

LIMIT RESULTS FOR DISCRETELY OBSERVED STOCHASTIC VOLATILITY MODELS WITH LEVERAGE EFFECT

Gianna FIGÀ-TALAMANCA

Quaderno n. 63 -Dicembre 2008

QUADERNI DEL DIPARTIMENTO
 DI ECONOMIA, FINANZA E STATISTICA

Limit results for discretely observed stochastic volatility models with leverage effect*

Gianna Figà-Talamanca
Dipartimento di Economia, Finanza e Statistica, Università di Perugia

Abstract

In this note we generalize the limit results in [Genon-Catalot, Jeantheau, Laredo, 2000, Bernoulli] for simple stochastic volatility models to the case where a non zero correlation is allowed between the Brownian motion driving the main diffusion process and the Brownian motion driving the dynamics of the instantaneous variance. We also extend the results to the case where the main diffusion admits a non zero drift which is linear in the variance process. The main motivation for such an extension is the application of these limit results in order to perform statistical inference in some of the stochastic volatility models introduced in the financial mathematics literature. In this framework it is of relevance the so called "leverage effect" between the stock log-price and its volatility, which is indeed explained by a negative correlation between the Brownian motions driving the log-price process and its instantaneous variance respectively. Moreover a linear term in the variance appears in the drift of the log-price diffusion.

1 The model setting

In the paper by Genon-Catalot et al. (2000) some limit results are proved for the simple stochastic volatility model, when discretely observed, described by the following bivariate diffusion:

$$
\begin{array}{rlr}
d Y_{t}=\sqrt{V_{t}} d \widetilde{W}_{t}, & Y_{0}=0 \tag{1}\\
d V_{t}=b\left(V_{t}\right) d t+a\left(V_{t}\right) d W_{t}, & V_{0}=\eta
\end{array}
$$

where a and b are suitable functions in order to guarantee the existence of a strong solution for the second diffusion in (1) and where (\widetilde{W}, W) is a standard Brownian motion in \mathbb{R}^{2}. Similar results are also obtained in Sørensen (2000). We want to generalize the results of Genon-Catalot et al. (2000) by allowing a

[^0]non zero correlation for the bivariate Brownian motion and for a non zero drift in the first equation of (1). Our motivation is essentially given by the possible application of these limit results for the stochastic volatility specifications available in the financial mathematics literature. In this context a negative correlation in the Brownian motion (the so-called leverage effect) could explain the asymmetry in the empirical distribution of historical data and in the implied volatility curve, obtained plotting the implied volatility of European options written on the stock with respect to their strike price, as evidenced, among others, in Cont (2001).

Define, for $x_{0}, x \in(l, r)$, the scale and speed densities of V_{t} respectively as

$$
\begin{aligned}
s(x) & =\exp \left(-2 \int_{x_{0}}^{x} \frac{b(u)}{a^{2}(u)} d u\right) \\
m(x) & =\frac{1}{a^{2}(x) s(x)}
\end{aligned}
$$

and the stationary density of V_{t} as

$$
\pi(x)=\frac{m(x)}{M} \mathbf{1}_{\{x \in(l, r)\}}
$$

In Genon-Catalot et al. (2000) (GC hereafter) the model defined in (1) is considered with the following assumptions:
(A0) (\widetilde{W}, W) is a standard Brownian motion in \mathbb{R}^{2} defined on a probability space (Ω, \mathcal{F}, P) and η is a random variable defined on Ω, independent of (\widetilde{W}, W).
(A1) The functions $a(x)$ and $b(x)$ are defined on $(l, r) \subset(0,+\infty)$ and satisfy
i) $b \in C^{1}(l, r), a^{2} \in C^{2}(l, r), a(x)>0, \forall x \in(l, r)$
ii) $\exists K>0$ such that, $\forall x \in(l, r),|b(x)| \leq K(1+|x|)$ and $a^{2}(x) \leq K\left(1+x^{2}\right)$.
(A2) $\int_{l} s(x) d x=+\infty, \int^{r} s(x) d x=+\infty$ and $\int_{l}^{r} m(x)=M<+\infty$.
(A3) The initial random variable v has distribution $\pi(d x)=\pi(x) d x$.

Let \mathcal{A} and \mathcal{B} be two σ-algebras included in \mathcal{F}. A measure of dependence between \mathcal{A} and \mathcal{B} can be defined as

$$
\alpha(\mathcal{A}, \mathcal{B})=\sup _{A \in \mathcal{A}, B \in \mathcal{B}}|P(A \cap B)-P(A) P(B)|
$$

Given a process $\left\{S_{t}\right\}_{t}$ the α-mixing coefficient of the process is defined as

$$
\alpha_{S}(\Delta)=\sup _{s \geq 0} \alpha\left(F_{-\infty}^{s}, F_{s+\Delta}^{+\infty}\right)
$$

with $F_{-\infty}^{s}=\sigma\left(V_{u},-\infty<u \leq s\right)$ and $F_{s+\Delta}^{+\infty}=\sigma\left(V_{u}, s+\Delta \leq u<+\infty\right)$ and represents a measure of weak dependence of the process.

Definition: A process $\left\{S_{t}\right\}_{t}$ is α-mixing (or strongly mixing) if $\alpha_{S}(\Delta) \rightarrow 0$ as $\Delta \rightarrow+\infty$.

The strongly mixing condition was firstly introduced in Rosenblatt (1956) as a dependence condition under which a central limit result for stationary process can be obtained. Other weak dependence measures can also be defined.

A detailed analysis on weak dependence measures, on mixing properties and on limit results for mixing processes can be found in Doukhan (1994). A brief review on the results that we need is given in CG (Section 2).

When necessary, the following properties are also assumed to hold.
(A4) $\lim _{x \rightarrow l+} a(x) m(x)=\lim _{x \rightarrow r-} a(x) m(x)=0$
(A5) $\lim _{x \rightarrow l+} \frac{1}{\gamma(x)}$ and $\lim _{x \rightarrow r-} \frac{1}{\gamma(x)}$ exist where $\gamma(x)=a^{\prime}(x)-2 \frac{b(x)}{a(x)}$.
Notice that assumptions (A1) to (A3) guarantee that the instantaneous variance V_{t} is a positive recurrent diffusion on an interval and a strictly stationary ergodic and time reversible process. Assumptions (A4) and (A5) are in order when studying the mixing properties of the instantaneous variance process.

In our setting we leave assumptions (A1) to (A5) unchanged while the assumption (A0) is replaced by
$\left(\mathrm{A} 0^{\prime}\right)(\widetilde{W}, W)$ is a Brownian motion in \mathbb{R}^{2} defined on a probability space (Ω, \mathcal{F}, P) with $\langle d \widetilde{W}, d W\rangle=\rho d t$ and η is a random variable defined on Ω, independent of (\widetilde{W}, W).

Under the modified set of assumptions the process in (1) can be written as

$$
\begin{align*}
d Y_{t} & =\sqrt{V_{t}}\left(\rho d W_{t}+\sqrt{1-\rho^{2}} d B_{t}\right), & & Y_{0}=0 \tag{2}\\
d V_{t} & =b\left(V_{t}\right) d t+a\left(V_{t}\right) d W_{t}, & & V_{0}=\eta
\end{align*}
$$

where (B, W) is a standard bi-dimensional Brownian Motion. By using the results in GC (Section 2.6) we know that if assumptions (A1) to (A5) are fulfilled then the process V_{t} is strictly stationary, ergodic, time reversible and $\alpha-$ mixing and that the discretely observed process $V_{i \Delta}$, for $\Delta>0$ and $i \geq 1$, is also ergodic and $\alpha-$ mixing.

In what follows we will focus on the Heston volatility specification (Heston, 1993)

$$
\begin{equation*}
d V_{t}=\alpha\left(\beta-V_{t}\right) d t+c \sqrt{V_{t}} d W_{t} \tag{3}
\end{equation*}
$$

for which Assumption A1 to A5 are fullfilled if $2 \alpha \beta>c^{2}$.

2 Properties of the discretely sampled process

Let us define, for $i \geq 1$, the discrete processes

$$
\begin{align*}
X_{i} & =\frac{1}{\sqrt{\Delta}} \int_{(i-1) \Delta}^{i \Delta} \sqrt{V_{s}}\left(\rho d W_{s}+\sqrt{1-\rho^{2}} d B_{s}\right) \tag{4}\\
\overline{V_{i}} & =\frac{1}{\Delta} \int_{\Delta(i-1)}^{\Delta i} V_{s} d s, \quad \text { and } \\
U_{i} & =\left(V_{\Delta(i-1)}, V_{\Delta i}, \overline{V_{i}}\right) .
\end{align*}
$$

In financial applications the process X_{i} is the log-return of the stock during the time interval $[(i-1) \Delta, i \Delta)$ (suitably scaled) and $\overline{V_{i}}$ is the mean (integrated) variance during the same period.

