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ABSTRACT

It has become increasingly common to allocate highway franchises to the bidder that offers to

charge the lowest toll. Often, building a highway increases the value of land held by a small group of

developers, an effect that is more pronounced with lower tolls. We study the welfare implications of

highway franchises that benefit large developers, focusing on the incentives developers have to

internalize the effect of the toll they bid on the value of their land. We study how participation by

developers in the auction affects equilibrium tolls and welfare. We find that large developers bid more

aggressively than construction companies that own no land. As long as land ownership is sufficiently

concentrated, allowing developers in the auction leads to lower tolls and higher welfare. Moreover,

collusion among developers is socially desirable. We also analyze the case when the franchise holder can

charge lower tolls to those buying her land (`toll discrimination'). Relative to uniform tolls,

discrimination decreases welfare when land is highly concentrated, but increases welfare otherwise.

Finally, we consider the welfare implications of subsidies and bonuses for proposing  new highway

projects.
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1 Introduction and motivation

The standard way to finance highways leading to new land developments is with general public funds, to be

recovered via increased property taxes.2 One problem with this approach, is that the increase in tax receipts

takes placeafter the road is built (and the land developed and sold to new owners), thereby leaving ample

space for opportunistic behavior by landowners and land developers. For example, they could vote down a

tax increase after the road is built, or, alternatively, lobby for socially undesirable projects that collect far

less taxes than suggested by the optimistic forecasts of the proponents.3 Given this problem, during the

last decades franchises have become an increasingly popular way of financing highways,4 operating under

so called build-operate-and-transfer (BOT) contracts.5 These franchises are usually awarded in competitive

auctions to the bidder that offers to charge the lowest toll for a pre-specified period.

In this paper we study the welfare consequences of highway franchises that benefit large land developers.

In doing so we address several questions: (a) Should large landowners be allowed to participate in the

auction, or do they have an “undue advantage” (i.e., one that leads to a decrease in welfare)? (b) How does

an auction compare with a monopoly road owner? (c) Should a franchise holder that owns land be allowed

to offer lower tolls to the buyers of his tracts of land? (d) Should collusion among bidders be deterred? (e)

What are the welfare consequences of government subsidies for building the road or government bonuses

for the proponents of a new project?

We find that large developers bid more aggressively than construction companies that own no land. As

long as land ownership is sufficiently concentrated, allowing developers in the auction leads to lower tolls

and higher welfare. Moreover, collusion among developers is socially desirable. We also analyze the case

when the franchise holder can charge lower tolls to those buying her land (‘toll discrimination’). Relative

to uniform tolls, discrimination decreases welfare when land is highly concentrated, but increases welfare

otherwise.

A specific example is useful to motivate most of the issues considered. In 1999 the Chilean government

decided to franchise the US$170MM road through the valley of Chicureo, a formerly rural area near Santiago

which is slotted for major expansion. The project was proposed by a private group, and would add value

to the substantial extensions of land this group owns in the area to be served by the road. According to the

Chilean Concessions Law of 1994, anybody can propose a highway project. If approved by the Ministry

of Public Works, the project is franchised in an open auction and the proponent of the project receives a

bonus in the auction, implying that she may win even if she does not make the best offer. Shortly after

the project was approved by the Ministry of Public Works, the original proponents formed an agreement

with other large landowners in the valley in order to participate in the auction. Moreover, this consortium is

2The idea is that a substantial part of the highway’s benefits are reflected in higher land prices.
3Moreover, even if landholders and land developers do not behave opportunistically, it may still be difficult for the government

to determine whether a project is beneficial before undertaking it, since it may be difficult to obtain precise estimates of the future
commercial value of the land.

4See, for example, Ǵomez-Ibãnez and Meyer [1993], and the collection of papers in Irwin et al. [1997]).
5Under such a contract, a private firm builds and finances the road and then collects tolls for a long period (usually between 10

and 30 years). When the franchise ends the road is transferred to the state.

1



considering implementing a scheme by which buyers of their land will not have to pay tolls during the first

few years (Magni, 2000). Finally, there were no participants when the road was auctioned in 2000, with the

proponents arguing that a more generous subsidy than that offered by the government was required, since

toll revenue was insufficient to finance the road.6,7

Throughout the paper we considersocially desirableroads, that is, roads such that if built, the increase

in welfare (reflected in the price of the land) is higher than the cost of building the road when no tolls are

charged.8 Roads that satisfy these conditions should be built. However, there is no guarantee that they

will be built, since franchise holders do not necessarily appropriate all of the benefits produced by the road,

unless they happen to own all the land that increases its value thanks to the project.

We examine two options for building the road: first, an unplanned orlaissez faireapproach, which serves

as a benchmark, in which the owner of a tract of land builds a road and charges a toll for its use. There is no

coordination with other landowners and the franchise holder is free to choose the toll at her discretion. The

second option is to have the government franchise the project in a competitive auction, to the bidder offering

the lowest toll.

Laissez faire is simplest to analyze. Suppose first that toll discrimination is forbidden (‘uniform tolls’).

If there is competitive demand in the land market, the road owner appropriates all the consumer surplus

generated by the road when selling her land plots. Since tolls can be set at any level, the owner of the road

will have to balance the increases in toll revenue paid by those who do not own her land, with the fall in

the price of her real estate. Hence her optimal toll will vary between the monopoly toll (if she owns no

land) and a zero toll (if she owns all of the land). On the other hand, if toll discrimination is possible then,

independent of how much land she owns, her best strategy is to set a zero toll on buyers of her plots and a

monopoly price on all other users of the road in order to help defray costs. It is not obvious whether toll

discrimination should be allowed under laissez faire, except in the obvious case in which the road would

not have been built in the absence of discrimination. On the one hand, buyers of the road owner’s plots

obtain the maximum consumer surplus from the road (which is transferred efficiently via land prices to the

road owner), but other users are penalized. We show that under certain conditions, discrimination is bad.

However, there are counterexamples in which discrimination is beneficial (even when the road would still

have been built under uniform tolls), so it is not obvious whether discrimination should be prohibited under

laissez faire.

In the alternative approach, the planner auctions the franchise to all bidders (which may include non-

owners of land) on the basis of the lowest toll. A landowner then weighs two effects when deciding how to

6It is also worthwhile noting that there have been many cases of highway franchises associated with land developments in Asia
(Guasch, 2000). Note also that the United States awarded land grants to the first transcontinental railways in order to reduce the
subsidies required by the developers (Faulkner, 1960).

7Another example, in an area far removed from highways, is the creation of a small independent telephone company in a
newly developed area in Santiago, whose main object was to raise the price of land at a time when waiting times from the state
owned telephone company were very long (Dı́az and Soto, 1999). Finally, note that often plots of land are sold with some basic
infrastructure in place: roads, water main connections, drainage, electricity supply. In this case there are economies of scale in
providing these services (and in their inspection by local authorities) for many plots, and their benefits are extracted through higher
prices of land.

8In order to simplify the analysis, we assume no congestion.
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participate in the auction. If she does not bid aggressively, she avoids paying for the road, but the winning

bid may be too high, leading to lower land prices. On the other hand, if she wins (by bidding aggressively),

land prices rise and she gets the toll revenue, but has to pay for the road.

With uniform tolls these two effects lead to some surprising results. Assume there is one large landowner.

