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ABSTRACT

Financial crises are widely argued to be due to herd behavior. Yet recently developed models of herd

behavior have been subjected to two critiques which seem to make them inapplicable to financial

crises. Herds disappear from these models if two of their unappealing assumptions are modified: if

their zero-one investment decisions are made continuous and if their investors are allowed to trade

assets with market-determined prices. However, both critiques are overturned---herds reappear in

these models---once another of their unappealing assumptions is modified: if, instead of moving in

a prespecified order, investors can move whenever they choose.
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Capital flows to emerging markets are notoriously volatile. Many researchers have

argued that a substantial fraction of this volatility is due to herd behavior. In discussing

financial crises in developing countries, for example, Calvo and Mendoza [5] say that “ ‘the fall

from grace’ in world capital markets . . . may be driven by herding behavior not necessarily

linked to fundamentals.” Similar views can be found in other recent work, including that

of Chari and Kehoe [8], Cole and Kehoe [9], and Sachs, Tornell, and Velasco [16]. More

generally, the belief that herd behavior is widespread in financial markets is held by both

market participants and economists (Devenow and Welch [10, p. 603]).

Recently, models of herd behavior in which agents rationally mimic the behavior of

other agents have been developed (by, for example, Banerjee [3] and Bikhchandani, Hirshleifer,

and Welch [4]). In these models, herds occur because information becomes trapped; agents’

actions do not reveal their underlying signals. While these models, at first glance, seem

appealing for understanding financial crises in emerging markets, a closer look reveals a

problem: In order to generate herds, the models include two stark simplifying assumptions

which make applying the models to financial crises difficult.

The two stark assumptions are that investment decisions are discrete, zero-one deci-

sions and that there are no traded assets with market-determined prices. Researchers have

shown that if the assumptions are relaxed, then the models no longer generate herds. Lee [14]

shows that if investment decisions are continuous instead of discrete, then herds disappear

from the models. Avery and Zemsky [2] and Glosten and Milgrom [11] show that once the

models allow for trade in financial markets, prices reveal information, and herds disappear.

With the more natural assumptions, these models do not generate herds because investors

can use the continuous variable, either investment or prices, to infer private signals; hence,

no information gets trapped. We label these critiques the continuous investment critique and

the price critique.

In modeling financial crises it seems undesirable to abstract from continuous invest-

ment or prices. The scale of investments in financial markets can often be easily changed so

that discrete investment assumptions seem unappealing. Moreover, prices are central to the



operation of financial markets so that abstracting from prices seems particularly unappealing.

Taken together, the critiques suggest that the early models of herd behavior, at least as they

stand, are not applicable to financial crises.

Yet, as we will show, both critiques can be overturned by replacing another stark

simplifying assumption of the early herd models with an assumption that is more natural

for applied situations. The stark assumption is that of exogenous timing, namely, that in-

vestors move in a prespecified order. We show that when this assumption is replaced by the

assumption of endogenous timing–when investors can move whenever they choose–the two

critiques are overturned; herds reappear in both the model with continuous investment and

the model with prices.

In our continuous investment model, investors must choose how to divide their assets

between a risky project and a safe one. The returns in the risky project are determined by

whether the economy’s underlying state is high or low. Information about that state arrives

slowly in the economy, in the form of a signal in each period. This signal is received privately

by one of the investors. Other investors attempt to infer this signal from observed levels of

investment. In each period, investors face a trade-off between investing and waiting to invest:

waiting is potentially beneficial because it lets investors gain information, but it is costly

because of discounting. In this model, a small number of high signals leads all investors to

invest in the risky project while a small number of low signals leads all investors to not invest

in the risky project. The model generates herd-like behavior because, at some point, the

benefits from waiting for more information are outweighed by the costs from waiting due to

discounting, and investors choose not to wait for future signals. The information contained in

future signals is never revealed to the market, and in this sense, information becomes trapped.