Definition (Leroux (1992)): A stochastic process $X_{i}, i \geq 1$, with state space $(\mathcal{X}, \mathcal{B}(\mathcal{X}))$, is a Hidden Markov Chain if the following conditions hold:
i) $\left(U_{i}\right)$ is a strictly stationary non observable Markov chain with state space $(\mathcal{U}, \mathcal{B}(\mathcal{U}))$.
ii) For all i, given $\left(U_{1}, U_{2}, \ldots, U_{i}\right)$ the X_{i} are conditionally independent and the conditional distribution of X_{i} depends only on U_{i}
iii) The conditional distribution of X_{i} given $U_{i}=u$ does not depend on i .
where \mathcal{X} and \mathcal{U} are Polish spaces and $\mathcal{B}(\mathcal{X})$ and $\mathcal{B}(\mathcal{U})$ are the corresponding Borel σ-algebras. In the classical definition of Leroux (1992) the state space \mathcal{U} is assumed to be finite; in GC this assumption is relaxed and the hidden process U_{i} is called Hidden Markov Model.

Theorem 1: If assumptions (A0') to (A3) hold then:

- $\left(U_{i}, i \geq 1\right)$ is a strictly stationary Markov chain with state space $(l, r)^{3}$;
- $\left(X_{i}, i \geq 1\right)$ is a Hidden Markov model with hidden chain $\left(U_{i}, i \geq 1\right)$.

Proof: we proceed as in GC, Theorem 3.1.
Let $\mathcal{G}_{t}=\sigma\left(V_{s}, s \leq t\right), E=C([0, \Delta],(l, r))$ the space of continuous functions defined on $[0, \Delta]$ with values in (l, r), and B the Borel σ-algebra associated with the uniform topology, and write

$$
\begin{aligned}
V_{(i-1) \Delta} & =V_{(i-2) \Delta+\Delta} \\
V_{i \Delta} & =V_{(i-2) \Delta+2 \Delta}, \quad \text { and } \\
\overline{V_{i}} & =\frac{1}{\Delta} \int_{\Delta}^{2 \Delta} V_{(i-2) \Delta+s} d s
\end{aligned}
$$

More generally set, for $s \in[0, \Delta], i \geq 1$,

$$
Z_{i}(s)=V_{(i-2) \Delta+s}
$$

and define function $T: E \rightarrow(l, r)^{3}$ as

$$
T(z)=\left(z(\Delta), z(2 \Delta), \frac{1}{\Delta} \int_{\Delta}^{2 \Delta} z(s) d s,\right)
$$

Let $\varphi:(l, r)^{3} \rightarrow \mathbb{R}$ be a bounded Borel function and $H_{i}=G_{(i-1) \Delta}$; we have

$$
\begin{aligned}
E\left[\varphi\left(U_{i}\right) \mid \mathcal{H}_{(i-1) \Delta}\right] & =E\left[\varphi\left(V_{(i-1) \Delta}, V_{i \Delta}, \overline{V_{i}}\right) \mid V_{t}, t \leq(i-2) \Delta\right] \\
& =E\left[\left.\varphi\left(Z_{i}(\Delta), Z_{i}(2 \Delta), \frac{1}{\Delta} \int_{\Delta}^{2 \Delta} Z_{i}(s) d s\right) \right\rvert\, V_{t}, t \leq(i-2) \Delta\right] \\
& =E\left[\left.\varphi\left(V_{(i-2) \Delta+\Delta}, V_{(i-2) \Delta+2 \Delta} \cdot \frac{1}{\Delta} \int_{\Delta}^{2 \Delta} V_{(i-2) \Delta+s} d s\right) \right\rvert\, V_{t}, t \leq(i-2) \Delta\right] \\
& =E\left[\left.\varphi\left(V_{(i-2) \Delta+\Delta}, V_{(i-2) \Delta+2 \Delta}, \frac{1}{\Delta} \int_{\Delta}^{2 \Delta} V_{(i-2) \Delta+s} d s\right) \right\rvert\, V_{(i-2) \Delta}\right] \\
& =\psi\left(V_{(i-2) \Delta}\right)
\end{aligned}
$$

where

$$
\psi(v)=E\left[\varphi\left(V_{\Delta}, V_{2 \Delta}, \overline{V_{2}}\right) \mid V_{0}=v\right]
$$

proving that $\left(U_{i}, i \geq 1\right)$ is a Markov chain with respect to H_{i}.
The process Z_{i} has state space (E, B) and it inherits markovianity, strictly stationarity, ergodicity from the process V_{t}. Besides, $U_{i}=T\left(Z_{i}\right)$ where T is a continuous function on E, hence the process $\left(U_{i}\right)_{i}$ is also strictly stationary and property i) of Definition 1 holds true.

Let us denote

$$
\begin{aligned}
A_{i} & =\frac{1}{\sqrt{\Delta}} \rho \int_{(i-1) \Delta}^{i \Delta} \sqrt{V_{s}} d W_{t}, \text { and } \\
B_{i} & =\frac{1}{\sqrt{\Delta}} \sqrt{1-\rho^{2}} \int_{(i-1) \Delta}^{i \Delta} \sqrt{V_{s}} d B_{t}
\end{aligned}
$$

Conditionally on $\mathcal{G}_{i \Delta}, A_{i}$ is known and and B_{i} is a stochastic integral of a deterministic function with respect to a Brownian motion and thus is a martingale with zero mean. Hence,

$$
\begin{aligned}
E\left(X_{i} \mid \mathcal{G}_{n \Delta}\right) & =E\left(A_{i} \mid \mathcal{G}_{n \Delta}\right)+E\left(B_{i} \mid \mathcal{G}_{n \Delta}\right) \\
& =A_{i} \\
\operatorname{Var}\left(X_{i} \mid \mathcal{G}_{n \Delta}\right) & =\operatorname{Var}\left(A_{i} \mid \mathcal{G}_{n \Delta}\right)+\operatorname{Var}\left(B_{i} \mid \mathcal{G}_{n \Delta}\right) \\
& =\frac{1-\rho^{2}}{\Delta} \int_{(i-1) \Delta}^{i \Delta} V_{s} d s \\
& =\left(1-\rho^{2}\right) \overline{V_{i}}
\end{aligned}
$$

and, for $i \neq j$,

$$
\operatorname{Cov}\left(X_{i}, X_{j} \mid \mathcal{G}_{n \Delta}\right)=\operatorname{Cov}\left(B_{i}, B_{j} \mid \mathcal{G}_{n \Delta}\right)=0
$$

Thus, conditionally on $\mathcal{G}_{n \Delta}$, the random variables $\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ are independent and X_{i} has distribution $N\left(A_{i}, \overline{V_{i}}\right)$.

Notice that in our model setting we can obtain by integration of (3) that

$$
A_{i}=\frac{1}{c \sqrt{\Delta}} \rho\left(V_{i \Delta}-V_{(i-1) \Delta}-\alpha\left(\beta-\bar{V}_{i}\right) \Delta\right)
$$

and thus it is completely known when U_{i} is known.
To demonstrate properties ii) and iii) in the definition of HMM we have to show that the above distributional results are valid when conditioning with respect to $\sigma\left(U_{1}, U_{2}, \ldots, U_{n}\right)$.

Using conditional independence on $\mathcal{G}_{n \Delta}$, the joint characteristic function of $\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ is given by
$\Phi\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right)=E\left[\exp \sum_{j=1}^{n} i \lambda_{j} X_{j} \mid \mathcal{G}_{n \Delta}\right]=\exp \left(\sum_{j=1}^{n} i \lambda_{j} A_{j}-\frac{1}{2} \sum_{j=1}^{n} i \lambda_{j}^{2}\left(1-\rho^{2}\right) \overline{V_{j}}\right)$.
Since the last expression in (??) is measurable with respect to $\sigma\left(U_{1}, U_{2}, \ldots, U_{n}\right)$ we have

$$
E\left[\exp \sum_{j=1}^{n} i \lambda_{j} X_{j} \mid U_{1}, U_{2}, \ldots U_{n}\right]=\exp \left(\sum_{j=1}^{n} i \lambda_{j} A_{j}-\frac{1}{2} \sum_{j=1}^{n} i \lambda_{j}^{2}\left(1-\rho^{2}\right) \overline{V_{j}}\right)
$$

which finally gives both property ii) and iii) of HMM.
In GC (Proposition 3.1) it is proved, extending a result in Leroux (1992), that if Y_{i} is a HMM with hidden chain U_{i} then Y_{i} is strictly stationary. Moreover if U_{i} is ergodic then Y_{i} is ergodic and if U_{i} is α-mixing then Z_{i} is $\alpha-$ mixing with $\alpha_{Y}(k) \leq \alpha_{U}(k)$. It is then proved (GC. Prop. 3.2) that U_{i} is $\alpha-$ mixing with $\alpha_{U}(k) \leq \alpha_{V}((k-1) \Delta)$. Theorem 2.3 in GC gives the ergodicity of U_{i}.

