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1 Introduction

Without variation in discount rates, it is difficult to explain the behavior of aggregate stock prices

within the confines of rational pricing models. An old literature, starting with Pindyck (1988),

focused on changes in the variance of fundamentals as a source of price fluctuations, suggesting that

increased variances would depress prices. Poterba and Summers (1986) argued that the persistence

of return variances does not suffice to account for the volatility of observed stock returns, whereas

Barsky (1989) was the first to focus attention on the fact that increased uncertainty may also affect

riskless rates in equilibrium which may undermine the expected price effects. Abel (1988) examined

the effects of changes in the riskiness of dividends on stock prices and risk premiums in a Lucas

(1978) general equilibrium model, with the perhaps surprising result that increased riskiness only

lowers asset prices when the coefficient of risk aversion is lower than one.

Changes in the conditional variance of fundamentals (either consumption growth or dividend

growth) as a source of asset price fluctuations are making a comeback in the recent work of Bansal

and Yaron (2004), Bansal, Khatchatrian and Yaron (2002), and Bansal and Lundblad (2002), which

we discuss in more detail below. Nevertheless, most of the recent literature has not focused on

changes in the variability of fundamentals as the main source of fluctuations in asset prices and risk

premiums but on changes in risk aversion and risk preferences. The main catalyst here was the

work of Campbell and Cochrane (1999), CC henceforth, who showed that a model with counter-

cyclical risk aversion could account for a large equity premium, substantial variation in returns and

price-dividend ratios and long-horizon predictability of returns. There have been a large number

of extensions and elaborations of the CC framework (see e.g. Bekaert, Engstrom and Grenadier

(2004), Brandt and Wang (2003), Buraschi and Jiltsov (2005), Menzly, Santos and Veronesi (2004),

and Wachter (2004)) and a large number of articles trying to find an economic mechanism for changes

in aggregate prices of risk (Chan and Kogan (2002), Lustig and Van Nieuwerburgh (2003), Santos

and Veronesi (2000), Piazzesi, Schneider and Tuzel (2003), and Wei (2003)).

In this article, we try to identify the relative importance of changes in the conditional variance of

fundamentals (which we call “uncertainty”) and changes in risk aversion (“risk” for short)2. We build

2Hence, the term uncertainty is used in a different meaning than in the growing literature on Knightian uncertainty,
see for instance Epstein and Schneider (2004). It is also consistent with a small literature in international finance
which has focused on the effect of changes in uncertainty on exchange rates and currency risk premiums, see Hodrick
(1989, 1990) and Bekaert (1996). The Hodrick (1989) paper provided the obvious inspiration for the title to this
paper.
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on the external habit model formulated in Bekaert, Engstrom and Grenadier (2004) which features

stochastic risk aversion and introduce persistent time-varying uncertainty in the fundamentals. We

explore the effects of both on price dividend ratios, equity risk premiums, the conditional variability

of equity returns and the term structure, both theoretically and empirically. To differentiate time-

varying uncertainty from stochastic risk aversion empirically, we use information on higher moments

in dividend and consumption growth and the conditional relation between their volatility and a

number of instruments.

The model is consistent with the empirical volatility dynamics of dividend and consumption

growth and matches a large number of salient asset market features, including a large equity premium

and low risk free rate and the volatilities of equity returns, dividend yields and interest rates. We

find that variation in the equity premium is driven by both risk and uncertainty with risk aversion

dominating. However, variation in asset prices (consol prices and dividend yields) is primarily due

to changes in risk. These results arise because risk aversion acts primarily as a level factor in the

term structure while uncertainty affects both the level and the slope of the real term structure and

also governs the riskiness of the equity cash flow stream. Consequently, our work provides a new

perspective on recent advances in asset pricing modelling. We confirm the importance of economic

uncertainty as stressed by Bansal and Yaron (2004) and Kandel and Stambaugh (1990) but show

that changes in risk are critical too. However, the main channel through which risk affects asset

prices in our model is the term structure, a channel shut off in the original Campbell and Cochrane

(1999) paper while stressed by the older partial equilibrium work of Barsky (1989).

The remainder of the article is organized as follows. The second section sets out the theoretical

model and motivates the use of our state variables to model time-varying uncertainty of both dividend

and consumption growth. In the third section, we derive closed-from solutions for price-dividend

ratios and real and nominal bond prices as a function of the state variables and model parameters

and examine some comparative statics results. We also demonstrate that two extant models, Abel

(1988) and Wu (2001), severely restrict the relationship between uncertainty and equity prices and

show why this is so. In the fourth section, we set out our empirical strategy. We use the General

Method of Moments (Hansen (1982), GMM henceforth) to estimate the parameters of the model.

The fifth section reports parameter estimates and discusses how well the model fits salient features

of the data. The sixth section reports various variance decompositions and dissects how uncertainty

and risk aversion affect asset prices. Section 7 concludes.
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2 Theoretical Model

2.1 Fundamentals and Uncertainty

To model fundamentals and uncertainty, we begin with the specification of Abel (1988) but enrich

the framework in a number of dimensions. Abel (1988) models log dividends as having a persis-

tent conditional mean and persistent conditional variance and models the stochastic behavior of the

conditional mean and the conditional coefficient of variation of dividends. Hence, he assumes that

dividends are stationary. We modify this set up to allow for a unit root in the dividend process, as

is customary in modern asset pricing, and model dividend growth as having a stochastic volatility

process. In addition, we relax the assumption that dividends and consumption are identically equal.

While consumption and dividends coincide in the original Lucas (1978) framework and many sub-

sequent studies, recent papers have emphasized the importance of recognizing that consumption is

financed by sources of income outside of the aggregate equity dividend stream, for example Santos

and Veronesi (2005), and Bansal, Dittmar and Lundblad (2004). Our modeling choice for dividends

and stochastic volatility is described by the following equations.

∆dt = µd + ρduut−1 +
√
vt−1

¡
σddε

d
t + σdvε

v
t

¢
(1)

vt = µv + ρvvvt−1 + σvv
√
vt−1ε

v
t

where dt = log (Dt) denotes log dividends, ut is the demeaned and detrended log consumption-

dividend ratio (described further below) and vt represents “uncertainty,” and is proportional to the

conditional volatility of the dividend growth process. All innovations in the model, including εdt

and εvt follow independent N(0, 1) distributions. Consequently, covariances must be explicitly para-

meterized. With this specification, the conditional mean of dividend growth varies potentially with

past values of the consumption-dividend ratio, which is expected to be a slowly moving stationary

process. Uncertainty itself follows a square-root process and may be arbitrarily correlated with div-

idend growth through the σdv parameter. The sign of σdv is not a priori obvious. From a corporate

finance perspective, an increase in the volatility of firm cash flows may increase the present value

of the costs of financial distress but it may also make growth options more valuable (see Shin and

Stulz (2000) for a recent survey). Because it is a latent factor, vt can be scaled arbitrarily without

empirical consequence and we therefore fix its unconditional mean at unity.
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We model consumption as stochastically cointegrated with dividends, in a fashion similar to

Bansal, Dittmar and Lundblad (2004), so that the consumption dividend ratio, ut, becomes a

relevant state variable. We model ut symmetrically with dividend growth,

ut = µu + ρuuut−1 + σud (∆dt −Et−1 [∆dt]) + σuu
√
vt−1ε

u
t . (2)

By definition, consumption growth, ∆ct, is

∆ct = δ +∆dt +∆ut

= (δ + µu + µd) + (ρdu + ρuu − 1)ut−1 + (1 + σud)
√
vt−1

¡
σddε

d
t + σdvε

v
t

¢
+ σuu

√
vt−1ε

u
t . (3)

Note that δ and µu cannot be jointly identified. We proceed by setting the unconditional mean

of ut to zero and then identify δ as the difference in means of consumption and dividend growth.3

Consequently, the consumption growth specification accommodates arbitrary correlation between

dividend and consumption growth, with heteroskedasticity driven by vt. The conditional means

of both consumption and dividend growth depend on the consumption-dividend ratio, which is an

AR(1) process. Consequently, the reduced form model for dividend and consumption growth is

an ARMA(1, 1) which can accommodate either the standard nearly uncorrelated processes widely

assumed in the literature, or the Bansal and Yaron (2004) specification where consumption and

dividend growth have a long-run predictable component. Bansal and Yaron (2004) do not link the

long run component to the consumption-dividend ratio as they do not assume consumption and

dividends are cointegrated.4

Our specification raises two important questions. First, is there heteroskedasticity in consump-

tion and dividend growth data? Second, can this heteroskedasticity be captured using our single

latent variable specification? Perhaps surprisingly, there is substantial affirmative evidence regard-

ing the first question, but to our knowledge none regarding the second question. Ferson and Merrick

(1987), Whitelaw (2000) and Bekaert and Liu (2004) all demonstrate that consumption growth

volatility varies through time. For our purposes, the analysis in Bansal, Khatchatrian and Yaron

(2004) and Kandel and Stambaugh (1990) is most relevant. The former show that price-dividend

3The presence of δ means that ut should be interpreted as the demeaned and detrended log consumption-dividend
ratio.

4 In a recent paper, Bansal, Gallant and Tauchen (2004) show that both a Campbell Cochrane (1999) and a
Bansal-Yaron type model fit the data equally well.
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ratios predict consumption growth volatility with a negative sign and that consumption growth

volatility is persistent. Kandel and Stambaugh (1990) link consumption growth volatility to three

state variables, the dividend yield, the AAA versus T-Bill spread, and the BBB versus AA spread.

They find that, consistent with the Bansal et. al. (2004) results, dividend yields positively affect

consumption growth volatility. In Table 1, we extend and modify this analysis. We estimate the

following model by GMM,

x2t+k = ν0 + ν1rft + ν2dp
f
t + ν3spdt + εt+k (4)

where we alternatively model ∆dft and ∆c
f
t , (filtered) dividend and consumption growth, as xt. Be-

cause the observable fundamental series are filtered using a four-period moving average to eliminate

seasonality, the prediction lag, k, is set at four quarters. Above, rft is the risk free rate, dp
f
t is the

(also filtered) dividend yield, and spdt is the nominal term spread. We defer a discussion of the

data to Section 4 of the article. Suffice it to say that our analysis uses data starting in 1926 (but

we lose one year when calculating lags), whereas the previous papers use post-war samples. We

considered an alternative model where time-variation in the conditional means was removed and the

conditional variance of the residuals was modelled as in Equation (4). Because consumption and

dividend growth display little variation in the conditional mean, the results were quite similar for

this case.

The results are reported in Table 1. Panel A focuses on univariate tests while Panel B reports

multivariate tests. Wald tests in the multivariate specification very strongly reject the null of

no time variation for the volatility of both consumption and dividend growth. Moreover, all three

instruments are significant predictors of volatility in their own right: high interest rates are associated

with low volatility, high term spreads are associated with high volatility as are high dividend yields.

The results in Bansal et al (2004) and Kandel and Stambaugh (1990) regarding the dividend yield

predicting economic uncertainty appear robust to the sample period and are also valid for dividend

growth volatility.

Note that the coefficients on the instruments for the dividend growth volatility are 5-15 times as

high as for the consumption growth equation. This suggests that one latent variable may capture the

variation in both. We test this conjecture by estimating a restricted version of the model where the

slope coefficients are proportional across the dividend and consumption equations. This restriction
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is not rejected, with a p-value of 0.8958. We conclude that our use of a single latent factor for

both fundamental consumption and dividend growth volatility is appropriate. The proportionality

constant, η, is 0.0807, implying that the dividend slope coefficients are about 12 times larger than

the consumption slope coefficients.

The last two lines of Panel B examine the cyclical pattern in the fundamentals’ heteroskedasticity,

demonstrating a strong counter-cyclical pattern. This is an important finding as it intimates that

heteroskedasticity may be the driver of the counter-cyclical Sharpe ratios stressed by Campbell and

Cochrane (1999) and interpreted as counter-cyclical risk aversion.

Table 1 (Panel A) also presents similar predictability results for excess equity returns. We

will later use these results as a metric to judge whether our estimated model is consistent with

the evidence for variation in the conditional volatility of returns. While the signs are the same

as in the fundamentals’ equations and the t-statistics are well over one, none of the coefficients are

significantly different from zero at conventional significance levels.

