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ABSTRACT

Given that technologies to significantly reduce fossil fuel emissions are currently unavailable or only
available at high cost, technological change will be a key component of any long-term strategy to reduce
greenhouse gas emissions.  In light of this, the amount of research on the pace, direction, and benefits
of environmentally-friendly technological change has grown dramatically in recent years.  This research
includes empirical work estimating the magnitude of these effects, and modeling exercises designed
to simulate the importance of endogenous technological change in response to climate policy. Unfortunately,
few attempts have been made to connect these two streams of research.  This paper attempts to bridge
that gap.  We review both the empirical and modeling literature on technological change.  Our focus
includes the research and development process, learning by doing, the role of public versus private
research, and technology diffusion. Our goal is to provide an agenda for how both empirical and modeling
research in these areas can move forward in a complementary fashion. In doing so, we discuss both
how models used for policy evaluation can better capture empirical phenomena, and how empirical
research can better address the needs of models used for policy evaluation.
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Endogenizing technological change:   
Matching empirical evidence to modeling needs 

William A. Pizer and David Popp∗ 

Introduction 

The past decade has witnessed an explosion of research into the process of technological 
innovation.  To a large degree that research has proceeded in two distinct directions:  exploring 
mechanisms to endogenize the process of productivity changes in dynamic models used to 
evaluate public policy, particularly in the arena of climate change, and exploring various 
empirical, microeconomic questions surrounding the process of invention, innovation, and 
diffusion of individual technologies.  There have been a number of studies reviewing these two 
trends separately (Gillingham et al 2007 Löschel 2002; Popp 2005, Jaffe, Newell, and Stavins 
2003).  However, there has been little attempt to tie these two literatures together and, in 
particular, to suggest an agenda for future work.  How can models used for policy evaluation 
better capture empirical phenomena, and how can empirical research better address the needs of 
models used for policy evaluation? The purpose of this paper is to examine these two questions.   

In the arena of climate change, it is hard to overstate the importance of estimating the 
expected path of technological change and the potential for public policies to influence that path.  
Kneese and Schultz (1978) argued that the potential to spur technological innovation may be the 
single most important criteria for environmental policy “over the long haul.”  Their applications 
were typical environmental problems where attention focused on achieving rapid improvements 
in environmental quality right now.  Solutions were at hand and interest in technological change 
focused on incremental improvements in existing technologies – improvements like higher 
efficiency, cleaner fuels, and cheaper end-of-pipe treatment – that might arise but were not 
essential to achieving societal goals. The long haul attracted the attention of Kneese and Schultz, 
but was not the focus of stakeholders and policymakers.  In sharp contrast, climate change 
focuses squarely on the long haul. 

                                                 
∗ Authors are Senior Fellow, Resources for the Future, and Associate Professor, Syracuse University, respectively.  
The authors gratefully thank participants at the 2006 Workshop on Technological Change and the Environment at 
Dartmouth College, and Karen Fischer-Vanden in particular, for providing the genesis for this paper. 
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Addressing climate change means, for many people, stabilizing atmospheric 
concentrations of carbon dioxide and other greenhouse gases at a “safe” level.1  There is no rapid 
improvement to be sought right now, and stabilization at almost any plausible level will require 
entirely different technologies for transportation and likely power generation.2   This requires us 
to make predictions about new technologies – like IGCC with capture and sequestration, 
hydrogen and electric fueled vehicles – rather than the kinds of incremental changes typically 
imagined with SO2 scrubbers, for example.3   Indeed, recent studies of various stabilization 
scenarios for the United States focused much of their attention on technological development and 
assumptions (Clarke et al 2007) 

This inherent link between technological development and successfully addressing 
climate change means that modeling technological change is no longer an academic exercise.  
The Stern Review (Stern 2006) recently estimated that greenhouse gases could be stabilized at 
550 ppmv CO2e, or about 450 ppmv CO2, for an estimated 1% of global world product.4  They 
included a notional confidence interval of as much as a 4% loss, but also a 2% gain.  What 
strikes some economists as an optimistic central estimate, and a very optimistic upper end of the 
range, derives in part from assumptions about technological change and the potential for public 
policy to affect it (Byatt et al 2006).  Yet, the absence of empirical work coupled to modeling 
applications makes it difficult to convincingly say much about those results.  Meanwhile, the 
report continues to influence public opinion (Stern 2007). 

Underlying the frustration and confusion surrounding the use of these and similar 
estimates in the arena of public policy, we believe, lies three important concerns.  One is whether 
the models cited in support of the estimates – models that include assumptions about 
technological developments responding to public policies – were intended to provide quantitative 
results or were intended to provide qualitative insights.  The former, normative modeling 

                                                 
1 Economists advocating cost-benefit analysis (Nordhaus 1994, Pizer 2002, Tol 2006) would suggest pricing 
emissions to reflect marginal damages, which might or might not stabilize concentrations. 
2 While often ignored, geo-engineering to address climate with, say, the emission of reflective particles in the 
atmosphere, would allow us to continue use conventional technologies and for atmospheric concentrations of carbon 
dioxide to continue to rise.  See IPCC (reference AR4). 
3 In some ways, these are not “entirely new” – IGCC plants exist, CO2 has been captured and sequestered for 
enhanced oil recovery for some time, and electric cars exist.  However, these technologies (or proposed alternatives) 
remain unproven at the necessary scale and uncompetitive with cheap, conventional alternatives. 
4 Note that concentrations have already risen from 315 ppmv CO2 to 380 from 1956 to 2006 – suggesting 450 will 
be breeched without significant action in the next 50 years. 
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exercises are designed for cost-benefit analysis and are the appropriate basis for Stern-like 
assessments.  The latter, positive exercises are designed to draw qualitative insights about 
behavior but may or may not be calibrated to match important quantitative benchmarks.  While 
few models would define themselves explicitly as one or the other, it is nonetheless important to 
understand what kind of confidence the modelers themselves have in their results.   

Second, there are a large number of outstanding empirical questions in the literature on 
technological change and modelers are not always transparent about how they have chosen to 
answer these questions.  Even in cases where the modelers may, in fact, have a great deal of 
confidence in their results, users may well wish to be aware of what beliefs regarding these 
unanswered questions are being fed into the model’s assumptions. 