Since we have proved in Theorem 1 that X_{i} is a HMM with respect to U_{i}, we get the following outcome

Proposition 1: Under assumptions (A0') to (A3) the process X_{i} is strictly stationary, ergodic and $\alpha-$ mixing.

3 Limit Results

Suppose we are given with a Borel function $g: \mathbb{R}^{d} \rightarrow \mathbb{R}$, where d is a positive integer, and define $G_{i}=g\left(X_{i+1}, X_{i+2}, \ldots, X_{i+d}\right)$, for $i=1,2, \ldots n$. Denote $\varphi_{k}=$ $\sqrt{1-\rho^{2}} \epsilon_{k}$ where ϵ_{k}, for $k=1,2, \ldots, d$, are standard Gaussian i.i.d random variables. Since A_{j} is $\sigma\left(U_{j}\right)$-measurable we can write, for $j=1,2, \ldots n, A_{j}=$ $A\left(u_{j}\right)$ for a suitable function A.

Consider the function $H_{g}:\left(\mathbb{R}_{+}^{3}\right)^{d} \rightarrow \mathbb{R}_{+}$defined as

$$
H_{g}\left(u_{1}, u_{2}, \ldots, u_{d}\right)=E\left[g\left(A\left(u_{1}\right)+\sqrt{v_{1}} \varphi_{1}, A\left(u_{2}\right)+\sqrt{v_{2}} \varphi_{2}, \ldots, A\left(u_{d}\right)+\sqrt{v_{d}} \varphi_{d}\right)\right]
$$

where for the sake of simplicity we set $v_{j}=u_{j 3}$. We generalize Theorems 3.2 and 3.3 of GC as follows:

Theorem 2: Under assumptions (A0') to (A3) and if g is such that

$$
E\left|H_{g}\left(U_{1}, U_{2}, \ldots, U_{d}\right)\right|<+\infty
$$

then

$$
\begin{equation*}
\frac{1}{n} \sum_{i=0}^{n-d} G_{i} \underset{n \rightarrow+\infty}{\stackrel{a . s .}{\rightarrow}} E\left[H_{g}\left(U_{1}, U_{2}, \ldots, U_{d}\right)\right] . \tag{6}
\end{equation*}
$$

Proof. From Proposition 1 the process X_{i} is ergodic so it suffices to check that $E\left|G_{0}\right|$ is finite and that $E\left|G_{0}\right|=E\left[H_{g}\left(U_{1}, U_{2}, \ldots, U_{d}\right)\right]$. This is obtained by conditioning on $\mathcal{G}_{d \Delta}$.

Theorem 3: Under assumptions (A0') to (A5), if it exist $\delta>0$ such that $E\left|G_{0}\right|^{2+\delta}<+\infty$ and $\sum_{k \geq 1} \alpha_{V}^{\frac{2}{2+\delta}}(k \Delta)<+\infty$

$$
\Sigma_{\Delta}(g)=\operatorname{Var}\left(G_{0}\right)+2 \sum_{i=1}^{\infty} \operatorname{Cov}\left(G_{0}, G_{i}\right)
$$

is well defined and non negative: if it is positive then

$$
\begin{equation*}
\frac{1}{\sqrt{n}} \sum_{i=0}^{n-d}\left(G_{i}-E\left[H_{g}\left(U_{1}, U_{2}, \ldots, U_{d}\right)\right]\right) \underset{n \rightarrow+\infty}{\stackrel{\text { Law. }}{\longrightarrow}} N\left(0, \Sigma_{\Delta}(g)\right) . \tag{7}
\end{equation*}
$$

Proof. The proof follows that of Theorem 3.3 in GC and it is based on the application of Ibragimov Central Limit Theorem for strictly stationary $\alpha-$ mixing sequences (see chapter 18 in Ibragimov, Linnik, 1971, and chapter 5 in Hall and Heyde 1980).

The α-mixing coefficient of the sequence $\left(G_{i}\right)$ satisfies

$$
\alpha_{G}(k) \leq \alpha_{X}((k+1-d)) \leq \alpha_{V}((k-d-1) \Delta) .
$$

Therefore, the quantity

$$
\Sigma_{\Delta}(g)=\lim \frac{\operatorname{Var}\left(G_{0}+G_{1}+\ldots+G_{n-d}\right)}{n}
$$

exists and it is non negative. If it is also positive the thesis holds.
Theorem 3 can also be stated in a multivariate setting. Given an integer d and a set of Borel functions $g_{1}, g_{2}, \ldots, g_{m}$ with $g_{j}: \mathbb{R}^{d} \rightarrow \mathbb{R}$, for $j=1,2, \ldots, m$, denote

$$
G_{i, j}=g_{j}\left(X_{i+1}, X_{i+2}, \ldots, X_{i+d}\right)
$$

Theorem 4: Under the assumptions (A0') to (A5), if it exist $\delta>0$ such that $E\left|G_{0, j}\right|^{2+\delta}<+\infty$, for $j=1,2, \ldots m$, and $\sum_{k \geq 1} \alpha_{V}^{\frac{2}{2+\delta}}(k \Delta)<+\infty$ then

$$
\Sigma_{\Delta}\left(g_{j}, g_{l}\right)=\operatorname{Cov}\left(G_{j, 0}, G_{l, 0}\right)+\sum_{i=1}^{\infty} \operatorname{Cov}\left(G_{j, 0}, G_{l, i}\right)+\sum_{i=1}^{\infty} \operatorname{Cov}\left(G_{j, i}, G_{l, 0}\right)
$$

is well defined for $j, l=1,2, \ldots m$.
If $\boldsymbol{\Sigma}(\mathbf{g}, \Delta)=\left(\Sigma_{\Delta}\left(g_{j}, g_{l}\right)\right)_{j, l}$ is a positive definite matrix then

$$
\frac{1}{\sqrt{n}} \sum_{i=0}^{n-d}\left(\begin{array}{c}
\left(G_{i, 1}-E\left[H_{g_{1}}\left(U_{1}, U_{2}, \ldots, U_{d}\right)\right]\right) \tag{8}\\
\left(G_{i, 2}-E\left[H_{g_{2}}\left(U_{1}, U_{2}, \ldots, U_{d}\right)\right]\right) \\
\ldots \\
\left(G_{i, m}-E\left[H_{g_{m}}\left(U_{1}, U_{2}, \ldots, U_{d}\right)\right]\right)
\end{array}\right) \xrightarrow[n \rightarrow \infty]{\stackrel{l a w}{\longrightarrow}} N\left(0, \boldsymbol{\Sigma}_{\Delta}(\mathbf{g})\right)
$$

4 A further generalization

Let us consider the following generalized dynamics for Y_{t} :

$$
d Y_{t}=\mu\left(V_{t}\right) d t+\sqrt{V_{t}}\left(\rho d W_{t}+\sqrt{1-\rho^{2}} d B_{t}\right) .
$$

A natural question arises whether the theory developed in Genon-Catalot et al. (2000) and in this paper might be applied to this more general setting. Let us restrict our attention to the case of a linear function $\mu(x)=\xi+\kappa x$ which is indeed of great interest in financial applications.

Define the discrete process

$$
R_{i}=\frac{1}{\sqrt{\Delta}} \int_{(i-1) \Delta}^{i \Delta} \mu\left(V_{t}\right) d t+\frac{1}{\sqrt{\Delta}} \int_{(i-1) \Delta}^{i \Delta} \sqrt{V_{s}}\left(\rho d W_{t}+\sqrt{1-\rho^{2}} d B_{t}\right)
$$

Theorem 1': If assumptions (A0') to (A3) hold then:

- $\left(U_{i}, i \geq 1\right)$ is a strictly stationary Markov chain with state space $(l, r)^{3}$;
- $\left(R_{i}, i \geq 1\right)$ is a Hidden Markov model with hidden chain $\left(U_{i}, i \geq 1\right)$.

Proof: All the previous results on U_{i} are still valid so, in order to show that R_{i} is a HMM we only have to demonstrate ii) and iii) of Definition 1.

