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ABSTRACT:  
This paper examines the relation between the business cycle and convergence in 
levels of total factor productivity (TFP) across states. First, we find evidence of 
convergence in TFP levels across the different phases of the business cycle, but the speed 
of convergence was much greater during periods of contraction in economic activity than 
during periods of expansion. Second, we find that technology embodied in capital was an 
important source of productivity growth in agriculture. As with the rate of catch-up, the 
embodiment effect was much stronger during low economic activity phases of the 
business cycle. 
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Agricultural Productivity in the U. S. States: 
Catching-Up and the Business Cycle 

 

1 .  I n t r o d u c t i o n  

Several recent studies of the agricultural sector provide evidence of convergence 

of total factor productivity (TFP) across the U.S. states. McCunn and Huffman 

(2000) found evidence of “catching-up” in levels of TFP (i.e., β-convergence), 

although they rejected the hypothesis of declining cross-sectional dispersion (i.e., 

σ-convergence). Ball, Hallahan, and Nehring (2004) also found evidence of 

convergence in levels after controlling for differences in relative factor 

intensities (i.e., embodiment). The speed of convergence and whether it is 

transitory or permanent in nature plays an important role in characterizing 

regional disparities in income (see Abramovitz, 1986; Baumol, 1986; Baumol 

and Wolff, 1988; and Dowrick and Nguyen, 1989) and, hence, have important 

implications for the design of agricultural policy.  

The literature on growth empirics defines the convergence hypothesis in 

several different ways. Following Barro and Sala-i-Martin (1992; 1995), there 

is β-convergence if states with lower levels of productivity tend to grow faster 

than the technology leaders, and σ-convergence if the dispersion of their 

relative TFP levels tends to decrease over time. Thus, β-convergence is a 

necessary but not a sufficient condition for σ-convergence (Quah, 1993a, b).   

This paper explores the relationship between the business cycle and 

convergence of agricultural productivity across the states. Two alternative 
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explanations have been proposed in the literature to explain why convergence 

patterns may be related to the business cycle. The first is based on the pro-

cyclical nature of the innovation process (Basu and Fernald, 2001; Geroski and 

Walters, 1995), and the time lags between technological innovations and diffusion 

processes (Jovanovic and MacDonald, 1994). According to this argument, 

productivity leaders tend to innovate more during periods of expansion in 

response to positive demand shocks. However, due to the existence of 

informational barriers, productivity followers, who tend to learn by imitation, 

postpone the adoption of innovations made by the technology leaders until 

economic downturns. The second explanation is based on the relation between 

competition and productivity (Escribano and Stucchi, 2008). Productivity 

followers have more incentive to reduce their costs during downturns, when 

negative demand shocks increase the probability that these firms will exit the 

industry.  

Taken together, these arguments point to faster rates of convergence during 

contractions in economic activity and to slower rates of convergence, or even 

divergence, during periods of expansion. Despite these predictions, few 

researchers have estimated the impact of the business cycle on productivity 

convergence. Most either ignore this effect or adjust the productivity measures 

to eliminate the cyclical fluctuations. They do so by either controlling for 

capacity utilization (Wolff, 1991; Dollar and Wolff, 1994; Baumol et al., 2004) or 

by using standard smoothing procedures (Di Liberto, Mura and Pigliaru, 2008).  

An exception is provided by Escribano and Stucchi (2008). Using firm 
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level data for the Spanish manufacturing sector, the authors test the catch-up 

hypothesis across different phases of the business cycle. They find strong evidence 

in support of the innovation-imitation hypothesis. Firms tend to diverge during 

periods of expansion and to converge during recessions, a result of both time 

lags in the diffusion of technical information and the pro-cyclical nature of 

innovation. 

In this paper, we closely follow the methodology proposed by Escribano 

and Stucchi (2008). First, we test the catch-up hypothesis using a model that 

ignores the business cycle. Then we investigate the possible impacts of the 

business cycle on the convergence process by showing how the speed of 

convergence changes across different phases of the business cycle.  

However, we depart from the above mentioned study in several 

important ways. First, our focus is on the agricultural sector, considered by 

a number of authors as the sector with the lowest productivity levels (see 

Laitner, 2000; Tamura, 2002). This is an important departure since the impact 

of the business cycle on convergence will likely differ across sectors of the 

economy. If prices in the agricultural sector are more flexible than in 

manufacturing then the impact of the business cycle may be greater in agriculture 

due to “overshooting” of prices (Rucker and Sumner, 1997).1  On the other hand, 

and despite the initially low productivity levels, recent empirical evidence 

suggests that convergence in levels of productivity may be faster in 

agriculture, the result of relatively rapid dissemination of technical 

information (Martin and Mitra, 1999).2 This result points to a smaller impact 
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of the business cycle on convergence.  The above examples underscore the 

empirical nature of the relationship between the business cycle and 

convergence and suggest that results obtained for other sectors may not be 

applicable to the agricultural sector. 

Second, we use data at the state level. In using aggregate data, we fail 

to account for the effects of entry and exit of firms from the industry. As a 

result, our empirical results may be biased. The farm sector in each state is 

composed of a finite number of firms, and individual firms’ decisions may have a 

non-negligible impact on the behavior of the aggregate variables. If exiting firms 

are less productive than surviving firms then their exit will contribute to each 

state’s productivity growth, thereby leading to biased results if the entry and exit 

of firms depend on each state’s initial productivity level (Baldwin and Gorecki, 

1991; Foster, Haltiwanger and Kriza, 1998; Fujita, 2008).3 

We also make a number of important contributions to the literature. A 

common practice in studies of convergence is to include control variables to 

avoid omitted-variables bias. In particular, most studies include changes in relative 

capital intensities to capture the effects of technological innovations embodied in 

capital (Dollar and Wolff, 1994; Ball, Hallahan and Nehring, 2004). We note, 

however, that the optimal factor demands depend on TFP growth, so changes in 

relative capital intensities are not exogenous with respect to changes in TFP 

(Daveri and Jona-Lasino, 2007). As a result, the improvements achieved by 

previous studies through the reduction of omitted variables bias can be 

potentially offset by the introduction of simultaneity bias in their econometric 
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specifications. 

We address simultaneity bias using an instrumental variables approach. For 

the growth rate in relative capital intensities we use several demand-side 

instruments, including fiscal impulse, monetary shocks, energy prices, the 

expected growth rates in potential domestic and external demand, and market 

accessibility to Metropolitan Statistical Areas (MSA). Both the market 

accessibility and domestic and external demand variables are constructed using the 

market accessibility function proposed by Harris (1954). Their construction 

involves geographic and economic data for more than 3,000 counties, 25,000 

cities, 300 MSAs, and 80 U.S. ports. 

Our estimation uses panel data. However, using asymptotic distributions 

based on panel data results may lead to poor approximations of the actual 

distributions of the parameter estimates. Therefore, we apply time-series cross-

sectional (TSCS) techniques in order to provide reliable standard errors and 

critical values. We perform unit-root tests for panel data to assess the time-

series properties of the data. Then we correct for unobserved heterogeneity at 

both state- and time-specific levels by considering a two-way error components 

econometric specification. Finally, we use a TSCS Instrumental Variables 

Feasible GLS (TSCS IV-FGLS) regression method to obtain parameter estimates 

that are robust to endogeneity, heteroskedasticity, autocorrelation, and cross-

sectional contemporaneous correlation. 

 The tests of the catch-up hypothesis used in this paper were proposed by 

Barro and Sala-i-Martin (1992).4 Building on earlier research, we include in 
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our tests of convergence a number of control variables. Following Dollar 

and Wolff (1994) and Ball, Hallahan and Nehring (2004), we include 

changes in relative capital intensities to capture technological embodiment. We 

also include two indicators of agricultural specialization—the relative crop and 

livestock output intensities—to control for differences in TFP growth rates 

between the livestock and crop subsectors (Evenson and Huffman, 2001). In 

addition to these variables, we include years of schooling and experience to 

capture possible technology spillovers from investment in human capital (Parman, 

2009). 

 Our results can be summarized as follows. First, we found strong evidence 

of convergence in TFP levels across states. Second, embodiment was an 

important source of TFP growth in agriculture. In fact, after correcting for 

endogeneity of the relative capital intensities, embodiment was found to be a 

more important source of productivity growth than was previously reported (see 

Ball, Hallahan, and Nehring, 2004). Productivity growth was inversely related 

to specialization. However, states that specialized in production of livestock 

had, on average, more rapid TFP growth than states that specialized in crop 

production. There were significant spillovers from investment in human capital, 

leading to more rapid productivity growth. Finally, although we found strong 

evidence of catching-up and embodiment across the business cycle, these effects 

were more pronounced during periods of contraction in economic activity. 
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2 .  T e s t s  o f  β - C o n v e r g e n c e  

This section presents the econometric model used to test the catch-up (i.e., β-

convergence) hypothesis. First, we describe the basic model found in the 

literature, termed the benchmark model. Next, we present the method used to 

explore the relationship between catching-up and the business cycle. 

2 . 1  Th e  B en chm a rk  M od e l  

To investigate the convergence hypothesis, we employ the basic specification: 

´
, 1 , , ,ln( ) ln( ) ,i t i t x i t i tTFP TFP X vα θ∆ = + + Θ +     (1) 

where ,i tTFP is state i 's productivity level in period t relative to the U.S. 

average and ,i tX is a vector of possibly endogenous control variables. An 

element of ,i tX is the rate of growth of the relative capital 

intensities, ,ln( / )i tK L∆ , which captures the effect of technological 

innovations embodied in capital. Testing for β-convergence is equivalent to 

testing H0: 1 1θ = (i.e., no β-convergence) against H1: 1 1θ < (i.e., β-convergence), 

where 1 (1 )eβθ = − − and β is the rate of convergence.  