Third, approaching this from the standpoint of theory, how much have the present suite of 
models sought to capture empirical features and recent research surrounding the innovation 
process?   Diffusion of new technologies, for example, has been much studied in the empirical 
literature, but because many models do not identify individual, emerging technologies, their 
treatment of diffusion is quite crude. 

To help shed some light on both these issues, this paper walks through key features in 
both the literature on dynamic policy simulation and empirical studies of technological 
innovation and diffusion:  the research and development process, learning by doing, the role of 
public versus private research, and technology diffusion.  In each case, we consider what 
economists know about the issue, what modelers have done, what empirical questions the 
modelers’ approaches raise, and what empirical features the modelers have ignored.  We end by 
reviewing the agenda for both empirical work and model development that we have accumulated 
in each section. 

The R&D process 

New ideas are developed through research and development (R&D) projects.  The 
process of R&D is costly, requiring investment of capital by firms and government, and the skills 
of highly trained research scientists.  The economic influences on innovation can be divided into 
two broad categories.  Economists refer to innovation responding to the needs of the marketplace 
as a demand-pull influence.  In contrast, new research opportunities provided by scientific 
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advances are referred to as technology-push.5   For example, advances in basic semiconductor 
materials were necessary to make solar energy feasible.  Each of these affects the expected 
marginal rate of return (MRR) of innovation.  Demand-pull influences raise the MRR by making 
the potential innovation more valuable.  For example, innovation on pollution control devices is 
only beneficial to a firm in the presence of environmental regulation, so that there will be a 
market for the device.  Similarly, basic scientific advances increase potential returns by 
improving the likelihood that a research project will succeed.  Finally, the innovative policy 
climate is also important.  To earn profits from innovation, inventors must be able to appropriate 
the returns from their efforts.  This can vary depending on factors such as the level of intellectual 
property rights and the type of innovation.   

Key Features 

When modeling innovation, the most important feature is that knowledge markets are 
imperfect.  In most cases, new technologies must be made available to the public for the inventor 
to reap the rewards of invention.  However, by making new inventions public, some (if not all) of 
the knowledge embodied in the invention becomes public knowledge.  This public knowledge 
may lead to additional innovations, or even to copies of the current innovations.6  These 
knowledge spillovers provide benefit to the public as a whole, but not to the innovator.   

Economists studying the returns to research consistently find that knowledge spillovers 
result in a wedge between private and social rates return to R&D.  As a result, private firms do 
not have incentives to provide the socially optimal level of research activity.  Examples of such 
studies include Mansfield (1977, 1996), Pakes (1985), Jaffe (1986), Hall (1996), and Jones and 
Williams (1998).  Typical results include marginal social rates of return between 30 and 50 
percent.  In comparison, estimates of private marginal rates of return on investments in physical 
capital range from 7 to 15 percent (Bazelon and Smetters 1999, Jones and Williams 1998, Hall 
1996).  Popp (2001, 2003) finds similar results looking specifically at environmental R&D.  
Since firms make investment decisions based on their private returns, the wedge between private 

                                                 
5 For examples, see Scherer (1965), Schmookler (1966), Rosenberg (1974, 1982), and Mowrey and Rosenberg 
(1979). 
6 Intellectual property rights, such as patents, are designed to protect inventors from such copies. However, their 
effectiveness varies depending on the ease in which inventors may “invent around” the patent by making minor 
modifications to an invention.  See, for example, Levin et al. (1987). 
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and social rates of return suggests socially beneficial research opportunities are being ignored by 
firms because they are unable to fully capture the rewards of such innovations. 

These spillovers have two important implications for models of environmental policy.  
First, of course, it means that even if policies to correct the environmental externalities are in 
place, the level of environmental R&D will still be suboptimal.  Because they ignore the positive 
spillovers created by R&D, firms will underinvest in research activity.  This suggests two 
possible avenues through which policy can encourage the development of environmentally-
friendly technologies: correcting the environmental externality and/or correcting knowledge 
market failures.  Ideally, policies addressing knowledge market failures address these issues for 
the economy as a whole, rather than just for environmental innovation.  Examples of policies 
designed to encourage additional R&D include patent protection, broad government R&D 
subsidies, and generic R&D tax credits.  Indeed, in studies on the potential effects of energy 
R&D for climate change mitigation, Schneider and Goulder (1997) and Otto and Reilly (2006) 
show that policies to address knowledge spillovers are more effective if they address all 
knowledge spillovers, rather than focusing on R&D pertaining to alternative energy.  Moreover, 
papers such as Popp (2006a) and Newell and Fischer (2005) find that simply using R&D 
subsidies alone, without environmental policy also in place, is not an effective climate policy 
measure.  While R&D subsidies encourage the creation of new technologies, they do not create 
incentives for the adoption of new technologies. 

A second important consequence of knowledge spillovers is that they create potentially 
high opportunity costs for increasing environmental R&D.  Evidence of high social returns to 
R&D is found not just in the environmental sector, but throughout the entire economy.  As such, 
any environmental R&D that comes at the expense of other R&D will have high opportunity 
costs.  For example, consider an economy in which aggregate output, Yt, is devoted to 
consumption, Ct, investment in physical capital, It, or two types of research: environmental, RE,t, 
and other, RO,t, so that: 

(1)Yt = Ct + It + RE,t+ RO,t 

When environmental R&D increases by one dollar, one less dollar is available for the 
other activities.  The opportunity cost of the first two is simply valued at one dollar.  However, if 
the social rate of return is four times higher for R&D than for physical capital investments, 
giving up a dollar of other R&D activity has the same future effect as giving up four dollars of 
physical investment. 
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This is important because empirical work suggests that at least some environmental R&D 
will displace other forms of R&D.  Research activities are carried out by highly-trained scientists 
and engineers.  Since years of training are needed to enter the field, the supply of scientists and 
engineers available at any one time is inelastic – it cannot quickly increase when new research 
needs arise.  For example, Goolsbee (1998) finds that one of the chief beneficiaries of R&D tax 
subsidies are scientists and engineers, who receive larger wages when subsidies are increased.  
Similarly, Popp (2004a) presents evidence that approximately one-half of the energy R&D 
spending that took place in the 1970s and 1980s came at the expense of other R&D.   

