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1 Introduction

No one doubts that the concepts of integration and cointegration have been and still are very

useful in time series econometrics. The former by producing a single parameter that was able to

summarize the long-memory properties of a given time series. The latter by linking the existence of

common trends to long-run linear equilibrium relationships. Thanks, amongst others, to the work

by Dickey and Fuller (1979), Nelson and Plosser (1982), Phillips (1986), Engle and Granger (1987)

and Johansen (1991), these two concepts are easily handled theoretically as well as empirically.

In parallel, non-linear time series models from a stationary perspective were introduced in the

literature —see Granger and Teräsvirta (1993), Franses and van Dijk (2000), Fan and Yao (2003),

and Teräsvirta, Tjφstheim and Granger (2011) for some overviews. The introduction of persistent

variables into non-linear models —see Park and Phillips (1999, 2001), de Jong and Wang (2005) or

Pötscher (2004) for the study of transformations of integrated processes—produced a natural query:

Which is the order of integration of these non-linear transformations? Such a question does not

have a clear answer since the existing definitions of integrability do not properly apply. Integration

is a linear concept.

This lack of definition has at least two important worrying consequences. First, in univariate

terms, it implies that an equivalent synthetic measure of the stochastic properties of the time series,

such as the order of integration, is not available to characterize non-linear time series. This does not

only affect econometricians, but also economic theorists who cannot neglect important properties

of actual economic variables when choosing functional forms to construct their theories. Second,

from a multivariate perspective, it becomes troublesome to determine whether a non-linear model is

balanced or not. Unbalanced equations are related to the familiar problem of misspecification, which

is greatly enhanced when managing non-linear functions of variables having a persistence property.

In linear setups, the concept of integrability did a good job dealing with balanced/unbalanced

relations. However, in non-linear frameworks, the nonexistence of a synoptic quantitative measure

makes it diffi cult to check the balancedness of a postulated model.

Additionally, this implies that a definition for non-linear co-integration is diffi cult to be obtained

from the usual concept of integrability. To clarify this point, suppose yt = f (xt, θ) + ut, where

xt ∼ I(1), ut ∼ I(0). For f(·) non-linear, the order of integration of f (xt, θ), and hence that of yt,

may not be properly defined implying that the standard concept of co-integration is diffi cult to be

applied. In fact, the literature on non-linear cointegration —see Park and Phillips (2001), Karlsen,

Myklebust and Tjφstheim (2007), Wang and Phillips (2009)—undertakes the whole analysis assuming

the existence of a long-run relationship; something that should be tested in practice.

It was already stated in Granger and Hallman (1991) that a generalization of linear co-integration

to a non-linear setup goes through proper extensions of the linear concepts of I(0) and I(1). This

has led some authors to introduce alternative definitions. For instance, Granger (1995) proposed
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the concepts of Extended and Short Memory in Mean. However, these concepts are neither easy

to calculate nor general enough to handle some types of non-linear long run relationships. And,

furthermore, a measure of the order of the Extended memory is not available. Dealing with thresh-

old effects in co-integrating regressions, Gonzalo and Pitarakis (2006) faced these problems and

proposed, in a very heuristic way, the concept of summability (a re-scaled partial sum of the process

being Op(1)). However, they did not emphasize the avail of such an idea.

In this paper, we define summability properly and show its usefulness and generality. Specif-

ically, we put forward several relevant examples in which the order of integrability is diffi cult to

be established, but the order of summability can be easily determined. Moreover, we show that

integrated time series are particular cases of summable processes, in the sense that the order of

summability is the same as the order of integration. Hence, summability is a generalization of inte-

grability. Furthermore, summability does not only characterize some properties of univariate time

series, but also allows to easily study the balancedness of a postulated relationship —linear or not.

And maybe more important, non-linear long run equilibrium relationships between non-stationary

time series can be properly defined. In particular, the concept of co-summability, which can be

applied to extend co-integration to non-linear frameworks, is being developed by the authors in

Berenguer-Rico and Gonzalo (2011).

To make this concept empirically operational, we propose a statistical procedure to estimate and

carry out inferences on the order of summability of an observed time series. This makes useful the

concept of summability not only in theory but also in practice. To estimate the order of summability,

we use an estimator introduced by McElroy and Politis (2007) to analyze the rate of convergence

of an statistic and is based on a simple least squares regression. The inference on the true order

of summability is based on the subsampling methodology developed in Politis, Romano and Wolf

(1999). It is shown, by simulations, that the subsampling machinery works reasonably well in finite

samples given the generality of the approach. Finally, the proposed methodology is used to estimate

the order of summability of the macroeconomic time series in an extended version of Nelson-Plosser

database.

The paper is organized as follows. In the next section, the problems of using the order of

integration to characterize non-linear processes are highlighted. In section 3, our proposed solution

based on summability is described and its simple applicability showed. Section 4 describes the

statistical tools —estimation and inference—to empirically deal with summable processes. In Section

5, an empirical application shows how to determine the order of summability in practice. Finally,

Section 6 is devoted to some concluding remarks. All proofs are collected in the Appendix.

A word on notation. We use the symbol “=⇒”to signify convergence in distribution and weak

convergence indistinctly, “
p−→”to signify convergence in probability. Stochastic processes such as

the standard Brownian motion W (r) are defined on [0, 1]. Finally, all limits given in the paper are
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taken as the sample size n→∞.

2 Order of Integration and Non-linear Processes

2.1 Order of Integration

Definition 1 : A time series yt is called an integrated process of order d (in short, an I(d) process)

if the time series of dth order differences ∆dyt is I(0).

A natural question that arises after reading this definition is: and what is an I(0) process?

Attempts to give a formal description of I(0) processes exist in the literature. Engle and Granger

(1987) give the following characterization.

Engle and Granger (EG) Characterization: If yt ∼ I(0) with zero mean then (i) the

variance of yt is finite; (ii) an innovation has only a temporary effect on the value of yt; (iii) the

spectrum of yt, f(ω), has the property 0 < f(0) < ∞; (iv) the expected length of time between

crossing of x = 0 is finite; (v) the autocorrelations, ρk, decrease steadily in magnitude for large

enough k, so that their sum is finite.

Other characterizations have been used as well. Granger (1995) and Johansen (1995) used

autoregressive and moving average representations, respectively. Müller (2008) and Davidson (2009)

—among others—define an I(0) as a process that satisfy the functional central limit theorem (FCLT).

These latter definitions share the same spirit of our summability definition in Section 3. Nevertheless,

in all cases, differences must be taken to discover the order of integration and the intrinsic linearity of

the difference operator makes it diffi cult, if not impossible, to characterize —among others—non-linear

processes. Integration is a linear concept.

2.2 Examples

Example 1 : Alpha Stable i.i.d. Distributed Processes

Let yt be i.i.d. from some distribution F ∈ D (α), where D (α) denotes the domain of attraction

of an α-stable law with α ∈ (0, 2]. yt is strictly stationary; however, its second moments may not

exist. The fact that such a process is i.i.d. could incline to think that this process is I(0). However,

if second moments do not exist, EG Characterization does not apply. Characterizations based on

the FCLT could not be used either since they assume a standard Brownian motion in the limit.

