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Abstract

In this note we generalize the limit results in [Genon-Catalot, Jeantheau,
Laredo, 2000, Bernoulli] for simple stochastic volatility models to the case
where a non zero correlation is allowed between the Brownian motion
driving the main diffusion process and the Brownian motion driving the
dynamics of the instantaneous variance. We also extend the results to
the case where the main diffusion admits a non zero drift which is linear
in the variance process. The main motivation for such an extension is
the application of these limit results in order to perform statistical infer-
ence in some of the stochastic volatility models introduced in the financial
mathematics literature. In this framework it is of relevance the so called
"leverage effect" between the stock log-price and its volatility, which is
indeed explained by a negative correlation between the Brownian motions
driving the log-price process and its instantaneous variance respectively.
Moreover a linear term in the variance appears in the drift of the log-price
diffusion.

1 The model setting

In the paper by Genon-Catalot et al. (2000) some limit results are proved for
the simple stochastic volatility model, when discretely observed, described by
the following bivariate diffusion:

v, = /V,dW,, Yy =0, (1)
dVy = b(Vi)dt+ a(Vy)dWy, Vo =,

where a and b are suitable functions in order to guarantee the existence of a
strong solution for the second diffusion in (1) and where (W, W) is a standard
Brownian motion in R?. Similar results are also obtained in Sgrensen (2000).
We want to generalize the results of Genon-Catalot et al. (2000) by allowing a

*Revised version (October 2009)



non zero correlation for the bivariate Brownian motion and for a non zero drift
in the first equation of (1). Our motivation is essentially given by the possi-
ble application of these limit results for the stochastic volatility specifications
available in the financial mathematics literature. In this context a negative cor-
relation in the Brownian motion (the so-called leverage effect) could explain the
asymmetry in the empirical distribution of historical data and in the implied
volatility curve, obtained plotting the implied volatility of European options
written on the stock with respect to their strike price, as evidenced, among
others, in Cont (2001).

Define, for xzg,z € (I,7) , the scale and speed densities of V; respectively as

s(z) = exp <_2 /%m)

(z) = 1
T @@)s)
and the stationary density of V; as

_ m(z)

(@) = = Heewn)-

In Genon-Catalot et al. (2000) (GC hereafter) the model defined in (1) is
considered with the following assumptions:

(A0) (W,W) is a standard Brownian motion in R? defined on a probability
space (€2, F, P) and 7 is a random variable defined on (2, independent of

(W, W).
(A1) The functions a(z) and b(z) are defined on (I,7) C (0, +00) and satisfy

i)be C,r),a® € C%*(l,7),a(zx) >0, Vo € (I,7)
ii) 3K > 0 such that, Vz € (I,7), |b(z)| < K(1+|z|) and a*(z) < K(1+2?).

(A2) [ s(z)dz = —+oo, [ s(z)dz = +oo and [ m(z) = M < 4oo.

(A3) The initial random variable v has distribution 7(dz) = 7(x)dzx.

Let A and B be two o-algebras included in F. A measure of dependence
between A and B can be defined as

a(A, B) = supaca,pes |P(AN B) — P(A)P(B)].
Given a process {S;}, the a — mixing coefficient of the process is defined as

as(A) =supa(F? , FIR),
s>0

with F* = o(Vy, —o0o < u < s) and F[R = 0(Vy, s + A < u < 400) and

represents a measure of weak dependence of the process.



Definition: A process {S;}, is a—mizing (or strongly mixing) if ag(A) — 0
as A — 4o0.

The strongly mixing condition was firstly introduced in Rosenblatt (1956) as
a dependence condition under which a central limit result for stationary process
can be obtained. Other weak dependence measures can also be defined.

A detailed analysis on weak dependence measures, on mixing properties and
on limit results for mixing processes can be found in Doukhan (1994). A brief
review on the results that we need is given in CG (Section 2).

When necessary, the following properties are also assumed to hold.