What we know about the response of R&D to policy 

There is a growing body of empirical literature that links environmental policy to 
innovation.  Most of these studies have focused on estimating the direction and/or the magnitude 
of the relationship between policy and innovation.  Using international patent data, Lanjouw and 
Mody (1996) find a correlation across nations between patenting in environmental fields and 
pollution abatement expenditures.  Jaffe and Palmer (1997) look at the same relationship across 
US industries.  Comparing pollution abatement data and innovation data across these industries, 
they estimate a positive elasticity of pollution control R&D with respect to pollution control 
expenditures of 0.15.  However, when estimating the same relationship using patents as the 
measure of innovation, they do not find evidence of a relationship between patenting and 
pollution abatement expenditures.  Finally, Brunnermeier and Cohen (2003) find that patents 
increase by just 0.04 percent when PACE increases by $1 million.  While both of these papers 
find small effects, they also use aggregate measures of technological change.  Each looks at 
innovation within specific industries. Jaffe and Palmer include all patents and all R&D 
associated with an industry, whether or not they are environmental technologies.  Thus, their 
results show a small increase in overall inventive activity, but do not show if additional 
environmental R&D takes place at the expense of other R&D.  Brunnermeier and Cohen focus 
specifically on environmental technologies, but group several such technologies together for 
each industry.  Thus, effects of innovation on specific technologies may be masked by stagnant 
trends in other technologies. 

In each of these studies, pollution abatement expenditures serve as a proxy for the 
stringency of environmental regulation.  Other papers use energy prices and related regulations 
as the mechanism that induces innovation.  Although the observed price changes might not be 
policy-related, the results can also be applied to situations where policy affects prices, such as a 
carbon tax.  Newell et al. (1999) use an approach closely related to hedonic techniques to study 
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the effect of both energy prices and energy efficiency regulations on technological advances in 
energy efficiency for air conditioners and natural gas water heaters.  They find that energy prices 
have the largest inducement effect, although they do not estimate a price elasticity.  Popp (2002) 
uses patent data to study the relationship between energy prices and innovative activity.  Using a 
distributed lag model, he estimates a long-run elasticity of energy R&D with respect to energy 
prices of 0.35.  The median lag occurs in 4.9 years, suggesting that over one-half of the full 
effect of an energy price increase on R&D will have been experienced after just five years.  
Thus, prices (or other regulations that increase the cost of using fossil fuels) can be expected to 
stimulate new research quickly.   

Modeling approaches in practice 

That innovation responds to incentives suggests that accurately modeling induced 
technological change is important, as the path of climate-friendly technology will vary in 
scenarios with and without policy.  As a result, models used to evaluate the cost and impacts of 
climate change mitigation policies have increasingly explored ways to endogenize the effect of 
R&D on technology and mitigation costs.  They have generally included a variable representing 
R&D or “knowledge” that influenced economic behavior through one of three routes:  a direct 
impact on the level of emissions intensity, a reduction in the mitigation cost function, or 
productivity gains in sectoral production functions (with sector-specific R&D stocks in multi-
sectoral models).  At the same time, these models have pursued a range of approaches to 
matching different pieces of empirical evidence described above. 

For example, Nordhaus (2002) assumes that the rate of growth in emissions intensity is a 
function of the annual R&D directed at carbon-saving: 

(2) 31
2/ Ψ−Ψ= Ψ

•

ttt Rσσ  

where σt is the industrial carbon energy/output ratio at year t (implying tt σσ /
•

 is the rate 

of change of the carbon energy-output ratio), Rt is the R&D inputs into the carbon-energy sector 
in year t, and the Ψi are parameters (calibrated assuming optimized R&D in the past).  
Importantly, he (a) assumes that the cost of a dollar of R&D is four dollars of output – reflecting 
the opportunity cost of displaced R&D in other sectors – and (b) calibrates the model so that, in 
the baseline without climate policy, the return to additional R&D is also four times higher than 
ordinary investment.  Buonanno, Carraro, and Galeotti (2003) take a similar approach, in that 
they focus on R&D affecting emissions intensity, but instead use a stock of accumulated R&D 
(versus the flow above) to affect the level of emissions intensity (versus the rate of change 
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above).  Their R&D stock also influences overall productivity, building in significant spillovers 
among different types of R&D.  Given these different approaches to modeling spillovers and 
opportunity costs, it may not be that surprising that Nordhaus finds relatively small effects from 
endogenizing R&D, Buonanno et al find much larger effects (see Edenhofer et al 2006). 

Popp (2004a) also uses a knowledge stock that reduces emissions intensity.  But his 
ENTICE model allows additional substitution – both out of energy as a whole and out of carbon-
emitting energy and into an alternative carbon-free technology represented by the knowledge 
stock.  He uses this model to focus in on the effects of crowding out on the gains from induced 
innovation in climate change models.  The base case of ENTICE assumes that one-half of new 
energy R&D crowds out other R&D.  In this case, ITC increases welfare by 9.4%.  Assuming no 
crowding out increases the welfare gains from ITC to as much as 45.3%.  Similarly, assuming 
full crowding of R&D reduces welfare gains to as little as 1.9%.  7 

The preceding approach can be viewed as an evolution towards knowledge as an ordinary 
factor of production versus an exceptional device for lowering costs.  Goulder and Mathai (2000) 
are a parallel step on that journey.  They assume that accumulated R&D -- knowledge – 
influences mitigation costs.  Their cost function, therefore, depends on both the abatement level 
and the stock of knowledge: ),( tt HAC  where At is the abatement level, Ht is the stock of 

knowledge, and C() is the abatement cost function.  They make particular assumptions about 
functional form (C() is proportional to H-1) and knowledge accumulation (including adjustment 
costs).  Finally, they calibrate the model so that when knowledge accumulation is allowed, it 
lowers costs by 30% (based on work by Manne and Richels, 1992).  Not surprisingly, they find 
that endogenizing technological change lowers costs by about 30%. 

Finally, multi-sector general equilibrium models allow one to move away from mitigation 
cost functions and think concretely about R&D influencing costs and productivity in particular 
sectors, such as “carbon free energy” or even a particular energy-generating technology.  
Goulder and Schneider (1999) do this in a seven-sector model where spillovers exist within, but 

                                                 
7 Popp (2004a) presents upper and lower bounds of the influence of opportunity cost. The upper bound estimates 
assume that R&D levels change as the opportunity costs change.  The lower bound estimates change the opportunity 
cost, but constrain R&D to remain at the base case levels.  The later can be interpreted as the gains from removing 
the assumption of partial crowding out.  They are not the gains that would result if the government intervened to 
remedy the problem of partial crowding out. 
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not among, each sector.  That is, each sector has a top-level CES production function of the 
form, 

(3) 1/( )( )H GQ H H Gρ ρ ργ α α= +  

where Q is total output, H is appropriable sector-specific knowledge, G is an aggregate of other 
inputs, and H  is non-appropriable sector-specific knowledge (α’s and ρ are parameters).  Both 
H and H  accumulate research Rt, with a parameter β governing how much spills over into the 
non-appropriable stock. 