Hence, it becomes troublesome to establish the order of integration of yt.

Example 2 : An i.i.d. plus a Random Variable

Consider the following process

yt = z + et, (1)
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where z ∼ N(0, σ2
z) and et ∼ i.i.d.(0, σ2

e) are independent of each other. This process has the

following properties

(i) E[yt] = 0

(ii) V [yt] = σ2
z + σ2

e

(iii) γy(k) = Cov(yt, yt−k) = σ2
z for all k > 0.

Since it is a strictly stationary process, one could think that it is I(0). However, the autocovari-

ance function is not absolutely summable and its spectrum does not satisfy the required condition

in EG Characterization1. If yt is not I(0), to attach any other order of integration to this stochastic

process is not obvious. It is controversial to say yt is I(1) since ∆yt = ∆et is generally understood

as an I(−1); and it becomes diffi cult to choose any other number using the above definition of order

of integration.

Dealing with non-linear processes similar problems are faced.

Example 3 : Product of i.i.d. and Random Walk

Let

wt = πtηt, (2)

where ηt ∼ i.i.d. (0, 1) and

πt = πt−1 + εt, (3)

with π0 = 0 and εt ∼ i.i.d.(0, σ2
ε) independent of ηt. Some properties of wt are

(i) E[wt] = 0

(ii) V [wt] = σ2
εt

(iii) γw(h) = E[wtwt−h] = 0.

It is not obvious to attach an order of integration to this process. On one hand, the uncorrelation

property (iii) could incline to think that wt is I(0). However, an I(0) cannot have a trend in the

variance according to EG Characterization. On the other hand, this unbounded variance could

induce to suspect that the process is I(1). Nevertheless, its first difference

∆wt = πtηt − πt−1ηt−1,

cannot be I(0) since, again,

V [∆wt] = E[(πtηt)
2] + E[(πt−1ηt−1)2]− 2E[πtπt−1ηtηt−1] = (2t− 1)σ2

ε.

1The autocovariance of the process in this example can be expressed as

γ(h) =

∫ π

−π
eihλ

[
σ2z + σ2e
2π

+
σ2z
π

∞∑
h=1

cos(λh)

]
dλ.

Then, the spectral density is

f(λ) =
σ2z + σ2e
2π

+
σ2z
π

∞∑
h=1

cos(λh),

which diverges for all λ.
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This means that wt cannot be I(1). It cannot be I(2) either, since the variance of the second

difference is

V [∆2wt] = E[(πtηt)
2] + 4E[(πt−1ηt−1)2] + E[(πt−2ηt−2)2] = 6(t− 1)σ2

ε.

In fact, this process can be considered to be I (∞), in the sense that, the variance of ∆dwt depends

on t regardless of the value of d —see Yoon (2005).

As pointed out by Granger (1995), non-linear transformations of highly heterogeneous or volatile

processes, although uncorrelated, can induce high correlations. This can be seen by analyzing

qt = πtη
2
t , (4)

where πt and ηt are defined as before. The only difference is that now the i.i.d. sequence, η2
t , is

always positive. However, in this case,

E[qt] = E[πtη
2
t ] = 0,

V [qt] = E[q2
t ] = E[π2

t η
4
t ] = E[π2

t ]E[η4
t ] = tσ2

εµ4,

and

γq(h) = E[qtqt−h] = E[πtπt−hη
2
t η

2
t−h] = E[πtπt−h]E[η2

t η
2
t−h] = (t− h)σ2

εσ
4
η,

where µ4 = E[η4
t ]. Now, both variance and covariance depend on time. Hence, it can be seen how

non-linear transformations of highly heterogenous processes can have an important impact on its

stochastic properties. This impact will be hardly contemplated by the order of integration.

Example 4 : Square of a Random Walk

Consider now the square of the random walk defined in equation (3),

π2
t = π2

t−1 + 2πt−1εt + ε2
t . (5)

To establish the order of integration of this process is again not an obvious task. Granger (1995)

considers that π2
t can be seen as a random walk with drift, hence, one could think that π2

t is I(1).

However,

V [π2
t − π2

t−1] = E[ε4
t ] + 4(t− 1)σ4

ε − σ4
ε.

Again EG Characterization cannot be applied to ∆π2
t or ∆dπ2

t .

Example 5 : Product of Indicator Function and Random Walk

Let

ht = 1(vt ≤ γ)πt, (6)
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where vt is i.i.d. (0, 1), 1(·) is the indicator function, and πt is the random walk defined in (3). The

variance and autocovariances of ht depend on time, hence, one would think that it is I(1). However,

again, the variance of the first difference

V [∆ht] = V [1(vt ≤ γ)πt − 1(vt−1 ≤ γ)πt−1] = [2p(1− p)σ2
ε]t+ p(2p− 1)σ2

ε,

where p = Pr (vt ≤ γ). In fact, it can be considered, once again, that ht ∼ I (∞).

Example 6 : Park and Phillips (1999, 2001)

Similar incongruities to those encountered in previous examples appear when dealing with the

non-linear transformations of I(1) processes studied in Park and Phillips (1999, 2001); for instance,

e−π
2
t , 1/(1 + π2

t ), log(|πt|), or (1 + e−πt)−1.

Example 7 : Stochastic Unit Root and Explosive Processes

Consider, on one hand, a stochastic unit root process

yt = ρtyt−1 + εt, (7)

where y0 = 0 and ρt ∼ i.i.d.(ρ, ω2) is independent of εt ∼ i.i.d.(0, σ2
ε). On the other hand, contem-

plate the following explosive process

zt = φzt−1 + ξt, (8)

with z0 = 0, φ > 1 and ξt ∼ i.i.d.(0, σ2
ξ). As in previous examples, to determine the order of

integration of yt and zt is troublesome.

In all these examples the order of integrability is diffi cult to be calculated. The standard I(d)

classification is not suffi cient to handle many stochastic processes.

3 A Solution Based on Summability

3.1 Order of Summability

The idea of order of summability of a stochastic process was initially introduced in a heuristic way

in Gonzalo and Pitarakis (2006) when dealing with threshold effects in co-integrating regressions. In

this section, the concept of summability is formalized and its generality, usefulness, and simplicity

are asserted.

Definition 2 : A stochastic process yt with positive variance is said to be summable of order δ,

represented as S(δ), if

Sn =
1

n
1
2

+δ
L(n)

n∑
t=1

(yt −mt) = Op(1) as n→∞, (9)
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where δ is the minimum real number that makes Sn bounded in probability, mt is a deterministic

sequence, and L(n) is a slowly-varying function2.