We remark that $R_{i}=C_{i}+X_{i}$ where $C_{i}=\frac{1}{\sqrt{\Delta}} \int_{(i-1) \Delta}^{i \Delta} \mu\left(V_{t}\right) d t$ is, conditionally on $\mathcal{G}_{n \Delta}$, a deterministic function; conditionally on $\mathcal{G}_{n \Delta}$, the random variables $\left(R_{1}, R_{2}, \ldots, R_{n}\right)$ are independent and

$$
\begin{aligned}
E\left[R_{i} \mid \mathcal{G}_{n \Delta}\right] & = \\
& =E\left[C_{i}+X_{i} \mid \mathcal{G}_{n \Delta}\right] \\
& =A_{i}+C_{i} \\
\operatorname{Var}\left(R_{i} \mid \mathcal{G}_{n \Delta}\right) & =\operatorname{Var}\left(X_{i} \mid \mathcal{G}_{n \Delta}\right) \\
& =\left(1-\rho^{2}\right) \overline{V_{i}} .
\end{aligned}
$$

Hence, R_{i}, for $i=1,2, \ldots n$, has distribution $\mathcal{N}\left(A_{i}+C_{i}, \overline{V_{i}}\right)$. To prove properties ii) and iii) of HMM for this new process M_{i} we have to show that the above distributional also hold when conditioning with respect to a $\sigma\left(U_{1}, U_{2}, \ldots, U_{n}\right) \subset$ $\mathcal{G}_{n \Delta}$. This latter condition may fail for a generic drift function $\mu\left(V_{t}\right)$ since the integral defining C_{i} may depend on the whole path of V_{t} in the interval [$i-$ 1) $\Delta, i \Delta)$.

By using the conditional independence on $\mathcal{G}_{n \Delta}$, the joint characteristic function of $\left(R_{1}, R_{2}, \ldots, R_{n}\right)$ is
$\Phi_{Z}\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right)=E\left[\exp \sum_{j=1}^{n} i \lambda_{j} R_{j} \mid \mathcal{G}_{n \Delta}\right]=\exp \sum_{j=1}^{n}\left(\sqrt{\Delta}\left(\xi+\kappa \overline{V_{j}}\right)+A_{j}\right) i \lambda_{j}-\frac{1}{2} \lambda_{j}^{2}\left(1-\rho^{2}\right) \overline{V_{j}}$.

The expression in the right hand side of (??) is measurable with respect to $\sigma\left(U_{1}, U_{2}, \ldots U_{n}\right)$, then
$E\left[\exp \sum_{j=1}^{n} i \lambda_{j} R_{j} \mid U_{1}, U_{2}, \ldots U_{n}\right]=\exp \sum_{j=1}^{n}\left(\sqrt{\Delta}\left(\xi+\kappa \overline{V_{j}}\right)+A_{j}\right) i \lambda_{j}-\frac{1}{2} \lambda_{j}^{2}\left(1-\rho^{2}\right) \overline{V_{j}}$.
so that property ii) and iii) of HMM are fulfilled.
In order to extend the above limit theorems to this more general framework define $c(u)=A(u)+\sqrt{\Delta} \mu(v)$ and, when it exists, the function $\widetilde{H}_{g}:\left(\mathbb{R}_{+}^{3}\right)^{d} \rightarrow$ \mathbb{R}_{+},

$$
\widetilde{H}_{g}\left(u_{1}, u_{2}, \ldots u_{n}\right)=E\left[g\left(c\left(u_{1}\right)+\sqrt{v_{1}} \varphi_{1}, c\left(u_{2}\right)+\sqrt{v_{2}} \varphi_{2}, \ldots, c\left(u_{d}\right)+\sqrt{v_{d}} \varphi_{d}\right)\right]
$$

where φ_{k} and v_{k} are as defined in the previous section and denote $\widetilde{G}_{i}=$ $g\left(R_{i+1}, R_{i+2}, \ldots, R_{i+d}\right)$.

Since R_{i} is a HMM with respect to U_{i} and having in mind the properties of U_{i} from the previous section, it is straightforward to prove the following results:

Theorem 2': Under assumptions (A0') to (A3) and if g is such that

$$
E\left|\widetilde{H}_{g}\left(U_{1}, U_{2}, \ldots, U_{d}\right)\right|<+\infty
$$

then

$$
\begin{equation*}
\frac{1}{n} \sum_{i=0}^{n-d} \widetilde{G}_{i} \underset{n \rightarrow+\infty}{\text { a.s. }} E\left[\widetilde{H}_{g}\left(U_{1}, U_{2}, \ldots, U_{d}\right)\right] \tag{10}
\end{equation*}
$$

Theorem 3': Under assumptions (A0') to (A5), if it exist $\delta>0$ such that $E\left|\widetilde{G}_{0}\right|^{2+\delta}<+\infty$ and $\sum_{k \geq 1} \alpha_{V}^{\frac{2}{2+\delta}}(k \Delta)<+\infty$ then

$$
\widetilde{\Sigma_{\Delta}}(g)=\operatorname{Var}\left(\widetilde{G}_{0}\right)+2 \sum_{i=1}^{\infty} \operatorname{Cov}\left(\widetilde{G}_{0}, \widetilde{G}_{i}\right)
$$

is well defined and non negative. If it is non zero then

$$
\begin{equation*}
\frac{1}{n} \sum_{i=0}^{n-d}\left(\widetilde{G}_{i}-E\left[\widetilde{H}_{g}\left(U_{1}, U_{2}, \ldots, U_{d}\right)\right]\right) \underset{n \rightarrow+\infty}{\stackrel{\text { Law. }}{\rightarrow}} N\left(0, \widetilde{\Sigma}_{\Delta}(g)\right) . \tag{11}
\end{equation*}
$$

An multivariate extension of (11) can also be derived.

5 Asymptotic variance for polynomial functions

Assume at first that $\mu\left(V_{t}\right)=0$. By conditional independence, we have, for $i \geq d$

$$
\operatorname{Cov}\left(G_{0}, G_{i}\right)=\operatorname{Cov}\left(H_{g}\left(U_{1}, U_{2}, \ldots, U_{d}\right), H_{g}\left(U_{i+1}, U_{2}, \ldots U_{i+d}\right)\right.
$$

Define, for $j=1,2, \ldots n$,

$$
F\left(p, u_{j}\right)=E_{U}\left[\left(A\left(u_{j}\right)+\sqrt{v} \varphi_{j}\right)^{2 p}\right]
$$

where we denote $v_{j}=u_{j 3}$.
Proposition 3.4 of GC can be generalized as follows.
Proposition 2: Assume (A0')-(A3) to hold. If it exist $\delta>0$ such that $E\left|G_{0}\right|^{2+\delta}<+\infty$ and $\sum_{k \geq 1} \alpha_{V}^{\frac{2}{2+\delta}}(k \Delta)<+\infty$ the following properties hold
i) if $g_{1}\left(x_{1}, \ldots, x_{d_{1}}\right)=x_{1}^{2 p}$ with $d_{1}=1$ and $E\left[V_{0}^{2 p\left(1+\frac{\delta}{2}\right)}\right]<+\infty$, then

$$
\Sigma_{\Delta}\left(g_{1}, g_{1}\right)=E\left[F\left(2 p, U_{1}\right)\right]-E\left[F\left(p, U_{1}\right)\right]^{2}+2 \sum_{i=1}^{\infty}\left(E\left[F\left(p, U_{1}\right) F\left(p, U_{1+i}\right)\right]-E\left[F\left(p, U_{1}\right)\right]^{2}\right)
$$

ii) if $g_{2}\left(x_{1}, \ldots, x_{d_{2}}\right)=x_{1}^{2 q} x_{1+h}^{2 r}$ with $d_{2}=h+1, z=\max \{r, q\}$ and $E\left[V_{0}^{4 z\left(1+\frac{\delta}{2}\right)}\right]<$ $+\infty$, then

$$
\begin{aligned}
& \Sigma_{\Delta}\left(g_{2}, g_{2}\right)= E\left[F\left(2 q, U_{1}\right) F\left(2 r, U_{1+h}\right)\right]-2 E\left[F\left(q, U_{1}\right) F\left(r, U_{1+h}\right)\right]^{2}+ \\
&+E\left[F\left(q, U_{1}\right) F\left(q+r, U_{1+h}\right) F\left(r, U_{1+2 h}\right)\right]+ \\
&+2 \sum_{i=1, i \neq h}^{\infty}\left(E\left[F\left(q, U_{1}\right) F\left(r, U_{1+h}\right) F\left(q, U_{i}\right) F\left(r, U_{1+h+i}\right)\right]-E\left[F\left(q, U_{1}\right) F\left(r, U_{1+h}\right)\right]^{2}\right) .
\end{aligned}
$$