They have a specific R&D sector, which also creates the possibility of crowding out as 
marginal R&D costs increase with supply.  Without spillovers, they find that endogenizing 
technological change creates the possibility of lowering the cost of achieving a given emissions 
target.  With spillovers, this effect can be muted or reinforced depending on the pattern of 
spillovers across sectors.  In particular, they find that asymmetries in spillovers matter more than 
other specification choices. 

Summarizing behavior 

We have organized the R&D modeling discussion around two overarching questions:  the 
form of the model – whether it focuses on emission intensity, abatement cost, or sectoral 
productivity – and the parameterization of R&D effects.  That is, the assumptions about the 
return to R&D investments (e.g., spillovers) and opportunity costs of the endogenous R&D (e.g., 
crowding out).  Regardless of form, the parameterization determines how endogenizing 
technological change affects the results relative to an exogenous technology assumption. 

The single most important feature in these models is how the model accounts for 
imperfections in knowledge markets that produce high social rates of return.  Models that omit 
these imperfections fail to capture both above market-rate returns to climate-related R&D and 
above market-rate returns to other R&D that exist.  In cases where they are calibrated to have 
such returns without these imperfections, allowing the models to then equilibrate R&D and 
market returns will either (1) overestimate the level of innovative activity that will be induced by 
climate policy, or (2) implicitly assume that appropriate government policies to correct R&D 
market imperfections will accompany climate policy, so that social and private rates of return are 
equalized.  Thus, while such results may not be incorrect, it is important to note that results from 
models that do not explicitly include R&D market imperfections would not be obtained without 
government support for R&D.  Moreover, these models not only assume that government 
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provides R&D support, but that it provides this support in an optimal manner, so that the gap 
between private and public returns is closed. 

To aid understanding of how spillovers are included in models, we can imagine two 
summary statistics that quantify the key assumptions.  First, the magnitude of spillovers can be 
measured by a simulation showing how an incremental dollar of environmental R&D changes 
welfare, instituted by an exogenous, “manna-from-heaven” increase in the environmental R&D 
budget.  Positive spillovers would suggest, for example, that an additional $1 million of R&D 
should improve welfare by more than $1 million.8   Second, the model should be simulated with 
a climate policy in place and the environmental R&D budget both frozen at the reference case 
level and endogenously determined.  Here, it would useful to calculate the change in welfare 
divided by the change in environmental R&D expenditures.  This would represent an estimate 
combining both positive spillover effects and the opportunity costs of R&D.  A positive number 
would indicate that spillovers from environmental R&D exceed any opportunity costs; a negative 
number would indicate they do not..  In simpler models, these measures would be synonymous 
with the parameter choice.  In the multi-sector models, the latter question tends to be lurking in 
assumptions about the increasing cost of R&D and the pattern of R&D returns in various sectors.  
This has the appearance of being more structural but begs the question of the degree of spillovers 
across sectors, something Goulder and Schneider ignore and something about which the 
empirical literature is silent. 

A second pertinent question is how the marginal effects noted above evolve as a 
simulation deviates from the baseline.  Put another way, what is the longer-term potential for 
innovative activity?  The original literature (see, for example, Leontief 1966) on CGE modeling 
emphasized its usefulness for analyzing relatively small changes from a baseline – yet what 
climate change models are frequently asked is how an entirely different future might evolve.  Is 
the potential for large rates of return unlimited, or will large increases in R&D experience 
diminishing returns?  For example, Popp (2006b) finds evidence of diminishing returns to R&D 
is most prominent when large spikes in R&D occur.  In the case of technological change, it 

                                                 
8 While the empirical literature predicts returns of roughly a 4:1 ratio, note that this will be slightly higher if the 
welfare calculation in the model includes avoided damages from clean technology.  That is because studies finding a 
4:1 ratio of social to private returns for R&D focus on returns measurable in markets.  Any environmental benefits 
that occur will be in addition to this 4:1 ratio. 
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would be useful to know how different model forms and parameterizations translate into longer-
term potentials for cost-saving or productivity enhancing R&D. 

This question of deviations from the baseline recalls our earlier remark on the importance 
of how well these models have been calibrated to match important quantitative benchmarks.  Do 
they match historic rates of productivity improvement in the baseline simulations?  Do historic 
responses to price changes match simulated behavior?  While such calibrations are less important 
for qualitative conclusions from simulation modeling, they become increasingly important if 
simulations are used for normative policy evaluation. 

Looking Forward 

A key observation from the preceding discussion is that it is often unclear what 
simulation models are calibrated to deliver, how far simulations are deviating from baseline 
behavior, and how the technology parameterization translates into intermediate conclusions 
about the returns to R&D and opportunity costs.  A very useful near-term research agenda for the 
modeling community would be to clearly articulate the following summary features of ETC 
models going forward: 

1. Baseline productivity growth (e.g., per capita income). 

2. Near-, medium-, and long-term elasticity of energy demand, in aggregate, and for 
different sectors if present. 

3. For policy simulations, report the range of variation in key relative prices (among 
various energy sources and aggregate consumption) and compare to historic price 
variation.  

4. Elasticities of energy R&D with respect to changes in energy prices.  Are these 
consistent with existing empirical evidence? 

5. Clearly state assumptions used about R&D markets.  Are spillovers modeled 
(either explicitly or implicitly)?  What is the source of new energy R&D 
spending? 

6. Estimate the marginal returns to energy R&D.  Do this both through an 
exogenous, incremental increase in energy- or carbon-related-R&D, as well as by 
simulating climate policy with and without energy R&D frozen at reference levels 
(see comment in text). 
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7. Estimate the potential for long-term returns to energy R&D.  As before, do this 
both through an exogenous, doubling (or other non-incremental change) in 
energy- or carbon-related-R&D as well as by simulated climate policy with and 
without energy R&D frozen at reference levels (but here considering a more 
aggressive, non-incremental climate policy). 