She will bid a fairly low toll that does not generate enough revenues to pay for the road, but will lead to

high land prices. If there is another only slightly smaller landowner that participates in the auction, welfare

is not higher and may be lower than without his participation. The explanation is simple: since the large

landowner will charge a lower toll if she gets the road, it is beneficial for the second owner to have the

large owner build the road. However, since the optimal toll set by the second owner is only slightly higher,

the large landowner prefers to avoid paying for the road and have the smaller landowner build the road, a

solution which is inefficient, since overall tolls are higher. Thus there are two Nash solutions to the bidding

game, one of which is worse than the equilibria with no competition. Best of all however, is to allow the

two landowners to collude in offering a much lower bid, which raises everyone’s welfare.

If discrimination is allowed, or if it cannot be detected, we show that the largest landowner will limit

price the second largest landowner in the auction. Thus the lowest toll that the second landowner can

credibly bid—the toll that leaves her indifferent between building the road and not doing so—plays a central

role in this case. The largest landowner always wins and charges zero tolls to those who buy her real estate.

The other landowners participate in order to force her to offer a lower toll.

Discrimination leads to higher welfare than uniform tolls when the difference in land holdings between

the two largest landowners is small, since under uniform tolls most of the benefits of the road are received

through land appreciation, which requires low tolls for everyone. By contrast, uniform tolls are better when

one landowner owns most of the land.

In many cases, governments are led to subsidize BOT projects because they expect welfare to increase

due to the externalities associated to the project. As we have argued before (Engel, Fischer and Galetovic,

1997), subsidies eliminate one of the main advantages of infrastructure franchises, namely screening white

elephants. In the case of projects where many of its associated externalities are captured by landowners,

the fact that toll revenues are not sufficient to finance the road is not a reason for a subsidy. An additional

disadvantage of subsidies is that often they amount to a transfer to the franchise holder, without changing

the toll or the feasibility of the project. It is only when landowners are small and do not internalize most of

the benefits of the road that the subsidy can have a potentially beneficial effect.

This paper is related to the literature on franchise bidding pioneered by Chadwick (1859) and Demsetz

(1968), according to which competition for a monopoly infrastructure project will reproduce the competitive

outcome (see also Stigler [1968], Posner [1972] and Riordan and Sappington [1987], Spulber [1989, ch. 9],

Laffont and Tirole [1993, chs. 7 and 8], Harstad and Crew [1999] and Engel, Fischer and Galetovic [2001 a,

b]).9 Somewhat less related is the limited literature on auctions of objects with externalities. For example,

Jehiel, Moldovanu and Stacchetti (1996, 1999) solve a mechanism design problem in which the auctioned

object causes an identity-dependent externality on bidders that loose in the auction. We differ from these

9But see Williamson (1976, 1985) for a critique.
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papers in that we model the microeconomic origin of the externality—the winning toll affects the welfare of

all landowners— which allows us to analyze policy questions.10

The rest of the paper is organized as follows. Section 2 describes the model. Section 3 analyzes the

consequences of letting one landowner build the road and giving him free hand to choose tolls (‘laissez

faire’). Section 4 examines the bidding behavior and outcome of the auction. Section 5 looks at policy

implications. Uniform tolls are assumed throughout Sections 3, 4 and 5. We consider toll discrimination

in Section 6, characterizing both the outcomes under laissez faire and under competitive bidding. In this

section we also make welfare comparisons between the cases of uniform and discriminatory tolls. Section 7

concludes. Several appendices with formal proofs follows.

2 Basic model

We consider a static model with three types of agents: developers, construction companies and house-

holds.11 There is a land development composed by many identical plots of land and a much larger number

(a continuum) of households with identical preferences and monetary income, so that the development under

consideration is marginal within the relevant real-estate market and hence does not affect real-estate prices

elsewhere.12 To simplify notation we normalize the total area of land to one. Each household demands only

one plot. The highway increases the willingness to pay for each plot of land depending on the number of

trips each household makes, viz.

V(p) =
Z D(p)

0
D−1(s)ds,

whereD(p) is the demand for trips when the toll isp, with D′ < 0. Hence, a lower toll increases the number

of trips made by the household, thereby raising members’ welfare.

The increase in willingness to pay is divided between toll payments,pD(p), and payment for the plot,

which also depends onp and is:

V(p)− pD(p) =
Z D(p)

0
[D−1(s)− p]ds.(1)

Note that since the land development is small and the number of households is large, in equilibrium all

households who buy a plot will obtain the same utility as in any other location in the relevant real estate

market. Hence, competition among households pushes up the price of each plot until the increase in value

due to the highway is fully capitalized in the land rent.13

10Also, instead of solving a mechanism design problem, we assume that the road is auctioned to the bidder offering the lowest
toll, which is how most of these roads have been auctioned. Possibly, more sophisticated designs have not been used because of the
transaction costs involved.

11Adding the time dimension changes static values to discounted flows of benefits without significant implications. For this
reason, using revenue based auctions, as in Engel, Fischer and Galetovic (2001b), or other auction mechanisms, does not alter the
results of this paper.

12In terms of standard urban economic theory (see, for example, Fujita [1989]), the development is located at one of a continuum
of locations and hence is “small” in terms of the aggregate land market.

13More generally, the highway is a neighborhood good (see Fujita [1989, ch. 6.5]).
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Developers are indexed by the fraction of plots they own. We often consider two developers,α andβ,

with α≥ β≥ 0 andα+β≤ 1. For any given tollp, the developer’s objective is to sell her land for as much

as possible.

We further assume that developers, and many identical construction companies that own no land, can

build the road at costI . For simplicity, we ignore maintenance and operation costs. Last, note that when the

toll is p, the increase in welfare is

W(p)≡V(p)− I .(2)

We assumeW(0) > 0, so that it would be efficient to build the road if it could be financed with lump sum

transfers.14

3 Laissez faire

We begin by studying the case of laissez faire, where the agent who builds the road is free to choose the

toll. This benchmark will be useful in the next section, when we evaluate auctions for the road. Throughout

this and the next section, we assume that theα-developer must charge the same toll to all users (‘uniform

tolls’).15 She faces the following tradeoff: on the one hand, she would like to charge the monopoly toll

to plot owners that do not buy her land; on the other hand, she would like to charge no toll at all to those

that buy land from her, since the revenue she obtains from these individuals (either through tolls or land

payment) is larger for lower tolls.

To formally derive this tradeoff, we note thatα chooses the toll that maximizes a weighted average of

toll revenues and land sales, viz.

Π(p;α, I)≡ pD(p)+α[V(p)− pD(p)]− I = (1−α)pD(p)+αV(p)− I .(3)

The term(1−α)pD(p) in (3) corresponds to revenues obtained from those who do not buy the developer’s

land. Assuming a relatively inelastic demand, as we do, this component of profits increases withp, as long

as p is below the monopoly tollpm. By contrast, the termαV(p) in (3) is total revenue obtained by the

developer, via tolls or via land sales, from those who buy her plots. It is straightforward to see that this

component, which equals consumer surplus, is decreasing inp. The situation is summarized in Figure 1,

showing the distribution of consumer surplus between toll income and payment for land plots. The first

component is maximized at the monopoly toll, denoted bypm in what follows, the second component at

p = 0. Figure 1 also depicts the deadweight loss from charging a positive toll.