2.2 Investor Preferences

Following CC, consider a complete markets economy as in Lucas (1978), but modify the preferences

of the representative agent to have the form:

E0

" ∞X
t=0

βt
(Ct −Ht)

1−γ − 1
1− γ

#
, (5)

where Ct is aggregate consumption and Ht is an exogenous “external habit stock” with Ct > Ht.

One motivation for an “external” habit stock is the “keeping up with the Joneses” framework

of Abel (1990, 1999) where Ht represents past or current aggregate consumption. Small individual

investors take Ht as given, and then evaluate their own utility relative to that benchmark.5 In

CC, Ht is taken as an exogenously modelled subsistence or habit level. In this situation, the local

coefficient of relative risk aversion can be shown to be γ Ct
Ct−Ht

, where
³
Ct−Ht

Ct

´
is defined as the

surplus ratio. As the surplus ratio goes to zero, the consumer’s risk aversion goes to infinity. In our

model, we view the inverse of the surplus ratio as a preference shock, which we denote by Qt. Thus,

we have Qt ≡ Ct
Ct−Ht

, in which case risk aversion is now characterized by γQt, and Qt > 1. As Qt

changes over time, the representative consumer investor’s “moodiness” changes, which led Bekaert,

5For empirical analyses of habit formation models where habit depends on past consumption, see Heaton (1995)
and Bekaert (1996).
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Engstrom and Grenadier (2004) to label this a “moody investor economy.”

The marginal rate of substitution in this model determines the real pricing kernel, which we

denote by Mt. Taking the ratio of marginal utilities of time t+ 1 and t, we obtain:

Mt+1 = β
(Ct+1/Ct)

−γ

(Qt+1/Qt)
−γ (6)

= β exp [−γ∆ct+1 + γ (qt+1 − qt)] ,

where qt = ln(Qt).

We proceed by assuming qt follows an autoregressive square root process which is contempora-

neously correlated with fundamentals, but also possesses its own innovation,

qt = µq + ρqqqt−1 + σqc (∆ct −Et−1 [∆ct]) + σqq
√
qt−1ε

q
t (7)

As with vt, qt is a latent variable and can therefore be scaled arbitrarily without economic conse-

quence; we therefore set its unconditional mean at unity. In our specification, Qt is not be forced

to be perfectly negatively correlated with consumption growth as in Campbell and Cochrane (1999)

and other interpretations of habit persistence. In this sense, our preference shock specification is

closest in spirit to that of Brandt and Wang (2003) who also allow for Qt to be correlated with

other business-cycle factors. Only if σqq = 0 and σqc < 0 does a Campbell Cochrane like specifica-

tion obtain where consumption growth and risk aversion shocks are perfectly negatively correlated.

Consequently, we can test whether independent preference shocks are an important part of varia-

tion in risk aversion or whether its variation is dominated by shocks to fundamentals. Note that

the covariance between qt and consumption growth depends on vt which is itself counter-cyclical.

Hence, when σqc < 0, risk aversion and consumption are negatively correlated with the increase in

risk aversion in recessions a positive function of the degree of fundamental uncertainty.

2.3 Inflation

When confronting consumption-based models with the data, real variables have to be translated

into nominal terms. Furthermore, inflation may be important in realistically modeling the joint

dynamics of equity returns, the short rate and the term spread. Therefore, we append the model
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with a simple inflation process,

πt = µπ + ρπππt−1 + κEt−1 [∆ct] + σπε
π
t (8)

The impact of expected ‘real’ growth on inflation can be motivated by macroeconomic intuition, such

as the Phillips curve (in which case we expect κ to be positive). Because there is no contemporaneous

correlation between this inflation process and the real pricing kernel, the one-period short rate will

not include an inflation risk premium. However, non-zero correlations between the pricing kernel

and inflation may arise at longer horizons due to the impact of Et−1 [∆ct] on the conditional mean of

inflation. Note that expected real consumption growth varies only with ut; hence, the specification

in Equation (8) is equivalent to one where ρπuut−1 replaces κEt−1 [∆ct].

To price nominal assets, we define the nominal pricing kernel, bmt+1, that is a simple transfor-

mation of the log real pricing kernel, mt+1,

bmt+1 = mt+1 − πt+1. (9)

To summarize, our model has five state variables with dynamics described by the equations,

∆dt = µd + ρduut−1 +
√
vt−1

¡
σddε

d
t + σdvε

v
t

¢
vt = µv + ρvvvt−1 + σvv

√
vt−1ε

v
t

ut = ρuu ut−1 + σud (∆dt −Et−1 [∆dt]) + σuu
√
vt−1ε

u
t

qt = µq + ρqqqt−1 + σqc (∆ct −Et−1 [∆ct]) + σqq
√
qt−1ε

q
t

πt = µπ + ρπππt−1 + ρπuut−1 + σππε
π
t (10)

with ∆ct = δ +∆dt +∆ut.

As discussed above, the unconditional means of vt and qt are set equal to unity so that µv and

µq are not free parameters. Finally, the real pricing kernel can be represented by the expression,

mt+1 = ln (β)− γ (δ +∆ut+1 +∆dt+1) + γ∆qt+1 (11)
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We collect the 19 model parameters in the vector, ‘Ψ,’

Ψ =

⎡⎢⎣ µd, µπ, ρdu, ρππ, ρπu, ρuu , ρvv, ρqq, ...

σdd, σdv, σππ, σud, σuu , σvv, σqc, σqq, δ, β, γ

⎤⎥⎦
0

. (12)

3 Asset Pricing

In this section, we present exact solutions for asset prices, and gain some intuition for how the model

works. We then compare the behavior of our model to its predecessors in the literature, such as

Abel (1988), Wu (2001) Bansal and Yaron (2004) and Campbell and Cochrane (1999). Our model

represents a more elaborate framework than any of these. This is necessary because the scope of

the current investigation is wider than that of former studies. As we will see shortly, this model is

better able to match a wide variety of empirical features of the data which we believe is necessary to

credibly discern the relative importance of uncertainty versus stochastic preferences in decomposing

variation in asset prices and the equity premium. However, a drawback of this richness is that

while we are able to readily calculate exact pricing formulas for stocks and bonds, these solutions

are sufficiently complex and nonlinear that it is difficult, for instance, to trace pricing effects back

to any single parameter’s value. Below, we provide as much intuition as possible.

The general pricing principle in this model is simple and follows the framework of Bekaert and

Grenadier (2001). Assume an asset pays a real coupon stream Kt+τ , τ = 1, 2...T . We consider

three assets: a real consol with Kt+τ = 1, T = ∞, a nominal consol with Kt+τ = Π
−1
t,τ , T = ∞,

(where Πt,τ represents cumulative gross inflation from t to τ)and equity with Kt+τ = Dt+τ , T =∞.

The case of equity will be slightly more complex because dividends are non-stationary (see below).

Then, the price-coupon ratio can be written as

PCt = Et

⎧⎨⎩
n=TX
n=1

exp

⎡⎣ nX
j=1

(mt+j +∆kt+j)

⎤⎦⎫⎬⎭ (13)

By induction, it is straight forward to show that

PCt =
n=TX
n=1

exp (An +Bn∆dt + Cnut +Dnπt +Envt + Fnqt) (14)
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with

Xn = fX (An−1, Bn−1, Cn−1,Dn−1, En−1, Fn−1,Ψ)

for X ∈ [A,B,C,D,E, F ]. The exact form of these functions depends on the particular coupon

stream as we now demonstrate. We proceed by first pricing real bonds (bonds that pay out 1 unit

of the consumption good at a particular point in time), then nominal bonds and finally equity.

3.1 Real Term Structure

Consider the term structure of real zero coupon bonds. The well known recursive pricing relationship

governing the term structure of these bond prices is

P rz
n,t = Et

£
Mt+1P

rz
n−1,t+1

¤
(15)

where P rz
n,t is the price of a real zero coupon bond at time t with maturity at time (t+ n). The

following proposition summarizes the solution for these bond prices. We solve the model for a slightly

generalized (but notation saving) case where qt = µq + ρqqqt−1 +
√
vt−1

¡
σqdε

d
t + σquε

u
t + σqvε

v
t

¢
+

√
qt−1σqqε

q
t . Our current model obtains when

σqd = σqcσdd (1 + σud)

σqu = σqcσuu

σqv = σqcσdv (1 + σud) . (16)

Proposition 1 For the economy described by Equations (10) and(11), the prices of real, risk free,
zero coupon bonds are given by

P rz
n,t = exp (An +Bn∆dt + Cnut +Dnπt +Envt + Fnqt) (17)

where

An = fA (An−1, Bn−1, Cn−1, En−1, Fn−1,Ψ)

Bn = 0

Cn = fC (An−1, Bn−1, Cn−1, En−1, Fn−1,Ψ)

Dn = 0

En = fE (An−1, Bn−1, Cn−1, En−1, Fn−1,Ψ)

Fn = fF (An−1, Bn−1, Cn−1, En−1, Fn−1,Ψ)

10



And the above functions are represented by

fA = lnβ − γδ +An−1 + (Bn−1 − γ)µd +En−1µv + (Fn−1 + γ)µq

fC ≡ ((Bn−1 − γ) ρdu + Cn−1ρuu + γ (1− ρuu))

fE ≡ En−1ρvv

+
1

2
((Bn−1 − γ)σdd + (Cn−1 − γ)σudσdd + (Fn−1 + γ)σqd)

2

+
1

2
((Cn−1 − γ)σuu + (Fn−1 + γ)σqu)

2

+
1

2
((Bn−1 − γ)σdv + (Cn−1 − γ)σudσdv + (Fn−1 + γ)σqv +En−1σvv)

2

fF ≡
µ
Fn−1ρqq + γ (ρqq − 1) +

1

2
((Fn−1 + γ)σqq)

2

¶
and A0 = B0 = C0 = E0 = F0 = 0. (Proof in Appendix).

We will examine the dynamics implied by this solution shortly, but first it is instructive to note

the form of the price-coupon ratio of a hypothetical real consol (with constant real coupons) in the

following proposition. This result is immediate once it is realized that the payoffs to such a consol

are the sum of those of the above real bonds.

Proposition 2 Under the conditions set out in Proposition 1, the price-coupon ratio of a consol
paying a constant real coupon is given by

P rc
t =

∞X
n=1

exp (An +Bn∆dt + Cnut +Envt + Fnqt) (18)

Note that inflation has zero impact on real bond prices, but will, of course, affect the nominal

term structure.

We now examine the impact of fundamentals on the real term structure of bond prices, starting

with the consumption-dividend ratio, captured by the Cn term. The lagged consumption-dividend

ratio enters the conditional mean of both dividend growth and itself. Either of these channels will

in general impact future consumption growth given Equation (3). If, for example, the net effect of

a high consumption-dividend ratio is higher expected future consumption growth, then this implies

lower future marginal utility. All else equal, investors will desire to borrow from this happy future,

but since bonds are assumed to be in zero net supply, interest rates must rise to offset the borrowing

motive.

The volatility factor, vt, has important term structure effects because it affects the volatility of

both consumption growth and qt. As such, vt affects the volatility of the pricing kernel, thereby

creating precautionary savings effects. In times of high uncertainty, investors desire to save more.
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For equilibrium to obtain, interest rates must fall, raising bond prices. Note that the second, third

and fourth lines of the En are positive: increased volatility unambiguously drives up bond prices.

Thus the model features a classic ‘flight to quality’ effect. If we look at the ‘direct’ effect, we find

that a unit change in vt affects the bond price by: +1
2γ

2 (σqc − 1)2 σ2cc where σ2cc is defined as,

σ2cc ≡
³
(1 + σud)

2 ¡
σ2dd + σ2dv

¢
+ σ2uu

´
. (19)

The risk aversion variable, qt, affects bond prices through offsetting utility smoothing and precau-

tionary savings channels. A high current realization of qt leads to an expectation that future qt will

be relatively lower (due to stationarity), indicating a lower future marginal utility state. Smoothing

motives again induce a desire to borrow from the future, forcing down bond prices in equilibrium.

These effects are captured by the first two terms in the Fn equation. On the other hand, higher qt

also increases the volatility of the pricing kernel, which tends to increase the precautionary savings

motive. This effect is governed by the third term in the expression for Fn. In sum, the direct

effect (that is, excluding lagged functional coefficients) of a unit change in qt on the consol price is

γ (ρqq − 1) + 1
2 (γσqq)

2.