Multi-sector general equilibrium models present additional data challenges.  In particular, 
as those models contemplate specific knowledge stocks in different sectors – and often different 
geographic regions – they require information quantifying spillovers not just in a given domestic 
industry, where most of the empirical literature has focused, but across industries and across 
countries or regions.  This is particularly important for energy R&D, since energy is an input to 
all production processes.  Thus, fundamental research on new energy technologies may serve as 
a general purpose technology that provides returns throughout the economy.9 This would be a 
useful area for additional empirical work. 

Another area for future research is the role of technological change in baseline 
simulations.  While climate policy increases incentives for emissions-reducing R&D, some 
emissions R&D can occur even without policy.  This is particularly true for R&D that improves 
energy efficiency, which is encouraged by higher energy prices that may or may not be the result 
of environmental policy (see, for example, Popp 2002).  Moreover, while large scale climate 
policies have only recently taken hold (such as trading of carbon emission permits in the EU), 
several smaller policies have helped encourage the development of climate friendly technologies.  
Policies such as government R&D subsidies, investment tax credits for renewable energy, and 
renewable portfolio standards all play a role in encouraging the development of these 
technologies.  Any model that calibrates energy markets to current data trends will include 
technological change induced by current market forces and policies in the baseline.  Given this, 
baseline runs are more appropriately interpreted as runs assuming extensions of existing policies, 
rather than no policy.  Moreover, rather than considering all technological change to occur as a 
result of climate policy, the appropriate question is what is the marginal increase in technology 
that occurs because of newly-introduced climate policy.   

                                                 
9 Helpman (1998) provides an introduction to general purpose technologies. 
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Learning-by-doing 

The popular alternative (or compliment) to modeling technological change as a function 
of R&D is to model technological progress – particularly a lowering of costs of an existing 
technology – as a response to increased production (learning by doing, LBD).  As noted earlier, 
the consequence of endogenous versus exogenous technological change through explicit, 
additional R&D expenditures depends on the relative importance of spillovers versus crowding 
out.  The consequence of endogenous versus exogenous technological change through LBD is 
unambiguously positive:  there is no opportunity cost other than the current cost of production.  
This suggests that assumptions of one mechanism or the other will have important implications 
for model results.  Most importantly, the potential of crowding out of R&D implies a higher 
opportunity cost to technological change that progresses via R&D, rather than by LBD. In 
contrast, investing in new energy technology (as in the LBD framework) does not include this 
added social cost. 

Key Features 

Because the social costs of technological change are lower in the LBD framework, 
models relying on LBD will tend to provide larger estimates of the potential gains from 
endogenous technological change.  Thus, an important empirical question is the relevant 
importance of each type of learning. Unfortunately, few empirical studies address this question.  
Such research is limited both by data availability (as measures of costs, technology usage, and 
matching R&D data would be needed) and concerns over endogeneity of key variables.  A 
typical learning curve model regresses costs as a function of cumulative capacity: 

(4) Cost = A·CumCapt
-α 

where Cost is the cost of investment of a new installation, and CumCap is the cumulative 
installed capacity of (or sometimes cumulative output produced by) the technology prior to time 
t. 

Recently, papers by Klaasen et al. (2003), Söderholm and Sundqvist (2003), and 
Söderholm and Klaasen (2007) have extended this basic model to estimate “two-factor” learning 
curves for environmental technologies.  These two-factor curves model cost reductions as a 
function of both cumulative capacity (learning-by-doing) and R&D (learning-by-searching, or 
LBS).  To be comparable with the notion of cumulative capacity, in these models R&D is 
typically aggregated into a stock of R&D capital.  Thus, endogeneity is a concern, as we would 
expect both investments in capacity to be a function of past R&D expenditures and R&D 
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expenditures to be influenced by capacity, which helps determine demand for R&D.   Söderholm 
and Sundqvist address this endogeneity in their paper and find learning by doing rates around 5 
percent, and learning by searching rates around 15 percent, suggesting that R&D, rather than 
learning-by-doing, contributes more to cost reductions.10   

This work is preliminary, and needs to be replicated with other data sets before it can be 
considered a definitive answer to the relative role of LBD versus LBS.  However, it can be used 
to provide some guidelines for modeling technological change.  First, it suggests that both 
mechanisms (LBD and LBS) are relevant.  However, as of yet, no study has addressed potential 
interactions between LBD and LBS. For example, experience may reveal which attributes of a 
technology need attention, and thus inform the direction of future R&D.  Second, it suggests that 
the relative importance of each must be considered when calibrating models including both types 
of learning.  The main lesson here is to avoid double counting.  A LBD rate of just five percent is 
lower than typically reported in the LBD literature, where learning rates of 15-20 percent are 
common.  A simple one-factor LBD curve shows the relationship between capacity and costs, 
but does not address causation.  A two-factor curve begins to address this causation.  As such, 
while the combined effect of LBD and LBS in a two-factor model may be comparable to learning 
rates from a one-factor model, the individual components should be smaller. 

Modeling Approaches in Practice 

Despite concerns about causality the empirical tractability of learning curves has lead to 
the wide use of learning-induced TC throughout the literature, particularly in disaggregated 
“bottom-up” models (including the NEMS model used by the Energy Information 
Administration; EIA 2003).  Disaggregated models are well-suited for incorporating learning 
because of their rich technology specificity, which more easily lends itself to a learning curve for 
each technology.  Some more aggregated models also use learning, but it is not as common. One 
reason is that learning tends to be thought of as a technology-specific phenomenon and is 
therefore harder to apply in the typical aggregation of a top-down model. 

                                                 
10 To avoid problems with endogeneity, Nemet (2006) uses simulation techniques to decompose cost reductions for 
PV cells into seven categories.  Plant size (e.g. returns to scale), efficiency improvements, and lower silicon costs 
explain the majority of cost reductions.  Notably, most of the major improvements in efficiency come from 
universities, where traditional learning by doing through production experience would not be a factor.  Learning 
from experience (e.g. through increased yield of PV cells) plays a much smaller role. 
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The most common way to capture learning-induced TC in climate policy models is based 
on an exponential relation between unit cost and cumulative output, as in (4) above.  This implies 
that a doubling of experience will reduce specific costs by a factor of 2-α, also known as the 
progress rate.  This formulation only requires the output and cost history to parameterize the 
learning function.  Two factor learning models, where both cumulative capacity and cumulative 
R&D enter the cost function, can be represented by appending (R&D)-β to (4).   