We assume that the developer’s maximization problem has a solution for allα ∈ [0,1]. Without addi-

tional assumptions, a fundamental result on monotonic optimal solutions for supermodular functions then

implies that the optimal toll correspondence, argmaxpΠ(p;α), is decreasing inα, for α ∈ [0,1].16

14Without loss of generality we ignore through–drivers.
15Toll discrimination is considered in Section 6.
16This follows directly from Theorem 2.8.2 in Topkis (1998). To see this, using the notation in that theorem lett ≡ 1−α and
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Figure 1: Tolls and welfare
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In what follows we simplify the analysis and assume that the for eachα ∈ [0,1] the solution to the

developer’s maximization problem is unique (denoted byp∗(α)) and satisfies the first order condition:17

pD′(p)+(1−α)D(p) = 0,(4)

which leads to

ε(p∗(α)) =−(1−α),(5)

whereε(p)≡ pD′(p)/D(p) is the elasticity of the demand for trips at pricep.18

It follows from (5) that, asα→ 1, the elasticity tends to zero, i.e. to the case of a zero toll. Conversely,

asα→ 0, the elasticity tends to one, which corresponds to the case of a monopoly. Thus:

Result 1 When developerα ∈ [0,1] owns the road, she sets a toll between0 and the monopoly price. If she

owns no land (α = 0), she charges the monopoly toll,pm. At the other extreme, if she owns all the land

(α = 1), she setsp = 0. Furthermore,p∗(α) is decreasing inα.

Result 1 summarizes the central tradeoff faced by the developer between charging high tolls to those who

do not buy her land and low tolls to those who do. At one extreme, whenα = 1, there is no tradeoff: the

distortions created by charging tolls are borne by the developer. Therefore, since we assume no congestion,

she setsp = 0. By contrast, whenα = 0, the road operator sets the monopoly toll because she does not

internalize any of the efficiency losses caused by the distortion.

Total welfare equals

W(p∗(α)) = V(p∗(α))− I ,(6)

which is clearly increasing inα. Hence:

Result 2 Under laissez faire it is efficient to allocate the right to build the road to the developer who owns

the largest amount of land. Moreover, sincep∗(1) = 0, it follows that welfare is maximized when the road is

built by a developer who owns all the land.

From a social perspective tolls are just a distorting transfer. Whenα = 1, the owner of the road fully

internalizes the social cost of the price distortion, since she replicates the social optimum, acting like a social

planner who can charge lump sum taxes.

define

f (x, t)≡ txD(x)+(1− t)
Z D(x)

0
D−1(s)ds− I .

We then have that∂2 f/∂x∂t = D(x) > 0, showing that the only non-trivial assumption of the theorem is satisfied.
17Using supermodularity results, many of the propositions that follow can be shown to hold with considerable more generality.
18We show in Appendix A that the solutions of (5) satisfy the second order condition, for allα, if

[D′(p)]2 >
1
2

D(p)D′′(p)

for all p below the monopoly price. This holds, for example, for linear demand curves.
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The last result illustrates a further advantage of concentrated landholding. Consider the case where

the road cannot generate enough revenue to finance its cost even when monopoly tolls are charged (i.e.,

pmD(pm) < I ). However, profits evaluated at the optimal toll,Π∗
α ≡ Π(p∗(α);α), are increasing inα.19

And since, by assumption,Π∗
1 = V(0)− I > 0, we have that there exist an̄α > 0 such that for allα < ᾱ an

α-landowner does not find it attractive to build the road, even if she is allowed to set the toll she desires.

Result 3 Socially desirable roads may not be built when landholding is too dispersed.

To end this section, note the analogy between the results derived here and the standard double marginal-

ization result of monopoly theory (Spengler, 1950). As in the standard case, vertical integration into the

downstream real estate market reduces the incentive to price monopolistically in the upstream road market

and simultaneously increases firm’s profits. Hence, it is socially desirable.

4 Bidding

Behind the trend of using open auctions to franchise roads is Chadwick’s (1859) idea, popularized by Dem-

setz (1968), that competition for the field can substitute for competition in the field. Can a competitive

auction improve laissez faire? Auctioning a franchise has two clear advantages. First, it moderates the com-

mitment problem that a developer may face vis-a-vis the road owner, because the franchise contract forces

the road owner to charge no more than the toll she bid in the auction.20 Second, an auction forces potential

franchise holders to compete and set a toll at most high enough to defray the road’s investment cost.

Yet it is not obvious that competition is useful in all circumstances. For example, it follows from Result 1

that under laissez faire a landowner that owns most of the land will set a toll that does not generate enough

income to defray the road’s cost. Thus other landowners and construction firms will find it unattractive

to participate in the auction and for all practical purposes the outcome of an auction does not differ from

laissez faire. Furthermore, a competitive auction could conceivably worsen things compared with laissez

faire. Consider, for example, the case where two developers own a similar fraction of plots. If this fraction

is large enough, toll revenue may be below road construction costs for both of them, so that both of them

prefer that the other one builds the road. Thus unexpected results may follow from the fact that the winning

bid affects all developers.

4.1 Time line of the game

The timing of actions is as follows:

• Developersα andβ participate in the auction, withα≥ β > 0 andα+β≤ 1.21 There also are at least

19Let p∗ denotep∗(α) andq∗ ≡ D(p∗). The envelope theorem implies thatdΠ∗
α

dα = V(p∗)− p∗q∗, which is the household’s
willingness to pay, net of tolls, and therefore strictly positive (see [1]).

20Implicit in this argument is the assumption that a franchise contract is easier to enforce than a private contract.
21All results extend trivially to the case of more than two developers.

8



6

-

Πb(p;α)

Πn(p;α)

p∗(α) p̃(α) pc Tolls

Profits

Figure 2: Profits from building and not building. Case of large developer.

two construction firms that participate in the auction. All participants bid a toll in[0,∞], where a bid

of ∞ is equivalent to not participating in the auction.

• The road is allocated to the firm which makes the lowest bid, denoted byp in what follows. If bidders

tie, the winner is the bidder owning the largest fraction of land (among those offering the lowest toll).

• The winner builds the road and charges at mostp for each ride.

Participants in the auction are developersα andβ plus the group of identical building companies who

own no land. All participants have construction costs equal toI .

If there exists a tollpc that makes the road self-financing, it is straightforward to see that bidding this

toll is the dominant strategy for construction firms.22 And if no such toll exists—i.e., ifpmD(pm) < I—then

construction firms will not participate in the auction.

What makes the problem interesting is the behavior of developers. The key strategic interaction in the

auction is that developers may prefer to free ride and let someone else build the road. However, not building

the road may lead to an unattractively high toll. To appreciate this tradeoff, consider developerα when

making her bid. Conditional on winning the auction she would like to setp = p∗(α), which maximizes her

revenues by optimally internalizing the effects of tolls on the value of her land. Nevertheless,α may want

to let β win. While tolls would probably be higher thanp∗(α),23 α would saveI in construction costs.

22All that is needed for this result is that there be at least two construction firms.
23Recall that, sinceα≥ β, it follows from Result 1 thatp∗(α)≤ p∗(β).
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To analyze this tradeoff, it is useful to compare profits when building and not building the road. If

developerα wins the auction with tollp, her profits are

Πb(p;α) = pD(p)+α[V(p)− pD(p)]− I ,

where superscript ‘b’ stands for ‘build’. This function is plotted in Figure 2. From the previous section we

know that it peaks atp∗(α). On the other hand, if some other agent wins the auction and sets tollp, thenα
earns

Πn(p;α) = α[V(p)− pD(p)],(7)

where superscript ‘n’ stands for ‘not build’. This function is also plotted in Figure 2, and is decreasing and

convex in the winning toll: the higher the toll, the lower the value ofα’s plots.