We call these outcomes herds because they satisfy two criteria: investors make the

same decisions regardless of their private signals, so that the outcomes are a cascade, and

the outcomes are inefficient relative to those that emerge from solving a mechanism design

problem. The outcomes in our continuous investment model are inefficient because of an

information externality that leads the private return to waiting to be lower than the social
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return. If uninformed investors would wait to receive signals before acting, the market would

receive more information in the future, and all uninformed investors would benefit. Each un-

informed investor ignores this social benefit to waiting when making decisions, thus rendering

equilibrium outcomes inefficient. Our model with prices works similarly.

Thinking about policy toward financial crises requires distinguishing between situa-

tions in which outcomes are efficient and those in which they are inefficient. Suppose a model

generated a cascade in which investors fled a country, leading to a financial crisis, but this

cascade was efficient. While this outcome may be striking, there is no role for policy in trying

to prevent it. If, however, the cascade were inefficient, and therefore a herd, there may be a

role for policy.

Our two models share the key feature with existing herd models that investors are

informationally large: the decisions of just a few investors can set off herds. This feature

is desirable in the context of capital flows to emerging markets because such capital flows

are dominated by a relatively small number of portfolio managers. While these flows are

large from the perspective of the emerging markets, they are small from the perspective of

markets in developed countries. Not surprisingly, developed countries have a considerable

amount of specialization in acquiring information about emerging markets, so that investing

is dominated by a relatively few portfolio managers.

Our work here is related to an extensive literature on herds. Several studies are closely

related to ours. Caplin and Leahy [6], Chamley and Gale [7], and Gul and Lundholm [13]

allow for private signals and endogenous timing of decisions; however, none of that work is

directed toward the critiques of the early herd literature. See also the work by Vives [18] on

social learning.

Two studies have attempted to overturn the critiques of the herd literature. Lee [15]

shows that, with exogenous timing, fixed costs of trading can lead informed investors to stop

trading after some point, so that information becomes trapped. If trading costs are small,

however, almost all of the information is revealed through prices. In international financial

markets, the volume of trades is enormous, and fixed costs of trading seem small. Avery and
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Zemsky [2] offer a definition of herd behavior quite different from that in the literature. They

show that with exogenous timing, herds in their sense can occur, but cascades cannot. We

follow the rest of the literature in requiring that for an outcome to be a herd, it must also be

a cascade. Hence, Avery and Zemsky’s model does not generate herds in our sense.

Finally, our work is also related to the large literature about prices revealing informa-

tion which has followed Grossman and Stiglitz [12] and to an extensive literature on bubbles

in asset prices (for example, Allen, Morris, and Postlewaite [1]).

1. Herds with Continuous Investment

We develop an economy with continuous investment along with endogenous timing

and slow arrival of information. We show that this economy has herds and that endogenous

timing is critical in generating herds of investment. We then describe Lee’s [14] continuous

investment critique of the early herd models in terms of our setup.

1.1. The Economy

Consider an infinite horizon economy with periods denoted t = 0, 1, . . . with an infinite

number of risk-neutral investors. Each investor starts with one unit invested in a safe project.

Investors must make a one-time decision to invest in a risky project. If they have not invested

in the risky project before period t, then in period t they can either wait until period t+1 or

invest some amount xt ∈ [0, 1] in the risky project and the rest in the safe project. Investors
discount the future at rate 1/(1 + r).

The returns on the risky project depend on the state of the economy y, which is either

high, H, or low, L, but is initially unknown to investors. The present discounted value of

investing x units in the risky project is f(x) if the state is high and 0 if the state is low. (If

the state is high, we can think of the project as yielding a per period return of f̃(x), so that

f(x) = f̃(x)/r is the perpetuity value of f̃(x).) The safe project yields a per period dividend

of r per unit invested in the safe project, so that the perpetuity value of one unit of the safe

project is one. This dividend is paid at the beginning of the period.1
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We assume that f is strictly concave, f 0(0) is finite, and f(0) = 0. The assumption

that f 0(0) is finite is natural in any applied situation with either a fixed cost or a minimum

scale of production. If in any period t an investor decides to invest and assigns probability p

that the state is high, then this investor faces a standard static portfolio problem given by

V (p) = max
x∈[0,1]

pf(x) + (1− x) (1)

where V (p) is the value of investing when the probability of a high state is p. Let x(p) denote

the solution to this problem. Notice that V (p) ≥ 1 since it is feasible to set x = 0 and that
V (p) > 1 if and only if x(p) > 0. The first-order condition at an interior point is f 0(x) = 1/p.