A recent summary (Section 11.5, IPCC WGIII 2007) of four bottom-up energy models 
reported single-factor learning models with rates between 4 and 19 percent – and in the case of 
solar photovoltaics in the MESSAGE model, 28 percent.  Among those models that can also 
include two-factor learning models, the second factor tends to be additive; that is, the LBD rate 
remains the same while the effect of R&D is added.  Doubling R&D is modeled to have between 
a 1 and 11 percent effect on costs.  

Goulder and Mathai (2000) provide one example of an aggregate approach to modeling 
LBD.  Rather than modeling cumulative knowledge to be a function of R&D investment, they 
assume it is a function of abatement.  With this specification, current abatement acts as a learning 
investment in knowledge, analogous to R&D investment.  The result is similar to many other 
LBD studies in that both the optimal carbon tax is lower at all points in time and that for any 
given carbon tax, there may be considerably more total abatement.  And, as is the case with 
ordinary learning models, the effect of LBD on the slope of the optimal path of abatement is 
ambiguous, as learning both motivates earlier abatement to further lower future costs and later 
abatement to then take advantage of those lower costs. 

Summary and looking forward 

Much like the R&D discussion, an important agenda for the modeling community is 
clearer reporting of benchmark model results and responsiveness, and comparison to historical, 
empirical data.  Among the seven features noted earlier, the first three remain relevant:  baseline 
productivity growth, elasticity of energy demand over the near, medium, and long term, and, for 
policy simulations, a comparison of the range of simulated relative prices compared to historic 
variation.  In models that combine R&D and LBD, it is particularly important to conduct this 
type of benchmarking to ensure that the model is not double counting the potential gains from 
technological change, and continues to replicate key benchmark features.  

A key challenge for moving our understanding of learning by doing forward is 
disentangling the causal forces that lead to lower costs.  While the statistical correlation between 
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experience and lower costs is strong, understanding the causes of cost reductions is necessary to 
make informed policy decisions.  Unfortunately, separately identifying the various learning 
mechanisms is difficult.  Learning through experience is confounded with more conventional 
learning through R&D, where R&D may be poorly measured and typically related to output and 
capacity.  An important area for further work is to try and disentangle these effects.  

Government R&D 

Until now, we have focused primarily on the incentives faced, and activities conducted, 
by private firms.  However, governments also play an important role in energy R&D.  For 
example, in 2003, U.S. industry spent $1.8 billion on energy R&D (National Science 
Foundation, 2006).  The U.S. Department of Energy spent $2.5 billion (US Department of 
Energy 2004).11   This government investment plays several roles, each of which has important 
implications for climate policy models.   

First, note that government R&D can help to compensate for underinvestment by private 
firms.  Unlike firms, the government is in position to consider social returns when making 
investment decisions.  In addition, government R&D tends to have different objectives than 
private R&D.  Government support is particularly important for basic R&D, as long-term 
payoffs, greater uncertainty, and the lack of a finished product at the end all make it difficult for 
private firms to appropriate the returns of basic R&D.   

This combination of public and private efforts complicates efforts to model R&D.  
Focusing on private efforts suggests that a wedge should exist between social and private returns 
to R&D.  However, government R&D aims, at least in part, to close this gap.  However, there is 
little empirical evidence specifically on the returns to government R&D.  This is due, in part, to 
the nature of government projects, which are often more basic and long term in nature, making 
estimating returns difficult.  Given this, estimating the gap between private and social rates of 
return that exist after accounting for both private and public energy R&D spending is an 
important question for future research.12  

                                                 
11 Note that this is not the total DOE budget, as much of which goes to defense projects.  Rather, it is DOE budget 
items focused on energy supply or energy efficiency. 
12 Continued calls for additional government support for energy R&D suggest that government funding has not 
closed this gap completely.   
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If government R&D successfully narrows the gap between private and social rates of 
return, this effect should be acknowledged in baseline models.  However, if that is the case, it is 
also important for models to acknowledge that such policy interventions will need to continue for 
the simulated results to hold.  That is, if a baseline simulation implicitly includes existing 
government R&D efforts as part of its calibration, policy simulation must assume that this 
government R&D continues.  Furthermore, any additional government R&D that occurs in a 
policy simulation should properly be credited as a marginal increase over baseline government 
R&D efforts.   

In addition to correcting for underinvestment by private firms, many government R&D 
projects aim to improve commercialization of new technologies (referred to as “transfer” from 
basic to applied research).  Such projects typically combine basic and applied research, and are 
often done through government/industry partnerships (National Science Board, 2006).  For 
example, the United States passed several policies in the 1980s specifically designed to improve 
transfer from the more basic research done at government and university laboratories to the 
applied research done by industry to create marketable products.13   As such, this technology 
transfer can be seen as a step between the processes of invention and innovation.  Empirical 
work suggests that these policies have had the desired effect.  For example, Dai, Popp, and 
Bretschneider (2005) find that Bayh-Dole Act, which facilitated university patenting, led to more 
university patents, but not more R&D, suggesting that universities responded to the Bayh-Dole 
Act by patenting results that previously would have went unpatented.14   Related to energy, Popp 
(2006b) finds that energy patents spawned by government R&D are cited more frequently than 
other energy patents.  More importantly, after passage of these technology transfer acts, the 
children of these patents (that is, privately-held patents that cite government patents) are the most 
frequently cited patents, suggesting that transferring research results from the government to 
private industry produces valuable research results. 

The role of government R&D for commercialization is not explicitly modeled in climate 
policy simulations, as most models do not include the necessary level of detail.  However, they 
provide important lessons for interpretation.  In particular, these results suggesting that model 

                                                 
13 Examples include the Stevenson-Wylder Technology Innovation Act of 1980, the Bayh-Dole Act of 1980, and the 
Federal Technology Transfer Act of 1986. 
14 The hope of Bayh-Dole was that these patents would increase licensing opportunities, so that private firms would 
help to market university inventions.  See Sampat (2006) for further discussion. 
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results on the potential of technological change should be considered a “best-case” scenario.  For 
such results to be realized in practice, policy makers need to be aware of the lessons from the 
microeconomic literature on technology transfer and ensure policies are in place to make optimal 
use of the results of both public and private R&D. 