Without further modification, the specification given in equation (1) 

implies symmetric mean reversion (SMR); states with TFP levels above the 

average converge to the mean at the same speed as states with TFP levels 

below the average. In order to model asymmetric mean reversion (AMR), we 

include a dummy variable,,
AMR

i td , defined as unity if the state’s TFP level is above 
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the U.S. average, that interacts with ,ln( )i tTFP :  

´
, 1 , , , ,ln( ) [ ln( )] ,AMR

i t i t i t x i t i tTFP D TFP X vα∆ = + Θ × + Θ +
   

 (2) 

  

where 

, ,(1, ) ,AMR AMR
i t i tD d ′=  

 

1 1 1,( , ),dθ θ′Θ =  

and 

, ,1[ 1],AMR
i t i td TFP= >  

where 1[ ]⋅ is an indicator function. Testing for asymmetric mean reversion in β-

convergence is equivalent to testing H0: 1, 0dθ = (i.e., no asymmetric mean 

reversion) against H1: 1, 0dθ ≠ (i.e., asymmetric mean reversion). 

2 .2  β -Convergence and the  Bus iness  Cyc l e  

In order to evaluate the relationship between β-convergence and the business cycle 

we pursue two different approaches. First, following Escribano and Stucchi 

(2008), we investigate how the coefficient on the initial level of productivity 

changes across the different phases of the business cycle. We then look at the 

effects on embodiment.    

There are two reasons why we would expect asymmetries in the 

embodiment effect across the business cycle. First, capital and labor 
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reallocations have been shown to have important cyclical patterns (see Eisfeldt 

and Rampini, 2006; Akerlof, Rose and Yellen, 1988; Foote, 1998). Second, the 

innovation-imitation hypothesis discussed in the introduction not only suggests 

that we should observe faster “catching-up” during periods of contraction, but 

also stronger embodiment effects. This is because productivity followers tend to 

learn by imitation, especially in downturns, and the innovations that they 

imitate may be embodied in capital. 

 From 1960 to 2004, the U.S. economy experienced seven recessions. 

Figure 1 shows the year-over-year growth rates of GDP and the National Bureau 

of Economic Research (NBER) recession dating (boxed area). Two important 

facts emerge from this figure. First, expansions are longer than recessions 

(around 6 years on average against 1 year on average). Second, recessions have 

become less frequent since the middle 1980s. Given this asymmetry, we 

introduce in equations (1) and (2) interaction effects between a set of dummy 

variables that identify the different phases of the business cycle and the 

variables of interest, ,ln( )i tTFP and ,ln( / )i tK L∆ . 

 We use the output gap and the NBER’s Recession Dating Procedure to 

identify the different phases of the business cycle. A positive (negative) output 

gap indicates that the economy is operating above (below) its potential level, 

thereby allowing us to distinguish periods of high economic activity (i.e., 

booms) and periods with low economic activity (i.e., late contractions and 

recoveries). On the other hand, the NBER's Recession Dating Procedure 

determines the official peaks and troughs of the business cycle, thus 
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identifying the periods when the economy is officially in a contraction phase 

(i.e., from a peak to a trough) and, conversely, when in an expansion phase 

(i.e., from a trough to a peak). Given these differences, we consider two 

alternative partitions of the business cycle. The first one only uses the output gap 

measures and divides the business cycle into a high economic activity phase, say 

Phase (H), and a low economic activity phase, say Phase(L). The second 

partition divides the business cycle into a contraction phase, say Phase (C), a 

recovery phase, say Phase (R), and a late expansion phase, say Phase (E). 

 In summary, we use four different model specifications to assess the rela-

tionship between phases of the business cycle and convergence in levels of TFP 

across states. The first two specifications, Models 1 and 2, take into account the 

effects of the business cycle through the rate of convergence (i.e., the coefficient 

on ,ln( )i tTFP ). The latter two specifications, Models 3 and 4, incorporate the 

effects of the business cycle through its impact on embodiment (i.e., the 

coefficient on ,ln( / )i tK L∆ ). In Models 1 and 3, we partition the business cycle 

into two phases, while in Models 2 and 4 we identify three phases of the 

business cycle. To simplify the notation, we present the models assuming that 

there is no asymmetric mean reversion (i.e., that 1, 0dθ =  in equation (2)). 
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Model 1: 

, (1) , , ,ln( ) [ ( ) ln( )] ,i t t i t x i t i tTFP Phase BC TFP X vα ′ ′∆ = + Θ × + Θ +    (3)  

where 

( ) ( ( ) , ( ) ) ,t t tPhase BC Phase L Phase H ′=  

(1) 1, 1,( , ),L Hθ θ′Θ =  

and 

Phase(L) t  = 1 [ In period t the U.S. output gap is 
negative] ,  

Phase(H) t  = 1  [ In period t the U.S. output gap is 
positive] , 

where 1[ ]⋅  is an indicator function. Testable hypotheses using Model 1 include: 

1. -convergence during low economic activity phase of the business cycle. The 

null and alternatives hypotheses are: 

H0 :  There is no� -convergence during low economic activity phase, 

i.e., 1, 0Lθ = . 

H1 :  There is -convergence during low economic act iv i ty phase, 

i.e., 1, 0Lθ < . 

2. -convergence during high economic activity phase of the business cycle. The 

null and alternative hypotheses in this case are: 
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H0 :  There is no -convergence during high economic activity phase, 

i.e., 1, 0Hθ = . 

H1 :  There is -convergence during high economic act ivi ty phase, i.e., 

1, 0Hθ < . 

3. Differences in β -convergence rates between low economic activity and high 

economic activity phases of the business cycle. The null and alternative 

hypotheses in this case are: 

H0: There is no difference in the β -convergence rates between low economic 

activity and high economic activity phases, i.e., 1, 1, 0L Hθ θ− = .  

H1: The β -convergence rate is faster during low economic activity phases than 

during high economic activity phases, i.e., 1, 1, 0L Hθ θ− < . 

Model 2: 

, (1) , , ,ln( ) [ ( ) ln( )] ,i t t i t x i t i tTFP Phase BC TFP X vα ′ ′∆ = + Θ × + Θ +   (4) 

where 

( ) ( ( ) , ( ) , ( ) ) ,t t t tPhase BC Phase C Phase R Phase E ′=  

(1) 1, 1, 1,( , , ),C R Eθ θ θ′Θ =  

and 

Phase(C) t  =1 [In period t the U.S. economy is officially in a 

 contraction phase], 

 

Phase(R) t  = 1 [In period t the U.S. economy is officially in an  expansion phase and the 
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U.S. output gap is negative], 

 

Phase(E) t  = 1 [In period t the U.S. economy is officially in an 

 expansion phase and the U.S. output gap is positive], 

 

where 1[ ]⋅  is an indicator function. The hypotheses to be tested using Model 2 are: 

1. β -convergence during contractions. The null and alternatives hypotheses 

are:  

H0:  There is no β -convergence during contractions, i.e., 1, 0Cθ = . 

H1: There is β -convergence during contractions, i.e., 1, 0Cθ <  

2. β -convergence during recoveries. The null and alternative hypotheses in this 

case are: 

H0: There is no β -convergence during recoveries, i.e., 1, 0Rθ =  

H1: There is β -convergence in recoveries, i.e., 1, 0Rθ <  

3. β -convergence during late expansions. The null and alternative hypotheses 

are: 

H0: There is no β -convergence during late expansions, i.e., 1, 0Eθ = . 

H1: There is β -convergence during late expansions, i.e., 1, 0Eθ <  

4. Differences in β -convergence rates between contractions and recoveries. The 

null and alternative hypotheses are: 
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H0: There is no difference in β -convergence rates between contractions and 

recoveries, i.e., 1, 1, 0C Rθ θ− = . 

H1: The β -convergence rate is faster during contractions than during 

recoveries, i.e., 1, 1, 0C Rθ θ− < .  

5. Differences in β -convergence rates between contractions and late expansions. 

The null and alternative hypotheses are: 

H0: There is no difference in β -convergence rates between contractions and 

late expansions, i.e., 1, 1, 0C Eθ θ− = . 

H1:  The β -convergence rate is faster during contractions than during late 

expansions, i.e., 1, 1, 0C Eθ θ− < . 

Model 3: 

, (1) ,

( ) ,

, ,

ln( ) [ ( ) ln( )]

[ ( ) ln( / )]

,

i t t i t

k t i t

x i t i t

TFP Phase BC TFP

Phase BC K L

X v

α ′∆ = + Θ ×
′+Θ × ∆

′+Θ +
%

%

    (5) 

where 

( ) ( ( ) , ( ) ) ,t t tPhase BC Phase L Phase H ′=  

(1) 1, 1,( , ),L Hθ θ′Θ =  

( ) , ,( , ),k k L k Hθ θ′Θ =  

and 

Phase(L) t  = 1 [ In period t the U.S. output gap is negative] ,  
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Phase(H) t  = 1  [ In period t the U.S. output gap is  positive] , 

 

where 1[ ]⋅  is an indicator function, the parameters 
,k Lθ and ,k Hθ  capture the 

impact of the different phases of the business cycle on embodiment, and 
,i tX% is 

the vector of control variables excluding the growth rates of relative capital 

intensities. The hypothesis tests using Model 3 include those of Model 1 plus: 

1. Embodiment effects during low economic activity phases of the business 

cycle. The null and alternative hypotheses are: 

H0:  There are no embodiment effects during low economic activity phases, 

i.e., , 0k Lθ = . 