Moreover, if g_{1} and g_{2} are defined as above, $g_{3}\left(x_{1}, \ldots, x_{d_{3}}\right)=x_{1}^{2 u}$ with $d_{3}=1$ and $g_{4}\left(x_{1}, \ldots, x_{d_{4}}\right)=x_{1}^{2 t} x_{1+k}^{2 s}$ with $d_{4}=k+1$, then:
iii) if $z=\max \{p, u\}$ and $E\left[V_{0}^{4 z\left(1+\frac{\delta}{2}\right)}\right]<+\infty$

$$
\begin{aligned}
\Sigma_{\Delta}\left(g_{1}, g_{3}\right)= & E\left[F\left(p+u, U_{1}\right)\right]-E\left[F\left(p, U_{1}\right)\right] E\left[F\left(u, U_{1}\right)\right]+ \\
& +\sum_{i=1}^{\infty}\left(E\left[F\left(p, U_{1}\right) F\left(u, U_{i+1}\right)\right]-2 E\left[F\left(p, U_{1}\right)\right] E\left[F\left(u, U_{1}\right)\right]+E\left[F\left(p, U_{i+1}\right) F\left(u, U_{1}\right)\right]\right)
\end{aligned}
$$

iv) if $z=\max \{p, q, r\}$ and $E\left[V_{0}^{3 z\left(1+\frac{\delta}{2}\right)}\right]<+\infty$,

$$
\begin{aligned}
& \Sigma_{\Delta}\left(g_{1}, g_{2}\right)=E\left[F\left(p+q, U_{1}\right) F\left(r, U_{1+h}\right)\right]-E\left[F\left(p, U_{1}\right)\right] E\left[F\left(q, U_{1}\right) F\left(r, U_{1+h}\right)\right]+ \\
& \quad+E\left[F\left(p+r, U_{1+h}\right) F\left(q, U_{1}\right)\right]-E\left[F\left(p, U_{1+h}\right)\right] E\left[F\left(q, U_{1}\right) F\left(r, U_{1+h}\right)\right]+ \\
& \sum_{i=1, i \neq h}^{\infty}\left(E\left[F\left(p, U_{i+1}\right) F\left(q, U_{1}\right) F\left(r, U_{1+h}\right)\right]-E\left[F\left(p, U_{1}\right)\right] E\left[F\left(q, U_{1}\right) F\left(r, U_{1+h}\right)\right]\right) \\
& \sum_{i=1}^{\infty}\left(E\left[F\left(p, U_{1}\right) F\left(q, U_{1+i}\right) F\left(r, U_{1+h+i}\right)\right]-E\left[F\left(p, U_{1}\right)\right] E\left[F\left(q, U_{1}\right) F\left(r, U_{1+h}\right)\right]\right) .
\end{aligned}
$$

Proof: See Appendix A.
In the case of a linear drift $\mu(x)=\xi+\kappa x$, conditional independence gives, for $i \geq d$,

$$
\operatorname{Cov}\left(\widetilde{G}_{0}, \widetilde{G}_{i}\right)=\operatorname{Cov}\left(\widetilde{H}_{g}\left(U_{1}, U_{2}, \ldots, U_{d}\right), \widetilde{H}_{g}\left(U_{1}, U_{2}, \ldots, U_{d}\right)\right)
$$

As it is shown in Appendix A, Proposition 2 can be generalized to this more general case by simply replacing function A with function c defined by:

$$
c(u)=A(u)+\sqrt{\Delta} \mu(v)
$$

References

- Cont, R., 2001, Empirical properties of asset returns: Stylized Facts and statistical issues, Quantitative Finance n.1, vol. 2: 223-236.
- Ditlevsen, S., Sørensen, M., 2004, Inference for Observations of Integrated diffusion processes, Scandinavian Journal of Statistics, n. 31: 417429.
- Doukhan, P., 1994, Mixing: properties and examples, Lecture Notes in Statistics, Springer.
- Figà-Talamanca, G, 2008, Testing volatility autocorrelation in the constant elasticity of variance stochastic volatility model, Computational Statistics and Data Analysis, forthcoming, doi:10.1016/j.csda.2008.08.024.
- Genon-Catalot, V., Jeantheau, T., Laredo, C., 2000, Stochastic Volatility Models as Hidden Markov Models and Statistical Applications, Bernoulli n. 6: 1051-1080.
- Hall, P., Heyde, C., C., 1980, Martingale Limit Theory and its application, New York Academic Press.
- Heston S.L., 1993, A Closed-form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options, The Review of Financial Studies n. 6: 327-343.
- Ibragimov, I.A., Linnik, Y.V., (1971), Independent and Stationary Sequence of Random Variables, Wolters-Noordhoff publishing, Groningen.
- Leroux, B., G., 1992, Maximum likelihood estimation for Hidden Markov Models, Stochastic Processes and Applications n. 40: 127-143.
- Nelson D.B., 1990, ARCH Models as Diffusion Approximations, Journal of Econometrics, n. 45: 7-38.
- Rosenblatt, M., 1956, A central limit theorem and a strong mixing condition, Proceedings National Academic Science U.S.A., n. 42: 43-47.
- Sørensen, M., 2000, Prediction-based estimating functions, Econometrics Journal, n.3: 123-147.

6 Appendix A

Proof of Proposition 2 (in the more general setting): assume that

$$
\begin{aligned}
c(u) & =A(u)+\sqrt{\Delta} \mu(v) \\
F\left(p, u_{j}\right) & =E_{U}\left[\left(c\left(u_{j}\right)+\sqrt{v_{j}} \varphi_{j}\right)^{2 p}\right]
\end{aligned}
$$

Simple computations give

$$
\begin{aligned}
F\left(p, u_{j}\right) & =E_{U}\left[\sum_{s=0}^{p}\binom{2 p}{2 s} c\left(u_{j}\right)^{2(p-s)} \sqrt{v_{j}^{2 s}} \varphi_{j}^{2 s}\right] \\
& =\sum_{s=0}^{p}\binom{2 p}{2 s} c\left(u_{j}\right)^{2(p-s)} v_{j}^{s} E_{U}\left[\varphi_{j}^{2 s}\right] \\
& =\sum_{s=0}^{p}\binom{2 p}{2 s} c\left(u_{j}\right)^{2(p-s)} v_{j}^{s}\left(1-\rho^{2}\right) m_{2 s}
\end{aligned}
$$

where we denote $m_{2 k}$ the $2 k-t h$ moment of a standard Gaussian distribution.
i)

$$
\begin{aligned}
\operatorname{Var}\left(\widetilde{G}_{0}\right) & =\operatorname{Var}\left[R_{1}^{2 p}\right]=E\left[R_{1}^{4 p}\right]-E\left[R_{1}^{2 p}\right]^{2}= \\
& =E\left[E_{U}\left[\left(c\left(U_{1}\right)+\sqrt{\overline{V_{1}}} \varphi_{1}\right)^{4 p}\right]\right]-E\left[E_{U}\left[\left(c\left(U_{1}\right)+\sqrt{\overline{V_{1}}} \varphi_{1}\right)^{2 p}\right]\right]^{2} \\
& =E\left[F\left(2 p, U_{1}\right)\right]-E\left[F\left(p, U_{1}\right)\right]^{2},
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{Cov}\left(\widetilde{G}_{0}, \widetilde{G}_{i}\right)= & \operatorname{Cov}\left(R_{1}^{2 p}, R_{i+1}^{2 p}\right)=E\left[R_{1}^{2 p} R_{i+1}^{2 p}\right]-E\left[R_{1}^{2 p}\right] E\left[R_{i+1}^{2 p}\right]= \\
= & E\left[E_{U}\left[\left(c\left(U_{1}\right)+\sqrt{\overline{V_{1}}} \varphi_{1}\right)^{2 p}\left(c\left(U_{i+1}\right)+\sqrt{\overline{V_{i+1}}} \varphi_{i+1}\right)^{2 p}\right]\right] \\
& -E\left[E_{U}\left[\left(c\left(U_{1}\right)+\sqrt{\overline{V_{1}}} \varphi_{1}\right)^{2 p}\right]\right] E\left[E_{U}\left[\left(c\left(U_{i+1}\right)+\sqrt{\overline{V_{i+1}}} \varphi_{i+1}\right)^{2 p}\right]\right] \\
= & E\left[F\left(p, U_{1}\right) F\left(p, U_{1+i}\right)\right]-E\left[F\left(p, U_{1}\right)\right] E\left[F\left(p, U_{1+i}\right)\right]
\end{aligned}
$$