Let p = 1/f 0(0). Clearly, the optimal investment of an investor in period t given beliefs p is

x(p) =

(
(f 0)−1

Ã
1

p

!
if p ≥ p

)
(2)

and 0 otherwise, so that p is the cutoff level for investment.

Information arrives slowly in our economy. In each period t, the economy receives a

signal which can take on one of two possible values s ∈ {H,L}: that the state of the economy
is high or low. The signals are informative and symmetric in the sense that

Pr(s = H | y = H) = Pr(s = L | y = L) = q > 1/2 (3)

as well as conditionally independent over time. Each period the signal is randomly distributed

to one and only one agent among the set of investors who have not already received a signal

and is privately observed by that agent.2

The timing in each period is that first an investor receives a signal and then invest-

ment decisions are made. The only publicly observable event in any period t is the aggregate

quantity of investment, denoted Xt. The public history ht = (X0, X1, . . . , Xt−1) records the

aggregate quantity of investment in each period up through the beginning of period t. In-

vestors also privately record the signal they receive, if any, and the period in which they

receive it. Thus, the history of an investor i in period t who has received a signal in r is

hit = (ht, sr, r), and the history of an investor who has not received a signal is simply the

public history.
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In each period t, given their histories, investors can be described as belonging to one of

four groups. Any investor who has already invested is inactive. The active investors in period

t consist of a newly informed investor who receives the signal at the beginning of period t,

previously informed investors who received a signal in some period r before t, and uninformed

investors who have not yet received a signal.

An investor’s strategy and beliefs are sequences of functions xt(hit) and pt(hit) that

map the investor’s histories into actions and into the probability that the state is high. Notice

that we have imposed symmetry by supposing that all investors who have the same histories

take the same actions and have the same beliefs. Let pt(ht) be the public beliefs, that is, the

probability that the state is high, conditional on the public history ht.

The payoffs are defined as follows. The payoff to an investor who makes an investment

decision in period t with history hit is

Vt(hit) = max
x∈[0,1]

pt(hit)f(x) + (1− x). (4)

Note that Vt(hit) does not include current dividends from the safe project and, hence, is the

post-dividend payoff to investing.

The post-dividend payoff to an investor who waits in period t is

Wt(hit) = [r + X
hit+1

µt(hit+1|hit)max{Vt+1(hit+1),Wt+1(hit+1)}]/(1 + r) (5)

where µt(hit+1|hit) is the conditional distribution over histories in t+1 given the history in t.
Clearly, an investor invests in period t if Vt(hit) ≥ Wt(hit) and waits otherwise. Notice that

the conditional distribution µt(hit+1|hit) is induced from the strategies and the structure of

exogenous uncertainty of the game in the obvious way.

We refer to this game as the private signal game. A perfect Bayesian equilibrium of

this game is a set of strategies xt(hit), a set of conditional distributions µt(hit+1|hit), and a
set of beliefs p(hit) such that (i) for every history hit, the investment and waiting decisions

are optimal and (ii) the conditional distributions µit(hit+1|hit) and the beliefs pt(hit) are
consistent with Bayes’ rule wherever possible and arbitrary otherwise.
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In the game, investors get information from two sources: they receive private signals,

and they see the investment decisions of others and try to infer their underlying signals. In

a region where uninformed investors can accurately infer the underlying signals of informed

investors, it is as if these uninformed investors see the signal (with a lag) and update their

beliefs using Bayes’ rule. For arbitrary beliefs p, we use Bayes’ rule to define PH(p) and PL(p)

as the updated beliefs that the state is high, given that signals H and L were either directly

received or indirectly inferred:

PH(p) =
pq

pq + (1− p)(1− q)
(6)

PL(p) =
p(1− q)

p(1− q) + (1− p)q
(7)

where q is defined in (3). Let p(0) = p0, p(1) = PH(p(0)), p(2) = PH(p(1)), and so on, and

let p(−1) = PL(p(0)), p(−2) = PL(p(−1)), and so on. Thus, p(k) for k > 0 is the prior

probability that the state is high if k high signals have been received, and p(k) for k < 0 is

the prior probability that the state is high if k low signals have been received. Notice from

the symmetry in (3) that

PH(PL(p)) = PL(PH(p)) = p (8)

so that the effect on the prior of a given set of signals is summarized by the number of high

signals minus the number of low signals in the set. Thus, for example, receiving two high

signals and one low signal yields the same prior as receiving one high signal.

Now focus on the region of the parameter space that satisfies these two assumptions:

V (p(0)) > 1 (9)

V (p(−1)) = 1. (10)

To interpret these assumptions, recall that V (p) > 1 if and only if x(p) > 0. Assumption (9)

implies that if an investor is forced to invest at the initial prior, this investor will invest a

strictly positive amount in the risky project. Assumption (10) implies that if an investor is

forced to invest at beliefs p(−1), this investor will invest nothing in the risky project. These
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assumptions imply that the cutoff level for investment p defined in (2) is between p(0) and

p(−1). For an alternative interpretation, suppose f(x) = Ax, for some constant A, so that f

is linear. Then the assumptions reduce to p(0)A > 1 and p(−1)A ≤ 1.
The key decision in the model is to invest in the current period or to wait. Waiting

is costly because of discounting, but waiting is valuable for two information-related reasons.

First, waiting to receive information is beneficial because investors have the option of not

investing if the information makes investors sufficiently pessimistic. We call this value the

no investment option value. Second, even if investors are sufficiently optimistic that they

know they will eventually invest, information allows the investor to fine tune the scale of

their investment. We call this value the fine-tuning value.

In addition to (9) and (10), we make an assumption that ensures that the no investment

option value is large relative to discounting, and one that ensures that the fine-tuning value

is small relative to discounting. To ensure that the no investment option value is large, we

assume that

V (p(0)) < [r + vH(p(0))V (p(1))+ vL(p(0))]/(1 + r) (11)

where vH(p) = pq + (1− p)(1− q) is the probability that a high signal is received when the

prior is p and vL(p) = p(1− q)+ (1− p)q is the probability that a low signal is received when

the prior is p.

Assumption (11) essentially says that discounting is small relative to the value of

information if that information could lead the investor to invest nothing in the risky project.

The left side of (11) is the value of investing at p(0). Now suppose that an uninformed investor

knows that waiting (rather than investing) will allow the investor to draw the following

inferences from the actions of informed investors: with probability vH(p(0)), a high signal

has occurred, so that the prior rises to p(1) and, with probability vL(p(0)), a low signal has

occurred, so that the prior falls to p(−1). The right side of (11) is the payoff to the (possibly)
suboptimal strategy of investing if the prior rises to p(1) and never investing if the prior falls

to p(−1), where the payoff to never investing is clearly 1. Then (11) says that the investor is
better off waiting to receive this type of information rather than investing immediately. In
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this sense, assumption (11) says that the value of the no investment option is large relative

to discounting. This assumption is satisfied if r is sufficiently small.

To ensure that the fine-tuning value is relatively small, we assume that

V (p) > [r + vH(p)V (PH(p))+ vL(p)V (PL(p))]/(1 + r) (12)

for all p ≥ p(1). This assumption requires that investing at a prior of, say, p dominates waiting

one period, indirectly inferring a signal, and then investing the optimal larger amount if the

inferred signal is high, so that the prior rises to PH(p), and the optimal smaller amount if

the inferred signal is low, and the prior falls to PL(p). Assumption (12) thus says that the

fine-tuning value is small relative to discounting.