H1: There are embodiment effects during low economic activity phases, i.e., 

, 0k Lθ >  

2. Embodiment effects during high economic activity phases of the business 

cycle. The null and alternative hypotheses are: 

H0:  There are no embodiment effects during high economic activity phases 

of the business cycle, i.e., , 0k Hθ =  

H1: There are embodiment effects during high economic activity phases of 

the business cycle, i.e., , 0k Hθ >  

3. Differences in the embodiment effects between low economic activity phases 

and high economic activity phases of the business cycle. The null and al-

ternative hypotheses in this case are: 
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H0: There are no differences in the embodiment effects between low economic 

activity phases and high economic activity phases, i.e., , , 0k L k Hθ θ− =  

H1: The embodiment effects are larger during low economic activity phases 

than during high economic activity phases,  i.e., , , 0k L k Hθ θ− =  

Model 4: 

, (1) ,

( ) ,

, ,

ln( ) [ ( ) ln( )]

[ ( ) ln( / )]

,

i t t i t

k t i t

x i t i t

TFP Phase BC TFP

Phase BC K L

X v

α ′∆ = + Θ ×
′+Θ × ∆

′+Θ +
%

%

           (6) 

where 

( ) ( ( ) , ( ) , ( ) ) ,t t t tPhase BC Phase C Phase R Phase E ′=  

(1) 1, 1, 1,( , , ),C R Eθ θ θ′Θ =  

( ) , , ,( , , ),k k C k R k Eθ θ θ′Θ =  

and 

Phase(C) t  = 1 [In period t the U.S. economy is officially in a contraction phase], 

Phase(R) t  = 1 [In period t the U.S. economy is officially in an expansion phase 

 and the U.S. output gap is negative], 

Phase(E) t  = 1 [In period t the U.S. economy is officially in an expansion phase 

and the U.S. output gap is positive], 

where 1[ ]⋅  is an indicator function, the parameters ,k Cθ , ,k Rθ and ,k Eθ  capture 

the impacts of the contraction, recovery and late expansion phases of the 

business cycle on embodiment and 
,i tX% is the vector of control variables 
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excluding the rates of growth of the relative capital intensities. The hypotheses 

to be tested using Model 4 includes those of Model 2 plus: 

1. Embodiment effects in contractions. The null and alternatives hypotheses 

are: 

H0: There are no embodiment effects during contractions, i.e., , 0k Cθ = . 

H1:  There are embodiment effects during contractions, i.e., , 0k Cθ > . 

2. Embodiment effects during recoveries. The null and alternatives 

hypotheses in this case are: 

H0: There are no embodiment effects during recoveries, i.e., , 0k Rθ = . 

H1: There are embodiment effects during recoveries, i.e., , 0k Rθ > . 

3. Embodiment effects during late expansions. The null and alternatives 

hypotheses in this case are: 

H0:  There are no embodiment effects during late expansions, i.e., , 0k Eθ = . 

H1: There are embodiment effects during late expansions, i.e., , 0k Eθ > . 

4. Differences in the embodiment effects between contractions and 

recoveries. The null and alternatives hypotheses are: 

H0: There are no differences in the embodiment effects between contractions 

and recoveries, i.e., , , 0k C k Rθ θ− = .                      

H1: The embodiment effects are larger during contractions than during 
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recoveries, i.e., , , 0k C k Rθ θ− > .                       

5. Differences in the embodiment effects between contractions and late ex-

pansions. The null and alternatives hypotheses are: 

H0: There are no differences in the embodiment effects between contractions 

and late expansions, i.e., , , 0k C k Eθ θ− = . 

H1:  The embodiment effects are larger during contractions than during late 

expansions, i.e., , , 0k C k Eθ θ− > . 

3 .  D a t a  

The following paragraphs provide a brief overview of the data used to investigate the 

catch-up hypothesis. A full description of the underlying data sources and aggregation 

procedures can be found in Ball et al. (1999). 

 We construct state-specific aggregates of output and capital, labor, and materials 

inputs as Törnqvist indexes over detailed output and input accounts. Törnqvist output 

indexes are formed by aggregating over agricultural goods and services using revenue-

share weights based on shadow prices. Indexes of labor input are constructed using 

demographically cross-classified hours and compensation data. Our measure of capital 

input begins with data on the stock of capital for each component of capital input. For 

depreciable assets, the capital stocks are the cumulation of all past investments adjusted 

for discards of worn-out assets and loss of efficiency of assets over their service life. For 

land and inventories, capital stocks are measured as implicit quantities derived from 

balance sheet data. Indexes of capital input are formed by aggregating over the various 

capital assets using cost-share weights based on asset-specific rental prices. Törnqvist 
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indexes of energy consumption are calculated for each state by weighting the growth 

rates of petroleum fuels, natural gas, and electricity by their shares in the overall value of 

energy inputs. Fertilizers and pesticides are also important intermediate inputs. Price 

indexes for fertilizers and pesticides are constructed using hedonic methods. The 

corresponding quantity indexes are formed implicitly by taking the ratio of the value of 

each aggregate to its hedonic price index. A Törnqvist index of intermediate input is 

calculated for each state by weighting the growth rates of each category of intermediate 

inputs by their value share in the overall value of intermediate inputs. Finally, 

considerable effort is expended to develop output and input measures that have spatial as 

well as temporal integrity. The result is panel data that can be used for both cross section 

and time series analysis.  

In our tests of the catch-up hypothesis, we include a number of control 

variables. Following Dollar and Wolff (1994) and Ball, Hallahan, and Nehring 

(2004), we include changes in relative capital intensities, ,ln( / )i tK L∆ , to 

capture embodiment. We also include indexes of specialization to control for 

differences in TFP growth rates across agricultural subsectors. To capture 

possible human capital spillovers, we include differences in years of schooling 

and worker experience.5  

Cyclical fluctuations in aggregate economic activity and investment in 

human capital are likely exogenous sources of TFP growth in agriculture, but the 

growth rates of relative capital intensities and agricultural specialization may be 

endogenous. We address the potential endogeniety problems using instrumental 

variables. 
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  Valid instruments for the capital intensities would be variables that are 

correlated with the inputs but are orthogonal to TFP shocks. One might 

conclude that a natural set of instruments would be the lagged values of the 

endogenous variables (Cungun and Swinnen, 2003). However, these lagged values 

may not be valid instruments because the optimal input demands may depend on 

past values of TFP (Levinson and Petrin, 2000), which leads to a violation of the 

weak exogeneity conditions. In this paper, we use two different sets of demand-

side instrumental variables. The first set of instruments varies across time 

periods but not across states, while the second set of instruments varies across 

both time periods and states. 

Following Groth, Nuñez and Srinivasan (2006), the first set of demand-

side instruments includes monetary shocks, proxied by the changes in medium- 

and long-term interest rates, and fiscal impulse, measured by the changes in 

the U.S. primary deficit as a percentage of GDP. The second set includes the 

growth rates in relative energy prices, the expected growth rates in potential 

domestic and external demand, and market accessibility to Metropolitan 

Statistical Areas (MSA). We construct the market accessibility and domestic and 

external demand variables using the market accessibility function proposed by 

Harris (1954).7       

It can be argued that productivity growth also plays a role in determining 

production patterns (i.e., specialization) across regions (see Gopinath and 

Upadhyaya, 2002), thereby leading to simultaneity bias. We address this problem 

by considering regional and time fixed effects and by introducing relative 



 

 22 

chemical and energy input intensities as instruments. The relative chemical and 

energy intensities are likely highly correlated with our measures of specialization 

because farms in a particular state that specialize in the production of, say crops, 

will also have relatively large chemical and energy input shares. In addition, the 

instruments should be a valid source of exogenous variation (i.e., orthogonal to 

shocks in TFP) since the intermediate input indexes are adjusted for changes in 

input quality. 

4 .  E m p i r i c a l  R e s u l t s  

This section details our empirical findings. First, we discuss the results of our 

tests of -convergence ignoring the business cycle (i.e., the benchmark model). 

Then we present test results that take into account the effects of the business 

cycle on the rate of convergence and embodiment. 

4.1 Benchmark Model  

4.1 .1  Tes t ing  for  Panel  Uni t  Roots  

To avoid spurious regression results, we first examine whether the variables in 

equations (1) and (2) exhibit a unit root. We perform panel unit root tests 

proposed by Levin, Lin, and Chu (2002), Im, Pesaran and Shin (2003) and 

Breitung (2000), respectively. Compared with individual unit root tests, such as 

the Augmented Dickey Fuller (1981) test or the Phillips and Perron (1988) test, 

all of these have common advantages when dealing with small samples. However, 

they also have their own limitations, which suggest a joint interpretation of the 

test results. The Levin, Lin, and Chu (2002) and Im, Pesaran and Shin (2003) 
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tests face size distortions as the cross-section dimension gets large relative to the 

time series dimension. On the other hand, the Breitung (2002) and Levin, Lin, and 

Chu (2002) tests require homogeneity of the first-order autoregressive parameter, 

which restricts the parameters to be equal across all the cross-sections under the 

alternative hypothesis (Baltagi, 2005). Table 1 summarizes the results of the 

panel unit root tests. The tests include a constant term and, in the case of TFP 

growth rates, a time trend. All of the test statistics are less than the critical value 

of -1.65 at the 5% level. Therefore, we reject the null hypothesis of a unit root 

and proceed by estimating equations (1) and (2) assuming stationarity. 

