) 

132.09 

(98.3) 

134.37 

(99.0) 

135.16 

(99.1) 

132.16 

(98.4) 

133.73 

(98.7) 

132.82 

(98.6) 

0.97 184.40 

 

133.06 

(9.0) 

138.03 

(11.8) 

130.65 

(8.8) 

124.82 

(7.9) 

126.42 

(8.1) 

127.16 

(8.1) 

124.63 

(7.9) 

125.51 

(8.0) 

125.81 

(8.2) 

0.99 491.17 

 

138.60 

(0) 

144.50 

(0) 

137.39 

(0) 

131.93 

(0) 

133.23 

(0) 

133.78 

(0) 

131.65 

(0) 

132.20 

(0) 

133.00 

 (0) 
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Appendix 

 

   TABLE A1. System-wise estimated TMSEs for the different methods, M =3 equations. 

                  T = 30, ρρρρΣΣΣΣ = 0.35 

ρρρρX SGLS SK SHK Sharm Sarith Sgeom Skmed Sqarith Sqmax Smax 

0.75 13.39 

 

15.82 

(62) 

17.25 

(71.5) 

12.79 

(45.4) 

14.50 

(56.5) 

10.70 

(37.3) 

10.80 

(37.5) 

12.25 

(46.1) 

10.83 

(37.9) 

18.09 

(73.6) 

0.90 28.71 

 

34.18 

(69) 

37.37 

(80.2) 

22.08 

(37.3) 

20.09 

(38.2) 

16.71 

(28.1) 

17.03 

(29.7) 

18.08 

(32.8) 

16.75 

(28.9) 

23.86 

(48.8) 

0.97 88.08 

 

92.55 

(44.5) 

103.96 

(61.5) 

41.76 

(10.2) 

23.93 

(8.4) 

21.96 

(6.6) 

23.02 

(7.3) 

22.25 

(7) 

21.19 

(6.3) 

27.77 

(11.4) 

0.99 257.64 

 

242.14 

(25.5) 

277.65 

(42.2) 

85.32 

(1.0) 

26.26 

(.5) 

25.89 

(.4) 

27.74 

(.5) 

24.74 

(.4) 

23.68 

(.4) 

30.11 

(1.2) 

                  T = 100, ρρρρΣΣΣΣ = 0.35 

ρρρρX SGLS SK SHK Sharm Sarith Sgeom Skmed Sqarith Sqmax Smax 

0.75 6.29 

 

8.79 

(74.9) 

9.47 

(84.2) 

8.52 

(70.6) 

13.19 

(91.3) 

8.33 

(68.1) 

8.32 

(67.9) 

9.89 

(79.7) 

8.36 

(67.7) 

17.13 

(98.6) 

0.90 9.94 

 

18.65 

(92.7) 

19.85 

(95.2) 

16.35 

(86.2) 

19.49 

(90) 

15.17 

(80.1) 

15.23 

(80.4) 

16.63 

(84.1) 

15.28 

(80.9) 

23.67 

(95.6) 

0.97 24.07 

 

35.01 

(91.6) 

38.18 

(96.7) 

24.21 

(55.6) 

23.52 

(56.9) 

19.86 

(44.8) 

20.29 

(46.4) 

20.99 

(48.1) 

19.86 

(44.7) 

27.70 

(67.8) 

0.99 64.41 

 

68.15 

(48.8) 

77.73 

(70.4) 

34.16 

(16.7) 

24.8 

(14.3) 

21.72 

(11.4) 

22.93 

(12.6) 

22.53 

(11.8) 

21.42 

(11) 

28.94 

(21.2) 

 

                 T = 30, ρρρρΣΣΣΣ = 0.75 

ρρρρX SGLS SK SHK Sharm Sarith Sgeom Skmed Sqarith Sqmax Smax 

0.75 12.98 

 

17.97 

(71.4) 

19.62 

(81.7) 

14.43 

(54.5) 