(A4) limg 4 a(z)m(x) = limy—,,— a(z)m(z) =0

(A5) limg_ 4 ﬁ and lim, ., —— exist where v(z) = a/(z)

o b(a)
e) 2

m.

Notice that assumptions (A1) to (A3) guarantee that the instantaneous vari-
ance V; is a positive recurrent diffusion on an interval and a strictly stationary
ergodic and time reversible process. Assumptions (A4) and (A5) are in order
when studying the mixing properties of the instantaneous variance process.

In our setting we leave assumptions (Al) to (A5) unchanged while the as-
sumption (A0) is replaced by

(AD) (/VV, W) is a Brownian motion in R? defined on a probability space (€2, F, P)
with (dW,dW) = pdt and 7 is a random variable defined on €2, indepen-
dent of (W, W).

Under the modified set of assumptions the process in (1) can be written as

¥, = Vi (pdW,+ V1= 2B, Yo=0, 2)
dVy = b(Vy)dt + a(V,)dWy, Vo=mn,

where (B,W) is a standard bi-dimensional Brownian Motion. By using the
results in GC (Section 2.6) we know that if assumptions (A1) to (A5) are fulfilled
then the process V; is strictly stationary, ergodic, time reversible and a—mixing
and that the discretely observed process V;a, for A > 0 and ¢ > 1, is also ergodic
and a — mizing.

In what follows we will focus on the Heston volatility specification (Heston,
1993)

dV, = a(B = Vy)dt + ¢/ VidWy, (3)
for which Assumption Al to A5 are fullfilled if 2a3 > 2.



2 Properties of the discretely sampled process

Let us define, for ¢ > 1, the discrete processes

1 A

X, = — VVi(pdWys + /1 — p2dBy), (4)
VA Ji-na

B 1 D

V. = — Vsds, and
A Jag-1)

Ui = (Va-1),Vai Vi)

In financial applications the process X; is the log-return of the stock during
the time interval [(i —1)A,iA) (suitably scaled) and V; is the mean (integrated)
variance during the same period.

Definition (Leroux (1992)): A stochastic process X;, ¢ > 1, with state space
(X,B(X)), is a Hidden Markov Chain if the following conditions hold:

i) (U;) is a strictly stationary non observable Markov chain with state space
U, BU)).

ii) For all i, given (Uy, Us, ..., U;) the X; are conditionally independent and the
conditional distribution of X; depends only on U;

iii) The conditional distribution of X; given U; = u does not depend on i.

where X and U are Polish spaces and B(X) and B(U/) are the corresponding
Borel o—algebras. In the classical definition of Leroux (1992) the state space U
is assumed to be finite; in GC this assumption is relaxed and the hidden process
U; is called Hidden Markov Model.

Theorem 1: If assumptions (A0’) to (A3) hold then:

e (U;,i > 1) is a strictly stationary Markov chain with state space (I, r)?;
e (X;,i>1)is a Hidden Markov model with hidden chain (U;,7 > 1).

Proof: we proceed as in GC, Theorem 3.1.

Let Gy = 0(Vs, s <t), E = C([0,A],(l,r)) the space of continuous functions
defined on [0, A] with values in (I,7), and B the Borel o—algebra associated
with the uniform topology, and write

Vicna = Vii—2)ata
Vin = Vii—2)a+2a, and
Vi = A /A Vii—2)a+sds.

More generally set, for s € [0, A], ¢ > 1,

Zi(s) = Vii—o)ats



and define function T: E — (I,7)? as

2A
T(z) = (z(A),z(?A),i/A z(s)ds,>.

Let ¢ : (I,7)> — R be a bounded Borel function and H; = G(i—1)a; we have

Elp(Ui)[Hi-1a] = E [@(V(z;l)A’ Vin, Vi)|[Vi,t < (i — Q)A]
[ 2A
- E @(Zi(A),Zi(QA),%/A Zi()ds)| Vi, t < (i — 2)A

1 2A '
= F 90(‘/(1'—2)A+A7V(i—2)A+2A-Z/ Vii—2)at+sds)| Ve, t < (1 —2)A
A

= FE @(‘/(i—z)A+A7‘/(i—2)A+2A,Z/A ‘/—(i—2)A+sds)|V(i—2)A‘|

= P(Vi-2)a)

where o
Y(v) = Elp(Va, Vaa, V2)|Vo = v]

proving that (U;,7 > 1) is a Markov chain with respect to H;.