Clearly Πn(p;α) = Πb(p;α)− pD(p) + I , because building the road enablesα to cashpD(p) in toll

revenue at the cost of investingI . Thus if both curves intersect, the smallest toll at which they cross, denoted

by pc(I), satisfies

pD(p) = I .(8)

Note thatpc is independent ofα. Moreover, from Figure 2 it follows that developerα would rather have

someone else build the road for all tolls belowpc, since in that rangepD(p) < I .

When the road, viewed as a separate project, is not profitable,Πn remains aboveΠb for all (finite)

tolls. Letting pc = ∞, the results that follow extend (with little effort) to this case, so we do not consider it

separately in what follows.

Many of the results in this section hinge on how dispersed land ownership is. For this reason, next we

provide a useful definition of “small developer”, where “small” is relative to the building cost of the road.

Definition 1 Developerα is small if p∗(α)≥ pc(I).

Figure 3 depicts the case whenα is “small”. If allowed to build the road and charge whatever toll she

wants, a small developer charges more thanpc. By contrast, a large developer, who is depicted in Figure 2,

prefers to charge less thanpc.

The existence of (at least) two building companies ensures that the winning bid can never be higher than

pc. Thus:

Result 4 p≤ pc in equilibrium.

In Appendix B we show that this game always has a Nash equilibrium in pure strategies. Recall that

under laissez faire the toll that results is eitherp∗(α) or p∗(β), depending on which developer builds the

road. Thus, if both developers are small, the toll that results under laissez faire is abovepc, and since

welfare decreases monotonically with the winning bid:

Result 5 Whenα (and thereforeβ) is small, an auction leads to higher welfare than laissez faire.

10
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Πn(p;α)

Πb(p;α)

pc Tolls

Profits

p∗(α)

Figure 3: Profits from building and not building. Case of small developer.

Competition for the field is welfare improving when developers are small. Building companies force

developers to compete away part of the rents they could obtain under laissez faire from exploiting the road’s

monopoly power. It is also apparent from Figure 3 that no agent will bid less thanpc in equilibrium when

α is small: should a developer win withp < pc, she could increase her profits by unilaterally deviating and

bidding pc. By doing so profits increase toΠb(pc,α) = Πn(pc,α) (see Figure 2), independent of whether

deviating leads to winning or loosing the auction. Hence:

Result 6 When developers are small,p = pc in equilibrium. Moreover, it is irrelevant whether developers

participate in the auction.

What happens when developerα is large? It can be seen from Figure 2 thatpc can no longer be the

equilibrium toll, for if it were it would pay the developer to unilaterally deviate biddingp = p∗(α). On the

other hand, if developerβ is small, she is not willing to bid less thanpc (as is implied by Figure 3). Hence

Result 7 If only one developer is large, thenp = p∗(α) < pc in equilibrium.

It can easily be shown (see Appendix B) that whenα is sufficiently larger thanβ, in all Nash equilibraα
wins the auction biddingp∗(α). Thus, additional bidders who own little or no land do not force lower tolls

than what would obtain under laissez faire. The reason, quite simply, is that a large developer internalizes

the effect of higher tolls on land values and this gives him a decisive “advantage” in the auction. For this

reason, we have
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Result 8 Excluding large developers from the auction leads to a higher toll and is welfare decreasing.

Now take the one large developer case as a benchmark. Can competition between large developers buy

an extra reduction in tolls and an increase in welfare? To answer this question, note that when developersα
andβ are large,p∗(α)≤ p∗(β) < pc. Now suppose thatα does not participate in the auction (i.e.,α “bids”

p = ∞). Given that strategy,β has no incentive to deviate and (optimally) bidsp = p∗(β). The same holds

for α as long asp∗(β) is sufficiently close top∗(α), where Figure 2 suggests that the precise meaning of

“sufficiently close” is that

p∗(β) < p̃(α),(9)

with p̃(α) < pc defined by:24

Πn(p̃(α);α) = Πb(p∗(α);α).

The above condition implies that

Πn(p∗(β);α) > Πn(p̃(α);α) = Πb(p∗(α);α),

where the inequality follows from condition (9) andΠn being decreasing, and the equality from the definition

of p̃. Thus condition (9) ensures thatα is better off not bidding, lettingβ build the road and chargep∗(β);
the higher toll charged byβ is more than compensated by not having to payI to build the road. And given

thatα bids∞, it is optimal forβ to bid p∗(β) and build the road. Similarly, one can show that there exists a

Nash equilibrium whereα bids p∗(α) andβ does not participate in the auction (see Appendix B). Thus

Result 9 Competition among large developers does not increase welfare; it may even bring about higher

tolls and lower welfare.

One can even go beyond Result 9. Not only may competition among large developers be socially harm-

ful, but explicit collusion through joint bidding is clearly welfare improving. To see this, suppose thatα and

β costlessly collude and bid to maximize joint profits (this will occur if bargaining is efficient). Then they

would bid p = p∗(α+β) < p∗(α), thereby winning the auction. Hence

Result 10 Collusion among large developers brings about lower tolls and unambiguously increases wel-

fare.

The benefits from collusion are twofold. First, it eliminates the socially inefficient equilibrium whereβ
builds the road. Second, it is profitable for large developers to bid belowp∗(α). Hence, regulators should

not only allow large developers to participate in the auction, but should also encourage them to collude!25

Summing up, allowing developers to participate in the auction never hurts social welfare and is socially

desirable when at least one developer is large. Also, competition between large developers never increase

24That p̃(α) < pc follows from: Πn(p̃(α);α) = Πb(p∗(α);α) > Πb(pc;α) = Πn(pc;α), where the first equality follows from
the definition ofp̃; the following inequality fromα being large andΠb strictly decreasing forp > p∗(α); and the second equality
from the definition ofpc. Hence, sinceΠn is decreasing inp, p̃(α) < pc.

25This prescription changes when toll discrimination is possible, see Section 6.
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welfare and may lower it. For this reason, allowing developers to collude is socially desirable. Far from

discouraging joint bidding, auction design should facilitate coordination among bidders who own land and

facilitate side payments among them.

5 Some policy implications

5.1 Subsidies

Governments often subsidize BOT road contracts because of externalities associated with the project.26

Such subsidies should be scrutinized with particular care, since an unfavorable social evaluation of the

road as a stand alone project does not justify a subsidy. Indeed, if benefits obtained by landowners from

the appreciation of their real-estate are larger than losses associated with building the road, a government

subsidy is not needed to induce landowners to build the road.

A subsidy raises welfare if it leads to the construction of a socially desirable road (i.e., one that satisfies

W(0) > 0, see [2]) or if resulting tolls are lower than without the subsidy.27 To determine whether the

subsidy actually increases overall welfare, its benefits must be weighed against the costs associated with

raising the funds to finance it.

Formally, consider a socially desirable road that costsI to build and a subsidyS, 0 < S< I . First we

consider the case of laissez faire, where a landowner that owns a fractionα of the land builds the road and

sets the toll she desires. If this landowner would not have built the road without the subsidy,28 then the

subsidy increases welfare generating profits for all landowners, not only the one that builds the road. By

contrast, if building the road and selling her land is attractive for the landowner even without the subsidy,

introducing the subsidy has no effect on tolls (sincep∗(α) does not depend onI , see Result 1) and constitutes

a pure transfer to the road builder.

Next we consider the case where the franchise holder is determined through a competitive auction. As

in Section 4, there are two land developers,α andβ, with α > β, and a fringe of building companies. The

cost of building the road is the same for all potential builders and equal toI . A construction subsidy ofS

reduces the toll that leaves a building company indifferent between building and not building the road, from

pc(I) to pc(I −S).29

There are a large number of cases that need to be analyzed, yet all of them fall into two groups. In the

first group the subsidy is a pure transfer to landowners; in the second it enables the road to be built or lowers

tolls. We present one example within each group.