It is instructive to gain some further insight into the determinants of the term structure in this

model. Let us first focus on the real interest rate. While the rate is implicit in Proposition 1, it is

also useful to derive it exploiting the log-normality of the model:

rrft = −Et [mt+1]−
1

2
Vt [mt+1] . (20)

The conditional mean of the pricing kernel economically represents consumption smoothing whereas

the variance of the kernel represents precautionary savings effects. To make notation less cum-

bersome in terms of notation, let us reparameterize the consumption growth process as having

conditional mean and variance

Et [∆ct+1] = δ + µd + (ρdu + ρuu − 1)ut ≡ µc + ρcuut

Vt [∆ct+1] = vtσ
2
cc. (21)
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Then the real rate simplifies to

rrft = − ln (β) + γ (µc − µq) + γρcuut + φrqqt + φrvvt (22)

with φrq = γ (1− ρqq)− 1
2γ

2σ2qq and φrv = −12γ2 (σqc − 1)
2 σ2cc. Consequently, our model features a

three-factor real interest rate model, with the consumption-dividend ratio, risk aversion, and uncer-

tainty as the three factors. Changes in risk have an ambiguous effect on interest rates depending on

whether the smoothing or precautionary savings effect dominates (the sign of φrq). If vt is indeed

counter cyclical, then variation in vt will tend to make real rates pro-cyclical.

To obtain intuition for the term spread, let us consider a two period bond and exploit the

log-normality of the model. We can decompose the spread into three components:

rrf2,t − rrft =
1

2
Et [rrft+1 − rrft] +

1

2
Covt [mt+1, rrft+1]−

1

4
V art [rrft+1]

The first term is the standard expectations hypothesis (EH) term, the second term represents the

term premium and the third is a Jensen’s inequality term (which we will ignore). Because of mean

reversion, the effects of ut, vt, and qt on the first component will be opposite of their effects on

the level of the short rate. For example, the coefficient on qt in the EH term is φrq (ρqq − 1).

Because preference shocks are positively correlated with marginal utility, the term premium effect

of qt will counter-balance the EH effect when φrq > 0. In fact, it is straightforward to show that

the coefficient on qt for the term premium is 12γφrqσ
2
qq.

Increased uncertainty depresses short rates and, consequently, the EH effect implies that uncer-

tainty increases term spreads. The effect of vt on the term premium is very complex because the

correlation between qt and the kernel is also driven by vt. In fact, straightforward algebra shows

that the coefficient on vt is proportional to

(σqc − 1)
£
σ2uu (γρuc + φrqσqc) + (1 + σud)

¡
γρucσud + φrqσqc (σud + 1)

¡
σ2dd + σ2dv

¢
− φrvσvvσdv

¢¤
.

While the expression looks impossible to sign in general, it is at least conceivable the effect is positive.

If that is the case, the EH and term premium effects reinforce one another.

13



3.2 Nominal Term Structure

We proceed as with the real term structure, keeping in mind that the appropriate recursion for the

nominal term structure involves the nominal pricing kernel, bmt introduced in the previous section.

The pricing relationship governing the nominal term structure of bond prices is therefore

P z
n,t = Et

hcMt+1P
z
n−1,t+1

i
(23)

where P z
n,t is the price of a nominal zero coupon bond at time t paying out a dollar at time (t+ n).

The following proposition summarizes the solution for these bond prices.

Proposition 3 For the economy described by Equations (10) and (11), the time t price of a zero
coupon bond with a risk free dollar payment at time t+ n is given by

P z
n,t = exp

³ eAn + eBn∆dt + eCnut + eDnπt + eEnvt + eFnqt´ (24)

where

eAn = fA
³ eAn−1, eBn−1, eCn−1, eEn−1, eFn−1´+ ³ eDn−1 − 1

´
µπ +

1

2

³ eDn−1 − 1
´2

σ2ππeBn = 0eCn = fC
³ eAn−1, eBn−1, eCn−1, eEn−1, eFn−1´+ ³ eDn−1 − 1

´
ρπueDn =

³ eDn−1 − 1
´
ρππeEn = fE

³ eAn−1, eBn−1, eCn−1, eEn−1, eFn−1´eFn = fF
³ eAn−1, eBn−1, eCn−1, eEn−1, eFn−1´

where the functions fX (·) are given in Proposition 1 for X ∈ (A,B,C,E, F ) and eA0 = eB0 = eC0 =eD0 = eE0 = eF0 = 0.(proof in Appendix.)
From Proposition 3, we can immediately glean the salient differences between the real and nom-

inal term structures. First, the eAn equation captures a drift effect from µπ - high unconditional

inflation erodes the value of the prices of nominal bonds relative to their real counterparts. Addition-

ally, a volatility effect, through σππ, is unambiguously positive, but is of second order importance.

Second, the effect of changes in inflation on the term structure is captured in the eCn and eDn

terms. Assume ρππ > 0, the equation for eDn implies higher inflation levels will further erode nominal

bond prices, in line with economic intuition. Furthermore, because expected inflation is also affected

by expected consumption growth through ut, if inflation responds positively to higher real growth,
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there will be a further relative erosion of nominal bond prices through eCn.

Because the conditional covariance between the real kernel and inflation is zero, the nominal

short rate satisfies the Fisher hypothesis,

rft = rrft + µπ + ρπππt + ρπuut −
1

2
σ2ππ (25)

The last term is the standard Jensen’s inequality effect and the previous three terms represent

expected inflation.

3.3 Equity Prices

In any present value model, under a no-bubble transversality condition, the equity price-dividend

ratio is represented by the conditional expectation,

Pt
Dt

= Et

⎡⎣ ∞X
n=1

exp

⎛⎝ nX
j=1

(mt+j +∆dt+j)

⎞⎠⎤⎦ (26)

where Pt
Dt

is the price dividend ratio. This conditional expectation can also be solved in our

framework as an exponential-affine function of the state vector, as is summarized in the following

proposition.

Proposition 4 For the economy described by Equations (10) and(11), the price-dividend ratio of
aggregate equity is given by

Pt
Dt

=
∞X
n=1

exp
³ bAn + bBn∆dt + bCnut + bEnvt + bFnqt´ (27)
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where

bAn = fA
³ bAn−1, bBn−1, bCn−1, bEn−1, bFn−1,Ψ´+ µdbBn = 0bCn = fC
³ bAn−1, bBn−1, bCn−1, bEn−1, bFn−1,Ψ´+ ρdubEn = fE
³ bAn−1, bBn−1, bCn−1, bEn−1, bFn−1,Ψ´

+

µ
1

2
σ2dd + σdd

³³ bBn−1 − γ
´
σdd +

³ bCn−1 − γ
´
σudσdd +

³ bFn−1 + γ
´
σqd

´¶
+

µ
1

2
σ2dv + σdv

³³ bBn−1 − γ
´
σdv +

³ bCn−1 − γ
´
σudσdv +

³ bFn−1 + γ
´
σqv + bEn−1σvv

´¶
bFn = fF

³ bAn−1, bBn−1, bCn−1, bEn−1, bFn−1,Ψ´
where the functions fX (·) are given in Proposition 1 for X ∈ (A,B,C,E, F ) and A0 = B0 = C0 =
E0 = F0 = 0. (Proof in appendix)

It is clear upon examination of Propositions 1 and 4 that the price-coupon ratio of a real consol

and the price-dividend ratio of an equity claim share many reactions to the state variables. This

makes perfect intuitive sense. An equity claim may be viewed simply as a real consol with stochastic

coupons. Of particular interest in this study is the difference in the effects of state variables on the

two financial instruments.

Inspection of Cn and bCn illuminates an additional impact of a high realization of the consumption-

dividend ratio, ut, on the price-dividend ratio. This marginal effect depends positively on ρdu.

Feedback from ut to the conditional mean of ∆dt may cause higher expected cash flows when ut is

high, increasing equity valuations.

Above, we established that higher uncertainty decreases interest rates and increases consol prices.

Hence a first order effect of higher uncertainty is a positive ‘term structure’ effect. Two channels

govern the differential impact of vt on equity prices relative to consol prices. This is evident upon

inspection of the expressions for En and bEn. Let us take them in turn. The two effects are governed

by the volatility of future cash flows and the covariance between future cash flows and the pricing

kernel. First, the terms, 12σ
2
dd and

1
2σ

2
dv arise from Jensen’s Inequality and tend towards an effect

of higher cash flow volatility increasing equity prices relative to consol prices. While this may seem

counterintuitive, it is simply an artifact of the log-normal structure of the model. The key terms

for describing the riskiness of cash flows are represented by the second two lines in the expression forbEn. They arise from the conditional covariance between cash flow growth and the pricing kernel.
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As in all modern rational asset pricing models, a negative covariance between the pricing kernel and

cash flows induces a positive risk premium and depresses valuation. The ‘direct effect’ terms (those

excluding lagged functional coefficients) can be signed. For the second two lines of the bEn line in

Proposition 3, they are,

−γ (1 + σud) (1− σqc)
¡
σ2dd + σ2dv

¢
If the conditional covariance between consumption growth and dividend growth is positive, (1 + σud) >

0, and consumption is negatively correlated with qt, σqc < 0, then the dividend stream is negatively

correlated with the kernel and increases in vt exacerbate this covariance risk. Consequently, uncer-

tainty has two primary effects on stock valuation: a positive term structure effect and a potentially

negative cash flow effect.

Interestingly, there is no marginal pricing difference in the effect of qt on riskless versus risky

coupon streams: the expressions for Fn and bFn are functionally identical. This is true by con-

struction in this model because the preference variable, qt, affects neither the conditional mean nor

volatility of cash flow growth, nor the conditional covariance between the cash flow stream and

the pricing kernel at any horizon. We purposefully excluded such relationships for two reasons.

Economically, it does not seem reasonable for investor preferences to affect the productivity of the

proverbial Lucas tree. Secondly, it would be empirically very hard to identify distinct effects of vt

and qt without exactly these kinds of exclusion restrictions.

Finally, note that inflation has no role in determining equity prices for the same reason that it

has no role in determining the real term structure. While such effects may be present in the data,

we do not believe them to be of first order importance for the question at hand.

3.3.1 Relation to Previous Literature

It is useful at this point to reflect on the differences between these equity pricing results and those of

two other papers which have considered the effects of uncertainty on equity prices. First, Abel (1988)

creates an economy in which the effect of increased cash flow volatility on equity prices depends on

a single parameter, the coefficient of relative risk aversion. That setup is vastly different from ours.

Most importantly, Abel (1988) maintains that dividends themselves are stationary and so are prices

(at least on a per-capita basis). Also , there is no distinction between consumption and dividends

in his model, so that the covariance of cash flows with the pricing kernel and the volatility of the
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pricing kernel are proportional. Finally, there is no preference shock. In the current framework,

we can consider the effects of some of Abel’s assumptions by simply shutting down the dynamics of

the consumption dividend ratio (ut = 0) and stochastic risk aversion (qt = 0). However, we do not

implement Abel’s assumption that dividends and prices are stationary.

Proposition 5 For the economy described by Equations (10) and(11), and the additional assump-
tion that the following parameters are zero,

µu, µq, ρdu, ρuu , ρqq, σud, σuu , σqc, σqq

the equity price-dividend ratio is represented by

Pt
Dt

=
∞X
n=1

exp
³←→
A n +

←→
E nvt

´
where

←→
A n = lnβ +

←→
A n−1 + (Bn−1 + 1− γ)µd +

←→
E n−1µv

←→
B n = 0

←→
E n =

←→
E n−1ρvv +

1

2

³←→
E n−1 + 1− γ

´2
σ2dd +

1

2

³³←→
B n−1 + 1− γ

´
σdv +

←→
E n−1σvv

´2
with

←→
A 0 =

←→
B 0 =

←→
E 0 = 0 (Proof available upon request.)

The effect of volatility changes on the price dividend ratio is given by the
←→
E n coefficient. When

volatility is positively autocorrelated, ρvv > 0,
←→
E n > 0 and increases in volatility always increase

equity valuation, essentially because they depress the interest rate. In comparison to the differential

effects of vt in Proposition 3, only the Jensen’s Inequality terms remain. There is no scope for vt

to alter the riskiness of the dividend stream beyond the real term structure effects because cash

flows and the pricing kernel are proportional. Clearly, Abel’s result is not robust to these different

distributional assumptions and this simplified framework is too restrictive for our purposes.