The process Z; has state space (E, B) and it inherits markovianity, strictly
stationarity, ergodicity from the process V;. Besides, U; = T(Z;) where T is a
continuous function on F, hence the process (U;); is also strictly stationary and
property i) of Definition 1 holds true.

Let us denote

A, = —p v/ VsdWy, and
VA" Ji—a '
1 iA

B, = ——+/1—-p2 \/ VsdBs.
N7 SN t

Conditionally on G;a, A; is known and and B; is a stochastic integral of a de-
terministic function with respect to a Brownian motion and thus is a martingale
with zero mean. Hence,

= Aia
Var(X;|Gna) = Var(AilGua) + Var(B;|Gua)
1— p2 A
= / Vids
A Ji—na
= (=)W



and, for i # j,

COU(Xi7Xj|gnA) = COU(Bi, Bj|gnA) =0.

Thus, conditionally on Gy, the random variables (X1, Xa, ..., X,) are inde-
pendent and X; has distribution N(A;, V;).
Notice that in our model setting we can obtain by integration of (3) that

A; (Via = Vii—1)a — a(B = V3)A)

1
VA"
and thus it is completely known when U; is known.

To demonstrate properties ii) and iii) in the definition of HMM we have
to show that the above distributional results are valid when conditioning with
respect to o(Uy, Ua, ..., Up).

Using conditional independence on G,a, the joint characteristic function of
(X1,Xs, ..., X,,) is given by

n ) n . 1 n ) o
DA, A2,y Ap) = E[epoz/\ij|gnA] = exp Zz)\jAj ~3 Zz)\?(l — pQ)Vj

j=1 j=1 j=1
()

Since the last expression in (?7?) is measurable with respect to o(Uy, Us, ..., Uy)
we have

n

-y , IRCY =
E[eXpZz)\ij|U1,U2, LUp] = exp Zz)\jAj ~3 ZM?(I -V,

Jj=1 Jj=1 Jj=1

n

which finally gives both property ii) and iii) of HMM.

In GC (Proposition 3.1) it is proved, extending a result in Leroux (1992),
that if Y; is a HMM with hidden chain U; then Y] is strictly stationary. Moreover
if U; is ergodic then Y; is ergodic and if U; is a — mixing then Z; is o — mizing
with ay (k) < ap(k). It is then proved (GC. Prop. 3.2) that U; is a — mizing
with ay (k) < ay((k — 1)A). Theorem 2.3 in GC gives the ergodicity of U;.

Since we have proved in Theorem 1 that X; is a HMM with respect to U;,we
get the following outcome

Proposition 1: Under assumptions (A0’) to (A3) the process X is strictly
stationary, ergodic and o — mixing.

3 Limit Results

Suppose we are given with a Borel function ¢ : R? — R, where d is a positive
integer, and define G; = g(X;11, Xit2, ..., Xit+d), for i = 1,2, ...n. Denote ¢, =
\/1— p2%ex, where €, for k = 1,2,...,d, are standard Gaussian i.i.d random
variables . Since A; is o(U;)-measurable we can write, for j = 1,2,..n, A; =
A(u;) for a suitable function A.



Consider the function H, : (R3)? — Ry defined as

Hy(ur,ug, oy ug) = Elg (A(ur) + /o1y, A(ug) + /02, -, Aua) + /0a,)]

where for the sake of simplicity we set v; = uj3. We generalize Theorems 3.2

and 3.3 of GC as follows:
Theorem 2: Under assumptions (A0’) to (A3) and if g is such that

FE |H9(U1, UQ, ceey Ud)‘ < +00

then
1 n—d
EZGi niT;o E[H,(Uy, Uy, ...,Uy)]. (6)
=0

Proof. From Proposition 1 the process X; is ergodic so it suffices to check
that E'|Go| is finite and that E'|Go| = E[Hy(U1,Us,...,Ug)]. This is obtained
by conditioning on Gya .