Then

$$
\Sigma_{\Delta}\left(g_{1}, g_{1}\right)=E\left[F\left(2 p, U_{1}\right)\right]-E\left[F\left(p, U_{1}\right)\right]^{2}+2 \sum_{i=1}^{\infty}\left(E\left[F\left(p, U_{1}\right) F\left(p, U_{1+i}\right)\right]-E\left[F\left(p, U_{1}\right)\right]^{2}\right) .
$$

ii) By conditional independence

$$
\begin{aligned}
& \operatorname{Var}\left(\widetilde{G}_{0}\right)=\operatorname{Var}\left[R_{1}^{2 q} R_{1+h}^{2 r}\right]=E\left[R_{1}^{4 q} R_{1+h}^{4 r}\right]-E\left[R_{1}^{2 q} R_{1+h}^{2 r}\right]^{2}= \\
&=E\left[E_{U}\left[\left(c\left(U_{1}\right)+\sqrt{\overline{V_{1}}} \varphi_{1}\right)^{4 q}\left(c\left(U_{1+h}\right)+\sqrt{\overline{V_{1+h}}} \varphi_{1+h}\right)^{4 r}\right]\right] \\
&-E\left[E_{U}\left[\left(c\left(U_{1}\right)+\sqrt{\overline{V_{1}}} \varphi_{1}\right)^{2 q}\left(c\left(U_{1+h}\right)+\sqrt{\overline{V_{1+h}}} \varphi_{1+h}\right)^{2 r}\right]\right]^{2} \\
&= E\left[E_{U}\left[\left(c\left(U_{1}\right)+\sqrt{\overline{V_{1}}} \varphi_{1}\right)^{4 q}\right] E_{U}\left[\left(c\left(U_{1+h}\right)+\sqrt{\overline{V_{1+h}}} \varphi_{1+h}\right)^{4 r}\right]\right] \\
&-E\left[E_{U}\left[\left(c\left(U_{1}\right)+\sqrt{\overline{V_{1}}} \varphi_{1}\right)^{2 q}\right] E_{U}\left[\left(c\left(U_{1+h}\right)+\sqrt{\overline{V_{1+h}}} \varphi_{1}\right)^{2 r}\right]\right]^{2} \\
&= E\left[F\left(2 q, U_{1}\right) F\left(2 r, U_{1+h}\right)\right]-E\left[F\left(q, U_{1}\right)\right]^{2} E\left[F\left(r, U_{1+h}\right)\right]^{2} .
\end{aligned}
$$

For $i \neq h$,

$$
\begin{gathered}
\operatorname{Cov}\left(\widetilde{G}_{0}, \widetilde{G}_{i}\right)=\operatorname{Cov}\left(R_{1}^{2 q} R_{1+h}^{2 r}, R_{1+i}^{2 q} R_{1+h+i}^{2 r}\right) \\
=E\left[R_{1}^{2 q} R_{1+h}^{2 r} R_{1+i}^{2 q} R_{1+h+i}^{2 r}\right]-E\left[R_{1}^{2 q} R_{1+h}^{2 r}\right] E\left[R_{1+i}^{2 q} R_{1+h+i}^{2 r}\right] \\
=E\left[E_{U}\left[R_{1}^{q q}\right] E_{U}\left[R_{1+h}^{2 r}\right] E_{U}\left[R_{1+i}^{2 q}\right] E_{U}\left[R_{1+h+i}^{2 r}\right]\right] \\
-E\left[E_{U}\left[R_{1}^{2 q}\right] E_{U}\left[R_{1+h}^{2 r}\right]\right] E\left[E_{U}\left[R_{1+i+i}^{2 q}\right] E_{U}\left[R_{1+h+i}^{2 r}\right]\right] \\
=E\left[F\left(q, U_{1}\right) F\left(r, U_{1+h}\right) F\left(q, U_{i}\right) F\left(r, U_{1+h+i}\right)\right]-E\left[F\left(q, U_{1}\right) F\left(r, U_{1+h}\right)\right]^{2},
\end{gathered}
$$

while, for $i=h$

$$
\begin{gathered}
\operatorname{Cov}\left(\widetilde{G}_{0}, \widetilde{G}_{h}\right)=\operatorname{Cov}\left(R_{1}^{2 q} R_{1+h}^{2 r}, R_{1+h}^{2 q} R_{1+h+h}^{2 r}\right) \\
=E\left[R_{1}^{2 q} R_{1+h}^{2(q+r)} R_{1+2 h}^{2 r}\right]-E\left[R_{1}^{2 q} R_{1+h}^{2 r}\right] E\left[R_{1+h}^{2 q} R_{1+2 h}^{2 r}\right] \\
=E\left[E_{U}\left[R_{1}^{2 q}\right] E_{U}\left[R_{1+h}^{2(q+r)}\right] E_{U}\left[R_{1+2 h}^{2 r}\right]\right] \\
-E\left[E_{U}\left[R_{1}^{2 q}\right] E_{U}\left[R_{1+h}^{2 r}\right]\right] E\left[E_{U}\left[R_{1+h}^{2 q}\right] E_{U}\left[R_{1+2 h}^{2 r}\right]\right] \\
=E\left[F\left(q, U_{1}\right) F\left(q+r, U_{1+h}\right) F\left(r, U_{1+2 h}\right)\right]-E\left[F\left(q, U_{1}\right) F\left(r, U_{1+h}\right)\right]^{2} .
\end{gathered}
$$

Hence,

$$
\begin{gathered}
\Sigma_{\Delta}\left(g_{2}, g_{2}\right)=E\left[F\left(2 q, U_{1}\right) F\left(2 r, U_{1+h}\right)\right]-2 E\left[F\left(q, U_{1}\right) F\left(r, U_{1+h}\right)\right]^{2}+ \\
+E\left[F\left(q, U_{1}\right) F\left(q+r, U_{1+h}\right) F\left(r, U_{1+2 h}\right)\right]+ \\
+2 \sum_{i=1, i \neq h}^{\infty}\left(E\left[F\left(q, U_{1}\right) F\left(r, U_{1+h}\right) F\left(q, U_{i}\right) F\left(r, U_{1+h+i}\right)\right]-E\left[F\left(q, U_{1}\right) F\left(r, U_{1+h}\right)\right]^{2}\right) .
\end{gathered}
$$

iii) By using similar arguments,

$$
\begin{gathered}
\operatorname{Cov}\left(\widetilde{G}_{0}^{1}, \widetilde{G}_{0}^{3}\right)=\operatorname{Cov}\left(R_{1}^{2 p}, R_{1}^{2 u}\right)=E\left[R_{1}^{2(p+u)}\right]-E\left[R_{1}^{2 p}\right] E\left[R_{1}^{2 u}\right] \\
\left.=E\left[\left(c\left(U_{1}\right)+\sqrt{\overline{V_{1}}} \varphi_{1}\right)\right)^{2(p+u)}\right] \\
\left.\left.-E\left[\left(c\left(U_{1}\right)+\sqrt{\overline{V_{1}}} \varphi_{1}\right)\right)^{2 p}\right] E\left[\left(c\left(U_{1}\right)+\sqrt{\overline{V_{1}}} \varphi_{1}\right)\right)^{2 u}\right] \\
=E\left[F\left(p+u, U_{1}\right)\right]-E\left[F\left(p, U_{1}\right)\right] E\left[F\left(u, U_{1}\right)\right],
\end{gathered}
$$

$$
\begin{aligned}
& \operatorname{Cov}(\left(\widetilde{G}_{0}^{1}, \widetilde{G}_{i}^{3}\right)=\operatorname{Cov}\left(R_{1}^{2 p}, R_{i+1}^{2 u}\right)=E\left[R_{1}^{2 p} R_{i+1}^{2 u}\right]-E\left[R_{1}^{2 p}\right] E\left[R_{i+1}^{2 u}\right] \\
& \quad=E\left[\left(c\left(U_{1}\right)+\sqrt{\overline{V_{1}}} \varphi_{1}\right)^{2 p}\left(c\left(U_{i+1}\right)+\sqrt{\overline{V_{i+1}}} \varphi_{i+1}\right)^{2 u}\right] \\
& \quad-E\left[\left(c\left(U_{1}\right)+\sqrt{\overline{V_{1}}} \varphi_{1}\right)^{2 p}\right] E\left[\left(c\left(U_{i+1}\right)+\sqrt{\overline{V_{i+1}}} \varphi_{i+1}\right)^{2 u}\right] \\
& \quad=E\left[F\left(p, U_{1}\right) F\left(u, U_{i+1}\right)\right]-E\left[F\left(p, U_{1}\right)\right] E\left[F\left(u, U_{i+1}\right)\right] \\
& \quad=E\left[F\left(p, U_{1}\right) F\left(u, U_{i+1}\right)\right]-E\left[F\left(p, U_{1}\right)\right] E\left[F\left(u, U_{1}\right)\right]
\end{aligned}
$$

Similarly

$$
\begin{aligned}
\operatorname{Cov}\left(\widetilde{G}_{i}^{1}, \widetilde{G}_{0}^{3}\right) & =\operatorname{Cov}\left(R_{i+1}^{2 p}, R_{1}^{2 u}\right)= \\
& =E\left[F\left(p, U_{i+1}\right) F\left(u, U_{1}\right)\right]-E\left[F\left(p, U_{i+1}\right)\right] E\left[F\left(u, U_{1}\right)\right] \\
& =E\left[F\left(p, U_{i+1}\right) F\left(u, U_{1}\right)\right]-E\left[F\left(p, U_{1}\right)\right] E\left[F\left(u, U_{1}\right)\right]
\end{aligned}
$$