4.1.2 Pooled OLS 

In Table 2 we report the pooled OLS estimates of equations (1) and (2). The 

results support the catch-up hypothesis, showing a highly significant inverse 

relation between the rate of TFP convergence by state and its initial TFP level 

relative to the United States (columns 1 through 5). The results for the 

embodiment hypothesis appear in columns 2 through 5. The variable ,ln( / )i tK L∆  

has a positive and significant coefficient, suggesting that embodiment of 

technology in capital was an important source of TFP growth. The relation 

between productivity growth and specialization is given in columns 3 through 5, 

while years of schooling and worker experience appear in columns 4 and 5. 

Neither is statistically significant. Finally, the coefficient on the interaction term, 

, ,ln( )AMR
i t i td x TFP , is not statistically significant, suggesting there is no asymmetric 

mean reversion (column 5). We note, however, that the results in Table 2 are 
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consistent if and only if the orthogonality conditions on equations (1) and (2) 

hold (i.e., the explanatory variables are uncorrelated with the error term,i tυ ). 

4.1.3 Testing for Unobserved State-Specif ic Effects  

To control for unobservable state-specific effects, we perform three tests. First we 

perform the Breusch and Pagan (1980) Lagrangian Multiplier test for random 

effects against the pooled OLS estimates. Then we perform an F-test for fixed 

effects. Finally, we perform the Hausman (1978) specification test to compare the 

random- and fixed-effects specifications. The state-specific effects model (or one-

way error components model) is given by equation (1) or (2) and: 

, , ,i t i i tv uη= +                               (7) 

where iη denotes the unobservable state-specific effect and,i tu is the remainder 

disturbance. Table 3 shows the results of the tests for state-specific effects for 

each of the econometric specifications described above. In all cases, the Breusch 

and Pagan (1980) test for random effects and the F-test for fixed effects yield a p-

value smaller than 0.10, which clearly points to the presence of state-specific 

effects. Furthermore, in all cases the Hausman (1978) specification test yields a p-

value of 0.0000, which confirms that the differences between the random-effects 

and fixed-effects coefficients are systematic. We conclude that the fixed effects 

are relevant and that both the pooled OLS and random-effects GLS estimators are 

inconsistent. 

4.1.4 Testing for Unobserved Time-Speci f ic Effects  
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Having confirmed the existence of state-specific fixed effects, we explore the 

existence of unobserved time-specific effects. For simplicity, we assume that if 

there exists unobserved time-specific effects common to all the states, then it must 

be a fixed effect. Technically speaking, this assumption does not compromise the 

consistency of the estimated parameters. The two-way error components model is 

given by (1) or (2) and: 

                       , , ,i t i t i tv uη ε= + +                                      (8) 

where iη and tε  denote the unobservable state- and time-specific fixed effects 

and ,i tu is the remaining stochastic disturbance. To test the time-specific effects 

hypothesis we estimate the two-way fixed effects model and then perform an F-

test for time-specific fixed effects. The null hypothesis is that0, 1,...,t t Tε = = . 

Table 4 summarizes the two-way fixed-effects estimation results for each of the 

econometric specifications described above. The bottom panel in Table 4 shows 

the F-test results for the two-way fixed effects model against the one-way fixed-

effects model. In all cases, the F-test yields a p-value of 0.0000. Therefore, we can 

reject the null hypothesis at the usual confidence levels. We conclude that both 

state- and time-specific fixed effects are significant. 

4.1.5 Test ing for  Endogenei ty  

As previously noted, such variables as the relative factor intensities and 

specialization may be viewed as endogenous. We test for endogeneity using the 

Davidson and MacKinnon (1993) augmented regression test procedure. First, we 
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estimate a two-way fixed effects model for each of the possibly endogenous right-

hand side variables in equation (1) or (2) using as instruments all the exogenous 

variables in (1) or (2) and the excluded instruments described in Section 3 above. 

Then we perform the augmented two-way fixed-effects within regressions by 

including the first-step residuals. If the coefficients on those residuals are 

significantly different from zero the original two-way fixed effects estimates are 

not consistent (i.e., , ,( , ) 0i t i tE X u ≠ . 

Table 5 reports the endogeneity tests results for each econometric 

specifications in which an explanatory variable is likely endogenous. In all cases, 

the coefficients on the residuals of ln( / )tK L∆ are significant at the 5% level, 

indicating that the relative capital intensities are endogenous variables. In the case 

of specialization, the results are mixed. The coefficients on the residuals of the 

livestock intensities are significant at the 10% level. But the results suggest that 

the crop intensities are exogenous since the coefficients on the residuals are not 

significantly different from zero. 

Having determined that a number of the regressors are endogenous, we test 

the relevance and validity of the instruments with the Kleibergen-Paap (2006) test 

for underidentification and the Sargan-Hansen (1982) test for overidentifying 

restrictions. Both tests are robust to heteroskedasticity. The null hypothesis in the 

underidentification test is that the first-step equations are underidentified (i.e., the 

excluded instruments are uncorrelated with the endogenous regressors). The joint 

null hypothesis in the test for overidentifying restrictions is that the instruments 

are 
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valid (i.e., uncorrelated with the error term,i tu ) and that the excluded instruments 

are correctly excluded from the estimated equations (1) and (2). 

Table 6 reports the two-steps IV two-way fixed-effects results. The bottom 

panel in Table 6 shows the results for the underidentification and overidentifying 

restrictions tests. In all cases the Kleibergen-Paap (2006) test for 

underidentification yield a p-value smaller than 0.05, indicating that the excluded 

instruments are significant. On the other hand, the Sargan-Hansen (1982) test for 

overidentifying restrictions yields borderline results. In two cases, the test yields a 

p-value grater that 0.10, and the other two cases yield a p-value very close to 0.10. 

Given these results, we conclude that the instruments are valid. 

A comparison of the parameter estimates reported in Tables 4 and 6 yields 

two interesting results. First, embodiment is a more important source of TFP 

growth in agriculture than was previously reported (see Ball, Hallahan, and 

Nehring, 2004). In fact, once we addressed the problem of endogeneity, the 

coefficient on ln( / )tK L∆  increased by a factor of five. Unfortunately, these 

results are not strictly comparable with those of earlier studies because the time 

series and cross section coverage are quite different and because most studies 

attempt to purge the data of the cyclical component. As a point of reference, 

however, Ball, Hallahan and Nehring (2004) find that the magnitude of the 

coefficient on ln( / )tK L∆  is, in absolute value, about 0.75 times the magnitude of 

the catch-up parameter. The results in Table 6 suggest that the coefficient on 

ln( / )tK L∆  is nearly three times the catch-up parameter.   
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Second, we find that specialization and TFP growth are inversely related. 

Moreover, states that specialized in crop production achieved lower rates of 

productivity growth than did states that specialize in livestock production. These 

results are consistent with those obtained by McCunn and Huffman (2000) and 

Evenson and Huffman (2001). Highly specialized farms are the productivity 

leaders, but they achieved slower productivity growth than did less specialized 

farms.  

4.1.6 Test ing for  Serial  Correlat ion of  the Error  Components  

The specifications given by equations (1) or (2) and (8) assume that serial 

correlation in the model stems from the fact that the observations correspond to 

the same states across the panel. However, the remaining stochastic disturbance 

,i tu  in (8) may be serially correlated. In general, if the autocorrelation problem is 

not corrected, the Gauss-Markov assumptions about the residuals will be violated 

and this will lead to consistent but inefficient parameter estimates, as well as 

biased standard errors (see Baltagi, 2005). The generalized two-way fixed effects 

model with AR(1) remainder disturbances is given by equations (1) or (2), (8) and, 

              1 , ; 1,it it i tu u eρ ρ−= + <                                   (9) 

where ,i te  denotes the remaining stochastic error. 

Table 7 summarizes the estimation results for the two-way fixed-effects 

specification with AR(1) remaining disturbances. The results reported in columns 

2 through 5 were obtained by the two-steps IV method. First, we estimate the 
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endogenous right-hand side variables in (1) and (2) using a two-way fixed effects 

model and the set of valid instruments described above. Then we estimate the 

two-way fixed effects model with AR(1) disturbances using the fitted values of 

the first-step dependent variables as exogenous variables. The bottom panel in 

Table 7 shows the AR (1) estimated coefficient,ρ̂ , as well as the Baltagi and Li 

(1995) and Wooldridge (2002) test statistics for the non-serial correlation 

hypothesis.6 Both tests yield p-values of 0.0000, hence we can reject the null 

hypothesis of no serial correlation. Since we have that some explanatory variables 

in (1) and (2) are endogenous, this confirms that lagged values of these 

explanatory variables may not be used as excluded instruments since this would 

violate the weak exogeneity conditions. 

4.1.7 Test ing for  Heteroskedast ici ty  

In order to control for possible groupwise heteroskedasticity, we perform the 

Modified Wald test in the specifications given by equations (1) or (2) and (8). 

Note that this test gives valid results even though the normality assumptions do 

not hold (see Green, 2003). Table 8 summarizes the heteroskedasticity test results. 

The results reported are robust to endogeneity. First, we estimate the endogenous 

right-hand side variables in equations (1) and (2) using a two-way fixed effects 

model and the above set of valid instruments. Then we estimate the two-way 

fixed-effects model using as instruments the fitted values for the first-step 

dependent variables. Finally, we perform the Modified Wald test. In all the cases, 

the test yields a p-value of 0.0000. Thus we can reject the null hypothesis of 
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homoskedasticity. 