Note that, when possible, the order of summability will be determined by some Central Limit

result. In the standard Central Limit Theorem —CLT—, for instance, δ = 0 and L(n) is just a

constant. When the time series is a random walk, by the Functional Central Limit Theorem —

FCLT—and the Continuous Mapping Theorem —CMT—, δ = 1 and L(n) is again a constant term.

Although, in many circumstances L(n) will be constant, in some situations3 the asymptotic theory

will enforce us to use an L function varying with n but slowly in the Karatama’s sense.

From a more general perspective, the relationship between integrability and summability is

discussed in the following two propositions.

Assumption 1 : Let yt be the I (d) process ∆dyt = C (L)ut, where ut = εt1 (t > 0). εt has zero

mean, is i.i.d., and E |εt|r <∞ for r ≥ max [4,−8d0/ (1 + 2d0)] with d0 ∈ (−1/2, 1/2]. In addition,

C (L) =
∑∞

j=0 cjL
j , with 0 < |C (1)| <∞,

∑∞
j=0 c

2
j <∞, and

∑∞
j=1 j

2c2
j <∞.

Proposition 1 : Under Assumption 1 if the time series yt is I(d) with d ≥ 0, then it is S(d).

Next proposition deals with processes with negative orders of integration.

Proposition 2 : Under Assumption 1 if the time series yt is I(−d) with d = 1, 2, ... < ∞, then it

is S(−0.5).

Since negative integer orders of integration are not very relevant, only d ≥ 0 will be considered.

Hence, I (d) processes are S (d).

3.2 Examples

For all processes considered in Examples 1-7 the order of integration was not possible to be estab-

lished. Next, for these examples, it is shown that the order of summability can be easily obtained.

Summability in Example 1 (α-stable i.i.d. process): Let yt be symmetric around zero. By

the Generalized Central Limit Theorem

Sn =
1

n
1
α

L(n)
n∑
t=1

yt =⇒ Sα,

2A positive, Lebesgue measurable function L, on (0,∞) is slowly varying —in the Karatama’s sense—at ∞ if

L(λn)

L(n)
→ 1 (n→∞) ∀λ > 0.

(See Embrechts, Klüppelberg and Mikosh, 1999, p.564).
3Consider the case where the process yt has density f(x) = 1/ |x|3 for |x| > 1. In that case, it is known (e.g.,

Romano and Siegel, 1986, Example 5.47) that

1

[n logn]1/2

n∑
t=1

yt =⇒ N(0, 1).

Then, L(n) = (1/ logn)1/2.
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where Sα ∼ F ∈ D (α). Hence, in this case the time series is said to be summable of order δ =

(2− α)/2α. For instance, a Cauchy distributed process (α = 1) is S(0.5).

Summability in Example 2 (An i.i.d. plus a random variable): From (1)

Sn =
1

n

n∑
t=1

yt =
1

n

n∑
t=1

(z + et) = z +
1

n

n∑
t=1

et =⇒ z.

Therefore, yt is S(0.5).

Summability in Example 3 (Product of i.i.d. and random walk): It can be shown —see for

instance, Park and Phillips (1988)—that

Sn =
1

σεn

n∑
t=1

πtηt =⇒
∫ 1

0
W1(r)dW2(r).

This means that πtηt is S(0.5) with, for instance, L(n) = 1/σε.

For πtη2
t note that,

V ar

[
n∑
t=1

πtη
2
t

]
= O(n3).

Then, by the Chebyshev’s inequality,

1

n3/2

n∑
t=1

πtη
2
t = Op(1),

which implies that πtη2
t is S(1).

These two cases show that summability takes into account persistence as well as the variance

behavior through time.

Summability in Example 4 (Squared of a random walk): It is well known that

Sn =
1

n2σ2
ε

n∑
t=1

π2
t =⇒

∫ 1

0
W 2(r)dr.

Hence, π2
t is S(1.5) with, for instance, L(n) = 1/σ2

ε.

Summability in Example 5 (Product of indicator function and random walk): In this case,

Sn =
1

n
3
2 pσε

n∑
t=1

1(vt ≤ γ)πt =⇒
∫ 1

0
W (r)dr,

implying that 1(vt ≤ γ)πt is S(1) with, for instance, L(n) = 1/pσε.

Summability in Example 6 (Park and Phillips, 1999 and 2001 ): The order of summability of

the processes considered in this example can be obtained by using the asymptotic theory developed

in Park and Phillips (1999). Specifically, it can be shown that e−π
2
t ∼ S(0), 1/(1 + π2

t ) ∼ S(0),

log(|πt|) ∼ S(0.5), and (1 + e−πt)−1 ∼ S(0.5).

Summability in Example 7 (STUR and Explosive processes): Consider the STUR process

defined in (7). For simplicity, let ρt ∼ i.i.d.(1, 1), i.e. set ρ = ω2 = 1. From Leybourne, McCabe

and Tremayne (1996), it can be shown that

Sn =
1

2n/2

n∑
t=1

yt = Op (1) .
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With respect the explosive process (8), from White (1958)

Sn =
1

φn

n∑
t=1

zt = Op (1) .

Strictly speaking, the order of summability of yt and zt will be∞. These are cases of non-summable

processes.

3.3 Some Uses of Summability

In the same way integration constitutes the first step to check the balancedness of a linear relationship

and to analyze cointegration, summability can be used to study non-linear long run relationships.

Definition 3 : A postulated relationship

yt = f (xt, θ) ,

will be said to be balanced if yt ∼ S (δy) , zt = f (xt, θ) ∼ S (δz), and δy = δz.

Once the balancedness of a non-linear model is established, the analysis of non-linear long run

relationships can be done using the concept of co-summability.

Definition 4 : Two summable stochastic processes, yt ∼ S (δy) and xt ∼ S (δx), will be said to

be co-summable if there exists zt = f (xt, θ) ∼ S (δy) such that ut = yt − f(xt, θ) is S(δu), with

δu = δy − δ and δ > 0. In short, (yt, zt) ∼ CS(δy, δ).

Co-summable processes will share an equilibrium relationship in the long run, i.e. an attractor

yt = f(xt, θ) that can be linear or not. This type of equilibrium relationships will be usually

established by the economic theory and have interesting econometric applications that include, for

instance, transition behavior between regimes, multiplicity of equilibria, or non-linear responses

to intervention policies. Applied researchers will be interested on estimating and testing these

equilibria. A full treatment of co-summability in a regression framework is in Berenguer-Rico and

Gonzalo (2011).

4 Summability in Practice: Estimation and Inference

Following the same logic as in the integrated world, before any multivariate analysis —balancedness

and co-summability—, it is necessary to develop the estimation and inference tools for the order of

summability, δ, of univariate processes.
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4.1 Estimation of δ

In this section, for simplicity reasons, it will be assumed L (n) = 1 in Definition 2. Therefore, the

summability condition (9) becomes

Sn =
1

n
1
2

+δ

n∑
t=1

(yt −mt) = Op(1). (10)

In addition, the next assumption is needed to implement our proposed estimation method of δ.