Theorem 3: Under assumptions (A0’) to (A5), if it exist § > 0 such that

2
E|Go|**’ < 400 and Y5, aF" (kA) < 400

Yalg) =Var(Go) + 2ZCOU(GQ, G),

i=1

is well defined and non negative: if it is positive then

n—d
% ; (GL - E[Hg(Ul, UQ, ,Ud)]) nlj—er)oo N(O,EA(g)) ) (7)

Proof. The proof follows that of Theorem 3.3 in GC and it is based on
the application of Ibragimov Central Limit Theorem for strictly stationary a —
mizing sequences (see chapter 18 in Ibragimov, Linnik, 1971, and chapter 5 in
Hall and Heyde 1980).

The a — mizing coefficient of the sequence (G;) satisfies

aglk) <ax((k+1—-4d)) <ay((k—d—-1)A).
Therefore, the quantity

Var(Go+ G1+ ... + Gp—q)
n

Ya(g) = lim

exists and it is non negative. If it is also positive the thesis holds.

Theorem 3 can also be stated in a multivariate setting. Given an integer
d and a set of Borel functions g1, g2, ..., gm With g; : R - R, for j =1,2,...,m,
denote

Gij = 9;(Xit1, Xiyo, ..., Xita)-



Theorem 4: Under the assumptions (A0’) to (Ab), if it exist 6 > 0 such
that E |G07j|2+5 < oo, for j =1,2,..m, and 37, 5, ay’ (kA) < +00 then

Yal(gj,q1) = Cov(Gj0,Gr0) + Z Cov(Gj0,Gri) + Z Cov(Gj,i, Gl p)
i=1 i=1
is well defined for 5,1 =1,2,...m
If (g, A) = (Xa(g),91));, is a positive definite matrix then

oGSl
Z ( 1,2 92( 1, U250y )

> Y N (0,2a(g). (8)

n—oo

(Gim — E[H, (Ul,UQ,...,U )])

4 A further generalization

Let us consider the following generalized dynamics for Y;:

dY, = p(Va)dt + Vi (det +/1- deBt) .

A natural question arises whether the theory developed in Genon-Catalot et
al. (2000) and in this paper might be applied to this more general setting. Let
us restrict our attention to the case of a linear function pu(z) = £ + kx which is
indeed of great interest in financial applications.

Define the discrete process

1 iA iA

1
5 | e 7= \/Vs (det +/1- deBt)

Theorem 1’: If assumptions (AO) 0 (AS) hold then:

R; =

e (U;,i > 1) is a strictly stationary Markov chain with state space (I, 7)3;

e (R;,i>1) is a Hidden Markov model with hidden chain (U;,i > 1).

Proof: All the previous results on U; are still valid so, in order to show that
R; is a HMM we only have to demonstrate ii) and iii) of Definition 1.

We remark that R; = C; + X; where C; = ffl N (V;)dt is, condi-

tionally on G,a, a deterministic function; conditionally on G,a, the random
variables (R1, Ra, ..., R,,) are independent and

E[R;|Gna]
= FE[C; + X;|Gnal
— A4 G
Var(R;|Gna) = Var(Xi|Gna)
= (1-p)V



Hence, R;, for i = 1,2, ...n, has distribution N'(4; +C;, V;). To prove properties
ii) and iii) of HMM for this new process M; we have to show that the above
distributional also hold when conditioning with respect to a o(Uy, Us, ..., U,) C
Gna- This latter condition may fail for a generic drift function u(V;) since the
integral defining C; may depend on the whole path of V; in the interval [(i —
1AIA).