Wu (2001) develops a model wherein increases in volatility unambiguously depress the price-

dividend ratio. The key difference between his model and ours is that Wu models the interest

rate as exogenous and constant. To recover something like Wu’s results in our framework requires

making the real interest rate process exogenous and maintaining the volatility process of Equation

(10). Assume for example that we introduce a stochastic process xt and modify the specification of
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the dividend growth process to be:

∆dt =
lnβ

γ
+
1

γ
xt−1 +

γ

2
vt−1 +

√
vt−1ε

d
t

xt = µx + ρxxxt−1 + σxε
x
t + σxv

√
vt−1ε

v
t + σxd

√
vt−1ε

d
t (28)

It is easily verified that under these specifications and the additional assumptions of Proposition

5, xt is equal to the one-period real risk free rate. The solution for the price-dividend ratio in this

economy is described in the following proposition

Proposition 6 For the economy described in Proposition 5. with the dividend process modified as
in Equations (28) the equity price-dividend ratio can be expressed as

Pt
Dt

=
∞X
n=1

exp
³−→
An +

−→
Bn∆dt +

−→
Gnxt +

−→
E nvt

´
where

−→
An =

−→
An−1 +

³
1 +
−→
Bn−1

´ lnβ
γ
+
−→
Gn−1µx +

−→
E n−1µv +

1

2

³−→
Gn−1σx

´2
−→
Bn = 0

−→
Gn =

µ
−1 + 1

γ
+
−→
Gn−1ρxx

¶
−→
E n = −

γ2

2
+

γ

2
+
−→
E n−1ρvv +

1

2
(−γ + 1)2 + 1

2

³−→
Gn−1σxv +

−→
E n−1σv

´2
with

−→
A 0 =

−→
B 0 =

−→
E 0 =

−→
G0 = 0.(Proof available upon request.)

By considering the expression for
−→
E n, we can see that the direct effect of an increase in vt is

1
2γ (1− γ). Therefore, only when γ > 1 will an increase in volatility depress the price-dividend

ratio, but this ignores equilibrium term structure effects. In the context of an endogenous term

structure model therefore, Wu’s results are not readily generalizable.

Bansal and Yaron (2004) assume that the conditional volatility of consumption growth follows

an AR(1) process proportional to that of dividend growth. By assuming Epstein and Zin (1989)

preferences, they separate the intertemporal elasticity of substitution (IES) from pure risk aversion.

They find that an increase in volatility lowers price-dividend ratios when the IES and risk aversion

are larger than unity.
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3.4 Sharpe Ratios

Campbell and Cochrane (1999) point out that in a lognormal model the maximum attainable Sharpe

ratio of any asset is an increasing function of the conditional variance of the log real pricing kernel.

In our model, this is given by,

Vt (mt+1) = γ2σ2qqqt + γ2 (σqc − 1)2 σ2ccvt

The Sharpe ratio is increasing in preference shocks and uncertainty. Thus, counter-cyclical variation

in vt may imply counter-cyclical Sharpe ratios. The effect of vt on the Sharpe ratio is larger if risk

aversion is itself negatively correlated with consumption growth. In Campbell and Cochrane (1999),

the kernel variance is a positive function of qt only.

4 Empirical Implementation

In this section, we describe how we bring the model to the data. We proceed by describing our

data and estimation strategy.

4.1 Data

We measure all variables at the quarterly frequency and our base sample period extends from 1927:1

to 2004:3.

4.1.1 Equity Market

We used the CRSP quarterly data files from 1926-2003 to create stock market variables. Our

stock return measure is the standard CRSP value-weighted return index. To compute excess equity

returns, rxt , we subtract the 90-day continuously compounded T-Bill yield earned over the same

period (see next subsection for a description of bond market data). For the dividend yield and

dividend growth, our methods differ slightly from the most common constructions in the literature.

For the dividend yield, we proceed by first calculating a (highly seasonal) quarterly dividend yield

series as,

DPt+1 =

µ
Pt+1
Pt

¶−1µ
Pt+1 +Dt+1

Pt
− Pt+1

Pt

¶
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where Pt+1+Dt+1

Pt
and Pt+1

Pt
are available directly from the CRSP dataset as the value weighted stock

return series including and excluding dividends respectively. We then use the four-period moving

average of ln (1 +DPt) as our observable series,

dpft =
1

4
[ln (1 +DPt) + ln (1 +DPt−1) + ln (1 +DPt−2) + ln (1 +DPt−3)] .

This measure of the dividend yield differs from the more standard technique of summing dividends

over the course of the past four quarters and simply scaling by the current price. We prefer our

filter because it represents a linear transformation of the underlying data for which we can account

explicitly when bringing the model to the data. As a practical matter, the properties of our filtered

series and the more standard measure are very similar with close means and volatilities and an

unconditional correlation between the two of approximately 0.95 (results available upon request).

For dividend growth, we fist calculate quarterly dividend growth,

∆dt+1 = ln

∙
DPt+1
DPt

Pt+1
Pt

¸

Then, to eliminate seasonality, we use the four-period moving average as the observation series,

∆dft =
1

4
(∆dt +∆dt−1 +∆dt−2 +∆dt−3) . (29)

Because the above moving average filters for dividends require four lags, our sample is shortened,

effectively beginning in 1927.

4.1.2 Bond Market and Inflation

We use standard Ibbotson data (from the SBBI Yearbook) for Treasury market and inflation series

for the period 1927-2003. The short rate, rft is the (continuously compounded) 90-day T-Bill rate.

The log yield spread, spdt, is the average log yield for long term government bonds (maturity greater

than ten years) less the short rate. Note that the timing convention of these yields is such that they

are dated when they enter the econometrician’s data set. For instance, the 90-day T-Bill return

earned over January-March 1990 is dated as December 1989, as it entered the data set at the end

of that month. Inflation, πt, is the continuously compounded end of quarter change in the CPI as

reported by Ibbotson.

21



4.1.3 Consumption

To avoid the look-ahead bias inherent in standard seasonally adjusted data, we obtained nominal

non-seasonally adjusted (NSA) aggregate non-durable and service consumption data from the web-

site of the Bureau of Economic Analysis (BEA) of the United States Department of Commerce

for the period 1946-2004. We denote the continuously compounded growth rate of the sum of

non-durable and service consumption series as ∆ct. From 1929-1946, consumption data from the

BEA is available only at the annual frequency. For these years, we use repeated values equal to

one-fourth of the compounded annual growth rate. Because this methodology has obvious draw-

backs, we repeated all our analysis using an alternate consumption interpolation procedure which

presumed the consumption-dividend ratio, rather than consumption growth was constant over the

year. Results using this alternate method are very similar to those reported. Finally, for 1927-

1929, no consumption data is available from the BEA. For these years, we obtain the growth rate

for real per-capita aggregate consumption from the website of Robert Shiller at www.yale.edu, and

computed aggregate nominal consumption growth rates using the inflation data described above in

addition to historical population growth data from the United States Bureau of the Census. Then,

repeated values of the annual growth rate are used as quarterly observations. The raw consumption

growth data was deflated with the inflation series described above. Due to the strong seasonality of

consumption data and to mitigate the near term look-ahead bias of the repeated value methodology

used for converting annual growth rates to the quarterly frequency, we use the four-period moving

average of ∆ct as our observation series,

∆cft =
1

4
(∆ct +∆ct−1 +∆ct−2 +∆ct−3) . (30)

4.2 Estimation and Testing Procedure

We now discuss the GMM methodology we use to estimate the model parameters.

4.2.1 Parameter Estimation

Our economy has five state variables, which we collect in the vector Yt = [∆dt, vt, ut, qt, πt]. While

ut,∆dt and πt are directly linked to the data, vt and qt are latent variables. We are interested in

the implications of the model for seven variables: filtered dividend and consumption growth, ∆dft
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and ∆cft , inflation, πt, the short rate, r
f
t , the term spread, spdt, the dividend yield, dpt, and log

excess equity returns, rxt. For all these variables we use the data described above. The first three

variables are (essentially) observable state variables; the last four are endogenous asset prices and

returns. We collect all the observables in the vector Wt.

The relation between term structure variables and state variables is affine, but the relationship

between the dividend yield and excess equity returns and the state variables is non-linear. In the

Computational Appendix, we linearize this relationship and show that the approximation is quite

accurate. Note that this approach is very different from the popular Campbell-Shiller (1988) and

Campbell (1990) linearization method, which linearizes the return expression itself before taking the

linearized return equation through a present value model. We first find the correct solution for the

price-dividend ratio and linearize the resulting equilibrium.

Conditional on the linearization, the following property of Wt obtains,

Wt = µw (Ψ) + Γw (Ψ)Y c
t (31)

where Y c
t is the companion form of Yt containing five lags and the coefficients superscripted with ‘w’

are nonlinear functions of the model parameters, Ψ. Because Yt follows a linear process with square-

root volatility dynamics, unconditional moments of Yt are available analytically as functions of the

underlying parameter vector, Ψ. Let X (Wt) be a vector valued function of Wt. For the current

purpose, X (·) will be comprised of first, second, third and fourth order monomials, unconditional

expectations of which are uncentered moments of Wt. Using Equation (31), we can also derive the

analytic solutions for uncentered moments of Wt as functions of Ψ. Specifically,

E [X (Wt)] = f (Ψ) (32)

where f (·) is also a vector valued function (subsequent appendices provide the exact formulae)6.

This immediately suggests a simple GMM based estimation strategy. The GMM moment conditions

6 In practice, we simulate the unconditional moments of order three and four during estimation. While analytic
solutions are available for these moments, they are extremely computationally expensive to calculate at each iteration
of the estimation process. For these moments, we simulate the system for roughly 30,000 periods (100 simulations
per observation) and take unconditonal moments of the simulated data as the analytic moments implied by the model
without error. Due to the high number of simulations per observation, we do not correct the standard errors of the
parameter estimates for the simulation sampling variability. To check that this is a reasonable strategy, we perform
a one-time simulation at a much higher rate (1000 simulations / observation) at the conclusion of estimation. We
check that the identified parameters produce a value for the objective function close to that obtained with the lower
simulation rate used in estimation.
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are,

gT (Wt;Ψ0) =
1

T

TX
t=1

X (Wt)− f (Ψ0) . (33)

Moreover, the additive separability of data and parameters in Equation (33) suggests a ‘fixed’ optimal

GMM weighting matrix free from any particular parameter vector and based on the data alone.

Specifically, the optimal GMM weighting matrix is the inverse of the spectral density at frequency

zero of gT (Wt;Ψ0), which we denote as S (WT ).

To reduce the number of parameters estimated in calculating the optimal GMMweighting matrix,

we exploit the structure implied by the model. Under the model, we can project X (Wt) onto the

vector of state variables Y c
t , which stacks the contemporaneous five state variables and a number of

lags,

X (Wt) = bBY c
t + bεt

where bB and bεt are calculated using a standard linear projection of X (Wt) onto Y c
t . We assume

the covariance matrix of the residuals, bD, is diagonal and estimated it using the residuals, bεt, of the
projection. The projection implies

bS (WT ) = bB bS (Y c
T ) bB0 + bD

where bS (Y c
T ) is the spectral density at frequency zero of Y

c
t . To estimate bS (Y c

T ), we use a standard

pre-whitening technique as in Andrews and Monahan (2004). Because Y c
t contains two unobservable

variables, vt and qt, we use instead the vector Y
p
t =

h
∆dft , πt, ∆c

f
t , rft, dp

f
t

i0
and one lag of Y p

t to

span Y c
t
7 .

To estimate the system, we minimize the standard GMM objective function,

J
³
WT ; bΨ´ = gT

³bΨ´ ³bS(Wt)
´−1

g1T

³bΨ´0 (34)

in a one-step GMM procedure.