4.1.8 Benchmark Model Specification 

The final benchmark model specification (i.e., before introducing the effects of the 

business cycle) is a two-way fixed effects model with state-specific error variances 

and state-specific AR(1) disturbances: 

    , ,it i t i tv uη ε= + +                                                                  (10) 

                                            1 ; 1.it i it itu u eρ ρ−= + <                                                    (11) 

In order to correct for endogeneity, heteroskedasticity and autocorrelation, we 

proceed by estimating the model using a TSCS Instrumental Variables Feasible 

GLS (TSCS IV-FGLS) regression method. First, we estimate the endogenous 

right-hand side variables in (1) and (2) using a two-way fixed effects model and 

the set of valid instruments described in Section 3. Then, using the fitted values 

for the first-step dependent variables, we estimate using TSCS Feasible GLS 

(TSCS FGLS) the two-way fixed-effects model robust to endogeneity,  

hetersoskedasticity, autocorrelation and cross-sectional contemporaneous 

correlation. We include dummy variables for each year and each state to control 

for state-specific and time-specific fixed effects.  

The estimation results are summarized in Table 9. In contrast with previous 

studies, the results in Table 9 confirm that human capital spillovers contribute 

significantly to TFP growth. Moreover, there is evidence of asymmetric mean 

reversion; that is, those states with below average TFP levels converge to the mean 

level 
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at a faster rate than states with TFP levels above the average.  

4 .2  β - Convergence  and the  Bus iness  Cyc l e  

In Section 2, we discussed four alternate model specifications to assess the impact 

of the business cycle on TFP convergence. The first two specifications, or Models 

1 and 2, capture the effects of the business cycle through interaction with the 

initial level of productivity, while Models 3 and 4 also include an interaction term 

with the relative capital intensities. In Models 1 and 3, we partition the business 

cycle into phases of high economic activity (Phase H) and low economic activity 

(Phase L). In Models 2 and 4, we consider an alternative partition of the business 

cycle, a contraction phase (Phase C), a recovery phase (Phase R), and a late 

expansion phase (Phase E). 

Each of the specifications is a two-way fixed effects model with state-

specific error variances and state-specific AR(1) disturbances. As in the final 

benchmark specification, we proceed by estimating the model using a TSCS 

Instrumental Variables Feasible GLS (TSCS IV-FGLS) regression method. First 

we estimate the endogenous righthand side variables in equations (3) to (6) using a 

two-way fixed effects model and the set of valid instruments discussed previously. 

Then, using the fitted values for the first-step dependent variables, we estimate by 

TSCS Feasible GLS (TSCS FGLS) the two-way fixed-effects model robust to 

endogeneity, heteroskedasticity, autocorrelation and cross-sectional 

contemporaneous correlation. We include dummy variables for each year and each 

state to control for the state-specific and the time-specific fixed effects. 
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4.3 Rates  of  Convergence  

Tables 10 and 11 summarize the estimation results for Models 1 and 2. The bottom 

panel in both tables shows the Wald 2χ -test results for differences in convergence 

rates across the different phases of the business cycle. The results in Table 10 

indicate that there is convergence in levels of productivity during both the low 

economic activity and the high economic activity phases of the business cycle. The 

Wald 2χ -tests for differences in convergence rates yield a p-value smaller than 

0.05 in all the cases. We conclude that there is a small but statistically significant 

difference in the rates of convergence across the different phases of the business 

cycle. Taking column (5) as the preferred specification, the model predicts that the 

convergence rate for productivity followers is 7.7% higher during low economic 

activity phases of the business cycle than during high economic activity phases. 

This difference is even greater for the productivity leaders, about 8.8% once we 

allow for asymmetric mean reversion. 

On the other hand, the results in Table 11 indicate that there is convergence 

in TFP levels during the contraction, recovery, and late expansion phases of the 

business cycle. The Wald 2χ -tests for the differences in rates of convergence 

between contraction and recovery phases yield a p-value grater than 0.1 in four of 

the five cases. However, test results for differences in the rate of convergence 

during contraction and late expansion phases yield a p-value smaller than 0.1 in 

four of the five cases. These results suggest that there is a small but statistically 

significant difference in the convergence rates between the contraction and late 
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expansion phases of the business cycle. Again taking column 5 as the preferred 

specification, the model predicts that the convergence rate for productivity 

followers is 6.8% higher during the contraction phase of the business cycle than 

during the late expansion phase. As in the previous case, the difference is even 

higher for the productivity leaders, about 7.3% once we allow for asymmetric 

mean reversion.  

Overall, these results are consistent with theory. We observe faster 

catching-up during low economic activity and contractions phases of the business 

cycle and lower rates of convergence during high economic activity and late 

expansion phases of the business cycle. As noted earlier, this result is a direct 

consequence of both time lags in technological diffusion processes and the 

procyclical behavior of innovation. In contrast with evidence from the 

manufacturing sector, however, the magnitude of the effects of the business cycle 

on TFP convergence in agriculture appears relatively small. We attribute this 

result to the level of publicly funded R&D in the agricultural sector. Since 

innovations resulting from public R&D can be considered public goods that firms 

can imitate relatively quickly the diffusion of technical information will be more 

rapid in agriculture and this implies a smaller impact of the business cycle on 

TFP convergence. 

4.4 Convergence,  Embodiment ,  and The Business  Cycle  

Tables 12 and 13 summarize the results for Models 3 and 4. The bottom panel in 

both tables shows the Wald 2χ -test results for both differences in the rates of 
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convergence and differences in the embodiment effect across different phases of 

the business cycle. The results in Table 12 confirm that there is convergence in 

TFP during both low economic activity and high economic activity phases of the 

business cycle. The Wald 2χ -test for differences in rates of convergence yields a 

p-value smaller than 0.05 in all the cases. Furthermore, the test for differences in 

the embodiment effect across the business cycle yields a p-value of 0.0000. These 

results lead us to two conclusions. First, there is a small but statistically 

significant difference in the rates of convergence across the different phases of the 

business cycle and, second, there is a large and statistically significant difference 

in the embodiment effect. Taking column 5 as the preferred specification, the 

model predicts that the rate of convergence for productivity followers is 5.7% 

higher during low economic activity phases of the business cycle than during high 

economic activity phases. As was seen earlier, that difference is even greater for 

the productivity leaders, about 6.1% once we allow for asymmetric mean 

reversion. Moreover, the model results point to a greater embodiment effect, some 

40% greater, during low economic activity phases of the business cycle than 

during high economic activity phases. 

 The results in Table 13 also confirm that there is convergence in levels of 

TFP in the contraction, recovery, and late expansion phases of the business cycle. 

The Wald 2χ -test results for the differences in convergence rates between 

contractions and recoveries yield a p-value greater than 0.1 in three of the five 

cases. However, the test results for differences in rates of convergence during 

periods of contraction and late expansion yield a p-value less than 0.1 in four of 



 

 35 

the five cases. Furthermore, the Wald 2χ -test results for differences in the 

embodiment effect during the contraction phase and the other two phases of the 

business cycle yield a p-value of 0.0000 in all the cases. We conclude that there is 

a small but and statistically significant difference in the rates of convergence 

during contraction and late expansion phases of the business cycle. There is also a 

large and statistically significant difference in the embodiment effect during the 

contraction phase and the other two phases of the business cycle. Again taking 

column 5 as the preferred model, the results suggest that the rate of convergence 

for productivity followers is 4.8% faster during the contraction phase than during 

the late expansion phase. And that difference is even greater for the productivity 

leaders, about 5.1% once we allow for asymmetric mean reversion. Moreover, 

the model predicts that the embodiment effects are 33.9% and 73.7% greater 

during the contraction phase of the business cycle than during the recovery phase 

and the late expansion phase, respectively.  

Again, these results are consistent with theory. We not only observe faster 

catching-up during the low economic activity and contraction phases of the 

business cycle, but we also observe stronger embodiment effects. Both the rate of 

convergence and the magnitude of the embodiment effect are lower during the 

high economic activity and the late expansions phases of the business cycle.   

5 .  Su mma r y  an d  Co n c lus ion s  

This paper examines the relation between the business cycle and convergence in 

levels of productivity across states. First, we test the catch-up hypothesis using 
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an econometric specification that ignores cyclical fluctuations in economic 

activity (i.e., our benchmark model). Then we show how the rate of convergence 

changes across the different phases of the business cycle. We do so using four 

different model specifications. First, we consider the effects of the business 

cycle on convergence using two alternative partitions of the business cycle. 

Initially, we partition the business cycle into periods of high and low economic 

activity. A second decomposes the business cycle into periods of contraction, 

recovery, and late expansion. Finally, we assess the impact of cyclical 

fluctuations in economic activity on embodiment.    

To avoid omitted-variables bias, we include a number of control variables 

in our tests of convergence. In line with Dollar and Wolff (1994) and Ball, 

Hallahan, and Nehring (2004), we include growth rates in relative capital 

intensities to capture technological embodiment. Following Evenson and Hufman 

(2001), we also include measures of specialization to control for differences in 

patterns of TFP growth between the livestock and crops subsectors. Finally, we 

include years of schooling and worker experience at the state level to capture 

possible human capital spillovers (Parman, 2009). Since the relative capital 

intensities and the measures of specialization are endogenous variables we use an 

instrumental variables approach. 

The results from our benchmark model can be summarized as follows. 

First, we find evidence of convergence in productivity levels across states. 