By using the conditional independence on G, A, the joint characteristic func-
tion of (Ry, Ra, ..., Rp) 18

1 I
Dy (A1, A,y M) = eXpZM iR;|Gnal —eXpZ A(E+RV;)+A;)iN; 5)\?(1—p2)Vj.

9)
The expression in the right hand side of (??) is measurable with respect to
o(Uy,Us,...U,), then

1 _
epoz)\ iR;|U1,Us, ... 7expz A(E+KV;) + Aj)id 5)\?(1*;72)1/}..
j=1

so that property ii) and iii) of HMM are fulfilled.
In order to extend the above limit theorems to this more general framework

define ¢(u) = A(u) + VAu(v) and, when it exists, the function }NIg : (R‘i)d
RJM

Hy(ur, ug, un) = Elg (c(ur) + Vorpy, c(ug) + /02, ..., c(ua) + vapa)]

where ¢, and v, are as defined in the previous section and denote éi =
g(Ri+17 Ri+2, veey Ri+d)~
Since R; is a HMM with respect to U; and having in mind the properties of
U; from the previous section, it is straightforward to prove the following results:
Theorem 2’: Under assumptions (A0’) to (A3) and if ¢ is such that

E‘ﬁg(Ul,Ug,...7Ud) < 400

then

fZG L% B[Hy(Uy,Us, ..., Ug)). (10)

n—-+oo

Theorem 3’: Under assumptions (A0’) to (A5), if it exist § > 0 such that
~ (249 2
E ‘GO‘ < o0 and Y, ap ' (EA) < 400 then

Sa(g) = Var(Go) + 22001}(50, Gi),

i=1

is well defined and non negative. If it is non zero then



—Z(G E[H, (U1, Us, ., Ua)]) 2% N (0,5a(9)). (11)

n—-+o0o
1=0

An multivariate extension of (11) can also be derived.

5 Asymptotic variance for polynomial functions

Assume at first that p(V;) = 0. By conditional independence, we have, for i > d

COU(G(), G,) = CO’U (Hg(Ul, UQ, ceey Ud), Hg(Ui+17 UQ, -~-Ui+d) .
Define, for j = 1,2, ...n,

F(p,u;) = Bul(A(uy) + Vop;)*]

where we denote v; = u; 3.
Proposition 3.4 of GC can be generalized as follows.
Proposition 2: Assume (AO) (A3) to hold. If it exist 6 > 0 such that

E|Go)*™ < +00 and D k1 04‘2/+5 (kA) < 400 the following properties hold

i) if g1(z1,..., 2a,) = 237 with d; = 1 and E[V, y2rate )] < +00, then

Salgr, g1) = E[F(2p, U1)]—E [F(p, Uy)] +2Z F(p,U1)F(p,Ury:)] — E[F(p,U1)]?) .
ii) if ga(z1, ..., 2a,) = x?qx%:_h with do = h+1, z = max{r, ¢} and E[V, 42143 )]
400, then

Sa(g2,92) = B [F(2q,U1)F(2r, Uryn)] — 2E [F(q, UL F(r,Upsn))* +
+E [F(q,U1)F(q+r,Uitn)F(r,Uiyon)] +

+2 Z ( F(q, U0)F(r,Uisn) F(q, U F(r, Urpnti)] — E [F(q, Ur) F(r, U1+h)]2) .
i=1,i#h

Moreover, if g1 and g, are defined as above, g3(x1, ..., 74;) = 3% with d3 = 1
and g4(z1, ..., wq,) = 23’23, with dy = k + 1, then:

iii) if z = max{p,u} and E[V4Z(1+ )] < 400

Xalg1,93) = E[F(p+u U] = E[F(p,U1)] E[F(u,U1)] +

+ Z F(p, U)F(u,Ui1)] = 2B [F(p, U] E [F(u, Ur)] + E[F(p, Uip1) F(u, Uh)]).