Assumption 2. P (Sn = 0) = 0 for all n = 1, 2, 3, ...

Under Assumption 2 and following McElroy and Politis (2007), for a stochastic process yt satis-

fying equation (10),

Un = logS2
n = log

n−(1+2δ)

(
n∑
t=1

(yt −mt)

)2
 = Op(1). (11)

Equation (11) can be written in regression model form as follows

Yk = β log k + Uk, k = 1, 2, ..., n, (12)

where β = 1 + 2δ, Yk = log
(∑k

t=1(yt −mt)
)2
, and Uk = Op(1).

We propose to estimate β by

β̂ =

∑n
k=1 Yk log k∑n
k=1 log2 k

. (13)

Given that β = 1 + 2δ, the OLS estimator of δ is

δ̂ =
β̂ − 1

2
.

4.2 Asymptotic Properties

From (12) and (13)

β̂ − β =

∑n
k=1 Uk log k∑n
k=1 log2 k

. (14)

Proposition 3 (McElroy and Politis, 2007): Under Assumption 2, β̂ − β = op(1).

Remark: McElroy and Politis (2007) show that β̂ is consistent under minimal assumptions. In

our context, these assumptions are satisfied by definition of summable processes. Nonetheless, to

the best of our knowledge, an asymptotic distribution for β̂ has not yet been derived. The following

proposition addresses this issue.

Proposition 4 : Let xt = yt −mt. Under Assumption 2, if

Sn (r, δ) =
1

n1/2+δ

[nr]∑
t=1

xt =⇒ Dx (r, δ) , (15)
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where Dx(r, δ) is some random process with positive variance, then

log n(β̂ − β) =⇒
∫ 1

0
Ux (r, δ) dr, (16)

with Ux (r, δ) = log
[(
r−1/2−δDx (r, δ)

)2]
.

Remark: When xt is i.i.d.(0, 1), by the FCLT

Sn (r, 0) =
1

n1/2

[nr]∑
t=1

xt =⇒W (r) .

Therefore, (16) becomes

log n(β̂ − β) =⇒
∫ 1

0
log

[(
r−1/2W (r)

)2
]
dr.

Similarly, if xt is a standard random walk, then

Sn (r, 1) =
1

n3/2

[nr]∑
t=1

xt =⇒
∫ r

0
W (r)dr,

and

log n(β̂ − β) =⇒
∫ 1

0
log

[(
r−3/2

∫ r

0
W (r)dr

)2
]
dr.

Remark: In many cases, L (n) 6= 1 but still L (n) = c, a constant different from zero. In such a

case, regression (12) becomes

Yk = α+ β log k + Uk, (17)

with α = −2 log c. Notice that any c satisfies Definition 2. Therefore, α is not identified. Neverthe-

less, it is straightforward to get rid of it by substracting the first observation in regression (17) and

estimating the model

Y ∗k = β log k + U∗k , (18)

where Y ∗k = Yk − Y1 and U∗k = Uk − U1. The modified OLS estimator

β̂
∗

=

∑n
k=1 Y

∗
k log k∑n

k=1 log2 k
,

satisfies the same asymptotic properties than those of β̂.

An alternative way to take into account α could be using

β̃ =

∑n
k=1(Yk − Ȳ )(log k − log n)∑n

k=1(log k − log n)2
. (19)

In general, the lack of identification of α complicates the properties of β̃. For this reason, in this

paper only β̂
∗
is considered and consequently δ̂

∗
= (β̂

∗ − 1)/2.
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4.3 Subsampling Confidence Intervals

In general, the asymptotic distribution of β̂
∗
cannot be tabulated. Nevertheless, subsampling meth-

ods can be used to undertake inferences on the order of summability independently of its true

value.

Subsampling is consistent under minimal assumptions. The most general result shown in Politis,

Romano and Wolf (1999) requires that:

(i) the estimator, properly normalized, has a limiting distribution

(ii) the distribution functions of the normalized estimator based on the subsamples (of size b)

have to be on average close to the distribution function of the normalized estimator based on the

entire sample with log b/ log n→ 0, b/n→ 0, b→∞

(iii) the sequence of the subsampling statistic Zn,b,k = log b(β̂
∗
n,b,k − β), where β̂

∗
n,b,k is the

subsample estimator version of β̂
∗
, has α-mixing coeffi cients, αn,b(h), such that n−1

∑n
h=1 αn,b(h)→

0 as n→∞.

Conditions (i) and (ii) are guaranteed by Proposition 4. To show that the α-mixing condition

(iii) holds in this context is beyond the scope of this paper. The adequacy of the subsampling

approach is analyzed via simulations using the twelve data generating processes —DGP—in Table 1.

Table 1: Data Generating Processes : yt = mt + xt

y1t = mt + εt, εt ∼ iidN(0, 1) y7t = mt + ∆0.3πt

y2t = mt + πt, πt =
t∑

j=1

εj y8t = mt + z + εt, z ∼ N(0, 1)⊥εt

y3t = mt +

t∑
j=1

πj y9t = mt + ηtπt, ηt ∼ iidN(0, 1)⊥εt

y4t = mt + ξt, ξt ∼ iidCauchy y10t = mt + η2
tπt, ηt ∼ iidN(0, 1)⊥εt

y5t = mt + π2
t y11t = mt + 1(vt ≤ 0)πt, vt ∼ iidN(0, 1)⊥εt

y6t = mt + tεt y12t = mt + log (|πt|)

Performance of subsampling is mainly measured by coverage probability, denoted CP , of two-

sided nominal 95% symmetric intervals for δ. We also present the mean of the estimated δ′s and the

median lower and upper bounds of the estimated confidence intervals. These measures are denoted

by δ̄
∗, Ilow, and Iup, respectively. The experiment is based on 1000 replicas and three different

sample sizes n = {100, 200, 500}. Subsample size is b =
√
n. Results are collected in Table 2.
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Table 2: Performance of subsampling intervals for δ. No Deterministic Components: mt = 0