16.89 

(69.4) 

11.79 

(46.3) 

11.90 

(45.9) 

14.21 

(58.4) 

12.07 

(47.3) 

19.39 

(79.3) 

0.90 27.63 

 

33.59 

(72.2) 

36.80 

(82.8) 

21.62 

(36.1) 

21.86 

(43.3) 

16.42 

(29.3) 

16.62 

(29.8) 

19.05 

(36) 

16.76 

(30.6) 

25.18 

(51.9) 

0.97 84.4 

 

86.03 

(40.1) 

97.34 

(57.6) 

36.23 

(6.1) 

22.63 

(8.6) 

17.69 

(4.41) 

18.59 

(4.4) 

20.03 

(6.8) 

17.67 

(4.8) 

26.37 

(12.1) 

0.99 246.5 

 

240.75 

(25.9) 

275.76 

(40) 

78.75 

(1.0) 

24.83 

(0.9) 

20.75 

(0.6) 

22.62 

(0.6) 

22.32 

(0.6) 

20.04 

(0.6) 

28.78 

(1.8) 

                  T = 100, ρρρρΣΣΣΣ = 0.75 

ρρρρX SGLS SK SHK Sharm Sarith Sgeom Skmed Sqarith Sqmax Smax 

0.75 6.12 

 

13.41 

(89.9) 

14.23 

(94.6) 

13.0 

(88.8) 

19.57 

(98.6) 

12.90 

(89) 

12.93 

(88.9) 

15.36 

(94.1) 

12.99 

(88.9) 

22.13 

(100) 

0.90 9.47 

 

22.78 

(98) 

24.00 

(98.6) 

20.48 

(94.9) 

26.49 

(97.5) 

19.46 

(91.6) 

19.47 

(92) 

22.15 

(95) 

19.73 

(92) 

29.93 

(98.9) 

0.97 22.46 

 

30.38 

(87.1) 

33.57 

(94.5) 

20.29 

(47.5) 

23.29 

(60.8) 

16.68 

(39.4) 

16.95 

(40.4) 

19.31 

(49.3) 

17.07 

(40.7) 

27.22 

(70.9) 

0.99 59.54 

 

61.96 

(45) 

70.58 

(64.4) 

29.82 

(13.4) 

25.27 

(18) 

19.14 

(9.6) 

20.05 

(10.7) 

21.49 

(12.8) 

19.37 

(9.8) 

29.39 

(24.3) 
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TABLE A2. Estimated TMSEs and PRS for the different methods, M = 10 equations. 

                  T = 30, ρρρρΣΣΣΣ = 0.35 

ρρρρX SGLS SK SHK Sharm Sarith Sgeom Skmed Sqarith Sqmax Smax 

0.75 106.38 

 

162.42 

(96.6) 

185.13 

(99.7) 

115.58 

(64.1) 

92.18 

(29.8) 

86.32 

(22) 

87.99 

(23.6) 

89.83 

(26.4) 

85.65 

(21.5) 

97.65 

(36.1) 

0.90 230.55 

 

329.52 

(92.9) 

395.34 

(99.4) 

191.99 

(16) 

111.77 

(1.3) 

107.55 

(1.1) 

111.54 

(1.1) 

109.53 

(1.3) 

104.84 

(1.0) 

118.08 

(1.6) 

0.97 711.65 

 

961.41 

(80.2) 

1200.08 

(97.9) 

436.79 

(1.7) 

130.63 

(0) 

131.63 

(0) 

140.2 

(0) 

128.62 

(0) 

124.01 

(0) 

137.41 

(0) 

0.99 2085.61 

 

2715.25 

(69.4) 

3452.26 

(95.5) 

1086.54 

(0.9) 

134.33 

(0) 

142.79 

(0) 

156.44 

(0) 

132.42 

(0) 

127.41 

(0) 

141.19 

(0) 