Because the system is nonlinear in the parameters, we took precautionary measures to assure

that a global minimum has indeed been found. First, over 100 starting values for the parameter

vector are chosen at random from within the parameter space. From each of these starting values,

7 In reality, the moving average filters of ∆dft ∆cft and dpft would require using 3 lags, but the dimensionality of
that system is too large.
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we conduct preliminary minimizations. We discard the runs for which estimation fails to converge,

for instance, because the maximum number of iterations is exceeded, but retain converged parameter

values as ‘candidate’ estimates. Next, each of these candidate parameter estimates is taken as a

new starting point and minimization is repeated. This process is repeated for several rounds until a

global minimizer has been identified as the parameter vector yielding the lowest value of the objective

function. In this process, the use of a fixed weighting matrix is critical. Indeed, in the presence

of a parameter-dependent weighting matrix, this search process would not be well defined. Finally,

the parameter estimates producing the global minimum are confirmed by starting the minimization

routine at small perturbations around the parameter estimate, and verifying that the routine returns

to the global minimum.

4.3 Moment Conditions

We use a total of 34 moment conditions to estimate the model parameters. These moments are

explicitly listed in Table 2. They can be ordered into 6 groups. The first set is simply the uncon-

ditional means of the Wt variables; the second group includes the second uncentered moments of

the state variables. In combination with the first moments above, these moments ensure that we

are matching the unconditional volatilities of all the variables of interest. The third set of moments

is aimed at identifying the autocorrelation of the fundamental processes. Because of the moving

average filter applied to dividend and consumption growth, it is only reasonable to look at the fourth

order autocorrelations. Because our specification implies complicated ARMA behavior for inflation

dynamics, we attempt to fit both the first and fourth order autocorrelation of this series. The fourth

set of moments concerns contemporaneous cross moments of fundamentals with asset prices and

returns. As was pointed out by Cochrane and Hansen (1995), the correlation among fundamentals

and asset prices implied by standard implementations of the consumption CAPM model can be

much too high. We also include cross moments between inflation, the short rate, and consumption

growth to help identify the ρπu parameter in the inflation equation and a potential inflation risk

premium.

Next, the fifth set of moments identifies higher order moments of dividend growth. This is crucial

to ensure that the dynamics of vt are identified by, and consistent with, the volatility predictability

of the fundamental variables in the data. Moreover, this helps fit their skewness and kurtosis.

Note that there are 34− 19 = 15 over-identifying restrictions and that we can use the standard
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J-test to test the fit of the model.

5 Estimation Results

This section describes the estimation results of the structural model, and characterizes the fit of the

model with the data.

5.1 GMM Parameter Estimates

Table 2 reports the results of the above described estimation procedure. We start with dividend

growth dynamics. First, ut significantly forecasts dividend growth. Second, the conditional volatil-

ity of dividend growth, vt, is highly persistent with an autocorrelation coefficient of 0.9795 and itself

has significant volatility (σvv, is estimated as 0.3288 with a standard error of 0.0785). This confirms

that dividend growth volatility varies through time. Further, the conditional covariance of dividend

growth and vt is positive and economically large: σdv is estimated at 0.0413 with a standard error

of 0.0130.

The results for the consumption-dividend ratio are in line with expectations. First, it is very

persistent, with an autocorrelation coefficient of 0.9826 (standard error 0.0071). Second, the contem-

poraneous correlation of ut with ∆dt is sharply negative as indicated by the coefficient σud which is

estimated at −0.9226. In light of Equation (3), this helps to match the low volatility of consumption

growth. However, because (1 + σud) is estimated to be greater than zero, dividend and consumption

growth are positively correlated, as is true in the data. Finally, the own volatility parameter for

the consumption dividend ratio is 0.0127 with a standard error of just 0.0007, ensuring that the

correlation of dividend and consumption growth is not unrealistically high.

The dynamics of the stochastic preference process, qt, are presented next. It is estimated to

be quite persistent, with an autocorrelation coefficient of 0.9787 (standard error 0.0096) and it has

significant independent volatility as indicated by the estimated value of σqq of 0.1753 (standard

error 0.0934). Of great importance is the contemporaneous correlation parameter between qt and

consumption growth, σqc. While σqc is negative, it is not statistically different from zero. This

indicates that risk is indeed moving countercyclically, in line with its interpretation as risk aversion

under a habit persistence model such as that of Campbell and Cochrane (1999) (further discussion

below). What is different in our model is that the correlation between consumption growth and risk
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aversion8 is −0.37 instead of −1.00 in Campbell and Cochrane. The impatience parameter ln (β)

is negative as expected and the γ parameter (which is not the same as risk aversion in this model)

is positive, but not significantly different from zero. The wedge between mean dividend growth and

consumption growth, δ, is both positive and significantly different from zero.

Finally, we present inflation dynamics. As expected, past inflation positively affects expected

inflation with a coefficient of 0.2404 (standard error 0.1407) and there is negative and significant

predictability running from the consumption-dividend ratio to inflation.

5.2 Model Moments Versus Sample Data

Table 2 also presents the standard test of the overidentifying restrictions. The overidentification

test fails to reject, with a p-value of 0.6234. However, there are a large number of moments being fit

and in such cases, the standard GMM overidentification tests are known to have low power in finite

samples. Therefore, we examine the fit of the model with respect to specific moments in Tables 3

and 4.

Table 3 focuses on linear moments of the variables of interest: mean, volatilities and autocorre-

lations. The model fits the data exceedingly well with respect to the unconditional means of all

seven of the endogenous variables. This includes generating a realistic low mean for the nominal

risk free rate of about 1% and a realistic equity premium of about 1.2% (all quarterly rates). The

volatilities of the endogenous variables are also well matched to the data. The implied volatilities

of both the financial variables and fundamental series are within one standard error of the data

moment. Finally, the model is broadly consistent with the autocorrelation of the endogenous series.

The (fourth) autocorrelation of filtered consumption growth is somewhat too low relative to the

data. However, in unreported results we verified that the complete autocorrelograms of dividend

and consumption growth implied by the model are consistent with the data. The model fails to

generate sufficient persistence in the term spread but this is the only moment not within a two

standard bound around the data moment. However, it is within a 2.05 standard error bound!

As explored below, the time varying volatility of dividend growth is an important driver of equity

returns and volatility, and it is therefore important to verify that the model implied nonlinearities in

fundamentals are consistent with the data. In Table 4, we determine whether the estimated model

8More specifically, the conditional correlation between ∆ct+1 and qt+1 when vt and qt are at their unconditonal
mean of unity.
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is consistent with the reduced form evidence presented in Table 1, and we investigate skewness

and kurtosis of fundamentals and returns. In Panel A, we find that the volatility dynamics for

fundamentals are quite well matched. The model produces the correct sign in forecasting dividend

and consumption growth volatility with respect to the short rate and the spread; only the volatility

dynamics with respect to the dividend yield are of the wrong sign. However, for return volatility,

all the predictors have the right sign, including the dividend yield.

Panel B focuses on multivariate regressions. This is a very tough test of the model as it

implicitly requires the model to also fit the correlation among the three instruments. Nevertheless,

for consumption growth volatility the model gets all the signs right and every coefficient is within

two standard errors of the data coefficient. The model also produces a fantastic fit with respect to

time-variation in return predictability. However, the fit with respect to dividend growth volatility

is not as stellar with two of three signs missed.

Panel C focuses on skewness and kurtosis. The model implied kurtosis of filtered dividend

growth is consistent with that found in the data and the model produces a bit too much kurtosis

in consumption growth rates. Equity return kurtosis is somewhat too low relative to the data, but

almost within a 2 standard error bound. The model produces realistic skewness numbers for all

three series. We conclude that the nonlinearities in the fundamentals implied by the model are

reasonably consistent with the data.

6 Risk, Uncertainty and Asset Prices

In this section, we explore the dominant sources of time variation in equity prices (dividend yields),

equity returns, the term structure, expected equity returns and the conditional volatility of equity

returns. We also investigate the mechanisms leading to our findings.

Tables 5 and 6 contain the core results in the paper. Table 5 reports basic properties of some

critical unobserved variables, including vt and qt. Table 6 reports variance decompositions with

standard errors for several endogenous variables of interest and essentially summarizes the response

of the endogenous variables to each of the state variables. Rather than discussing these tables in

turn, we organize our discussion around the different variables of interest using information from

the two tables.
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6.1 Uncertainty and Risk

Table 5, Panel A presents properties of unobservable variables under the estimated model. First,

note that ‘uncertainty,’ vt, which is proportional to the conditional volatility of dividend growth is

quite volatile relative to its mean and is extremely persistent. These properties reflect the identifying

information in the characteristics of the dividend yield, short rate and spread as well as the higher

moments of fundamentals. Similarly, qt has significant volatility and autocorrelation. Because

local risk aversion, RAt, in this model is given by γ exp (qt), we can examine its properties directly.

The median level of risk aversion in the model is 2.52, a level which would be considered perfectly

reasonable by most financial economists. However, risk aversion is positively skewed and has large

volatility so that risk aversion is occasionally extremely high in this model.

Panel B of Table 5 presents results for means of the above endogenous variables conditional on

whether the economy is in a state of expansion or recession. For this exercise, recession is defined

as one quarter of negative consumption growth. Both vt and qt (and hence local risk aversion) are

strongly counter-cyclical.

6.2 Uncertainty, Risk and the Term Structure

Panel A of Table 5 also displays the properties of the real interest rate and the real term spread.

The average real rate is 17 basis points (68 annualized) and the real interest rate has a standard

deviation of around 90 basis points. The real term spread has a mean of 38 basis points, a volatility

of only 28 basis points and is about as persistent as the real short rate. In Panel B, we see that

real rates are pro-cyclical and spreads are counter-cyclical.

Panel C of Table 5 shows that uncertainty tends to depress real interest rates, while positive risk

aversion shocks tend to increase them. In the theoretical section, we derived that the effect of qt on

real interest rates is ambiguous depending on whether the consumption smoothing or precautionary

savings effect dominates. At our parameter values, the consumption smoothing effect dominates.

The effect of vt is entirely through the volatility of the pricing kernel and represents a precautionary

savings motive. Hence, the correlation between real rates and qt is actually positive, while the

correlation between real rates and vt is negative. Overall, real rates are pro-cyclical because vt is

strongly counter-cyclical.

The real term spread displays a positive correlation with both vt and qt, but for different reasons.
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As we discussed in the theoretical section, if the expectations hypothesis were to hold, mean reversion

would imply that the effect of either variable on the spread would be the opposite sign of its effect

on the interest rate level. Figure 1 decomposes the exposures of both the real interest rate and the

spread to vt and qt into an expectations hypothesis part and a term premium part and does so for

various maturities (to 40 quarters). The exposure to vt is negative and weakens with horizon leading

to a positive EH effect. Because vt has little effect on the term premium, the spread effect remains

positive. Hence, when uncertainty increases, the term structure steepens and vice versa.

Figure 1 also shows why qt has a positive effect on the real term spread, despite the EH effect being

negative. Yields at long maturities feature a term premium that is strongly positively correlated

with qt. In the theoretical section, we derived that the sign of the term premium only depends on

φrq which is positive: because higher risk aversion increases interest rates (and lowers bond prices)

at a time when marginal utility is high, bonds are risky.

In Table 6, we report the variance decompositions. While three factors (ut, vt, and qt) affect

the real term structure, vt accounts for the bulk of its variation. An important reason for this fact

is that vt is simply more variable than qt. The most interesting aspect of the results here is that

qt contributes little to the variability of the spread, so that qt is mostly a level factor not a spread

factor, whereas uncertainty is both a level and a spread factor. When we consider a real consol, we

find that qt dominates its variation. Because consol prices reflect primarily longer term yields, they

are primarily driven by the most persistent level factor, which is qt, through its effect on the term

premium.

For the nominal term structure, inflation becomes an important additional state variable ac-

counting for about 12% of the variation in the nominal interest rates. However, inflation is an

even more important spread factor accounting for about 31% of the spread’s variability. What

may be surprising is that the relative importance of qt increases going from the real to nominal

term structure. The reason is the rather strong positive correlation between inflation and vt, which

arises from the negative relation between inflation and the consumption dividend ratio, that ends

up counterbalancing the negative effect of vt on real interest rates.

6.3 Uncertainty, Risk, and Equity Prices

Here we start with the variance decompositions for dividend yields and equity returns in Table 6.