Consider first the case where, both without and with the subsidy,α is large andβ is small (see Defini-

tion 1). Then (see Result 7) the toll, both with and without the subsidy, will bep∗(α); thus the subsidy is a

26See Engel, Fischer and Galetovic (1997) for a thorough discussion of government guarantees in infrastructure franchises.
27Note that, within the model presented in this paper, the sole beneficiaries of the increases in welfare described above are

landowners, since they extract all rents from toll users when selling their plots of land.
28That is,Π(p∗(α);α, I −S) > 0 > Π(p∗(α);α, I), with Π defined in (3).
29This assumes that such tolls exist. The results that follow do not require this assumption. Also, see (8) for the definition ofpc.
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pure transfer to developerα.

By contrast, consider the case whereα is small without the subsidy and large with the subsidy, andβ
is small both with and without the subsidy. Then introducing the subsidy reduces the toll fromp∗(α) to

pc(I −S).30

5.2 Bonus for proposals

As mentioned in the introduction, the Chilean Concessions Law provides a bonus to the bidder that proposes

a project that is auctioned. For example, if the bonus is a fractionb of the toll and the proponent bidsp, then

she wins ifp/(1+b) is lower than the remaining bids, yet she may chargep.

The reason for the bonus appears to have been an unfortunate analogy with legal monopolies for in-

ventions (patents). According to this reasoning, by providing a compensation for the initial investment in a

feasibility study, lobbying for the project and so on, these activities will be encouraged and more projects

will be proposed.31 However, the Chilean legislator seems to have forgotten that assigning a monopoly

to an inventor is desirable because of inappropriability problems: social welfare increases with a tempo-

ral monopoly on inventions because the profits obtained during the patent period encourage investments in

research and development.

The case of the road franchises considered in this paper is quite different, since a developer that owns

the road benefits directly from the project. Hence a bonus is not called for, since in some scenarios it has no

effect while in others it reduces welfare. Next we present one illustration of each possibility.

Consider first the case where all landowners are small andα receives the bonus, and assumep∗(α)/(1+
b) < pc. A straightforward extension of Result 7 shows that with a bonusα wins the auction, and users

pay p∗(α). This toll is above the toll that results without a bonus (pc, see Result 6). By contrast, ifα is

sufficiently large (or bothα andβ are sufficiently large), a bonus for the proponent has no effect on welfare

or its distribution.

6 Toll discrimination

Regulators often prohibit price discrimination between users by imposing equal access rules. Are such

restrictions warranted in the context of this paper? In this section we assume that developerα can charge

different tolls to households that buy her plots and those that do not. We study what happens under laissez

faire and competitive bidding, and consider policy implications.

6.1 Laissez faire

If an α-developer can set the tolls she desires, discriminating among users, she will sell her plots with a

guarantee of zero tolls, while charging the monopoly toll to the rest. Thus, price-discrimination has, in

30As mentioned earlier, the benefit of the toll reduction must be compared with the costs of raisingS.
31Proposed projects undergo social evaluation to ensure that the projects that are undertaken raise welfare.
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principle, an ambiguous effect on welfare. On the one hand, it creates wealth by eliminating the distortion

to those who buyα’s land. But, on the other hand, it reduces the value of the rest of the land.

In Appendix C we derive the following result:

Result 11 If α is allowed to discriminate, it will charge a zero toll to those who bought her plots and the

monopoly toll to the remaining buyers. This unambiguously reduces welfare ifα is sufficiently close to one,

but may be welfare increasing otherwise.

This result assumes that the road is built byα regardless of whether she is allowed to toll discriminate or

not. Since for a given toll, profits for the franchise holder under toll discrimination are always at least as high

as with uniform tolls, ifα does not find it attractive to build the road with price discrimination, she will also

decline to build it with uniform tolls. By contrast, it may happen thatα wants to build the road only if she is

allowed to price discriminate. Under these circumstances, price discrimination is welfare increasing.32

6.2 Bidding

For any given toll, price discrimination increases the attractiveness of winning the auction and building the

road because the developer can eliminate the toll distortion that reduces the value of her plots while at the

same time charging monopoly tolls to the remaining users. To analyze the outcome of the auction when

the winner can price discriminate, suppose thatα wins the auction biddingp. As we know, with price

discriminationα will charge a toll equal to0 to buyers of her plots andp to the rest of users, thereby making

profits equal to

Πbd(p;α) = (1−α)pD(p)+αV(0)− I ,(10)

where superscript ‘bd’ denotes “build and discriminate”. This function is plotted in Figure 4.33 Because

p does not affect the value ofα’s plots, Πbd(p;α) peaks atp = pm independently ofα. By contrast, for

any given toll, profits made byα when not building the road are the same as with uniform tolls—Πn(p;α)
remains the same as in Section 4. We denote byp̃d(α) the toll (less or equal thanpm, see Figure 4) that

solves

Πbd(p;α) = Πn(p;α);(11)

that is,p̃d(α) leavesα indifferent between building and not building the road.34

Note that for small values ofα the franchise holder may prefer not to build the road, even if she is

allowed to set monopoly tolls. That is,Πbd may be belowΠn for all (finite) values ofp. In this case we

convene that̃pd(α) = ∞.35

32The condition for this to be the case is:(1−α)pmD(pm)+αV(0)≥ I > (1−α)p∗(α)D(p∗(α))+αV(p∗(α)).
33A straightforward calculation shows that it is increasing and concave in the winning toll.
34When the franchise holder builds the road and charges uniform tolls, her optimal toll isp∗(α). By contrast no such optimal

toll exists when she builds the road and discriminates tolls. This explains the difference in the diagrams depicting the indifference
toll p̃(α) in the case with uniform tolls and̃pd(α) in the case with toll discrimination. Also note thatp̃d(α) is decreasing inα and
strictly positive, see (18) in Appendix D for a proof.

35The analogy with the definition ofpc should be evident. Also note that in Lemma D.2 in Appendix D we show thatp̃d(α) is
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Figure 4: The case of discrimination

Proposition 6.1 Assumeα > β and that, if allowed to discriminate tolls,α finds it attractive to build the

road. Then, in the case with discrimination, the following possibilities exhaust the Nash equilibria in pure

strategies:

1. Whenever̃pd(β) is finite,α wins the auction in any pure strategy Nash equilibrium. The set of Nash

equilibria is characterized by (i)α’s winning bid, call it p−α , belongs to[p̃d(α), p̃d(β)] and (ii) the

lowest bid among the loosing bidders is equal topα.36

2. On the other hand, if̃pd(α) is finite andp̃d(β) is not, thenα wins the auction in all Nash equilibria

with a bid equal topm.

3. Finally, if p̃d(α) (and thereforep̃d(β)) are infinite, there are two Nash equilibria in pure strategies.

In the first one the winner isα while in the second one it isβ.37 In both cases the winning toll ispm.

Proof: See Appendix D.

Thus if developers are sufficiently large,38 with price discrimination developerα always wins the auction

finite for all values ofα if and only if pc (defined in Section 4.2) is finite. Otherwise,p̃d(α) is finite if and only if α ≥ ᾱ, with
ᾱ = (I − pmD(pm))/(V(0)−V(pm)).