                  T = 100, ρρρρΣΣΣΣ = 0.35 

ρρρρX SGLS SK SHK Sharm Sarith Sgeom Skmed Sqarith Sqmax Smax 

0.75 50 

 

104.75 

(100) 

11.47 

(100) 

96.13 

(99.9) 

104.04 

(100) 

92.29 

(99.7) 

92.02 

(99.8) 

99.87 

(99.9) 

92.93 

(99.8) 

109.14 

(100) 

0.90 78.63 

 

153.87 

(100) 

171.89 

(100) 

125.30 

(99.6) 

123.60 

(97.9) 

111.56 

(94.3) 

112.16 

(94.8) 

119.58 

(97) 

112.60 

(94.3) 

129.33 

(98.9) 

0.97 189.73 

 

280.26 

(99) 

344.85 

(100) 

171.97 

(25.2) 

134.43 

(10.8) 

123.59 

(5.0) 

126.14 

(5.3) 

130.78 

(8.8) 

124.31 

(5.5) 

140.26 

(13.3) 

0.99 507.02 

 

608.99 

(70.2) 

808.13 

(98.2) 

270.10 

(0) 

136.45 

(0) 

126.72 

(0) 

131.04 

(0) 

132.95 

(0) 

126.31 

(0) 

142.61 

(0) 

 

                 T = 30, ρρρρΣΣΣΣ = 0.75 

ρρρρX SGLS SK SHK Sharm Sarith Sgeom Skmed Sqarith Sqmax Smax 

0.75 104.38 

 

168.32 

(98.9) 

191.13 

(99.9) 

120.98 

(76.7) 

99.02 

(42.4) 

91.92 

(31) 

93.37 

(32.6) 

96.64 

(39.8) 

91.89 

(30.8) 

103.28 

(47.7) 

0.90 225.54 334.65 

(96.3) 

400.03 

(99.6) 

195.89 

(20.2) 

118.54 

(2.3) 

111.68 

(1.3) 

115.34 

(1.4) 

115.99 

(2.1) 

110.41 

(1.5) 

123.93 

(3.1) 

0.97 695.00 

 

921.35 

(77.0) 

1157.39 

(98.3) 

418.31 

(1.4) 

125.64 

(0) 

122.82 

(0) 

130.63 

(0) 

123.30 

(0) 

117.87 

(0) 

131.62 

(0) 

0.99 2035.7 

 

2643.89 

(69.1) 

3366.75 

(95.6) 

1051.46 

(0.8) 

135.62 

(0) 

139.28 

(0) 

149.91 

(0) 

133.36 

(0) 

127.61 

(0) 

141.87 

(0) 

                  T = 100, ρρρρΣΣΣΣ = 0.75 

ρρρρX SGLS SK SHK Sharm Sarith Sgeom Skmed Sqarith Sqmax Smax 

0.75 49.28 

 

122.15 

(100) 

128.64 

(100) 

113.80 

(100) 

125.42 

(100) 

111.38 

(100) 

110.75 

(100) 

120.51 

(100) 

111.88 

(100) 

129.77 

(100) 

0.90 76.98 

 

171.86 

(100) 

189.41 

(100) 

144.22 

(99.9) 

147.17 

(99.6) 

132.31 

(98.3) 

132.41 

(98.5) 

142.47 

(99.6) 

133.95 

(98.7) 

152.08 

(99.6) 

0.97 184.40 

 

270.62 

(99.3) 

332.40 

(99.9) 

168.34 

(29.4) 

139.11 

(16.5) 

124.72 

(7.8) 

126.23 

(7.9) 

134.82 

(13.7) 

126.67 

(9) 

144.77 

(20.4) 

0.99 491.17 

 

595.46 

(69.7) 

786.30 

(97.9) 

266.41 

(0) 

145.98 

(0) 

132.40 

(0) 

135.28 

(0) 

141.65 

(0) 

133.72 

(0) 

151.80 

 (0) 

  

 

 

 