10



iv) if 2 = max{p, q,r} and E[VO?M(H%)] < 400,

Yalg1,92) = E[F(p+ ¢, U)F(r,Ursp)] — E[F(p, U1)] E[F(q, Ur)F(r,Ur1n)] +
+E[F(p+1,U14n)F(q,Ur)] — E[F(p, Urn)| E[F(q,Up)F(r,Uiyn)] +

NE

(E [F(p, Uis1)F(q, U)F(r, Uryn)] = E[F(p, U) E[F(q, Ur)F(r, Uryn)])

Il
—

%

Jith

I

(E[F(p,Ur)F(q,U14i)F(r,Urrnyi)] = E[F(p,Ur)] E[F(q,Ur)F(r,Ur1n)])-

=1

Proof: See Appendix A.
In the case of a linear drift u(x) = £ + kx, conditional independence gives,
for ¢ > d,

Cov(Go, Gy) = Cov (ﬁg(Ul, Us, ..o, Ug), Hy(Uy, Us, .., Ud)> .

As it is shown in Appendix A, Proposition 2 can be generalized to this more
general case by simply replacing function A with function ¢ defined by:

e(w) = A(w) + VAu(v).
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6 Appendix A

Proof of Proposition 2 (in the more general setting): assume that

c(u) = Au)+VAp(),
F(p,uj) = Eul(c(uy) + u50,)%].

Simple computations give
P
z( ) o el
s=0

-

2p 2(p s) sE [ ]

- 117

@p) (g3 (1~ pP)m

where we denote moy, the 2k — th moment of a standard Gaussian distribution.

i)

Il
=]

S

Var(Gy) = Var[R] = E[R}] — E|R?)? =
E[Ey[(c(Uy) + \/Vig,)*]] — E[Eu[(c(Ur) + \/ Vie)) ]
= E[F(2p, Ul)] _E[F(p7 Ul)]27

12



OO’U(éo, él) = OOIU(R?pv Rz+1) = [R?pR%l»l] [R?p}E[Ri{l] =

= EBlEu[(c(U) + \/Vie)*(c(Uis1) + \/ Vir19i41) )]
—E[Ey((c(U1) + \/Vie)) P BBy [(c(Uit1) + 1/ Vis19511) "]
= E[F(p,U1)F(p,Ui1:)] — E[F(p, U1)|E[F(p, U14:)]
Then

Sa(g1,91) = E[F(2p,U1)]—E [F(p,Uy)]>+2 Z F(p,U)F(p,Ui1)] — E[F(p,U1)]?).

ii) By conditional independence
Var(éo) Var[quRlJrh] [R;lqRHh] [R2qR%+h]2
= E[Ey|(c(U1) + \/ Vie)) " (c(Ur+n) + \/ Visnorn) V]
~B[Ey[(c(U1) + /V1p1)*"(c(Ursn) + \/ Viznprn)* 1]
= E[By[(c(U1) + \/Vie)) | Eu[(c(Uisn) + | Vignpr )]

—E[Ey[(c(Ur) + \/Vig1)*Eu(c(Uitn) + \/ Vigner)* ]2
= E[F(2q,U1)F(2r,Ui1)] — E[F(q, U)? E[F(r,Ui))? .
For i # h,

Cov(@o,@ )= COU(R?qRHhaR%iLRHhH)
= E[R{"RY}, RYY Ry, yi] — EIRVRY B[R RY ]
= E[EU [R ]EU [R1+h] [R1+1]EU [R1+h+z”
—E[Ey[RY|Ev [RY, )| E[Eu (R4, Eu (R, 44)]
= E[F(q,U0)F(r,Uiyn)F(q, U) F(r, Urtnyi)] — EIF(q,U1)F(r,Upyn))?,

while, for ¢ = h

Cov(Go, Gy) = Cov(RY'RY,,,, RI%, RY i)
= B[RV} R,,) - E[RYRY,, | B[R, R, 5]
= BBy [R By [RGBy (R 51)]
—E[Ey Ry Ey (R, )| E[Ey (R}, ) By [R¥5]]
= E[F(q,U1)F(q+7,Usn)F(r, Uisan)] — E [Fq, UD)F(r,Upyp)]*.