36Wherep−α is a shade belowpα, see Appendix D for details.
37Existence of the latter requires thatΠbd(pm;β) > 0.
38Developerα large in the sense defined in the preceding subsection is sufficient.
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and limit–prices the second–highest bid.39 Since developerα stands to win most by eliminating the price

distortion caused by tolls, she will always bid more aggressively than developerβ or any other building

company. This explains whyα always wins the auction. Furthermore, contingent on winning the auction,

developerα would like to set the toll as high as possible, which explains why in equilibrium she limit prices

the second-highest bid.

That the range of winning tolls is[p̃d(α), p̃d(β)] follows from noting that it is not inα’s interest to ’bid

a toll abovep̃d(β), since for such a tollβ finds it attractive to bidp̃d(β) and win the auction. Similarly, the

lowest toll thatβ can credibly bid isp̃d(α), since if it bids a lower tollα finds it attractive to letβ win.

How do auctions with price discrimination and uniform pricing compare from a welfare perspective?

We begin with the following result:

Result 12 Wheneverp∗(α) ≥ p̃(β), social welfare with price discrimination is higher than with uniform

pricing.

Proof: See Appendix D.

The following corollary follows straightforwardly from Result 12:

Corollary 1 If developerα is small (in the sense of Definition 1) andβ > 0 then welfare is higher under

price discrimination than with uniform pricing.

Consider next the case whenα is close to 1. In that case the uniform price auction is always won by

α bidding p∗(α) (see Result 7). By contrast, with price discrimination the winning toll is at leastp̃d(α).
Moreover,p∗(α) approaches 0 asα tends to one. Sincẽpd(1) > 0, the following Proposition follows:

Proposition 6.2 If developerα is large (α close to 1), then uniform pricing leads to higher welfare than toll

discrimination.

Proof: See Appendix D.

We found that collusion between developers never hurts welfare with uniform pricing . With discrimina-

tion, however, collusion eliminates competition betweenα andβ and rises the upper bound of equilibrium

prices topc. Hence, collusion may be welfare decreasing. Yet it may also increase welfare, as happens when

α+β is sufficiently close to one, since in this case the coalition of landowners will have incentives to charge

a toll close to zero.

7 Conclusion

Highways, and more generally infrastructure projects, change the value of land, because their benefits are

capitalized into its price. This paper has examined the strategies of large real estate developers and how these

strategies affect social welfare. Our results depend on the fraction of the land that is owned by the largest

39Recall that our tie breaking assumption implies thatα can limit price any other’s bid by matching it.
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landowners, and on the possibility of discrimination between different users of the road. We show that it

is always in the interest of the real estate developer to charge a zero toll on buyers of her land, and hence

she always prefers to discriminate in tolls. If she is not allowed to discriminate, and this rule is enforceable,

we show that welfare is maximized when large landowners are allowed to collude in the bidding process,

and that competition may lower welfare. On the other hand, when discrimination is possible, competition

among small landowners leads to higher welfare than under uniform tolls.

In the light of this analysis, it is interesting to examine the aftermath of the auction for the road to Chi-

cureo, described in the Introduction. As predicted by our model, the largest landowners formed a group to

present a single bid. In the end, however, no one showed up for the auction. The landowners complained that

contingent subsidies against losses in the highway project were too small, making the franchise unprofitable.

Our analysis suggests that profitability of the highway itself is not a true measure of the overall private value

of the project for large developers. There are two possible explanations. Since large landowners internalize

most of the social benefits of the highway, building the highway might not have been socially desirable. If

this were the case, the fact that there was no participation was welcome. More plausibly however, the large

landowners were lobbying for a larger government handout, and were willing to wait given the then low

current prices for real estate (due to an economic slowdown), which made waiting costless. A subsidy in

this case would be a pure wealth transfer with no allocative effects.

Finally it is worth considering whether the issues considered in this paper are quantitatively relevant.

Consider the case in which there are 6000 plots of land, and assume that families make three trips a day in

the equilibrium and that the cost of the road is US$170MM.40 If there is no toll discrimination, no collusion

and there are no other users for the road, small landowners would have to finance the road out of tolls, which

implies a toll of US$2.59. If we assume linear demand, we can calculate the benefits from having a single

landowner as compared to dispersed landowners, by measuring the effect of reducing tolls to zero. The

increase in welfare depends on the toll at which plot owners stop using the road (i.e., the vertical intercept).

For example, it varies between 29 and 91% of the construction cost when the intercept varies between $7

and $4.

40These figures come from the Chicureo example. We will use a discount rate of 10%, and no maintenance and operation costs.
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APPENDICES

A Results in Section 3

Proposition A.1 Assume that

[D′(p)]2 >
1
2

D(p)D′′(p)

for all p below the monopoly price. Then anyp satisfying the first order condition (5) also satisfies the
corresponding second order condition.

Proof: The second order condition corresponding tomaxp Πα(p) is:

(2−α)D′(p)+ pD′′(p) < 0.

Substituting the expression forp that follows from the first order condition (5) in the expression above and
rearranging terms shows that the second order condition is equivalent to:

2−α
1−α

[D′(p)]2−D(p)D′′(p) > 0.(12)

If the inequality above holds for allp < pm it will also hold for p∗(α), α ∈ [0,1]. The proof concludes by
noting that the minimum value of(2−α)/(1−α) overα ∈ [0,1] is 2.

B Results in Section 4.2

We now characterize the Nash equilibria of the auction with uniform tolls. This characterization follows
directly from the following lemma, where we derive developerγ’s best-response correspondence:

Lemma B.1 Let p− denote the smallest bid among all bidders, excludingγ. Without loss of generality we
may assumep− ≤ pc (see Result 5). Then, ifγ is small her best response correspondence is

P (p−;γ) =
{

[pc,∞] if p− = pc;
(p−,∞] if pc > p−.

And if γ is large it is:

P (p−;γ) =
{

p∗(γ) if p− ∈ [p̃(γ),∞];
(p−,∞] if p− < p̃(γ),

wherep̃(γ) is defined byΠn(p̃(γ);γ) = Πb(p∗(γ);γ).

Proof: Supposep∗(γ) ≥ pc, i.e., γ small. ThenΠb(p,γ) T Πn(p;γ) for p T pc. Hence, ifp− < pc then

Πb < Πn andγ is better-off not building the road, so that anyp∈ (p−,∞] is a best response. Ifp− = pc then
Πb(p−,γ) = πn(p−;γ) andγ is indifferent between building and not building the road, so that anyp∈ [p−,∞]
is a best response.
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Now supposep∗(γ) < pc, i.e., γ is large. If p− ∈ [p̃(γ), pc], thenΠn(p−;γ) ≤ Πb(p̃(γ);γ) (see Figure
2). Hence, it is optimal forγ to build and chargep∗(γ), which is a best response. On the other hand, if
p− < p̃(γ), thenΠn(p−;γ) > Πb(p̃(γ);γ) andγ is better-off not building the road. Hence, bidding more than
p− is optimal forγ in this case.

Proposition B.1 Denote byp the lowest (and therefore winning) bid in the auction. Then:

(i) In any Nash equilibriump≤ pc.

(ii) If α (and thereforeβ) is small, then any set of bids where two are equal topc and the remainder is
larger or equal thanpc is a Nash equilibrium. Furthermore, this characterizes all Nash equilibria in
pure strategies. It follows that the resulting toll ispc.

(iii) If α is large andp∗(α) < p̃(α)≤ p∗(β), then any set of bids such thatα bids p∗(α) and the remaining
bidders bid abovẽp(α) is a Nash equilibrium of the auction. Furthermore, this exhausts all Nash
equilibrium in pure strategies.