DGP CP δ̄
∗

Ilow Iup CP δ̄
∗

Ilow Iup CP δ̄
∗

Ilow Iup

S(δ) n = 100 n = 200 n = 500

1 —S(0) 0.991 -0.004 -0.699 0.659 0.995 0.005 -0.607 0.566 0.991 0.000 -0.521 0.470

2 —S(1) 0.832 0.863 0.383 1.307 0.804 0.880 0.455 1.258 0.807 0.900 0.541 1.220

3 —S(2) 0.747 1.634 0.982 2.262 0.797 1.673 1.034 2.292 0.863 1.723 1.076 2.348

4 —S(0.5) 0.986 0.496 -0.414 1.387 0.992 0.521 -0.261 1.309 0.994 0.519 -0.185 1.187

5 —S(1.5) 0.905 1.516 0.701 2.192 0.900 1.519 0.771 2.107 0.904 1.510 0.828 2.049

6 —S(1) 0.990 0.862 -0.052 1.694 0.997 0.891 0.028 1.675 1.000 0.899 0.096 1.635

7 —S(0.7) 0.939 0.613 0.038 1.135 0.954 0.627 0.141 1.054 0.949 0.639 0.223 0.998

8 —S(0.5) 0.942 0.430 -0.213 1.007 0.929 0.401 -0.149 0.915 0.930 0.447 -0.024 0.875

9 —S(0.5) 0.988 0.507 -0.330 1.255 0.984 0.516 -0.206 1.164 0.983 0.501 -0.144 1.063

10 —S(1) 0.947 1.171 -0.106 2.311 0.952 1.167 0.099 2.127 0.954 1.124 0.220 1.894

11 —S(1) 0.598 0.689 0.220 1.104 0.644 0.743 0.325 1.140 0.650 0.767 0.389 1.105

12 —S(0.5) 0.844 0.557 0.041 0.977 0.801 0.630 0.196 0.988 0.705 0.694 0.353 0.982

CP denotes the coverage probability of two-sided nominal 95% symmetric intervals. δ̄
∗
represents the mean of the

estimated orders of summability. Ilow and Iup are the median of the lower and upper bounds of the intervals,

respectively. 1000 replicas are used. Subsample size is b =
√
n.

The performance of the subsampling method is adequate in general4. The coverage probability

is around its nominal level and the mean estimated order of summability close to its true value.

The subsampling confidence intervals, although wide, get narrower as the sample size increases.

The amplitude of the intervals in small samples is basically a direct consequence of not assuming

anything about the DGP of the analyzed time series.

4.4 Deterministic Components

Until now it has been assumed mt to be known but this is not the case in practice. As in the

integrated world, the presence of deterministic components can affect the estimation of the order of

summability.

Let

yt = mt + xt,

4Notice that the coverage probability for cases 11 and 12 is very poor. Nonetheless, the consideration of deterministic

components improve dramatically the coverage probability, as it can be seen in Tables 3 and 4.
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where
1

n1/2+δ

n∑
t=1

xt =⇒ Dx(δ) and
1

n1/2+γ

n∑
t=1

mt → µ,

with Dx(δ) ≡ Dx (1, δ) being a random variable with positive variance and µ a constant different

from zero.

Consider the following two situations:

a. If δ > γ, then
1

n1/2+δ

n∑
t=1

yt =
1

n1/2+δ

n∑
t=1

xt + o(1) =⇒ Dx(δ).

b. If δ < γ, then
1

n1/2+γ

n∑
t=1

yt =
1

n1/2+γ

n∑
t=1

mt + op(1)
p→ µ.

When δ < γ, the order of the deterministic component dominates and it will be confused with the

order of summability. Admittedly, even when δ > γ, the deterministic components, if not properly

considered, can affect the order of summability estimation in finite samples. Although not reported

here, for space reasons, Monte Carlo experiments reveal the existence of an important bias effect

when deterministic components are present and not properly taken into consideration. Therefore, in

order to analyze the order of summability a proper technique to deal with these elements is needed.

Essentially, what is required is an estimator m̂t such that

1

n
1
2

+δ

n∑
t=1

(yt − m̂t) =⇒ D∗x(δ). (20)

In other words, the order of summability of yt is not affected by substracting m̂t.

Three usual parametric forms for mt will be considered: mt = m0, mt = m0 + m1t, and

mt = m0 +m1t+m2t
2. For these three cases, a proper treatment of the deterministic components

is derived.

Constant Term Case: Let

yt = m0 + xt,

where m0 is a constant and xt ∼ S(δ) such that

1

n
1
2

+δ

n∑
t=1

xt =⇒ Dx(δ).

Assume that only yt is observed. The standard proposal of demeaning yt by its arithmetic mean is

problematic in this context because
n∑
t=1

(yt − ȳ) = 0. (21)

Therefore, the true order of summability cannot be recovered. Next proposition shows that the

partial mean

m̂t =
1

t

t∑
j=1

yj ,

is an alternative operational choice in the sense of satisfying (20).
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Proposition 5 : Consider the following DGP

yt = m0 + xt, (22)

where m0 is an unknown constant and

1

n
1
2

+δ

[nr]∑
t=1

xt =⇒ Dx(r, δ).

If

m̂t =
1

t

t∑
j=1

yj , (23)

then
1

n
1
2

+δ

n∑
t=1

(yt − m̂t) =⇒ Dx(1, δ)−
∫ 1

0
r−1Dx(r, δ)dr.

Table 3 reports the performance of the subsampling confidence intervals after partially demeaning

the processes described in Table 1 when mt = m0 = 10. Results do not depend on the value of m0.

Table 3: Performance of subsampling intervals for δ. Constant Term: mt = 10

DGP CP δ̄
∗

Ilow Iup CP δ̄
∗

Ilow Iup CP δ̄
∗

Ilow Iup

S(δ) n = 100 n = 200 n = 500

1 —S(0) 0.982 0.085 -0.613 0.720 0.984 0.072 -0.523 0.618 0.987 0.061 -0.443 0.515

2 —S(1) 0.896 0.838 0.232 1.339 0.885 0.878 0.346 1.322 0.882 0.894 0.453 1.286

3 —S(2) 0.698 1.608 0.971 2.208 0.792 1.655 0.996 2.262 0.860 1.715 1.065 2.337

4 —S(0.5) 0.970 0.420 -0.424 1.185 0.969 0.443 -0.329 1.132 0.967 0.455 -0.171 1.039

5 —S(1.5) 0.752 1.208 0.378 1.956 0.788 1.266 0.506 1.957 0.814 1.305 0.624 1.920

6 —S(1) 0.981 0.775 -0.108 1.542 0.992 0.805 -0.020 1.555 0.999 0.822 0.049 1.515

7 —S(0.7) 0.970 0.582 -0.092 1.160 0.976 0.609 0.041 1.099 0.979 0.608 0.145 1.021

8 —S(0.5) 0.825 0.091 -0.594 0.736 0.707 0.071 -0.540 0.606 0.544 0.059 -0.442 0.524

9 —S(0.5) 0.985 0.398 -0.365 1.102 0.986 0.420 -0.259 1.041 0.986 0.443 -0.167 0.964

10 —S(1) 0.910 0.856 0.018 1.568 0.911 0.897 0.146 1.594 0.900 0.915 0.242 1.513

11 —S(1) 0.812 0.602 -0.134 1.291 0.831 0.667 0.008 1.278 0.841 0.711 0.123 1.271

12 —S(0.5) 0.943 0.525 -0.032 1.019 0.923 0.538 0.075 0.934 0.922 0.539 0.182 0.853

CP denotes the coverage probability of two-sided nominal 95% symmetric intervals. δ̄
∗
represents the mean of the

estimated orders of summability. Ilow and Iup are the median of the lower and upper bounds of the intervals,

respectively. 1000 replicas are used. Subsample size is b =
√
n.