13



Hence,

Ya(g2,92) = E[F(2q,U1)F(2r, Ury 1)) — 2E [F(q, U1 ) F(r, Uryn)) +
+E[F(q,U1)F(q+7,Uryn)F(r,Uryan)] +

+2 Z ( (¢, U0)F(r,Ui4n)F(q, Ui) F(r, Urynyi)] — E [F(q, Ur) F(r, U1+h)]2) :
i=1,i#h

iii) By using similar arguments,

Cov(GE, G3) = Cov(RY”, R¥") = E[R{"™")] — E|R"|E[R?"]
= E[(c(Uh) + \/Vigy))2@ )]

—E[(c(U1) + \/ Vigr))IE[(c(U1) + 1/ Vigy))™]
= E[F(p+u,U1)] = E[F(p, )] E[F(u,U1)],

Cov(G, GF) = Cov(RY”, Rity) = B[RY'RY,] — B[RY|ER,]
= E[(c(U1) + / Vig) " (c(Uis1) + \/ Vis10i11)*"]

—E[(c(Uh) + \/ Vie) 1E[(c(Uitr) + \/ Vigr10i01)>"]
[F( U)F(u,Uit1)] = E[F(p, Uh)] E [F(u, Ui y1)]
E[F(p,U1)F(u,Uit1)] = E[F(p, Uh)] E [F(u, Uy)]

Similarly

Cov(G},G}) = Cov(R,RI") =

E[F(p,Uit1)F(u, Uh)] — E[F(p,Ui+1)] E [F(u, U)]
E[F(p,Uit1)F(u, Ur)] = E[F(p,U1)] E [F(u, U1)] .

Hence,

Yalg1,93) = E[F(PJFU U1)] = E[F(p,U1)] E [F(u,Uy)] +

+ Z F(p, Un)F(u, Uit1)] = 2B [F(p, Uy)| E [F (u, U1)] + E [F(p, Uis1) F(u, U1))).

iv) Again, conditioning on o(Uy, Us, ..., U,),

14



Cov(GY,G2) = Cou(RY", R"R?,,) = E[R""R?,,] - E[R"|E[R}'RY,,] =
= FE[F(p+qU)F(r,Uisn)] — E[F(p,U1)] E[F(q,U1)F(r,Ui44)],

Cov(é(l),é?) = COU(R2P R?—?—lR1+l+h) [RZpR?iszuh} E[R ] [R?11Rz+h+1]
= E[F(p,U1)F(q,U1+))F(r,Uipnsi)] — E[F(p, Ur)] E[F(q, Ur) F(r, Ur4p)] -
For i # h
Cov(G},G3) = Cov(Ri%,, RI'RY,,) = E[RY, RYRY,] — B[R JE[RRY, ) =
= E[Fp,Ui1)F(q,U1)F(r,Uin)] — E[F(p, Ur)] E[F(q,U1)F(r,Ui+n)],
while
COU(é}wég) = Cov(R 1+haR%qR1+h)_E[R1Sf:r)R2q] E[R1+h] [R%QRHh]
= E[F( +T7 U1+h)F(q7 Ul)] E[F(p7 U1+h)]E[F(q7 Ul)F(rv U1+h)] .
Hence,

Ya(g1,92) = E[F(p+q,Ur)F(r,Uiyn)] — E[F(p, Uh)] E[F(q,Ur)F(r,Uiyn)] +
+E[F(p+7,Ui4n)F(q, Uh)] — E[F(p, Ursn)] E[F(q, Ur)F(r, Ursn)] +

oo

> (E[F(p,Uis1)F(q,U0)F(r,Urys)] — E[F(p,Uh)] E[F(q, Uy) F(r,Ur 1))
i=1,i#h

ZE (p, U)F(q, Ur ) F(r, Urn)] = B [F(p, D] B [F(q, U E(r, Urn)])-
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