(iv) If p∗(β) < p̃(α), then any set of bids such that (a)α bids p∗(α) and the remainder bids abovẽp(α) or
(b) β bidsp∗(β) and the remainder bids abovẽp(β) is a Nash equilibrium of the auction. Furthermore,
both possibilities exhaust the set of Nash equilibria in pure strategies.

Proof:

(i) Suppose that in a Nash equilibrium the winning bid,p, is larger thanpc. Since, by definition,pcD(pc) =
I , it follows that if p > pm, a builder who unilaterally deviates biddingpm would win the auction and
make a profit. Ifp≤ pm, then a builder who unilaterally deviates bidding a shade belowp would win
the auction and make a profit. It follows that in a Nash equilibrium the winning bid cannot be above
pc.

(ii) Clearly in a Nash equilibrium the winning bid,p, cannot be belowpc, because it would pay to that
bidder to unilaterally deviate (see Lemma B.1). Furthermore, Lemma B.1 (which also holds for
γ = 0) shows that bidding in[pc,∞] is a best response top− = pc for any bidder.

(iii) Strategies inducep> p̃(α), and Lemma B.1 implies thatP (p;α) = p∗(α). Moreover, Lemma B.1 im-
plies thatP (p∗(α);β) = (p∗(α),∞], sincep = p∗(α) < p∗(β) < p̃(β); andP (p∗(α);0) = (p∗(α),∞],
since p∗(0) = pm > pc. Hence any toll abovẽp(α) is a best response forβ and for the building
companies.

(iv) We consider both cases separately:

(a) Strategies inducep> p̃(α), and Lemma B.1 imply thatP (p;α) = p∗(α). Consider next developer
β. Sincep∗(α) < p∗(β), it follows thatΠn(p∗(α);β) > Πb(p∗(β);β) > Πb(p∗(α);β), which is
the highest profit thatβ can make when building the road. Therefore,P (p∗(α);β) = (p∗(α),∞]
and any toll abovep̃(α) is a best response top∗(α). Last, P (p∗(α);0) = (p∗(α),∞], since
p∗(0) = pm > pc and any toll abovẽp(α) is a building company’s best response.

(b) According to strategies,p> p̃(β), and a Lemma B.1 implies thatP (p;β) = p∗(β). Consider next
developerα. Sincep∗(β) < p̃(α), it follows that Πn(p∗(β);α) > Πb(p∗(α);α), which is the
highest profit thatα can make when building the road. Therefore,P (p∗(β);α) = (p∗(β),∞],
and any toll abovep̃(β) is a best response top∗(α). Last, P (p∗(β);0) = (p∗(β),∞], since
p∗(0) = pm > pc and any toll abovẽp(β) is a building company’s best response.
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C Results in Section 6.1

In this section we derive three results, which are summarized in the main text under Result 11.

Proposition C.1 For α sufficiently close to one and under laissez faire, uniform tolls lead to higher welfare
than toll discrimination.

Proof: Welfare under uniform pricing equalsW(p∗(α)) (see equation [6]) while under price discrimination
it is

α
Z D(0)

0
D−1(s)ds+(1−α)

Z D(pm)

0
D−1(s)ds− I .

SubtractingW(p∗(α)) from this expression yields the difference in welfare between discrimination and
uniform pricing for a givenα:

∆W(α)≡ α
Z D(0)

D(p∗(α))
D−1(s)ds− (1−α)

Z D(p∗(α))

D(pm)
D−1(s)ds.(13)

Note that, since uniform tolls and toll discrimination are indistinguishable whenα = 0 or α = 1, we have:

∆W(0) = ∆W(1) = 0.(14)

Differentiating both sides of (13) with respect toα yields

∆W′(α) =
Z D(0)

D(pm)
D−1(s)ds− p∗(α)D′(p∗(α))

dp∗(α)
dα

=
Z D(0)

D(pm)
D−1(s)ds+(1−α)D(p∗(α))

dp∗(α)
dα

,(15)

where the second equality follows from (5). Since∆W(1) = 0 (see [14]) and∆W′(1) > 0 (from [15]),
discrimination is welfare decreasing whenα is sufficiently close to one.

Next we provide an example where toll discrimination leads to higher welfare than uniform tolls. Thus
the condition thatα be close to one in the previous proposition is essential.

Example 1 Consider a truncated, isoelastic demand with elasticityε larger than−1. More precisely, let
D(p) = 0 for p > pmax, D(p) = pε for pmin < p < pmax and D(p) = pε

min for p < pmin. A patient but
straightforward calculation shows that

∆W(α) =





α
R D(pmin)

D(pmax)
D−1(s)ds for α < 1+ ε

−(1−α)
R D(pmin)

D(pmax)
D−1(s)ds for α > 1+ ε.

It follows that price discrimination is welfare improving forα < 1+ ε.

We end this section by showing that by imposing additional conditions on the demand functionD (a
convex demand function is sufficient), a similar result to Proposition C.1 can be derived forα close to zero.
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Proposition C.2 With the notation and assumptions of Section 3, assume thatD′′(pm)≥ 0 and[D′(pm)]2 >
1
2D(pm)D′′(pm). Then toll discrimination reduces welfare forα sufficiently close to zero.

Proof: Since∆W(0) = 0 (see [14]), it suffices to show that∆W′(0) < 0, which (see [15]) is equivalent to:

Z D(0)

D(pm)
D−1(s)ds<−qmdp∗(α = 0)

dα
.

A straightforward calculation shows that the tangent to the inverse demand curve at(qm, pm) intersects
theq-axis atq= 2qm. This, combined with the convexity ofD (and therefore concavity ofD−1) implies that

Z D(0)

D(pm)
D−1(s)ds<

1
2

pmqm.

Thus a sufficient condition for∆W′(0) < 0 is

1
2

pmqm <−qmdp∗(α = 0)
dα)

.(16)

From (5) it follows that
dp∗(α)

dα
=

1
ε′(p∗(α))

.(17)

Calculatingε′(p) from first principles yields:

ε′(p) =
D′(p)
D(p)

+ p
D′(p)
D(p)

[
D′′(p)
D′(p)

− D′(p)
D(p)

]
.

Noting thatpmD′(pm)/D(pm) =−1, for p = pm the expression above simplifies to:

ε′(pm) = 2
D′(pm)
D(pm)

− D′′(pm)
D′(pm)

.

Substituting this expression fordp∗/dα in (17) with α = 0, and the resulting expression in (16), shows that
a sufficient condition for∆W′(0) < 0 is

1
2

pmqm <− qm

2D′(pm)
qm − D′′(pm)

D′(pm)

.

A straightforward calculation shows that this condition follows from our assumptions and the fact that
pmD′(pm)/qm =−1.

D Results in Section 6.2

The following result will be used when characterizing the Nash equilibria.

Lemma D.1 0< p̃d(α)≤ p̃d(β)≤ pc. Furthermore, the second inequality is strict ifα > β andβ≥ ᾱ, with
ᾱ defined in footnote 35. And the third inequality is strict ifpc < ∞.
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Proof: In the rangep< pm, Πbd is strictly increasing andΠn strictly decreasing, so that they cross (at most)
once. This, together with the fact thatΠbd(0;α) = αV(0)− I < αV(0) = Πn(0;α) implies that they cannot
cross at zero, so that̃pd(α) > 0.