Results are similar or even better than those obtained without deterministic components. For

this reason, we recommend to always partially demean the processes.
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Linear Trend Case: Let

yt = m0 +m1t+ xt,

where xt ∼ S(δ) in the sense that

1

n
1
2

+δ

n∑
t=1

xt =⇒ Dx(δ),

as before. Next Proposition shows how to deal with the deterministic components in this case.

Proposition 6 : Consider the following DGP

yt = m0 +m1t+ xt, (24)

where m0 and m1 are unknown parameters and

1

n
1
2

+δ

[nr]∑
t=1

xt =⇒ Dx(r, δ).

If

m̂t =
1

t

t∑
j=1

yj −
2

t

t∑
j=1

(
yj −

1

j

j∑
i=1

yi

)
, (25)

then
1

n
1
2

+δ

n∑
t=1

(yt − m̂t) =⇒ Dx (1, δ)− 3

∫ 1

0
r−1Dx (r, δ) dr.

Note that in the linear trend case, the appropriate m̂t consists, basically, in a double partial

demeaning procedure5. Table 4 summarizes the performance of subsampling confidence intervals

after properly detrending the DGPs in Table 1 when mt = m0 +m1t = 10 + 2t. As in the previous

case, results do not depend on the particular choices of m0 and m1.

5Other proper detrending procedures work too. We thank Franco Peracchi for pointing out the alternative method-

ology of applying a partial OLS detrending, i.e. m̂t = α̂t + β̂tt where α̂t = (1/t)
∑t
j=1 yj − β̂t(1/t)

∑t
j=1 j and

β̂t =
∑t
j=1

(
yj − (1/t)

∑t
j=1 yj

)(
j − (1/t)

∑t
j=1 j

)
/
∑t
j=1

(
j − (1/t)

∑t
j=1 j

)2
. This choice will be particularly in-

teresting when fractional deterministic trends are present.
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Table 4: Performance of subsampling intervals for δ. Linear Trend: mt = 10 + 2t

DGP CP δ̄
∗

Ilow Iup CP δ̄
∗

Ilow Iup CP δ̄
∗

Ilow Iup

S(δ) n = 100 n = 200 n = 500

1 —S(0) 0.933 0.282 -0.428 0.927 0.949 0.264 -0.359 0.831 0.953 0.228 -0.292 0.703

2 —S(1) 0.918 0.817 0.176 1.380 0.907 0.834 0.271 1.327 0.900 0.872 0.391 1.289

3 —S(2) 0.788 1.581 0.811 2.285 0.854 1.637 0.889 2.328 0.931 1.705 0.989 2.363

4 —S(0.5) 0.958 0.504 -0.274 1.174 0.965 0.501 -0.194 1.106 0.956 0.499 -0.098 1.028

5 —S(1.5) 0.726 1.096 0.329 1.816 0.755 1.144 0.433 1.818 0.799 1.198 0.539 1.790

6 —S(1) 0.973 0.727 -0.151 1.477 0.982 0.750 -0.058 1.464 0.997 0.795 0.033 1.473

7 —S(0.7) 0.978 0.616 -0.057 1.214 0.986 0.613 0.032 1.123 0.989 0.642 0.152 1.052

8 —S(0.5) 0.928 0.283 -0.429 0.929 0.912 0.273 -0.336 0.846 0.814 0.233 -0.280 0.726

9 —S(0.5) 0.985 0.456 -0.312 1.131 0.988 0.451 -0.220 1.080 0.991 0.467 -0.141 1.023

10 —S(1) 0.849 0.748 -0.047 1.436 0.858 0.770 0.055 1.411 0.865 0.805 0.150 1.393

11 —S(1) 0.794 0.621 -0.113 1.279 0.803 0.654 -0.030 1.254 0.832 0.707 0.076 1.281

12 —S(0.5) 0.928 0.559 -0.008 1.065 0.929 0.554 0.093 0.972 0.900 0.574 0.209 0.885

CP denotes the coverage probability of two-sided nominal 95% symmetric intervals. δ̄
∗
represents the mean of the

estimated orders of summability. Ilow and Iup are the median of the lower and upper bounds of the intervals,

respectively. 1000 replicas are used. Subsample size is b =
√
n.

Results in Table 4 show that the proposed detrending method m̂t performs adequately in finite

samples.

Quadratic Trend Case: Let

yt = m0 +m1t+m2t
2 + xt,

where xt ∼ S(δ) such that
1

n
1
2

+δ

n∑
t=1

xt =⇒ Dx(δ),

as before. The proposed m̂t in this case is

m̂t =
1

t

t∑
j=1

yj −
2

t

t∑
j=1

(
yj −

1

j

j∑
i=1

yi

)
− 3

t

t∑
j=1

(
yj −

1

j

j∑
i=1

yi −
2

j

j∑
i=1

(
yi −

1

i

i∑
h=1

yh

))
.

Essentially, this transformation implies a triple partial demeaning procedure. It can be shown that

the use of this m̂t does not alter the order of summability of yt−m̂t and the finite sample performance

is adequate (these results are available from the authors upon request).

Remark: It can be shown that if the order of the trend that is substracted is higher than the

true one, then the order of summability of the detrended process, yt − m̂t, is preserved; that is, it
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has the same order of summability that yt. However, because of ineffi ciency issues, in general, it is

not recommended to substract a very high polynomial trend.

Overall, the methodology proposed in this section to estimate the order of summability works

reasonably well in finite samples. It is important to notice that our method does not assume any

knowledge about the model generating the data. The trade off is that the confidence intervals are

not very narrow.

5 Empirical Application

After Nelson and Plosser (1982) accounted for unit root behavior in almost all the fourteen U.S.

macroeconomic time series in their database, many researchers have used the same dataset to con-

firm or refuse their conclusions with alternative approaches. In what follows, we contribute to this

literature by applying the above developed methodology to estimate and infer the order of summa-

bility of the time series included in an extended version of the Nelson and Plosser (1982) database6.

As a novelty, we do not impose any linearity assumption.

More precisely, we estimate the order of summability of the fourteen macroeconomic aggregates

with δ̂
∗

= (β̂
∗−1)/2 and derive the subsampling confidence intervals, denoted by (I∗L, I

∗
U ). It is well

known in the literature that deterministic components are an important issue for these time series.

Since the order of the deterministic trend is unknown, we propose to use in practice a traditional

graphical device. If a trending behavior is observed, include at least a linear trend. If the time series

evolve around a constant, consider at least a constant term. Using this device and knowing that it

is always better to substract a higher than a lower order trend than the true one, a quadratic trend

has been considered for all the variables but interest and unemployment rates. Results are shown

in Table 5.
6The data have been downloaded from P.C.B. Phillips’webpage.
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Table 5: Order of Summability. Estimation and Inference

log(variable) Order of Summability

quadratic trend δ̂
∗

I∗L I∗U

consumer price index 2.369 1.112 3.625

employment 0.579 0.185 0.973

gnp deflator 0.900 0.168 1.631

nominal gnp 1.031 0.557 1.505

industrial production 0.738 0.082 1.393

gnp per capita 0.938 0.278 1.599

real gnp 0.898 0.287 1.510

wages 0.961 0.341 1.580

real wages 1.070 0.320 1.821

S&P 0.702 0.121 1.283

money 0.913 0.279 1.548

velocity 0.576 -0.010 1.163

linear trend δ̂
∗

I∗L I∗U

interest 0.934 0.359 1.509

unemployment 0.162 -0.603 0.928

δ̂
∗
denotes the estimated order of summability. I∗L and I

∗
U denote

the lower and upper bounds of the corresponding subsampling

intervals.