For the dividend yield, qt dominates as a source of variation. The contribution of qt to variation

30



in the dividend yield is almost 90%. To see why, recall first that qt only affects the dividend

yield through its effect on the term structure of real interest rates (see Proposition 4). Under the

parameters presented in Table 2, the impact of qt on real interest rates is positive at every horizon

and therefore it is positive for the dividend yield as well. Formally, under the parameters of Table

2, bFn in Proposition 3 is negative at all horizons.
Next, consider the effect of vt on the dividend yield. Uncertainty has a ‘real consol effect’

and a ‘cash-flow risk premium’ effect which offset each other. We already know that vt creates

a strong precautionary savings motive, which decreases interest rates. All else equal, this will

serve to increase price-dividend ratios and decrease dividend yields. However, vt also governs the

covariance of dividend growth with the real kernel. This risk premium effect may be positive or

negative, but intuitively the dividend stream will represent a risky claim to the extent that dividend

growth covaries negatively with the kernel. For instance, if dividend growth is low in states of the

world where marginal utility is high, then the equity claim is risky. In this case, we would expect

high vt to exacerbate this riskiness and depress equity prices when it is high, increasing dividend

yields. As we discussed in section 5.5, σqc contributes to this negative covariance. On balance,

these countervailing effects of vt on dividend yield largely cancel out, so that the net effect of vt on

dividend yields is small. This shows up in the variance decomposition of the dividend yield. On

balance, qt is responsible for the overwhelming majority of dividend yield variation, and is highly

positively correlated with it. The negative effect of ut arises from its strong negative covariance

with dividend growth.

Looking back to panel C in Table 5, while increases in qt have the expected depressing effect on

equity prices (a positive correlation with dividend yields), increases in vt do not. This contradicts

the findings in Wu (2001) and Bansal and Yaron (2004) but is consistent with early work by Barsky

(1988) and Naik (1994). Because the relation is only weakly negative, there may be instances where

our model will generate a classic “flight to quality” effect with uncertainty lowering interest rates,

driving up bond prices and depressing equity prices.

Next notice the determinants of realized equity returns in Table 6. First, over 30% of the

variation in excess returns is driven by dividend growth and dividend growth is positively correlated

with excess returns. This is not surprising in light of the fact that dividend growth enters the

definition of stock returns directly and dividend growth has almost half as much variation as returns

themselves. The other primary driver of stock returns is qt. This is a compound statistic which
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includes the effect of current and lagged qt. In fact, the contemporaneous effect of qt on returns is

negative (see Table 5) as increases in qt depress stock valuations. However, the lagged effect of qt

on returns is positive because, all else equal, lower lagged prices imply higher current returns.

6.4 Uncertainty, Risk and the Equity Premium

We again go back to Table 5 to investigate the properties of the conditional equity premium,

Et [rxt+1]. The premium is quite persistent, with an autocorrelation coefficient of 0.9789. In

Panel B, we also find that expected equity returns are higher in recessions which is consistent with

counter-cyclical risk aversion. Panel C shows that both vt and qt are positively correlated with the

equity premium. The risk premium in any model will be negatively correlated with the covariance

between the pricing kernel and returns. We already discussed how uncertainty is negatively corre-

lated with cash flows and this dominates the small positive correlation with price-dividend ratios.

The effect of qt comes mostly through the capital gain part of the return: increases in qt both raise

marginal utility and lower prices making stocks risky. Table 6 shows that the point estimate for the

share of the equity premium variation due to vt is about 17% but with a standard error of 13%,

with the remainder due to qt.

The fact that both the dividend yield and expected equity returns are primarily driven by qt

suggest that the dividend yield may be a strong predictor of equity returns in this model. Table 7

shows that this is indeed the case, with a regression of future returns on dividend yields generating

a 1.53 coefficient. We also compare the model coefficients with the corresponding statistics in the

data. It turns out that the predictability of equity returns during our sample period is rather weak.

Table 7 reports univariate coefficients linking equity returns to short rates, dividend yields and

spreads. The sign of the coefficients matches well-known stylized facts but none of the coefficients

are significantly different from zero. The model produces coefficients within two standard errors of

these data coefficients but this is of course a rather weak test. While it is theoretically possible

to generate a negative link between current short rates and the equity premium which is observed

empirically, our model fails to do so at the estimated parameters. We also report the results of

a multivariate regression on the aforementioned instruments. The model here gets all the signs

right and is always within two standard errors of the data coefficients. More generally, the ratio,

V AR (Et [rxt+1]) /V AR (rxt+1), from Tables 3 and 5, implies a quarterly R2 of less than one percent,

so the model does not generate much short term predictability of equity returns consistent with
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recent evidence. There is a large debate on whether predictability increases with the horizon. In

our model, the variance ratio discussed above for 10 year returns equals about 12% (not reported).

While we have studied the conditional equity premium, it remains useful to reflect on the success

of the model in matching the unconditional equity premium. To make the model’s success complete,

it also matches the low risk free rate while keeping the correlation between fundamentals (dividend

and consumption growth) and returns low. In fact, the correlation between dividend growth and

equity returns is 0.28 in the data and 0.33 in the model. For consumption growth, the numbers are

0.07 and 0.11 respectively. Consequently, this model performs in general better than the Campbell

and Cochrane (1999) model, which had trouble with the fundamentals-return correlation. The

success of our model is primarily driven by the added flexibility offered by an additional state

variable. When we set σqq = 0, and re-estimate the model, the model is strongly rejected and we

fail to match the high equity premium and the low risk free rate. Consequently, while we have

formulated a consumption-based asset pricing model that successfully matches many salient asset

pricing phenomena, the presence of preference shocks not correlated fundamental shocks are essential

to its success.

6.5 Uncertainty, Risk, Equity Return Volatility and Sharpe Ratios

To conclude, we investigate the properties of the conditional variance of equity returns, the equity

Sharpe ratio and the maximum attainable Sharpe ratio available in the economy discussed in Section

2. We begin with the numbers in Panel A of Table 5. The conditional variance of excess equity

returns has a mean of 0.0092, a standard deviation of of 0.0070 and an autocorrelation of 0.9794

at the quarterly frequency. The final two columns of Table 5 report results for the conditional

Sharpe ratio of equity and the maximum attainable Sharpe ratio available in the economy discussed

in Section 2. The mean equity Sharpe ratio attains approximately three quarters of the maximum

attainable value. Both Sharpe ratios are strongly persistent and possess significant time variation

driven by vt and qt. These Sharpe ratios are quarterly, and so their magnitude is roughly half of

annualized values.

The conditional variance of equity returns is counter-cyclical. Interestingly, the increase in

expected equity returns during recessions is not as large as the increase in the expected variance

which contributes to the equity Sharpe ratio being not counter-cyclical. The maximum Sharpe ratio

does display counter-cyclical behavior.
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Moving to Table 6, not surprisingly, the conditional volatility of equity returns is largely governed

largely by vt, which accounts for 75% of its variation with a standard error of only 32%. Here, qt

contributes 25% to the total volatility variation.

7 Conclusion

This paper has attempted to sort out the relative importance of two competing hypotheses for the

sources of the magnitude and variation of asset prices. First, one literature has explored the role

of cash flow volatility dynamics as a determinant of equity premiums both in the time series and

cross section. Recent work in this area includes Wu (2000), Bansal and Yaron (2003), Bansal,

Khatchatrian and Yaron (2002), and Bansal and Lundblad (2004). A quite separate literature has

explored shocks to investors preferences as drivers of equity prices. Prominent papers in this area

include Campbell and Cochrane (1999), Abel (1990, 1999), and a large number of elaborations such

as Wachter (2004), Bekaert, Engstrom and Grenadier (2004), Brandt and Wang (2003), Menzly,

Santos and Veronesi (2004) ), Wei (2004), and Lustig and van Nieuwerburgh (2004). With some

exceptions, the focus has been on equities.

We design a theoretical model and empirical strategy which are capable of accommodating both

explanations, and then implement an optimal GMM estimation to determine the relative importance

of each story. We stress that from a theoretical perspective, it is important to consider the term

structure effects on equity prices, a point prominent in the work of Abel (1988) and Barsky (1989).

We conclude that both the conditional volatility of cash flow growth and time varying risk aversion

emerge as important factors driving variation in the term structure, dividend yields, and equity risk

premium and the conditional volatility of returns. Not surprisingly, uncertainty is more important

for volatility whereas risk aversion is more important for dividend yields and the risk premium.

Our work is indirectly related to two other important literatures. First, there is a large literature

on the conditional CAPM which predicts a linear, positive relation between expected excess returns

on the market and the conditional variance of the market. Since the seminal work of French,

Schwert and Stambaugh (1987), the literature has struggled with the identification of the price

of risk, which is often negative in empirical applications (see Scruggs (2003)). Of course, in our

model, there are multiple sources of time variation in risk premiums and both the price of risk and

the quantity of risk varying through time. Upon estimation of our structural model, we identify a
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strong positive contemporaneous correlation between expected equity returns and their conditional

volatility. However, this relationship varies through time and contains a cyclical component (see

Table 5).

Second, the volatility feedback literature has provided a link between the phenomenon of asym-

metric volatility (or the leverage effect, the conditional return volatility and price shocks are nega-

tively correlated) and risk premiums. It suggests that prices can fall precipitously on negative news

as the conditional volatility increases and hence induces higher risk premiums (when the price of

risk is positive). Hence, the literature primarily builds on the conditional CAPM literature (see

Campbell and Hentschel (1992) and Bekaert and Wu (2000)). Wu (2001) sets up a present value

model in which the variance of dividend growth follows a stochastic volatility process and shows

under what conditions the volatility feedback effect occurs. There are two reasons why Wu’s (2001)

conclusions may not be generally valid. First, he ignores equilibrium considerations–that is the

discount rate is not tied to preferences. Tauchen (2005) also shows how the presence of feedback

may depend on preference parameters. Second, he assumes a constant interest rate. Within our

set up, we can re-examine the validity of an endogenous volatility feedback effect. We intend to

explore the implications of our model for these two literatures in the near future.
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A Proof of Propositions

A.1 Proof of Proposition 1

The well known recursive pricing relationship governing the term structure of these bond prices is

P rz
n,t = Et

£
Mt+1P

rz
n−1,t+1

¤
(35)

where P rz
n,t is the price of a real zero coupon bond at time t with maturity at time (t+ n). The

following proposition summarizes the solution for these bond prices. We solve the model for a slightly
generalized (but notation saving) case where the qt = µq+ρqqqt−1+

√
vt−1

¡
σqdε

d
t + σquε

u
t + σqvε

v
t

¢
+√

qt−1σqqε
q
t . Our current model obtains when

σqd = σqcσdd (1 + σud)

σqu = σqcσuu

σqv = σqcσdv (1 + σud) . (36)

Suppose the prices of real, risk free, zero coupon bonds are given by

P rz
n,t = exp (An +Bn∆dt + Cnut +Dnπt +Envt + Fnqt) (37)

where

An = fA (An−1, Bn−1, Cn−1, En−1, Fn−1,Ψ)

Bn = 0

Cn = fC (An−1, Bn−1, Cn−1, En−1, Fn−1,Ψ)

Dn = 0

En = fE (An−1, Bn−1, Cn−1, En−1, Fn−1,Ψ)

Fn = fF (An−1, Bn−1, Cn−1, En−1, Fn−1,Ψ)

Then we have

exp (An +Bn∆dt + Cnut +Dnπt +Envt + Fnqt)

= Et{exp (mt+1 +An−1 +Bn−1∆dt+1 + Cn−1ut+1 +Dn−1πt+1 +En−1vt+1 + Fn−1qt+1)}
= Et{exp(ln (β)− γ (δ +∆ut+1 +∆dt+1) + γ∆qt+1

+An−1 +Bn−1∆dt+1 + Cn−1ut+1 +Dn−1πt+1 +En−1vt+1 + Fn−1qt+1)}

39



Equating the coefficient on the two side of the equation, we get:

fA = lnβ − γδ +An−1 + (Bn−1 − γ)µd +En−1µv + (Fn−1 + γ)µq

fC ≡ ((Bn−1 − γ) ρdu + Cn−1ρuu + γ (1− ρuu))

fE ≡ En−1ρvv

+
1

2
((Bn−1 − γ)σdd + (Cn−1 − γ)σudσdd + (Fn−1 + γ)σqd)

2

+
1

2
((Cn−1 − γ)σuu + (Fn−1 + γ)σqu)

2

+
1

2
((Bn−1 − γ)σdv + (Cn−1 − γ)σudσdv + (Fn−1 + γ)σqv +En−1σvv)

2

fF ≡
µ
Fn−1ρqq + γ (ρqq − 1) +

1

2
((Fn−1 + γ)σqq)

2

¶
Proof for Proposition 3 follows the same strategy as above.