Second, embodiment was an important source of TFP growth in agriculture. In 

fact, after correcting for endogeneity of the relative capital intensities, 
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embodiment was found to be a more important source of productivity growth than 

was previously reported (see Ball, Hallahan, and Nehring, 2004). Third, less 

specialized states had, on average, higher productivity growth rates than more 

specialized states. However, states that specialized in livestock production 

achieved faster growth rates than states that specialized in the production of 

crops. This result is consistent with the literature on agricultural productivity and 

provides further evidence in support of the catch-up hypothesis. Highly 

specialized states are among the productivity leaders, yet they exhibited slower 

rates of productivity growth. Finally, we find that there are important human 

capital spillovers into agriculture. States with higher levels of educational 

attainment and worker experience achieved faster productivity growth. 

Next, we look at the speed of convergence across the different phases of 

the business cycle. We find that the rate of catch-up is faster during contraction 

and low economic activity phases of the business cycle than during late 

expansion and high economic activity phases.  

When we consider the effects of the business cycle only through 

convergence, we find that the rate of catch-up for the productivity followers is 

about 7.7% higher during low economic activity phases of the business cycle 

than during high economic activity phases. During contractions in economic 

activity, the rate of catch-up for these states is about 6.8% higher than during 

late expansions. The differences are even greater for the productivity leaders, 

about 8.8% and 7.3%, respectively, once we allow for asymmetric mean 

reversion. 
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The above mentioned results are robust to the presence of cyclical effects 

through embodiment. The catch-up rate for the productivity followers is about 

5.7% higher during low economic activity phases than during the high economic 

activity phases. During contractions, the catch-up rate for those states is about 

4.8% higher than during late expansions. These differences are even greater for 

the productivity leaders, about 6.1% and 5.1%, respectively.  

Finally, the results indicate that there are significant differences in the 

magnitude of the embodiment effect across the business cycle. The embodiment 

effect is 40.4% higher during low economic activity phases of the business cycle 

than during high economic activity phases. Moreover, those effects are 33.9% 

and 73.7% higher during contractions than during recoveries and late expansions. 

Overall, the results are consistent with the predictions of theory. Time 

lags in the diffusion of technical information and the pro-cyclical behavior of 

innovations are the main forces driving the relation between fluctuations in the 

business cycle and convergence patterns. In contrast with evidence from the 

manufacturing sector, however, the magnitude of the effects of the business 

cycle through the rate of convergence appears to be smaller in the agricultural 

sector. We attribute this result to public funding of R&D in the agricultural sector. 

Since innovations resulting from public R&D can be considered public goods 

that firms can imitate relatively quickly the diffusion of technical information 

will be more rapid in agriculture and this point to a smaller impact of the 

business cycle on TFP convergence. 
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Notes 
1. Overshooting of prices refers to temporary changes beyond long-run 

equilibrium levels. 
2. Publically funded research and development (R&D) plays an important role 

in agriculture. Since innovations resulting from public R&D can be 
considered public goods that firms can imitate in a relatively short period of 
time diffusion of technical information may be faster in agriculture.  

3. If most exiting farms are concentrated in states with lower initial 
aggregate productivity the bias would be negative (i.e., biased towards β-
convergence). If most exiting farms are concentrated in the states with 
higher initial aggregate productivity (i.e., in response to higher competitive 
pressures), the bias would be positive (i.e., biased against β-
convergence). Finally, if there are no statistically significant differences 
in the exit rates between the most productive states and the less 
productive states the results would be unbiased. 

4. In the most basic specification of β-convergence only the initial and the 
final periods are considered. The advantage of using a specification for 
discrete or overlapping periods is that the estimates are less sensitive to 
the starting and ending dates of the panel data series (see. e.g., McCunn 
and Huffman, 2000; Ball, Hallahan, and Nehring, 2004). 

5. These data were taken from Baier et al. (2007). They construct the state-
level schooling and worker experience variables using a perpetual 
inventory method. The time series cover the period between 1840 and 
2000. Figures for the period 2001-2004 are extrapolated using 
TRAMO. TRAMO is a program for MLE estimation of regression 
models with general non-stationary (ARIMA) errors, outliers, and long 
sequences of missing observations (Gómez and Maravall, 1997; Maravall 
2005). 

6. In this paper we perform the Baltagi and Li (1995) test and Wooldridge 
(2002) test since both tests can be applied under very few maintained 
assumptions (see Baltagi and Li, 1995 and Drukker, 2003). 

7. A complete description of methods and data used to construct the market 
accessibility and domestic and external demand variables is provided in an 
appendix available from the authors. 

 



 

  

 

Figure 1: U.S. GDP and NBER-Dated Recession.    
 
 

 

 

 

 
  

Source: U.S. NBA and NBER. 
 

Table 1: Panel Data Unit Root Tests 

Variable LLC' Statistic IPS's Statistic BRG's Statistic 
∆ ln  (TFPi , t )  —44.905 —50.343 —24.285 

ln  (TFPi , t ) i t  —18.125 —16.027 —9.881 

∆  ln (K I L) i ;t  —47.091 —46.115 —34.825 

Livestocki , t  —17.152 —15.987 —8.101 

Cropsi , t  —17.726 —17.240 —7.162 

∆ ln(Schoolingi ,t) —32.788 —31.572 —19.755 

∆ ln(Experiencei , t) —23.955 —20.487 —23.311 

Cross-sections included 48 
Total panel (balanced) observations: 2112 

 

Note: Asymptotica l ly 
standard normal  d is tr ibuted test stat ist ics , 5% cr it ical  va lue —1.65. Automatic select ion of  lags  based on SIC 
cr iter ia .  Newey-West  bandwidth selection using Bart le tt  kernel  
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Table 2: Catching-Up in Agricultural TFP 
Dependent Variable: ,ln i tTFP∆  

Method: Pooled OLS 
Variable (1) (2) (3) (4) (5) 
 

,ln i tTFP  -0.0621 -0.0585 -0.0593 -0.0593 -0.0719 

 
[0.008]***  [0.008]***  [0.008]***  [0.008]***  [0.012]***  

,
AMR

i td x 
,ln i tTFP      0.0320 

     
[0.024] 

,ln( / )i tK L∆   0.2094 0.2097 0.2093 0.2092 

  
[0.014]***  [0.014]***  [0.014]***  [0.014]***  

,i tLivestock    -0.0105 -0.0103 -0.0063 

 
 

 
[0.130] [0.131] [0.136] 

,i tCrops    -0.0130 -0.0130 -0.0084 

 
  [0.014] [0.014] [0.014] 

,ln( )i tSchooling∆     0.2906 -0.2886 

 
  

 
[0.312] [0.312] 

,ln( )i tExperience∆     0.0890 0.0842 

 
   [0.160] [0.144] 

Constant -0.0040 -0.0078 -0.0090 -0.0111 -0.0130 

 
[0.002]**  [0.002]***  [0.002]***  [0.003]***  [0.003]***  

Cross-sections included: 48 

Total panel (balanced) observations: 2112 

R2 2 0.0280 0.1221 0.1225 0.1229 0.1236 
Notes: * significant at 10%; ** significant at 5%; *** significant at 1%. Standard errors in brackets. 

Table 3: Panel Data State-Specific Effects' Tests 
(1) (2) (3) (4) (5) 

Cross-section random effects     
BPLM X2-statistic 4.91 3.51 3.85 4.14 4.99 
Prob(X2-statistic) 0.0266 0.0611 0.0497 0.0418 0.0255 

Cross-section fixed effects      

F-statistic 10.07 9.44 10.00 10.15 10.15 

Prob(F-statistic) 0.0000 0.0000 0.0000 0.0000 0.0000 
Cross-section fixed effects vs Cross-section random effects 

Hausman X2-statistic 485.30 451.64 481.43 487.50 489.06 

Prob(X2-statistic) 0.0000 0.0000 0.0000 0.0000 0.0000 
 

 
Cross-sections included: 48 
Total panel (balanced) observations: 2112 

 



 

 

 
Table 4: Catching-Up in Agricultural TFP 
Dependent Variable: ,ln i tTFP∆  

Method: FE (within regression) 
Variable (1) (2) (3) (4) (5) 
 

,ln i tTFP  -0.4292 -0.4019 -0.3829 -0.3823 -0.3740 

 
[0.018]***  [0.018]***  [0.018]***  [0.018]***  [0.023]***  

,
AMR

i td x 
,ln i tTFP      -0.0257 

     
[0.042] 

,ln( / )i tK L∆   0.1704 0.1753 0.1753 0.1756 

  
[0.013]***  [0.013]***  [0.013]***  [0.013]***  

,i tLivestock    -0.0234 -0.0221 -0.0205 

 
 

 
[0.130] [0.131] [0.136] 

,i tCrops    -0.0959 -0.0959 -0.0946 

 
  [0.023]*** [0.023]*** [0.023]*** 

,ln( )i tSchooling∆     0.3911 -0.3985 

 
  

 
[0.333] [0.334] 

,ln( )i tExperience∆     -0.0387 -0.0365 

 
   [0.160] [0.160] 

Constant -0.0407 -0.0463 -0.0513 -0.0525 -0.0508 

 
[0.009]***  [0.009]***  [0.009]***  [0.010]***  [0.010]***  

Panel data Time-Specific Fixed Effects Test 

F-statistics 6.54 5.96 6.22 6.08 6.04 

Prob(F-statistics) 0.0000 0.0000 0.0000 0.0000 0.0000 
Cross-sections included: 48 

Total panel (balanced) observations: 2112 

R2 0.3039 0.3569 0.3672 0.3678 0.3679 
Notes: * significant at 10%; ** significant at 5%; *** significant at 1%. Standard errors in brackets. All 
regressions use state and year fixed effects. 