In the end, simulation models used for policy analysis rarely include government R&D, 
even though government R&D tends to be a frequent policy lever.  But, as this section 
highlights, we have little empirical evidence that could be used to model the interaction of public 
R&D, private R&D, and eventual technological change.  And, even if such historical evidence 
existed, it might be hard to extrapolate given the wide variety of government R&D activities, 
management structures, and likely effectiveness over time.  Perhaps the best guidance for the 
moment is to recognize that current trends in technological change exist alongside substantial 
government expenditure that likely need to continue just in order to maintain those baseline 
trends.  Moving forward, it would be valuable if future empirical work identify the impact of 
significant changes in government R&D, distinct from private R&D and other relative price 
changes. 

What about technology diffusion? 

The process of technological change ends with diffusion.  Technological advances are of 
little use unless society makes use of the innovation.  Diffusion refers to the process by which a 
new technology gradually penetrates the relevant market.  Often times, a technology that appears 
to surpass competing technologies in performance and cost will not immediately be chosen over 
existing technologies.  A key question is whether this slow diffusion is a result of rational actors 
responding to varying incentives, or due to market inefficiencies. As the preceding sections 
illustrate, there is a robust literature on the links between environmental policy and innovation, 
including both empirical studies and policy modeling, as well as representations of learning-by-
doing.  In contrast, diffusion of environmental technologies once they become cost-effective 
receives less attention.  While diffusion is clearly a distinct area of empirical work, climate 
models diverge in their treatment of diffusion: top-down models without technology detail 
typically subsume diffusion into trends in sectoral productivity, while technology-rich bottom-up 
models typically include more ad hoc assumptions to constrain the penetration of new 
technologies.   

Despite the mixed and relatively ad hoc treatment of diffusion in climate models, 
encouraging the diffusion of new technologies is clearly an important policy goal.  Examples of 
policies that encourage diffusion of alternative technologies include tax credits for hybrid 
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vehicles and California’s million solar roofs plan.  In this section we briefly review the empirical 
and simulation literature on technology diffusion.  Here, there a couple of issues to consider.  
One is the time lag between invention and adoption.  Second is the flow of knowledge across 
regions.  In each case, we ask where each strand of research could usefully inform or be 
informed by the other. 

The timing of diffusion 

The diffusion of a new technology is a gradual, dynamic process.  New technologies are 
not adopted en masse.  Rather, adoption usually begins with a few early adopters, followed by a 
more rapid period of adoption, with the rate of adoption leveling off once most potential users 
have adopted the technology.  This process generates the well-known S-shaped diffusion curve: 
the rate of adoption rises slowly at first, speeds up, and then levels off as market saturation 
approaches.  Figure 1 illustrates such a curve, with market penetration plotted on the y-axis, and 
the passage of time plotted on the x-axis.   Early attempts to explain this process focused on the 
spread of information (epidemic models, such as Griliches 1957) and differences among firms 
(probit models, such as David 1969).  More recently, researchers combine these explanations 
while adding potential strategic decisions of firms.   These papers find that firm-specific 
differences explain most variation in adoption rates, suggesting that gradual diffusion is a 
rational process in response to varying incentives faced by individual actors.   

Environmental technologies can be different, however.  Incentives to adopt end-of-pipe 
technologies that only serve to reduce emissions must come from environmental regulation.  
Therefore, it is not surprising that the few studies that address adoption of environmental 
technologies find that regulations dominate all other firm-specific factors.  Gray and Shadbegian 
(1998), Kemp (1998), Kerr and Newell (2003) and Popp (2005) all show that environmental 
regulations increase the probability of adopting environmentally-friendly technologies.  While 
the response varies by firm characteristics, regulations are the most important explanatory 
variable.   

In contrast, energy efficiency and fuel-saving technologies may be adopted more slowly, 
as it is cost savings, rather than a direct regulatory requirement, that matter.  This can be 
influenced by policies that raise prices.  Rose and Joskow (1990), for example, find that the 
adoption of fuel-saving technology by U.S. electric utilities is positively correlated with fuel 
prices.  However, gradual diffusion is more likely and, even without climate policy, some 
adoption will occur, much like traditional technologies. 
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This suggests that modeling climate policy ideally would distinguish among different  
types of climate mitigating technology with particular emphasis on whether they might be 
subject to direct regulation.   For example,  mandating integrated gasified combined cycle coal 
plants, hybrid cars, or even more efficient building shells would imply more rapid technology 
diffusion of the sort noted for end-of-pipe technologies   Such policies might be motivated in part 
because of evidence of market failures in technology adoption beyond the pricing of greenhouse 
gas externalities.  Jaffe and Stavins (1995) find that higher energy prices lead to greater use of 
insulation in new home construction, but that the costs of installation are a more important 
consideration.  This is part of a more general literature that finds inefficiencies in adoption of 
energy-saving technologies by consumers, with various explanations ranging from consumers 
using high discount rates, to credit-constrained consumers caring more about up-front costs than 
lifetime cost savings, and to uncertainty over future costs (Jaffe et al, 2003).  Hence, while the 
general result of the diffusion literature is that gradual diffusion is rational, market failures may 
contribute to slower adoption of energy efficient technologies. 

Despite the interest in these types of policies, most top-down climate models without 
technology detail typically aggregate to the industry level.  Such models have a difficult time 
modeling technology mandates, let alone making technology diffusion responsive to such 
policies.  Bottom up models and others with technology detail do have the capability to model 
such mandates, but instead tend to focus on ad hoc and unresponsive assumptions constraining 
technology diffusion.  The MERGE model, for example, assumes new technologies are 
constrained to 1 percent of production in the year they are introduced, and can expand by a factor 
of 3 in each decade thereafter (Manne and Richels 2002).  The NEMS model used by the U.S. 
Energy Information Administration uses both adjustment costs to increase the short-run costs of 
rapidly increasing capacity and absolute constraints based work by Mansfield and Blackman 
(DiPardo 2000).  In contrast, the IGSM model introduces an additional, fixed factor that acts as 
an adjustment cost to mimic gradual penetration (McFarland et al 2004).  While this does make 
penetration responsive to price incentives, it does not consider the potential increase in diffusion 
rates created by a mandate or targeted regulation. 