A.2 Proof of Proposition 4

Let Pt and Dt be the time-t ex-div stock price and dividend.
Guess

Jn,t , Et exp

⎡⎣ nX
j=1

(mt+j +∆dt+j)

⎤⎦ = exp³ bAn + bBn∆dt + bCnut + bEnvt + bFnqt´
Then

Jn,t =Et

⎡⎣exp (mt+1 +∆dt+1)Et+1

n−1X
j=1

exp (mt+1+j +∆dt+1+j)

⎤⎦
=Et [exp (mt+1 +∆dt+1)Jn−1,t+1]

exp
³ bAn + bBn∆dt + bCnut + bEnvt + bFnqt´

= Et{exp[ln (β)− γ (δ +∆ut+1 +∆dt+1) + γ∆qt+1 +∆dt+1

+ bAn−1 + bBn−1∆dt+1 + bCn−1ut+1 + bEn−1vt+1 + bFn−1qt+1]}
Using the property of lognormality distribution and equating coefficients on both side of the

equation gives us:

40



bAn = fA
³ bAn−1, bBn−1, bCn−1, bEn−1, bFn−1,Ψ´+ µdbBn = 0bCn = fC
³ bAn−1, bBn−1, bCn−1, bEn−1, bFn−1,Ψ´+ ρdubEn = fE
³ bAn−1, bBn−1, bCn−1, bEn−1, bFn−1,Ψ´

+
1

2

³
σ2dd + σdd

³³ bBn−1 − γ
´
σdd +

³ bCn−1 − γ
´
σudσdd +

³ bFn−1 + γ
´
σqd

´´
+
1

2

³
σ2dv + σdv

³³ bBn−1 − γ
´
σdv +

³ bCn−1 − γ
´
σudσdv +

³ bFn−1 + γ
´
σqv + bEn−1σvv

´´
bFn = fF

³ bAn−1, bBn−1, bCn−1, bEn−1, bFn−1,Ψ´
where the functions fX (·) are given in Proposition 1 for X ∈ (A,B,C,E, F ) and A0 = B0 = C0 =
E0 = F0 = 0.
For the purposes of estimation the coefficient sequences are calculated out 200 years. If the

resulting calculated value for PDt has not converged, then the sequences are extended another 100
years until either the PDt value converges, or becomes greater than 1000 in magnitude.
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B Log Linear Approximation of Equity Prices
In the estimation, we use a linear approximation to the price-dividend ratio. From Equation (??),
we see that the price dividend ratio is given by

Pt
Dt

=
∞X
n=1

q0n,t

=
∞X
n=1

exp
¡
b0n + b0nYt

¢
(38)

and the coefficient sequences,
©
b0n
ª∞
n=1

and {b0n}
∞
n=1, are given above. We seek to approximate the

log price-dividend ratio using a first order Taylor approximation of Yt about Y , the unconditional
mean of Yt. Let

q0n = exp
¡
b0n + b0nY

¢
(39)

and note that
∂

∂Yt

Ã ∞X
n=1

q0n,t

!
=
∞X
n=1

∂

∂Yt
q0n,t =

∞X
n=1

q0n,t · b0n (40)

Approximating,

pdt ' ln
Ã ∞X
n=1

q0n

!
+

1P∞
n=1 q

0
n

Ã ∞X
n=1

q0n · b0n

!¡
Yt − Y

¢
= d0 + d0Yt (41)

where d0 and d0 are implicitly defined. Similarly,

gpdt ≡ ln
µ
1 +

Pt
Dt

¶
' ln

Ã
1 +

∞X
n=1

q0n

!
+

1

1 +
P∞

n=1 q
0
n

Ã ∞X
n=1

q0n · b0n

!¡
Yt − Y

¢
= h0 + h0Yt (42)

where h0 and h0 are implicitly defined. Note also that the dividend yield measure used in this study
can be expressed as follows

dpt ≡ ln
µ
1 +

Dt

Pt

¶
= gpdt − pdt (43)

so that it is also linear in the state vector under these approximations. Also, log excess equity
returns can be represented follows. Using the definition of excess equity returns,

rxt+1 = −rft − pdt + gdt+1 + πt+1 + gpdt+1

∼ (h0 − d0) + (e
0
d + e0π + h0)Yt+1 +

¡
−e0rf +−d0

¢
Yt

= r0 + r01Yt+1 + r02Yt (44)

where r0, r01 and r02 are implicitly defined.

B.1 Accuracy of the Equity Approximation

To assess the accuracy of the log linear approximation of the price dividend ratio, the following
experiment was conducted. For the model and point estimates reported in Table 2, a simulation
was run for 10,000 periods. In each period, the ‘exact’ price dividend ratio and log dividend yield
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were calculated in addition to their approximate counterparts derived in the previous subsection.
The resulting series for exact and approximate dividend yields and excess stock returns compare as
follows (quarterly rates).

appx dpt exact dpt appx rxt exact rxt
mean 0.0099 0.0100 0.0118 0.0119
std. dev. 0.0032 0.0034 0.0945 0.0891
correlation 0.9948 0.9853

C Analytic Moments of Yt and Wt

Recall that the data generating process for Yt is given by,

Yt = µ+AYt−1 + (ΣFFt−1 +ΣH) εt

Ft = sqrt(diag(φ+ΦYt)) (45)

It is straightforward to show that the uncentered first, second, and first autocovariance moments of
Yt are given by,

Yt = (Ik −A)−1 µ

vec
³
YtY 0

t

´
= (Ik2 −A⊗A)−1 · vec

³
µµ0 + µYt

0
A0 +AYtµ

0 +ΣFF 2t Σ
0
F +ΣHΣ

0
H

´
vec

³
YtY 0

t−1

´
= (Ik2 −A⊗A)−1 · vec

³
µµ0 + µYt

0
A0 +AYtµ

0 +A
³
ΣFF 2t Σ

0
F +ΣHΣ

0
H

´´
(46)

where overbars denote unconditional means and F 2t = diag
¡
φ+ΦYt

¢
.

Now consider the unconditional moments of a n-vector of observable variables Wt which obey
the condition

Wt = µw + ΓwYt−1 + (Σ
w
FFt−1 +Σ

w
H) εt (47)

where µw is an n-vector and ΣwF , Σ
w
H and Γware (n× k) matrices. It is straightforward to show

that the uncentered first, second, and first autocovariance moments of Wt are given by,

Wt = µw + ΓwYt

WtW 0
t = µwµw0 + µwYt

0
Γw0 + ΓwYtµ

w0 + ΓwYtY 0
t Γ

w0 +ΣwFF
2
t Σ

w0
F +ΣwHΣ

w0
H

WtW 0
t−1 = µwµw0 + µwYt

0
Γw0 + ΓwYtµ

w0 + ΓwYtY 0
t−1Γ

w0 + Γw
³
ΣFF 2t Σ

w0
F +ΣHΣ

w0
H

´
(48)

It remains to demonstrate that the observable series used in estimation obey Equation (47). This is
trivially true for elements ofWt which are also elements of Yt such as ∆dt, ∆ct, πt. Using Equations
(25), (44) and (41), it is apparent that rft , dpt and rxt satisfy Equation (47) as well.
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Table 1: Heteroskedasticity in Fundamentals

Panel A: Univariate Regressions

³
∆dft

´2 ³
∆cft

´2
(rxt)

2

v1 −0.0779 −0.0062 −0.4620
(0.0260) (0.0016) (0.2740)

v2 0.1112 0.0106 1.8843
(0.0420) (0.0039) (1.1279)

v3 0.0984 0.0080 0.7759
(0.0485) (0.0034) (0.6435)

Panel B: Multivariate Regressions

³
∆dft

´2 ³
∆cft

´2
restricted

v1 −0.0621 −0.0046 −0.0593
(0.0214) (0.0014) (0.0205)

v2 0.0737 0.0079 0.0824
(0.0364) (0.0036) (0.0304)

v3 0.0438 0.0040 0.0437
(0.0334) (0.0031) (0.0296)

η 0.0807
(0.0329)

tests
v1, v2, v3 10.50 22.54 Jstat 0.2196
(pval) (0.0148) (< 0.0001) (pval) (0.8958)

second moment change during recession
+45% +33% +38%
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Table 1: Notes

The symbols ∆dft ,∆c
f
t ,and rxt refer to log filtered dividend and consumption growth and log excess

equity returns. The table presents regressions of squared future values of these variables onto a set of three
instruments: the log yield on a 90 day T-bill, rft, the filtered log dividend yield, dp

f
t , and the log yield

spread, spdt. The regressions are of the form:

x2t+k = ν0 + ν1rft + ν2dp
f + ν3spdt + εt+k

The dependent variables are
³
∆dft

´2
,
³
∆cft

´2
and (rxt)

2. For consumption and dividend growth, k = 4,

and 4 Newey West lags are used in the GMM estimation, but for returns, k = 1 and no Newey West
lags are used (standard errors are reported in parentheses throughout). In Panel A, the regression is
univariate; only one instrument is used per regression. Panel B reports the full multivariate regressions

for x2t+k =
³
∆dft+k

´2
and x2t+k =

³
∆cft+k

´2
in the first two columns. The first line below the column

reports a joint test of the null of no predictability of the (uncentered) second moment with the p-value in
parentheses. The test statistic is distributed as χ2 (3). The third column presents results for a restricted

specification where the slope coefficients are proportional across the
³
∆dft

´2
and

³
∆cft

´2
equations such

that ηνdiv1 = νcons1 , etc. A likelihood ratio test is presented at the bottom of the third column which tests
this restriction (p-value in parentheses). The final row of Panel B reports the percentage change in fitted
squared variation during NBER defined recessions. Data are quarterly US aggregates from 1927:1-2004:3.
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Table 2: Dynamic Risk and Uncertainty Model Estimation

Parameter Estimates

E [∆d] ρdu σdd σdv
0.0039 0.0214 0.0411 0.0413

(0.0011) (0.0082) (0.0116) (0.0130)

E [vt] ρvv σvv
1.0000 0.9795 0.3288
(fixed) (0.0096) (0.0785)

ρuu σud σuu
0.9826 −0.9226 0.0127

(0.0071) (0.0233) (0.0007)

E [qt] ρqq σqc σqq
1.0000 0.9787 −5.2211 0.1753
(fixed) (0.0096) (4.5222) (0.0934)

ln (β) γ δ
−0.0168 1.1576 0.0047
(0.0042) (0.7645) (0.0011)

E [πt] ρππ ρπu σππ
0.0081 0.2404 −0.0203 0.0086

(0.0010) (0.1407) (0.0073) (0.0017)

Overidentification Test
J (15) 12.7262
(pval) (0.6234)
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Table 2: Notes

The model is defined by the equations

∆dt = µd + ρduut−1 +
√
vt−1

¡
σddε

d
t + σdvε

v
t

¢
vt = µv + ρvvvt−1 + σvv

√
vt−1ε

v
t

ut = µu + ρuu ut−1 + σud (∆dt −Et−1 [∆dt]) + σuu
√
vt−1ε

u
t

qt = µq + ρqqqt−1 + σqc (∆ct −Et−1 [∆ct]) + σqq
√
qt−1ε

q
t

πt = µπ + ρπππt−1 + ρπuut−1 + σπε
π
t

∆ct = δ +∆dt +∆ut

= (δ + µd) + (ρud + ρuu − 1)ut + (1 + σud)
√
vt−1

¡
σddε

d
t + σdvε

v
t

¢
+ σuu

√
vt−1ε

u
t

mt+1 = ln (β)− γ∆ct+1 + γ∆qt+1

The moments used to estimate the model are

E
h
∆dft ,∆c

f
t , πt, rft, dp

f
t , spdt, r

ex
t

i
(7)

E

∙³
∆dft

´2
,
³
∆cft

´2
, (πt)

2
, (rft)

2
,
³
dpft

´2
, (spdt)

2
, (rext )

2

¸
(7)