 
Table 5: Panel Data Endogeneity Tests 
Variable (2) (3) (4) (5) 

,ln( / )i tK L∆  -0.6131 -0.4320 -0.4411 -0.4481 

 [0.177]***  [0.180]**  [0.178]**  [0.180]**  

,i tLivestock   0.2023 0.2025 0.2254 

  [0.116]*  [0.115] * [0.125]*  

,i tCrops   0.0842 0.0896 0.1190 

  [0.176] [0.172] [0.184] 

Cross-sections included: 48 
Total panel (balanced) observations: 2112 
Notes: * significant at 10%; ** significant at 5%; *** significant at 1%. Standard errors in brackets.  

 



 

 

 
Table 6: Catching-Up in Agricultural TFP 
Dependent Variable: ,ln i tTFP∆  

Method: IV-FE (within regression) 
Variable (1) (2) (3) (4) (5) 

,ln i tTFP  -0.4292 -0.2965 -0.3034 -0.3004 -0.3000 
 [0.018]*** [0.046]*** [0.049]*** [0.049]*** [0.061]*** 

,
AMR

i td x 
,ln i tTFP  

    -0.0074 
     [0.076] 

,ln( / )i tK L∆   0.8282 0.8329 0.8405 0.8345 
  [0.213]*** [0.235]*** [0.235]*** [0.233]*** 

,i tLivestock    -0.3069 -0.3086 -0.3145 
   [0.118]*** [0.121]*** [0.123]*** 

,i tCrops    -0.4345 -0.4387 -0.4445 
   [0.133]*** [0.136]*** [0.138]*** 

,ln( )i tSchooling∆     -0.2426 -0.2388 
    [0.566] [0.564] 

,ln( )i tExperience∆     -0.2002 -0.2005 
    [0.249] [0.248] 

IV Identification tests (Instrumented: ∆ln(K/L)i,t, Livestocki,t)       

Underidentification test      

2χ -statistics  15.715 15.306 15.269 15.350 

Prob( 2χ -statistics)  0.0154 0.0323 0.0327 0.0318 

Overidentification of all instruments     

2χ -statistics  4.650 10.920 10.543 10.683 

Prob( 2χ -statistics)  0.4601 0.0909 0.1036 0.0987 
Cross-sections included: 48           
Total panel (balanced) observations: 2112         
Notes: * signiflcant at 10%; ** signiflcant at 5%; *** signiflcant at 1%. Robust Standard errors in brackets. 
All regresions use state and year fixed effects. The results reported in columns (2) to (5) are corrected for 
endogeneity. IV Identification tests robust to heteroskedasticity. 

 
 
 



 

 

Table 7: Catching-Up in Agricultural TFP 
Dependent Variable: ,ln i tTFP∆  

Method: IV-FE (within regression) 
 
Variable (1) (2) (3) (4) (5) 
 

,ln i tTFP  -0.7411 -0.6008 -0.5590 -0.5628 -0.5782 

 
[0.022]***  [0.042]***  [0.041]***  [0.041]***  [0.041]***  

,
AMR

i td x 
,ln i tTFP      0.0425 

     
[0.049] 

,ln( / )i tK L∆   0.8840 1.0877 1.0454 1.0536 

  
[0.218]***  [0.237]***  [0.235]***  [0.235]***  

,i tLivestock    -0.5230 -0:.5040 -0.5340 

 
 

 
[0.130]***  [0.131]***  [0.136]***  

,i tCrops    -0.7326 -0.7106 -0.7417 

 
  [0.148]***  [0.149]***  [0.153]***  

,ln( )i tSchooling∆     0.0225 -0.0088 

 
  

 
[0.360] [0.364] 

,ln( )i tExperience∆     0.2213 0.2216 

 
   [0.187] [0.187] 

Constant -0.0537 0.0000 -0.1112 -0.1094 -0.1136 
 

[0.007]***  [0.011] [0.017]***  [0.017]***  [0.018]*** 

AR(1) Reminder Disturbances Tests 

ρ̂  -0.2699 -0.2722 -0.2608 -0.2611 -0.2608

BLI 2χ -statistic 43.976 46.404 38.067 38.135 37.944
Prob( 2χ -statistic) 0.0000 0.0000 0.0000 0.0000 0.0000
WD F-statistic 336.608 334.002 303.683 298.339 297.079
Prob(F-statistic) 0.0000 0.0000 0.0000 0.0000 0.0000

      

Cross-sections included: 48 

Total panel (balanced) observations: 2064 
Notes: * significant at 10%; ** significant at 5%; *** significant at 1%. Standard errors in brackets. All 
regresions use state and year fixed effects and are robust to autocorrelation. The results reported in columns (2) 
to (5) are corrected for endogeneity. Instrumented variables: ∆ln(K/L) i,t, Livestocki,t 

 
 
 



 

 

 
Table 8: Panel Data Heteroskedasticity Test 
  (1) (2) (3) (4) (5) 
Wald 2χ -statistic  585.88 555.36 569.04 564.87 566.23 
Prob( 2χ -statistic) 0.0000 0.0000 0.0000 0.0000 0.0000 

      
Cross-sections included: 48         
Total panel (balanced) observations: 2112    
Notes: The results reported in columns (2) to (5) are corrected for endogeneity. Instrumented variables: ∆ 

ln(K/L)i,t, Livestocki,t 

Table 9: Catching-Up in Agricultural TFP 
Dependent Variable: ,ln i tTFP∆  

Method: IV-FGLS 
Variable (1) (2) (3) (4) (5) 
 

,ln i tTFP  -0.3852 -0.2592 -0.2900 -0.2891 -0.2995 

 
[0.016]***  [0.010]** * [0.012]***  [0.012]***  [0.012]***  

,
AMR

i td x 
,ln i tTFP      

0.0253 

     [0.010]***  

,ln( / )i tK L∆   0.6947 0.8885 0.8811 0.8624 

  [0.024]***  [0.042]***  [0.043]***  
[0.043]***  

,i tLivestock    -0.4581 -0.4407 -0.4570 

 
  [0.026]***  [0.027]***  [0.028]***  

,i tCrops    -0.5948 -0.5776 -0.5946 

 
  [0.028]***  [0.030]***  [0.031]***  

,ln( )i tSchooling∆     0.2143 0.1942 

 
   [0.063]***  [0.063]***  

,ln( )i tExperience∆     0.2087 0.2091 

 
   [0.030]***  [0.030]***  

Constant -0.0048 -0.0463 -0.2103 -0.2106 -0.2147 

 [0.006] 
[0.007]***  [0.011]***  [0.011]***  [0.011]***  

Cross-sections included: 48 

Total panel (balanced) observations: 2112 

Wald  2χ -statistic 3.26e+07 2.79e+06 1.15e+07 8.98e+06 8.73e+06 

Notes: * significant at 10%; ** significant at 5%; *** significant at 1%. Standard errors in brackets. All 
regresions use state and year fixed effects and are robust to autocorrelation heteroskedasticity and cross-
sectional contemporaneous correlation. The results reported in columns (2) to (5) are corrected for 
endogeneity. Instrumented variables: ∆ ln(K/L)i,t, Livestocki,t. 

 
 



 

 

Table 10: Catching-Up in Agricultural TFP and the Business Cycle 
Dependent Variable: ,ln i tTFP∆  

Method: IV-FGLS 
Variable (1) (2) (3) (4) (5) 
 Phase(L) t  x ln  TFPi ; t  -0.3869 -0.2740 -0.2974 -0.2957 -0.3067 

 [0.016]***  [0.016]***  [0.012]***  [0.012]***  [0.012]***  

Phase(H) t  x ln  TFPi , t  -0.3772 -0.2631 -0.2789 -0.2773 -0.2883 

 [0.016]***  [0.015]***  [0.011]***  [0.012]***  [0.013]*** 

,
AMR

i td x 
,ln i tTFP      0.0269 

     [0.010]***  

,ln( / )i tK L∆   0.6539 0.8878 0.8635 0.8551 
 [0.052]***  [0.043]***  [0.043]***  [0.043]***  

,i tLivestock    -0.4558 -0.4390 -0.4556 

 
  [0.026]***  [0.028]***  [0.029]***  

,i tCrops    -0.5932 -0.5768 -0.5940 

 
  [0.029]***  [0.030]***  [0.031]***  

,ln( )i tSchooling∆     0.2029 0.1820 

    [0.064]***  [0.064]***  

,ln( )i tExperience∆     0.1937 0.1943 

    [0.030]***  [0.030]***  

Constant -0.0050 -0.0442 -0.2109 -0.2114 -0.2155 
 [0.005] [0.007]***  [0.011]***  [0.011]***  [0.011]***  

Differences in β-convergence rates test 
     
H0 : Phase(L)t x ln TFP i, t- Phase(H) i, t x ln TFPt = 0 

2χ -statistics 4.57 7.23 37.15 28.83 29.55 

Prob( 2χ -statistics) 0.0326 0:0071 0.0000 0.0000 0.0000 

Cross-sections included: 48 
Total panel (balanced) observations: 2112 
Wald  2χ -statistic 4.25e+07 2.85e+07 1.03e+07 7.73e+06 7.25e+06 

Notes: * significant at 10%; ** significant at 5%; *** significant at 1%. Standard errors in brackets. All regresions 
use state and year fixed effects and are robust to autocorrelation heteroskedasticity and cross-sectional 
contemporaneous correlation. The results reported in columns (2) to (5) are corrected for endogeneity. 
Instrumented variables: ∆ ln(K/L)i,t, Livestocki,t. 