To understand the intuition for assumption (12), suppose that f(x) = Ax for x ≤ 1/2
and A/2 for x > 1/2. Then, if (9) holds, (12) automatically holds, since the value of fine-

tuning is zero: it is optimal to run the project at rate 1/2, regardless of whether the inferred

signal about the state in the next period turns out to be high or low. That is, the optimal

size of the project does not vary at all with marginal changes in information. To see this,

note that since p, PH(p), and PL(p) are all greater than or equal to p(0) in each of the

corresponding portfolio problems, it is optimal to set x = 1/2, so that V (p0) = p0A/2 for p0

equal to p, PH(p), or PL(p). Since the prior p is the mean of the posterior distribution, it

follows that p = vH(p)PH(p) + vL(p)PL(p). With some manipulation, we can rewrite (12) as

pA > 1, which is implied by (9). More generally, when f is sufficiently concave at x(p) for

p ≥ p(1), (12) is likely to be satisfied because the optimal size of the project varies little with

marginal changes in information.

We now informally describe investor strategies. The strategy of uninformed and previ-

ously informed investors is to invest x(p) if and only if the prior is at least p(1). The strategy

of newly informed investors is to invest x(p) if and only if the prior p is at least p(0). From

these strategies, it is easy to construct how beliefs evolve.

These strategies lead to the following equilibrium outcomes. The newly informed

investor in period 0 invests if the signal is high and waits if the signal is low. All uninformed

investors wait.
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The decisions in period 1 depend on the history from period 0. If there was positive

investment in period 0, then the uninformed investors infer that the signal in period 0 was

high, their priors rise to p(1), and they all invest, while the newly informed investor in period

1 invests regardless of the signal. We say that this history starts a cascade of investment, in

that all investors invest, and future signals are never revealed to the market. If there was

zero investment in period 0, then the uninformed investors infer that the signal in period 0

was low, their priors fall to p(−1), and they wait. The newly informed investor in period 1
invests if the signal is high, but otherwise waits.

At the beginning of period 2, if there has been no investment in both periods 0 and

1, then uninformed investors’ priors fall to p(−2), and no investor invests in period 2 or any
subsequent period. We will say that this history starts a cascade of no investment, in that

no investors invest, and future signals are never revealed to the market. If there has been no

investment in period 0 but an investment in period 1, then both the uninformed investors

and the previously informed investor have a prior of p(0), they wait, and the newly informed

investor invests if and only if the signal is high.

Let X(k) = x(p(k)) denote the investment level associated with prior p(k). Then,
more generally, histories of the form (0,X(0), 0, X(0), . . . , 0,X(0),X(1)) start cascades of
investment while histories of the form (0, X(0), 0,X(0), . . . , 0, X(0), 0, 0) start cascades of no
investment.

In the appendix, we formally define the strategies and beliefs and prove the following

proposition:

Proposition 1. Under assumptions (9)—(10) and (11)—(12), the strategies and beliefs

described above constitute a perfect Bayesian equilibrium.

Our model generates cascades because, as soon as the public beliefs reach p(1), the

benefits from waiting for more information are outweighed by the costs from waiting due

to discounting, and investors choose to invest rather than to wait for future signals. Once

public beliefs reach p(−2), no newly informed investor invests, and all uninformed investors
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keep their assets in the safe project forever. Thus, in both cases, the information contained

in future signals is never revealed to the market, and in this sense, information becomes

trapped.

1.2. Herds

So far we have shown that our equilibrium generates cascades, that is, outcomes in

which information becomes trapped. This trapping of information need not be inefficient. An

interesting feature of our model is that the equilibrium cascades are also inefficient relative

to some benchmark. We refer to such inefficient cascades as herds. We make the distinction

between efficient and inefficient cascades in order to facilitate future policy analysis of cascade-

like behavior.