Absent this interest in modeling the effect of mandates on diffusion, it is worth noting 
that in many cases, simplistic representations that basically ignore diffusion may be sufficient.  It 
is not unusual to see market penetration of a product in 10 years or less.  For example, Popp 
(2001) finds that new energy patents have their largest impact on energy consumption within 
four years.  Combined with the results of Popp (2002), which finds that the median lag of energy 
patenting activity with respect to prices is also about 4 years, suggest that the main impact of 
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price-induced technological change will occur within one decade.  Thus, gradual diffusion will 
be less relevant in models where time periods modeled are decades, rather than individual years.  
Moreover, in highly-stylized models that include highly aggregate representations of technology, 
calibrating the model based on the observed effects of technological change will implicitly allow 
for diffusion, as the observed effects are not the full potential of technology, but rather the 
realized gains from technology that has diffused.  For example, Schwoon and Tol (2006) develop 
a top-down model that includes adjustment costs that effectively slow the penetration of new 
technology.   

Diffusion across regions 

A further complication to modeling the generation and adoption of new technologies is 
the flow of these technologies across regions.  This is particularly important when we consider 
technologies available to developing countries, such as China or India.  The vast majority of 
R&D effort occurs in highly developed countries.  In 2000, global R&D expenditures were at 
least $729 billion.  82 percent of this was done in the OECD, and half was performed by the 
United States and Japan alone (National Science Board, 2006).  Moreover, in a global economy, 
policies in one nation may affect innovation in other nations.  This is particularly likely when the 
regulating economy is an important market for other nations.  For example, Lanjouw and Mody 
(1996) find that the majority of vehicle air emissions patents granted in the U.S. are from foreign 
nations, even though the US was the first country to adopt strict emissions standards.  

There is a large body of literature on technological diffusion across countries (surveyed 
by Keller 2004), but little work focusing specifically on environmental technologies.  In general, 
there are two potential avenues through which foreign knowledge generally can have an 
influence in the domestic economy. First, as noted in our discussion of R&D spillovers, foreign 
knowledge may affect the productivity of domestic R&D.  The “blueprints” represented by 
foreign patents may serve to inspire additional innovation by domestic inventors.  Such 
productivity increases are knowledge spillovers, as the knowledge represented by the foreign 
patent creates a positive externality – knowledge from abroad that is borrowed by the domestic 
inventor (Griliches 1979).  Second, new technologies owned by foreigners may be simply diffuse 
and be adopted directly by domestic firms. 

Buonanno, Carraro, and Galeotti (2003) provide perhaps the only example of foreign 
knowledge spillovers in a simulation model, with a somewhat ad hoc calibration of spillover 
parameters to match R&D-output ratios.  More generally, knowledge spillovers and especially 
international technology transfer (after a technology is available for export) have not been 
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modeled directly in simulations of climate policy.  Given these two avenues for knowledge to 
enter the economy, representing foreign knowledge influences is an important area for 
development in integrated assessment models.  At the same time, empirical research on the 
extent to which foreign knowledge influences domestic inventors will be necessary to calibrate 
these models, as little of the  work on foreign knowledge spillovers is at the level of aggregation 
necessary to calibrate such a model.   

There may also be need to consider the interaction of international diffusion and domestic 
R&D.  Lanjouw and Mody (1996) and Popp (2006c), for example, find evidence of innovation in 
countries that adopt regulations late, suggesting that these countries do not always take 
advantage of technologies “off the shelf” that have been developed elsewhere.  Instead, adaptive 
R&D seems to be necessary to suit the technology to the local market, as these later patents are 
more likely to cite earlier foreign than domestic inventions.  The need for adaptive R&D 
suggests that either (a) diffusion across countries will be slower than within countries, as an 
additional research step is needed to fit the technology to local conditions, or (b) that foreign 
knowledge adopted directly (i.e. without adaptive R&D) will be an “imperfect fit” for local 
conditions, and thus be less effective than it would be in the technology’s initial market. 

Conclusions 

Technological change is at once the most important and least understood feature driving 
the future cost of climate change mitigation.  Quantitative research has tended to follow two 
distinct and often isolated paths:  empirical, microeconomic work on the nature of R&D and 
technological progress, and simulation modeling of macroeconomic models with some 
technology detail and assumptions about how productivity and technology cost respond to 
various activities.  While these simulation models are often used to provide quantitative guidance 
to policy debates, a review of recent work suggests that efforts to endogenize technological 
change often fail to calibrate themselves to important empirical benchmarks at worst, and fail to 
clearly communicate their assumptions at best.  Meanwhile, microeconomic research often fails 
to focus on important questions asked by the simulation modelers. 

What might a coherent research agenda look like, based on a review of both research 
areas?  First, simulation models should more clearly communicate what benchmarks are being 
matched, in terms of baseline productivity growth and energy price elasticities, as well as the 
gross and net returns to energy R&D (both incremental and discrete increases from the baseline).  
To the extent models involve multi-sector, or multi-region R&D, assumptions about spillovers 
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should be explained.  When models include both R&D and LBD, efforts to avoid double 
counting the potential for R&D or experience to lower costs should be explained. 

Second, microeconomic work should attempt to provide more information about 
spillovers across industries and regions.  A high priority should be efforts to disentangle R&D 
and LBD effects to avoid the double counting just noted.  Finally, given the prevalence of 
government R&D proposals, it would be valuable to explore the relative contribution of public 
versus private R&D.  Simulation work might also usefully explore how both types of R&D 
might usefully be employed in a model. 

The IPCC Third Assessment Report on Mitigation noted the importance of exogenous 
technology assumptions, particularly the rate of improvement in energy efficiency, in estimating 
mitigation costs.  Six years later, the Fourth Assessment Report on Mitigation describes a 
veritable explosion of research into how endogenizing technological change affects costs.  Yet, 
in many ways, we are no closer to understanding the answer of how policies will affect the 
overall rate and direction of technological change – we have replaced previously transparent, 
exogenous assumptions with complex and often opaque assumptions about endogenous 
pathways.  With a more coherent agenda combining empirical microeconomic analysis with a 
clear eye to the needs of the community of simulation modelers, and vice versa, perhaps we can 
improve our understanding of how technological change is likely to respond to current and future 
mitigation policies. 
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Figure 1 – The S-shaped Diffusion Curve 
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