Observe that the variable with a lower order of summability is unemployment rate and the one

with the highest the consumer price index. On the other hand, variables like nominal and real GNP,

stock of money, wages, industrial production or S&P share similar orders of summability, around

one. The amplitude of the confidence intervals is in line with the wide confidence intervals reported

in Stock (1991) for the largest autoregressive root and in Arteche and Orbe (2005) for the fractional

order of integration. Notice that our methodology does not assume any model for the data.

Overall, the estimated orders of summability of the fourteen macroeconomic variables seem to

be quite reasonable in economic and econometric terms. Regarding the latter aspect of the empirical

exercise, we would like to highlight the similarities of our results with those found in the fractional

literature. With respect the economic content of the results, as already stated, variables like real

and nominal GNP, industrial production, or nominal money have similar orders of summability and

higher than those of unemployment or velocity of money. Additionally, in a heuristic way, it can be

seen that these results do not go against the quantity theory of money.
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6 Conclusion

Time Series Econometrics has not been able to properly handle non-linearities with persistent vari-

ables. This is mainly due to the fact that the concept of integration, and consequently cointegration,

is too linear and not always well defined for non-linear processes. This lack of a proper definition

has two important multivariate consequences. First, it is not possible to characterize the balanced-

ness of a non-linear postulated model relating persistent variables. This is a necessary condition for

an appropriate model specification. Second, co-integration cannot be directly extended to analyze

non-linear long run relationships. The concept of summability is able to solve these problems. This

paper shows how to calculate, estimate, and undertake inference on the order of summability, δ.

7 Appendix

Proof of Proposition 1: Applying the Beveridge-Nelson decomposition as in Phillips and Solo

(1992)

∆dyt = C (1)ut + ũt−1 − ũt,

with

ũt = C̃ (L)ut =
∞∑
j=0

c̃jL
jut =

∞∑
j=0

∞∑
k=j+1

ckut−j .

Now,

yt = C (1) ∆−dut + ∆−d (ũt−1 − ũt) ,

and

1

n1/2+d
κ (n, d)−1/2

n∑
t=1

yt = C (1) ∆−d
1

n1/2+d
κ (n, d)−1/2

n∑
t=1

ut −
1

n1/2+d
κ (n, d)−1/2 ∆−dũn, (26)

where

κ (n, d) =


σ2uΓ(1−2d0)

(1+2d0)Γ(1+d0)Γ(1−d0) if d > 1/2 and d 6= 2k+1
2 ∀k ∈ N

σ2u
π log n if d = 2k+1

2 ∀k ∈ N
,

and Γ (·) denotes the gamma function.

Boundedness in probability of the first component of the right hand side of equation (26) was

shown by Liu (1998). Hence, it remains to show boundedness in probability of the second term. To

this end, without loss of generality, consider the case d ∈ (0, 1/2) in which

∆−d =

∞∑
i=0

aiL
i,

with ai = O
(
jd−1

)
. Note that

V ar

[
1

n1/2+d
∆−dũn

]
=

1

n1+2d
V ar

[
∆−dũn

]
=

1

n1+2d
V ar

[ ∞∑
i=0

aiũn−i

]
=

1

n1+2d

∞∑
i=0

a2
iV ar[ũn−i],
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where

V ar[ũn−i] = V ar

 ∞∑
j=0

c̃jun−i−j

 =

∞∑
j=0

c̃2
jV ar [un−i−j ] = σ2

u

∞∑
j=0

c̃2
j .

Therefore,

V ar

[
1

n1/2+d
∆−dũn

]
=

σ2
u

n1+2d

∞∑
i=0

a2
i

∞∑
j=0

c̃2
j = O (1) ,

implying
1

n1/2+d
∆−dũn = Op (1) .

Then yt ∼ S (δ). Q.E.D.

Proof of Proposition 2: The sum of yt is

n∑
t=1

yt = C(1)
n∑
t=1

∆dut −∆dũn = An −Bn,

where An = C(1)

n∑
t=1

∆dut and Bn = ∆dũn. By definition of ũt,

Bn = ∆dũn = Op(1),

for all d = 1, 2, ... <∞. With respect An note that,

C(1) <∞,

and
n∑
t=1

∆dut = ∆d−1
n∑
t=1

∆ut = ∆d−1un = Op(1),

for all d = 1, 2, ... <∞. Therefore,

An = C(1)
n∑
t=1

∆dut = Op(1),

as well. And, all together implies that

n∑
t=1

yt = An −Bn = Op(1),

or equivalently that yt ∼ S(−0.5). Q.E.D.

Proof of Proposition 3: By Assumption 2 and definition of summable process, Uk is Op(1).

Hence, Theorem 3.1. in McElroy and Politis (2007) applies. Q.E.D.

Proof of Proposition 4: Expression (14) can be rewritten as

log n
(
β̂ − β

)
=

1
n logn

∑n
k=1 Uk log k

1
n log2 n

∑n
k=1 log2 k

.

The denominator satisfies

1

n log2 n

n∑
k=1

log2 k → 1 as n→∞.
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With respect the numerator

1

n log n

n∑
k=1

Uk log k =
1

n log n

n∑
k=1

log

( 1

k1/2+δ

k∑
t=1

xt

)2
 log k

=
1

n log n

n∑
k=1

log

(n1/2+δ

k1/2+δ

1

n1/2+δ

k∑
t=1

xk

)2
 log k

=
1

n log n

n∑
k=1

log

((n
k

)1/2+δ 1

n1/2+δ

k∑
t=1

xt

)2
(log

(
k

n

)
+ log n

)

=
1

n log n

n∑
k=1

log

((n
k

)1/2+δ 1

n1/2+δ

k∑
t=1

xt

)2
 log

(
k

n

)
+

1

n

n∑
k=1

log

((n
k

)1/2+δ 1

n1/2+δ

k∑
t=1

xt

)2
 .

Let

Unk = log

((n
k

)1/2+δ 1

n1/2+δ

k∑
t=1

xt

)2
 ,

and its D-space analog

Un (r, δ) = log

r−1/2−δ 1

n1/2+δ

[nr]∑
t=1

xt

2 ,
which

Un (r, δ) =⇒ log

[(
r−1/2−δDx (r, δ)

)2
]
.