Hence,

$$
\begin{aligned}
\Sigma_{\Delta}\left(g_{1}, g_{3}\right)= & E\left[F\left(p+u, U_{1}\right)\right]-E\left[F\left(p, U_{1}\right)\right] E\left[F\left(u, U_{1}\right)\right]+ \\
& +\sum_{i=1}^{\infty}\left(E\left[F\left(p, U_{1}\right) F\left(u, U_{i+1}\right)\right]-2 E\left[F\left(p, U_{1}\right)\right] E\left[F\left(u, U_{1}\right)\right]+E\left[F\left(p, U_{i+1}\right) F\left(u, U_{1}\right)\right]\right)
\end{aligned}
$$

iv) Again, conditioning on $\sigma\left(U_{1}, U_{2}, \ldots, U_{n}\right)$,

$$
\begin{aligned}
\operatorname{Cov}\left(\widetilde{G}_{0}^{1}, \widetilde{G}_{0}^{2}\right) & =\operatorname{Cov}\left(R_{1}^{2 p}, R_{1}^{2 q} R_{1+h}^{2 r}\right)=E\left[R_{1}^{2(p+q)} R_{1+h}^{2 r}\right]-E\left[R_{1}^{2 p}\right] E\left[R_{1}^{2 q} R_{1+h}^{2 r}\right]= \\
& =E\left[F\left(p+q, U_{1}\right) F\left(r, U_{1+h}\right)\right]-E\left[F\left(p, U_{1}\right)\right] E\left[F\left(q, U_{1}\right) F\left(r, U_{1+h}\right)\right],
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{Cov}\left(\widetilde{G}_{0}^{1}, \widetilde{G}_{i}^{2}\right) & =\operatorname{Cov}\left(R_{1}^{2 p}, R_{i+1}^{2 q} R_{i+1+h}^{2 r}\right)=E\left[R_{1}^{2 p} R_{1+i}^{2 q} R_{i+1+h}^{2 r}\right]-E\left[R_{1}^{2 p}\right] E\left[R_{i+1}^{2 q} R_{i+h+1}^{2 r}\right]= \\
& =E\left[F\left(p, U_{1}\right) F\left(q, U_{1+i}\right) F\left(r, U_{1+h+i}\right)\right]-E\left[F\left(p, U_{1}\right)\right] E\left[F\left(q, U_{1}\right) F\left(r, U_{1+h}\right)\right] .
\end{aligned}
$$

For $i \neq h$

$$
\begin{aligned}
\operatorname{Cov}\left(\widetilde{G}_{i}^{1}, \widetilde{G}_{0}^{2}\right) & =\operatorname{Cov}\left(R_{1+i}^{2 p}, R_{1}^{2 q} R_{1+h}^{2 r}\right)=E\left[R_{1+i}^{2 p} R_{1}^{2 q} R_{1+h}^{2 r}\right]-E\left[R_{1+i}^{2 p}\right] E\left[R_{1}^{2 q} R_{h+1}^{2 r}\right]= \\
& =E\left[F\left(p, U_{i+1}\right) F\left(q, U_{1}\right) F\left(r, U_{1+h}\right)\right]-E\left[F\left(p, U_{1}\right)\right] E\left[F\left(q, U_{1}\right) F\left(r, U_{1+h}\right)\right],
\end{aligned}
$$

while

$$
\begin{aligned}
\operatorname{Cov}\left(\widetilde{G}_{h}^{1}, \widetilde{G}_{0}^{2}\right) & =\operatorname{Cov}\left(R_{1+h}^{2 p}, R_{1}^{2 q} R_{1+h}^{2 r}\right)=E\left[R_{1+h}^{2(p+r)} R_{1}^{2 q}\right]-E\left[R_{1+h}^{2 p}\right] E\left[R_{1}^{2 q} R_{1+h}^{2 r}\right]= \\
& =E\left[F\left(p+r, U_{1+h}\right) F\left(q, U_{1}\right)\right]-E\left[F\left(p, U_{1+h}\right)\right] E\left[F\left(q, U_{1}\right) F\left(r, U_{1+h}\right)\right] .
\end{aligned}
$$

Hence,

$$
\begin{aligned}
& \Sigma_{\Delta}\left(g_{1}, g_{2}\right)=E\left[F\left(p+q, U_{1}\right) F\left(r, U_{1+h}\right)\right]-E\left[F\left(p, U_{1}\right)\right] E\left[F\left(q, U_{1}\right) F\left(r, U_{1+h}\right)\right]+ \\
& \quad+E\left[F\left(p+r, U_{1+h}\right) F\left(q, U_{1}\right)\right]-E\left[F\left(p, U_{1+h}\right)\right] E\left[F\left(q, U_{1}\right) F\left(r, U_{1+h}\right)\right]+ \\
& \sum_{i=1, i \neq h}^{\infty}\left(E\left[F\left(p, U_{i+1}\right) F\left(q, U_{1}\right) F\left(r, U_{1+h}\right)\right]-E\left[F\left(p, U_{1}\right)\right] E\left[F\left(q, U_{1}\right) F\left(r, U_{1+h}\right)\right]\right) \\
& \sum_{i=1}^{\infty}\left(E\left[F\left(p, U_{1}\right) F\left(q, U_{1+i}\right) F\left(r, U_{1+h+i}\right)\right]-E\left[F\left(p, U_{1}\right)\right] E\left[F\left(q, U_{1}\right) F\left(r, U_{1+h}\right)\right]\right) .
\end{aligned}
$$

QUADERNI DEL DIPARTIMENTO DI ECONOMIA, FINANZA E STATISTICA
 Università degli Studi di Perugia

1	Gennaio 2005	Giuseppe CALZONI Valentina BACCHETTINI	Il concetto di competitività tra approccio classico e teorie evolutive. Caratteristiche e aspetti della sua determinazione
2	Marzo 2005	Fabrizio LUCIANI Marilena MIRONIUC	Ambiental policies in Romania. Tendencies and perspectives
3	Aprile 2005	Mirella DAMIANI	Costi di agenzia e diritti di proprietà: una premessa al problema del governo societario
4	Aprile 2005	Mirella DAMIANI	Proprietà, accesso e controllo: nuovi sviluppi nella teoria dell'impresa ed implicazioni di corporate governance
5	Aprile 2005	Marcello SIGNORELLI	Employment and policies in Europe: a regional perspective
6	Maggio 2005	Cristiano PERUGINI Paolo POLINORI Marcello SIGNORELLI	An empirical analysis of employment and growth dynamics in the italian and polish regions
7	Maggio 2005	Cristiano PERUGINI Marcello SIGNORELLI	Employment differences, convergences and similarities in italian provinces
8	Maggio 2005	Marcello SIGNORELLI	Growth and employment: comparative performance, convergences and comovements
9	Maggio 2005	Flavio ANGELINI Stefano HERZEL	Implied volatilities of caps: a gaussian approach
10	Giugno 2005	Slawomir BUKOWSKI	EMU - Fiscal challenges: conclusions for the new EU members
11	Giugno 2005	Luca PIERONI Matteo RICCIARELLI	Modelling dynamic storage function in commodity markets: theory and evidence
12	Giugno 2005	Luca PIERONI Fabrizio POMPEI	Innovations and labour market institutions: an empirical analysis of the Italian case in the middle 90 's
13	Giugno 2005	David ARISTEI Luca PIERONI	Estimating the role of government expenditure in long-run consumption
14	Giugno 2005	Luca PIERONI Fabrizio POMPEI	Investimenti diretti esteri e innovazione in Umbria
15	Giugno 2005	Carlo Andrea BOLLINO Paolo POLINORI	Il valore aggiunto su scala comunale: la Regione Umbria 2001-2003
16	Giugno 2005	Carlo Andrea BOLLINO Paolo POLINORI	Gli incentivi agli investimenti: un'analisi dell'efficienza industriale su scala geografica regionale e sub regionale