E
h
(πtπt−1) , (πtπt−4) ,

³
∆dft∆d

f
t−4

´
,
³
∆cft∆c

f
t−4

´i
(4)

E
h³
∆dft∆c

f
t

´
,
³
∆dft rft

´
,
³
∆dft dpt

´
,
³
∆dft spdt

´i
(4)

E
h³
∆cft rft

´
,
³
∆cft dpt

´
,
³
∆cft spdt

´i
(3)

E
h³
πt∆c

f
t

´
, (πtrft)

i
(2)

E

∙³
∆dft

´2
⊗
³
rft−4, dp

f
t−4, spdt−4

´¸
(3)

E

∙³
∆dft

´3
,
³
∆dft

´4
,
³
∆cft

´3
,
³
∆cft

´4¸
(4)

The model is estimated by GMM. Data are quarterly US aggregates from 1927:1-2004:3. ∆dft , ∆c
f , πt,

rft, dp
f
t , spdt, and rxt refer to filtered log dividend growth, filtered log consumption growth, log inflation,

the log yield on a 90 day T-bill, the filtered log dividend yield, the log yield spread, and log excess equity
returns (with respect to the 90 day T-bill). See text for data construction and estimation details.
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Table 3: The Fit of the Model: Linear Moments

Simulated observable moments

∆dft πt ∆cft rft dpft spdt rxt

mean [0.0038] [0.0084] [0.0085] [0.0097] [0.0096] [0.0038] [0.0121]
0.0026 0.0077 0.0080 0.0094 0.0099 0.0040 0.0141

(0.0029) (0.0013) (0.0008) (0.0010) (0.0004) (0.0004) (0.0062)

std.dev. [0.0291] [0.0121] [0.0068] [0.0074] [0.0035] [0.0033] [0.0967]
0.0308 0.0130 0.0075 0.0078 0.0035 0.0032 0.1085

(0.0034) (0.0015) (0.0009) (0.0007) (0.0003) (0.0002) (0.0126)

autocorr [−0.0275]∗ [0.5837] [0.0233]∗ [0.9170] [0.9429]∗ [0.6840] [−0.0071]
0.0699 0.6016 0.2460 0.9582 0.9347 0.8107 −0.0446

(0.0995) (0.0802) (0.2008) (0.0356) (0.1751) (0.0618) (0.1004)

Simulated moments, in square brackets, are calculated by simulating the system for 100,000 periods using
the point estimates from Table 2 and calculating sample moments of the simulated data. Autocorrelations
are all at one lag except for series denote with an asterisk (*): dividend growth, consumption growth and the
dividend price ratio, which are calculated at 4 lags. The second and third numbers for each entry are the
sample moments and corresponding standard errors (in parentheses) computed using GMM with 4 Newey
West lags. Data are quarterly US aggregates from 1927:1-2004:3. ∆dft , πt, ∆c

f
t , rft, dp

f
t , spdt, and rxt,

refer to filtered log dividend growth, log inflation, filtered log consumption growth, the log yield on a 90 day
T-bill, the filtered log dividend yield, the log yield spread, log excess equity returns (with respect to the 90
day T-bill). See text for data construction details.
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Table 4: The Fit of the Model: Nonlinear Moments

Panel A: Univariate Heteroskedasticity Panel B: Multivariate Heteroskedasticity

³
∆dft

´2 ³
∆cft

´2
(rxt)

2

v1 [−0.0758] [−0.0044] [−0.1637]
−0.0779 −0.0062 −0.4620
(0.0260) (0.0016) (0.2740)

v2 [−0.0371] [−0.0028] [0.8337]
0.1112 0.0106 1.8843

(0.0420) (0.0039) (1.1279)
v3 [0.2290] [0.0114] [1.7147]

0.0984 0.0080 0.7759
(0.0485) (0.0034) (0.6435)

³
∆dft

´2 ³
∆cft

´2
(rxt)

2

v1 [0.0362] [−0.0035] [−0.1051]
−0.0621 −0.0046 −0.1245
(0.0214) (0.0014) (0.1388)

v2 [−0.1183] [0.0021] [0.8795]
0.0737 0.0079 1.8492

(0.0364) (0.0036) (1.1297)
v3 [0.2839] [0.0070] [1.5086]

0.0438 0.0040 0.7679
(0.0334) (0.0031) (0.6754)

Panel C: Skewness and Kurtosis
∆dft ∆cft rxt

skew [−0.2250] [−0.4574] [0.1494]
−0.3287 −0.7537 0.1254
(0.6339) (0.4450) (0.7228)

kurt [10.0250] [10.1726] [5.4295]
7.9671 6.4593 9.7118

(1.3668) (0.9673) (2.0755)

Panels A and B repeat the regression models for squared series of Table 1 and also reports analogous
simulated statistics generated by the model estimated in Table 2. Panel C reports unconditional skewness
and kurtosis for the variables in each column. In each panel, the simulated moments (100,000 simulations)
are reported in square brackets and the corresponding data statistics and standard errors are reported below,
with the standard errors in parentheses.

In panels A and B, the regressions are of the form:

x2t+k = ν0 + ν1rft + ν2dp
f + ν3spdt + εt+k

The dependent variables are
³
∆dft

´2
,
³
∆cft

´2
, and (rxt)

2. For consumption and dividend growth, k = 4

and 4 Newey West lags are used in the GMM estimation, but for returns, k = 1 and no Newey West lags
are used. In Panel A, the regression is univariate; that is only one instrument is used per regression. Panel
B reports the full multivariate regressions.
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Table 5: Dynamic Properties of Risk, Uncertainty and Asset Prices

Panel A: Unconditional
Simulated unobservable univariate moments

vt qt RAt rrft rspdt Et [rxt+1] Vt [rxt+1] St MaxSt

mean 1.0090 1.0097 7.06 0.0017 0.0038 0.0121 0.0092 0.1396 0.2075

median 0.3611 0.7784 2.52 0.0037 0.0034 0.0103 0.0070 0.1320 0.2095

std.dev. 1.6063 0.9215 36.34 0.0093 0.0028 0.0075 0.0083 0.1265 0.0491

autocorr 0.9788 0.9784 0.9212 0.9784 0.9777 0.9789 0.9794 0.5384 0.9653

Panel B: Cyclicality of Means
Simulated unobservable univariate means

vt qt RAt rrft rspdt Et [rxt+1] Vt [rxt+1] St MaxSt

Expansion 0.8665 0.9893 6.73 0.0024 0.0035 0.0117 0.0085 0.1406 0.2053
Recession 2.7195 1.2544 10.96 −0.0064 0.0076 0.0171 0.0183 0.1283 0.2349

Panel C: Correlations with vt and qt
Simulated correlations between vt, qt and observables

rrft rspdt rft dpt rxt Et [rxt+1] Vt [rxt+1]

vt −0.9232 0.9562 −0.5163 −0.1835 0.1470 0.3428 0.8799
qt 0.4687 0.1756 0.5375 0.9215 −0.1071 0.8943 0.3758

Simulated moments are calculated by simulating the system for 100,000 periods using the point estimates
from Table 2 for a number of variables including: vt, dividend growth volatility, qt, the log inverse con-
sumption surplus ratio, RAt, local risk aversion which is γ exp (qt),. The variables rrftand rspdtrepresent
the real short rate and real term spread respectively, and Et [rxt+1] and Vt [rxt+1] denote the conditional
mean and conditional variance of excess stock returns. Stdenotes the conditional Sharpe ratio for equity.
MaxStdenotes the maximum attainable Sharpe ratio for any asset in the economy which is given by the
quantity, [exp (Vt (mt+1))− 1]1/2.

In Panel B, means of simulated data conditional on a binary recession/expansion variable are presented.
Recessions are defined in the simulated data as periods of negative real consumption growth. Recessions
represent approximately 8% of all observations in the simulated data.

In Panel C, the simulated unconditional correlations among vt, qtand other endogenous variables are
reported.

50



Table 6: Variance Decompositions

Fraction of variance due to variation in each state element

∆dt πt ut vt qt

rrft [0.0000] [0.0000] [0.0999] [0.7239] [0.1761]
h0.0000i h0.0000i h0.1154i h0.1472i h0.0698i

rspdt [0.0000] [0.0000] [0.0752] [0.8653] [0.0596]
h0.0000i h0.0000i h0.01010i h0.0943i h0.0510i

cprconst [0.0000] [0.0000] [0.0502] [0.2299] [0.7199]
h0.0000i h0.0000i h0.0630i h0.1041i h0.1296i

rft [0.0000] [0.1230] [0.0904] [0.5010] [0.2856]
h0.0000i h0.0765i h0.2222i h0.1216i h0.1796i

spdt [0.0000] [0.3148] [0.0035] [0.6019] [0.0797]
h0.0000i h0.3407i h0.0599i h0.3413i h0.0745i

dpft [0.0000] [0.0000] [0.0655] [0.0544] [0.8801]
h0.0000i h0.0000i h0.0901i h0.0798i h0.0627i

rxt [0.3605] [0.0091] [−0.1593] [0.1640] [0.6257]
h0.0733i h0.0036i h0.0401i h0.0895i h0.1397i

Et [rxt+1] [0.0000] [0.0000] [−0.0167] [0.1665] [0.8502]
h0.0000i h0.0000i h0.0146i h0.1281i h0.1182i

Vt [rxt+1] [0.0000] [0.0000] [0.0000] [0.8029] [0.1971]
h0.0000i h0.0000i h0.0000i h0.2229i h0.2229i

The symbols, rrft, rspdt, and cprconsrefer to the theoretical real short rate, real term spread, and the
coupon-price ratio of a real consol. The table reports the fraction of variation of selected variables due to
variation in elements of the state vector.

The variable in each row can be expressed as a linear combination of the current state and lagged vector.
Generally, under the model in Table 2, for the row variables, xt,

xt = µ+ Γ0Y c
t

where Y c
t is the ‘companion form’ of the N−vector, Yt; that is, Y c

t is comprised of ‘stacked’ current and
lagged values of Yt. µ and Γ are constant vectors implied by the model and parameter estimates of Table 2.
Let V ar (Y c

t )be the variance covariance matrix of Y
c
t . Based on µ and Γ, the proportion of the variation

of each row variable attributed to the nth element of the state vector is calculated as

Γ0V ar (Y c
t )Γ

(n)

Γ0V ar (Y c
t )Γ

where Γ(n) is a column vector such that
©
Γ(n)

ª
i
= { Γ}ifor i = n,N +n, ...and zero elsewhere. Standard

errors are reported below in angle brackets and are calculated from the variance covariance matrix of the
parameters in Table 2 using the ∆-method.
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Table 7: Model Implied Reduced Form Return Predictability

Excess Returns
Parameter estimates

multivariate univariate
β0 [−0.0037]

−0.0358
(0.0256)

β1 [−0.3097] [0.2192]
−0.1669 −1.1651
(0.7464) (0.7839)

β2 [2.0695] [1.5770]
3.7980 3.7260

(2.0231) (1.9952)
β3 [0.7668] [1.2389]

3.5376 3.4728
(1.8900) (1.8728)

The predictability model for excess returns is defined as,

rxt+1 = β0 + β1rft + β2dp
f
t + β3spdt + εt+1

and is estimated by GMM. Data are quarterly US aggregates from 1927:1-2004:3. The symbols rft, dp
f
t ,

spdt, and rxt refer to the log yield on a 90 day T-bill, the filtered log dividend yield, the log yield spread,
and log excess equity returns (with respect to the 90 day T-bill). Simulated moments, in square brackets,
are calculated by simulating the model for 100,000 periods using the point estimates from Table 2 and
estimating the above model on the simulated data. The second and third numbers for each entry are the
sample moments and corresponding standard errors (in parentheses).
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Figure 1: Term Structure Determinants
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Under the model of Table 2, real risk free yields of horizon, h, have solutions of the form,

rrfh,t = ah +A0hYt

where the coefficients above are functions of the ‘deep’ model parameters. This figure shows the effect on
these yields and the associated spreads (relative to the 1 period yield) of 1 standard deviation changes in the
latent factors, vt and qt using the point estimates in Table 2. At horizons greater than 1, these effects can
be further decomposed into parts corresponding to the expectations hypothesis (EH), and term premiums,
which are drawn in blue and red bars respectively.
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