 
 
 
 



 

 

 
Table 11: Catching-Up in Agricultural TFP and the Business Cycle 
Dependent Variable: ,ln i tTFP∆  

Method: IV-FGLS 
Variable (1) (2) (3) (4) (5) 
 Phase(C) t  x ln  TFPi ; t  -0.3932 -0.2895 -0.2969 -0.2978 -0.3077 

 [0.017]***  [0.017]***  [0.012]***  [0.013]***  [0.013]***  

Phase(R) t  x ln  TFPi , t  -0.3863 -0.2762 -0.2946 -0.2925 -0.3027 

 [0.016]***  [0.016]***  [0.012]***  [0.012]***  [0.012]***  

Phase(E) t  x ln  TFPi , t  -0.3827 -0.2725 -0.2828 -0.2812 -0.2913 

 [0.016]***  [0.016]***  [0.012]***  [0.016]***  [0.012]***  

,
AMR

i td x 
,ln i tTFP      0.0242 

     [0.010]***  

,ln( / )i tK L∆   0.6186 0.8778 0.8518 0.8531 
 [0.053]***  [0.042]***  [0.043]***  [0.043]***  

,i tLivestock    -0.4521 -0.4334 -0.4497 

 
  [0.026]***  [0.028]***  [0.029]***  

,i tCrops    -0.5886 -0.5702 -0.5871 

 
  [0.029]***  [0.030]***  [0.031]***  

,ln( )i tSchooling∆     0.2147 0.1949 

    [0.064]***  [0.064]***  

,ln( )i tExperience∆     0.2028 0.2034 

    [0.030]***  [0.030]***  

Constant -0.0047 -0.0418 -0.2088 -0.2090 -0.2130 
 [0.006] [0.007]***  [0.011]***  [0.011]***  [0.011]***  

Differences in β-convergence rates test 
     
H0 : Phase(C)t x ln TFPi,t- Phase(R)t x ln TFPi,t = 0 

2χ -statistics 0.94 4.26 0.22 0.90 0.83 

Prob( 2χ -statistics) 0.3325 0.0390 0.6367 0.3429 0.3627 

H0 : Phase(C)t x ln TFPi,t- Phase(E)i,t x ln TFPi,t = 0 
2χ -statistics 2.04 6.78 8.06 8.67 8.73 

Prob( 2χ -statistics) 0.1533 0.0092 0.0045 0.0032 0.0031 

Cross-sections included: 48 

Total panel (balanced) observations: 2112 
Wald  2χ -statistic 5.12e+07 2.91e+07 1.05e+07 7.8e+06 7.5e+06 

Notes: * significant at 10%; ** significant at 5%; *** significant at 1%. Standard errors in brackets. All 
regresions use state and year fixed effects and are robust to autocorrelation heteroskedasticity and 
cross-sectional contemporaneous correlation. The results reported in columns (2) to (5) are corrected for 
endogeneity. Instrumented variables: ∆ ln(K/L)i,t, Livestocki,t. 

 
 



 

 

Table 12: Catching-Up in Agricultural TFP and the Business Cycle 
Dependent Variable: ,ln i tTFP∆  

Method: IV-FGLS 
Variable (1) (2) (3) (4) (5) 
 Phase(L) t  x ln  TFPi ; t  -0.3869 -0.2687 -0.2980 -0.2968 -0.3067 

 [0.016]***  [0.009]***  [0.011]***  [0.011]***  [0.012]***  

Phase(H) t  x ln  TFPi , t  -0.3772 -0.2576 -0.2843 -0.2831 -0.2929 

 [0.016]***  [0.009]***  [0.011]***  [0.011]***  [0.012]***  

,
AMR

i td x 
,ln i tTFP      0.0274 

     [0.009]***  

 Phase(L) t  x ∆ln  (K/L)i ; t   0.7935 0.9675 0.9368 0.9341 

  [0.028]***  [0.041]***  [0.042]***  [0.042]***  

Phase(H) t  x ∆ln  (K/L)i ; t   0.4611 0.6503 0.6474 0.6654 
 [0.035]***  [0.047]***  [0.048]***  [0.048]***  

,i tLivestock    -0.4405 -0.4262 -0.4436 

 
  [0.026]***  [0.028]***  [0.029]***  

,i tCrops    -0.5713 -0.5579 -0.5763 

 
  [0.028]***  [0.030]***  [0.031]***  

,ln( )i tSchooling∆     0.2106 0.1906 

    [0.061]***  [0.060]***  

,ln( )i tExperience∆     0.1921 0.1893 

    [0.029]***  [0.029]***  

Constant -0.0506 -0.0489 -0.2082 -0.2090 -0.2134 
 [0.006] [0.007]***  [0.011]***  [0.011]***  [0.011]***  

Differences in β-convergence rates test 
     
H0 : Phase(L)t x ln TFPi,t- Phase(H)t x ln TFPi,t = 0 

2χ -statistics 4.57 13.81 20.87 0.90 16.23 

Prob( 2χ -statistics) 0.0326 0.0002 0.0000 16.15 0.0001 

Differences in embodiment effects test 
      
H0 : Phase(L)t x ∆ln (K/L)i,t- Phase(H)t x ∆ln (K/L)i,t = 0 

2χ -statistics  63.93 99.89 76.08 65.37 

Prob( 2χ -statistics)  0.0000 0.0000 0.0000 0.0000 

Cross-sections included: 48 

Total panel (balanced) observations: 2112 
Wald  2χ -statistic 4.25e+07 2.60e+06 8.1e+06 6.4e+06 6.2e+06 

Notes: * significant at 10%; ** significant at 5%; *** significant at 1%. Standard errors in brackets. All 
regresions use state and year fixed effects and are robust to autocorrelation heteroskedasticity and cross-
sectional contemporaneous correlation. The results reported in columns (2) to (5) are corrected for 
endogeneity. Instrumented variables: ∆ ln(K/L)i,t, Livestocki,t. 

 



 

 

Table 13: Catching-Up in Agricultural TFP and the Business Cycle 
Dependent Variable: ,ln i tTFP∆  

Method: IV-FGLS 
Variable (1) (2) (3) (4) (5) 
 Phase(C) t  x ln  TFPi ; t  -0.3932 -0.2987 -0.3021 -0.3022 -0.3103 
 [0.017]***  [0.017]***  [0.013]***  [0.012]***  [0.013]***  

Phase(R) t  x ln  TFPi , t  -0.3863 -0.2872 -0.2936 -0.2984 -0.3070 
 [0.016]***  [0.015]***  [0.012]***  [0.011]***  [0.012]***  

 Phase(E) t x ln  TFPi ; t  -0.3827 -0.2874 -0.2859 -0.2898 -0.2985 
 [0.016]***  [0.015]***  [0.012]***  [0.011]***  [0.012]***  

,
AMR

i td x 
,ln i tTFP      0.0251 

     [0.010]***  

 Phase(C) t  x ∆ln  (K/L)i ; t   1.0195 1.1719 1.1850 1.1343 
  [0.078]***  [0.052]***  [0.053]***  [0.052]***  

Phase(R) t  x ∆ln  (K/L)i ; t   0.5981 0.8250 0.8324 0.8473 
 [0.057]***  [0.045]***  [0.044]***  [0.044]***  

Phase(E) t  x ∆ln  (K/L)i ; t   0.3242 0.6015 0.6301 0.6529 
 [0.065]***  [0.048]***  [0.046]***  [0.047]***  

,i tLivestock    -0.4197 -0.4196 -0.4390 

 
  [0.026]***  [0.027]***  [0.028]***  

,i tCrops    -0.5460 -0.5503 -0.5715 

 
  [0.029]***  [0.029]***  [0.030]***  

,ln( )i tSchooling∆     0.2414 0.2136 

    [0.062]***  [0.062]***  

,ln( )i tExperience∆     0.2058 0.2059 

    [0.029]***  [0.030]***  

Constant -0.0047 -0.0404 -0.1940 -0.2023 -0.2079 
 [0.006] [0.007]***  [0.011]***  [0.011]***  [0.011]***  

Differences in β-convergence rates test 
H0 : Phase(C)t x ln TFPi,t- Phase(R)t x ln TFPi,t = 0 
 0.94 3.36 2.80 0.44 0.33 
 0.3325 0.0667 0.0944 0.5057 0.5672 
H0 : Phase(C)t x ln TFPi,t- Phase(E)t x ln TFPi,t = 0 

2.04 3.16 10.21 4.50 4.21 
 0.1533 0.0753 0.0014 0.0338 0.0402 
Differences in embodiment effects test 
H0 : Phase(C)t x ∆ln (K/L)i,t- Phase(R)t x ∆ln (K/L)i,t = 0 

 26.00 59.90 55.64 37.20 
  0.0000 0.0000 0.0000 0.0000 
H0 : Phase(C)t x ∆ln (K/L)i,t- Phase(E)t x ∆ln (K/L)i,t = 0 

 64.32 149.26 128.62 97.73 
  0.0000 0.0000 0.0000 0.0000 
Cross-sections included: 48 

Total panel (balanced) observations: 2112 
Wald  -statistic 5.12e+07 2.18e+07 1.24e+07 7.8e+06 9.8+06 

Notes: * significant at 10%; ** significant at 5%; *** significant at 1%. Standard errors in brackets. All 
regresions use state and year fixed effects and are robust to autocorrelation heteroskedasticity and 
cross-sectional contemporaneous correlation. The results reported in columns (2) to (5) are corrected 
for endogeneity. Instrumented variables: ∆ ln(K/L)i,t, Livestocki,t. 
 