17	Giugno 2005	Antonella FINIZIA Riccardo MAGNANI Federico PERALI Paolo POLINORI Cristina SALVIONI	Construction and simulation of the general economic equilibrium model Meg-Ismea for the italian economy
18	Agosto 2005	Elżbieta KOMOSA	Problems of financing small and medium-sized enterprises. Selected methods of financing innovative ventures
19	Settembre 2005	Barbara MROCZKOWSKA	Regional policy of supporting small and medium-sized businesses
20	Ottobre 2005	Luca SCRUCCA	Clustering multivariate spatial data based on local measures of spatial autocorrelation
21	Febbraio 2006	Marco BOCCACCIO	Crisi del welfare e nuove proposte: il caso dell'unconditional basic income
22	Settembre 2006	Mirko ABBRITTI Andrea BOITANI Mirella DAMIANI	Unemployment, inflation and monetary policy in a dynamic New Keynesian model with hiring costs
23	Settembre 2006	Luca SCRUCCA	Subset selection in dimension reduction methods
24	Ottobre 2006	Sławomir I. BUKOWSKI	The Maastricht convergence criteria and economic growth in the EMU
25	Ottobre 2006	Jan L. BEDNARCZYK	The concept of neutral inflation and its application to the EU economic growth analyses
26	Dicembre 2006	Fabrizio LUCIANI	Sinossi dell'approccio teorico alle problematiche ambientali in campo agricolo e naturalistico; il progetto di ricerca nazionale F.I.S.R. M.I.C.E.N.A.
27	Dicembre 2006	Elvira LUSSANA	Mediterraneo: una storia incompleta
28	Marzo 2007	Luca PIERONI Fabrizio POMPEI	Evaluating innovation and labour market relationships: the case of Italy
29	Marzo 2007	David ARISTEI Luca PIERONI	A double-hurdle approach to modelling tobacco consumption in Italy
30	Aprile 2007	David ARISTEI Federico PERALI Luca PIERONI	Cohort, age and time effects in alcohol consumption by Italian households: a double-hurdle approach
31	Luglio 2007	Roberto BASILE	Productivity polarization across regions in Europe
32	Luglio 2007	Roberto BASILE Davide CASTELLANI Antonello ZANFEI	Location choices of multinational firms in Europe: the role of EU cohesion policy
33	Agosto 2007	Flavio ANGELINI Stefano HERZEL	Measuring the error of dynamic hedging: a Laplace transform approach

34	Agosto 2007	Stefano HERZEL Cătălin STĂRICĂ Thomas NORD	The IGARCH effect: consequences on volatility forecasting and option trading
35	Agosto 2007	Flavio ANGELINI Stefano HERZEL	Explicit formulas for the minimal variance hedging strategy in a martingale case
36	Agosto 2007	Giovanni BIGAZZI	The role of agriculture in the development of the people's Republic of China
37	Settembre 2007	Enrico MARELLI Marcello SIGNORELLI	Institutional change, regional features and aggregate performance in eight EU's transition countries
38	Ottobre 2007	Paolo NATICCHIONI Andrea RICCI Emiliano RUSTICHELLI	Wage structure, inequality and skillbiased change: is Italy an outlier?
39	Novembre 2007	The International Study Group on Exports and Productivity	Exports and productivity. Comparable evidence for 14 countries
40	Dicembre 2007	Gaetano MARTINO Paolo POLINORI	Contracting food safety strategies in hybrid governance structures
41	Dicembre 2007	Floro Ernesto CAROLEO Francesco PASTORE	The youth experience gap: explaining differences across EU countries
42	Gennaio 2008	Melisso BOSCHI Luca PIERONI	Aluminium market and the macroeconomy
43	Febbraio 2008	Flavio ANGELINI Marco NICOLOSI	Hedging error in Lévy models with a fast Fourier Transform approach
44	Febbraio 2008	Luca PIERONI Giorgio d'AGOSTINO Marco LORUSSO	Can we declare military Keynesianism dead?
45	Febbraio 2008	Pierluigi GRASSELLI Cristina MONTESI Paola IANNONE	Mediterranean models of Welfare towards families and women
46	Marzo 2008	Mirella DAMIANI Fabrizio POMPEI	Mergers, acquisitions and technological regimes: the European experience over the period 2002-2005
47	Marzo 2008	Bruno BRACALENTE Cristiano PERUGINI	The Components of Regional Disparities in Europe
48	Marzo 2008	Cristiano PERUGINI Fabrizio POMPEI Marcello SIGNORELLI	FDI, R\&D and Human Capital in Central and Eastern European Countries
49	Marzo 2008	Cristiano PERUGINI	Employment and Unemployment in the Italian Provinces
50	Marzo 2008	Sławomir I. BUKOWSKI	On the road to the euro zone. Currency rate stabilization: experiences of the selected EU countries
51	Aprile 2008	Bruno BRACALENTE Cristiano PERUGINI Fabrizio POMPEI	Homogeneous, Urban Heterogeneous, or both? External Economies and Regional Manufacturing Productivity in Europe

52	Aprile 2008	Gaetano MARTINO Cristiano PERUGINI	Income inequality within European regions: determinants and effects on growth
53	Aprile 2008	Jan L. BEDNARCZYK	Controversy over the interest rate theory and policy. Classical approach to interest rate and its continuations
54	Aprile 2008	Bruno BRACALENTE Cristiano PERUGINI	Factor decomposition of crosscountry income inequality with interaction effects
55	Aprile 2008	Cristiano PERUGINI	Employment Intensity of Growth in Italy. A Note Using Regional Data
56	Aprile 2008	Cristiano PERUGINI Fabrizio POMPEI	Technological Change, Labour Demand and Income Distribution in European Union Countries
57	Aprile 2008	Simona BIGERNA Paolo POLINORI	L'analisi delle determinanti della domanda di trasporto pubblico nella città di Perugia
58	Maggio 2008	Simona BIGERNA Paolo POLINORI	The willingness to pay for Renewable Energy Sources (RES): the case of Italy with different survey approaches and under different EU "climate vision". First results
59	Giugno 2008	Simona BIGERNA Paolo POLINORI	Ambiente operativo ed efficienza nel settore del Trasporto Pubblico Locale in Italia
60	Ottobre 2008	Pierluigi GRASSELLI Cristina MONTESI Roberto VIRDI	L'interpretazione dello spirito del dono
61	Novembre 2008	Antonio BOGGIA Fabrizio LUCIANI Gianluca MASSEI Luisa PAOLOTTI	L'impatto ambientale ed economico del cambiamento climatico sull'agricoltura
62	Novembre 2008	Elena STANGHELLINI Francesco Claudio STINGO Rosa CAPOBIANCO	On the estimation of a binary response model in a selected population
63	Dicembre 2008	Gianna FIGȦ-TALAMANCA	Limit results for discretely observed stochastic volatility models with leverage effect

I QUADERNI DEL DIPARTIMENTO DI ECONOMIA Università degli Studi di Perugia

1	Dicembre 2002	Luca PIERONI:	Further evidence of dynamic demand systems in three european countries
2	Dicembre 2002	Luca PIERONI Paolo POLINORI:	Il valore economico del paesaggio: un'indagine microeconomica
3	Dicembre 2002	Luca PIERONI Paolo POLINORI:	A note on internal rate of return
4	Marzo 2004	Sara BIAGINI:	A new class of strategies and application to utility maximization for unbounded processes
5	Aprile 2004	Cristiano PERUGINI:	La dipendenza dell'agricoltura italiana dal sostegno pubblico: un'analisi a livello regionale
6	Maggio 2004	Mirella DAMIANI:	Nuova macroeconomia keynesiana e quasi razionalità
7	Maggio 2004	Mauro VISAGGIO:	Dimensione e persistenza degli aggiustamenti fiscali in presenza di debito pubblico elevato
8	Maggio 2004	Mauro VISAGGIO:	Does the growth stability pact provide an adequate and consistent fiscal rule?
9	Giugno 2004	Elisabetta CROCI ANGELINI Francesco FARINA:	Redistribution and labour market institutions in OECD countries
10	Giugno 2004	Marco BOCCACCIO:	Tra regolamentazione settoriale e antitrust: il caso delle telecomunicazioni
11	Giugno 2004	Cristiano PERUGINI Marcello SIGNORELLI:	Labour market performance in central european countries
12	Luglio 2004	Cristiano PERUGINI Marcello SIGNORELLI:	Labour market structure in the italian provinces: a cluster analysis
13	Luglio 2004	Cristiano PERUGINI Marcello SIGNORELLI:	I flussi in entrata nei mercati del lavoro umbri: un'analisi di cluster
14	Ottobre 2004	Cristiano PERUGINI:	Una valutazione a livello microeconomico del sostegno pubblico di breve periodo all'agricoltura. Il caso dell'Umbria attraverso i dati RICA-INEA
15	Novembre 2004	Gaetano MARTINO Cristiano PERUGINI	Economic inequality and rural systems: empirical evidence and interpretative attempts
16	Dicembre 2004	Federico PERALI Paolo POLINORI Cristina SALVIONI Nicola TOMMASI Marcella VERONESI	Bilancio ambientale delle imprese agricole italiane: stima dell'inquinamento effettivo

[^0]: *Revised version (October 2009)