Now consider,

1

n

n∑
k=1

Unk log

(
k

n

)
=

n∑
k=1

∫ k
n

k−1
n

Un(r, δ)

[
log

(
k

n

)
+ log r − log r

]
dr

=
n∑
k=1

∫ k
n

k−1
n

Un(r, δ) log rdr +

n∑
k=1

∫ k
n

k−1
n

Un(r, δ)

[
log

(
k

n

)
− log r

]
dr

=

∫ 1

0
Un(r, δ) log rdr +

n∑
k=1

Unk

∫ k
n

k−1
n

[
log

(
k

n

)
− log r

]
dr.

Let

ak =

∫ k
n

k−1
n

[
log

(
k

n

)
− log r

]
dr,

hence,
1

n

n∑
k=1

Unk log

(
k

n

)
=

∫ 1

0
Un(r, δ) log rdr +

n∑
k=1

Unkak.

Now,

ak =

∫ k
n

k−1
n

[
log

(
k

n

)
− log r

]
dr =

∫ k
n

k−1
n

log

(
k

n

)
dr −

∫ k
n

k−1
n

log rdr

=
1

n
log

(
k

n

)
− k

n
log

(
k

n

)
+

(
k − 1

n

)
log

(
k − 1

n

)
+

1

n

= −
(
k − 1

n

)
log

(
k

k − 1

)
+

1

n
.
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Thus, a1 = 1/n. For k > 1, the series expansion

log x =
x− 1

x
+

1

2

(
x− 1

x

)2

+
1

3

(
x− 1

x

)3

+ ...

will be used to show that

log

(
k

k − 1

)
=

1

k
+

1

2

(
1

k

)2

+
1

3

(
1

k

)3

+ ...

and hence

ak = −
(
k − 1

n

)[
1

k
+O

((
1

k

)2
)]

+
1

n
= O

(
1

(k − 1)n

)
.

That is,

(k − 1)nak = − (k − 1)2

[
1

k
+O

((
1

k

)2
)]

+ (k − 1) =
(k − 1)

k
+O (1) = O (1) .

Given that

Unk = Op(1),

n

n∑
k=1

ak ∼
n∑
k=1

1

k − 1
∼ log n,

and
n∑
k=1

Unkak = Op

(
log n

n

)
,

we have

1

n

n∑
k=1

Unk log

(
k

n

)
=

∫ 1

0
Un(r, δ) log rdr +

n∑
k=1

Unkak =

∫ 1

0
Un(r, δ) log rdr + op(1)

=⇒
∫ 1

0
log rUx(r, δ)dr,

and

1

n log n

n∑
k=1

Uk log k =
1

log n

(
1

n

n∑
k=1

Unk log

(
k

n

))
+

1

n

n∑
k=1

Unk

=
1

n

n∑
k=1

Unk + op(1) =

n∑
k=1

∫ k/n

(k−1)/n
Un(r, δ)dr + op (1)

=

∫ 1

0
Un(r, δ)dr + op(1) =⇒

∫ 1

0
Ux(r, δ)dr.

All together gives the stated result

log n(β̂ − β) =

1
n logn

∑n
k=1 Uk log k

1
n log2 n

∑n
k=1 log2 k

=⇒
∫ 1

0
Ux(r, δ)dr.

Q.E.D.

Proof of Proposition 5: From (22) and (23)

yt − m̂t = yt −
1

t

t∑
j=1

yj = xt −
1

t

t∑
j=1

xj .
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By assumption,

1

n1/2+δ

[nr]∑
t=1

xt =⇒ Dx(r, δ).

Then, applying the CMT ∫ 1

0

 1

n1/2+δ

[nr]∑
j=1

xj

 dr =⇒
∫ 1

0
Dx(r, δ)dr.

Therefore,

1

n1/2+δ

n∑
t=1

(yt − m̂t) =
1

n1/2+δ

n∑
t=1

xt − 1

t

t∑
j=1

xj

 =
1

n1/2+δ

n∑
t=1

xt −
1

n

n∑
t=1

n

t

1

n1/2+δ

t∑
j=1

xj

=⇒ Dx(1, δ)−
∫ 1

0
r−1Dx(r, δ)dr,

and (yt − m̂t) ∼ S (δ). Q.E.D.

Proof of Proposition 6: The proof will be divided in five steps.

(i) First, the partial mean is computed

1

t

t∑
j=1

yj = m0 +m1
1

t

t∑
j=1

j +
1

t

t∑
j=1

xj .

(ii) Second, the partial mean is substracted from yt

yt −
1

t

t∑
j=1

yj = m1t+ xt −m1
1

t

t∑
j=1

j − 1

t

t∑
j=1

xj = m1t−m1
1

t

t (t+ 1)

2
+ xt −

1

t

t∑
j=1

xj

=
m1

2
(t− 1) + xt −

1

t

t∑
j=1

xj .

(iii) Third, compute

2

t

t∑
j=1

(
yj −

1

j

j∑
i=1

yi

)
=

2

t

t∑
j=1

(
m1

2
(j − 1) + xj −

1

j

j∑
i=1

xi

)

=
m1

2
(t− 1) +

2

t

t∑
j=1

xj −
2

t

t∑
j=1

1

j

j∑
i=1

xi.

(iv) Fourth, substracting the quantity obtained in step (iii) from that obtained in step (ii)

yt −
1

t

t∑
j=1

yj −
2

t

t∑
j=1

(
yj −

1

j

j∑
i=1

yi

)
= xt −

3

t

t∑
j=1

xj +
2

t

t∑
j=1

1

j

j∑
i=1

xi.

(v) Finally, the asymptotic behavior of the following re-scaled sum is analyzed

1

n1/2+δ

n∑
t=1

yt − 1

t

t∑
j=1

yj −
2

t

t∑
j=1

(
yj −

1

j

j∑
i=1

yi

) =
1

n1/2+δ

n∑
t=1

xt − 3

t

t∑
j=1

xj +
2

t

t∑
j=1

1

j

j∑
i=1

xi

 .

Consider the first summand. By assumption,

1

n1/2+δ

n∑
t=1

xt =⇒ Dx (1, δ) .
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For the second and third summands, the CMT will be used. With respect the former

3

n1/2+δ

n∑
t=1

1

t

t∑
j=1

xj =
3

n

n∑
t=1

n

t

1

n1/2+δ

t∑
j=1

xj =⇒ 3

∫ 1

0
r−1Dx (r, δ) dr,

and with respect the latter

2

n1/2+δ

n∑
t=1

1

t

t∑
j=1

1

j

j∑
i=1

xi =
2

n2

n∑
t=1

t−3/2+δ

n−3/2+δ

t∑
j=1

t

j

1

t1/2+δ

j∑
i=1

xi = op(1).

Therefore,
1

n
1
2

+δ

n∑
t=1

(yt − m̂t) =⇒ Dx (1, δ)− 3

∫ 1

0
r−1Dx (r, δ) dr,

and (yt − m̂t) ∼ S (δ). Q.E.D.
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