To show thatp̃d(α) ≤ p̃d(β) for α ≥ β it suffices to consider the case whereβ > ᾱ, with ᾱ defined in
Lemma D.2. For values ofα in this range, we have that implicitly differentiating (11) leads to

dp̃d(α)
dα

=− V(0)−V(p̃d(α))
D(p̃d(α))+(1−α)p̃d(α)D′(p̃d(α))

< 0(18)

sinceD(p)+ pD′(p) > 0 whenp < pm.
Finally, we show that̃pd(α) < pc whenpc < ∞. A straightforward calculation shows thatΠbd(pc;α) >

Πn(pc;α) is equivalent to
α[V(0)−V(pc)] > I − pcD)pc),

which holds since the right hand side is zero by the definition ofpc. This, combined with the fact that in the
rangep < pm, Πbd is strictly increasing andΠn strictly decreasing, implies that̃pd(α) < pc.

The first inequality in Lemma D.1 says that there is always a low enough, strictly positive toll to make
a developer prefer not to build the road. The second inequality shows that larger developers have a stronger
preference to build the road.

Lemma D.2 If pc < ∞ then p̃d(α) is finite for all α ∈ [0,1]. And if pc = ∞ (that is pmD(pm) < I ), then
not building the road dominates building the road (and toll discriminating) if and only ifα ≤ ᾱ, with ᾱ ≡
(I − pmD(pm))/(V(0)−V(pm)).

Proof: Not building the road dominates building it and toll discriminating if and only ifΠbd(pm,α) <
Πn(pm;α) which (see (10) and (7)) is equivalent to

pmD(pm)+α[V(0)−V(pm)] < I .(19)

Hence, ifpmD(pm)≥ I we have that (19) does not hold andp̃d(α) is well defined. And ifp̃d(α) = ∞, (19)
holds for allα≤ ᾱ, thereby concluding the proof.

Next we characterize bidders’ best response function, then we turn to Nash equilibria in pure strategies.

Lemma D.3 Let p− denote the lowest bid among all bidders, excludingα, whereα > 0. Assumeα finds it
attractive to build the road if she is allowed to price discriminate without restriction.41 Then, ifp̃d(α) < ∞,
α’s best-response correspondence when the franchise holder can discriminate is

P d(p−;α) =





pm if p− > pm;
p− if p̃d(α) < p− ≤ pm;
[p−,∞] if p− = p̃d(α);
(p−,∞] if p− < p̃d(α).

On the other hand, if̃pd(α) = ∞:

P d(p−;α) =
{

pm if p− > pm;
(p−,∞] if p− ≤ p̃d(α).

41That is,(1−α)pmD(pm)+αV(0)≥ I .
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Proof: We begin with the case wherẽpd(α) is finite. Πbd(p;α)−Πn(p;α) = pD(p)+α[V(0)−V(p)]− I T
0 if pS p̃d(α) < pc (see Lemma D.1). It follows thatΠbd(p;α)−Πn(p;α) > 0 for p> p̃d(α). Hence,pm is

a best response top− > pm, andp− is a best response top− ∈ (p̃d(α), pm], since in a tie the largest developer
wins.

Next, if p− = p̃(α), thenΠbd = Πn. Hence,α is indifferent between building and not building the road
and anyp∈ [p−,∞] is a best response.

Last, if p− < p̃d(α), thenΠd < Πn. Thus,α is better-off not winning the auction and anyp in (p−,∞]
is a best response.

The best response function in the case wherep̃d(α) = ∞ hinges on the fact thatα has no interest in
building the road, except if no one else shows interest (i.e.,p− = ∞). The remainder of the proof then is
straightforward.

We can now prove Proposition 6.1, which characterizes equilibria in the auction with price discrimina-
tion.

Unfortunately, the best correspondence derived above (Lemma D.3) does not extend trivially to the
second largest developer,β. The problem is that whenα bids p ∈ [p̃d(α), p̃d(β)], β’s best response is to
bid a “slightly lower” toll, which does not lead to a well defined correspondence.42 Discretizing the set of
possible tolls solves the problem above, yet makes the notation considerably more cumbersome. For this
reason, in the proposition that follows we assume a discrete toll space but avoid referring to it explicitly.

Proof of Proposition 6.1.
Cases 2 and 3 are straightforward, so we concentrate on case 1.
For all practical purposes we may assume that building companies bidpc. Hence we may concentrate

on the game between both developers, subject to the constraint above.
First we show thatpα ∈ [p̃d(α), p̃d(β)] andp− = pα is a Nash equilibrium. Sincep− = pα ∈ [p̃d(α), p̃d(β)],

pα is a best response forα. Also, any toll larger or equal thanpα is a best response forβ. By contrast,
p− > pα is not Nash, sinceα would gain by slightly raising her bid.

Next we show that in a Nash equilibrium the winning bid,p, cannot be strictly larger thañpd(β). Indeed,
in such an equilibriumα would gain by unilaterally lowering its bid tõpd(β). Profits under this deviating
strategy would increase, sinceΠbd evaluated at the new toll is larger thanΠn evaluated at that toll, which in
turn is larger thanΠn evaluated atα’s original bid (since this bid is larger thañpd(α)).

Finally, note that the winning bid cannot be strictly less thanp̃d(α) in equilibrium, since the winner
would gain by unilaterally deviating and bidding̃pd(α).

Proof of Proposition 6.2

Welfare under uniform pricing equalsW(p∗(α)) (see equation 6); under price discrimination welfare equals
at most

α
Z D(0)

0
D−1(s)ds+(1−α)

Z D(p̃d(α))

0
D−1(s)ds− I ,

which occurs when the winning bid equals its lowest feasible value,p̃d(α). In that case the difference in
welfare between discrimination and uniform pricing for a givenα equals

∆W(α)≡ α
Z D(0)

D(p∗(α))
D−1(s)ds− (1−α)

Z D(p∗(α))

D(p̃d(α))
D−1(s)ds,

42Our tie-breaking rule avoids this problem only for the largest developer.
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sinceD(p̃d(α)) > D(p∗(α)), whenα is large. The first term on the right-hand side is the welfare gain from
eliminating the distortion that affects the land owned byα when tolls are uniform. The second term is the
loss borne by the rest of the landowners, who now have to pay the toll that won the auction, which is at least
D(p∗(α)).

Now

∆W′(α) =
Z D(0)

D(p̃d(α))
D−1(s)ds− p∗(α)D′(p∗(α))

dp∗(α)
dα

+(1−α)p̃d(α)D′(p̃d(α))
dp̃d(α)

dα

=
Z D(0)

D[pι(α)]
D−1(s)ds+(1−α)D[p∗(α)]

dp∗(α)
dα

(1−α)p̃d(α)D′(p̃d(α))
dp̃d(α)

dα
,

where the second equality follows from (5). Since∆W(1) = 0 and, from the derivation above we have

∆W′(1) =
R D(0)

D(p̃d(α)) D−1(s)ds> 0, discrimination is welfare decreasing whenα is sufficiently close to one.

Proof of Result 12

Total welfare increases with lower tolls; hence to show that welfare is higher with discrimination it
suffices to show that in this case everyone pays lower tolls.

Sincep∗(α) ≥ p̃d(β), the best possible outcome of a uniform price auction ismin{p∗(α), pc}. On the
other hand, the worst that can happen in an auction with price discrimination is that the winning toll is
p̃d(β) ≤ p∗(α) by assumption. From Lemma D.1 we also have thatp̃d(α) ≤ pc. Finally, since some plot
owners pay no tolls with discrimination, all are at least as well off as in a uniform price auction and some
are better off.
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