Our benchmark captures some of the physical restrictions inherent in the environment.

In the private signal game, the uninformed agents can react to the revealed information only

with a one-period lag. Our benchmark public signal game which captures this lag is as

follows: uninformed agents learn the realization of the period t signal after they have made

their period t investment decisions.

We find the public signal game a useful benchmark for efficiency because its outcomes

are the efficient outcomes of a certain mechanism design problem in the private signal game.

In the mechanism design problem, privately informed investors can report their signals to the

mechanism designer in each period t, and the mechanism designer can communicate these

signals to other investors after period t investment decisions are made. Clearly, truth-telling is

an equilibrium of this mechanism, and the truth-telling outcomes correspond to the outcomes

of the public signal game.

In our public signal game, the signals are observed by all investors. In this game,

the public history at the beginning of period t is st−1 = (s0, s1, . . . , st−1), and there is no

need to record the history of investments. Let zUt(st−1) denote the investment decision in

period t of the uninformed and the previously informed investors with the signal history st−1.

The relevant history for the newly informed agent in period t is st, and the corresponding

investment decision is zIt(st). Let Zt(s
t) denote the aggregate investment in period t. Beliefs
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follow from Bayes’ rule. An equilibrium is defined as before.

We can make our original private signal game parallel to this public signal game as

follows. In the private signal game, the uninformed investors’ strategies are defined over

histories of investment while the informed investors’ strategies include their private signals

as well as histories of investment. Given any realization of a history of signals st, we can

use these strategies recursively to determine aggregate investment as a function of st. For

example, given the initial signal s0 in some history st, the strategies determine the amount

that the informed investor invests and the amount the uninformed investors invest in period

0 and, hence, determine the aggregate investment in period 0, written as X0(s0). Given this

investment and the signal in period 1, the strategies determine the resulting investment in

period 1, written as X1(s
1). Continuing this process, we can recursively determine Xt(s

t),

which denotes the aggregate investment outcome of the original private signal game for a

history of signals st.

Definition. The private signal game has a herd at st if (i) for all future histories

sr containing st, Xr(s
r) does not vary with (st+1, . . . , sr) and (ii) for some future history sr

containing st, Zr(s
r) 6= Xr(s

r), so that the outcomes in the public and private signal games

do not coincide. A herd at st is a herd of investment if Xr(s
r) > 0 for all future histories sr

containing st. And a herd at st is a herd of no investment if Xr(s
r) = 0 for all future histories

sr containing st.

The first clause in this definition of a herd requires that aggregate investments are the

same regardless of the signals, or that the outcome is a cascade. The second clause requires

that aggregate investments are inefficient relative to the public signal game, so that a herd

is an inefficient cascade. Several researchers (including Banerjee [3]) have defined notions of

herd behavior which require only the first clause, our notion of a cascade. In common usage,

however, the term herd entails some form of mistaken behavior. The second clause of the

definition attempts to capture this usage by ensuring that if everyone is doing the same thing,

then relative to the public signal game, they are doing the wrong thing.
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We can show that the model has herds under the following assumption:

V (p(1)) < [r + vH(p(1))V (p(2))+ vL(p(1))W̄(p(0))]/(1 + r) (13)

where W̄(p(0)) = [r + vH(p(0))V (p(1)) + vL(p(0))]/(1+r). Assumption (13) is a strength-

ened version of (11) since, given (10), it is easy to see that (13) implies (11). Assumption

(13) implies that in the public signal game, in any period t, investing at p(1) is dominated

by the following strategy: Wait until t + 1; if the signal is high, invest, and if the signal is

low, wait until t+ 2 and invest if and only if the signal is high. The following proposition is

immediate:

Proposition 2. (Herds with Continuous Investment) Under (9)—(10), (11)—(12), and

(13), the model with endogenous timing has herds of both investment and no investment.

1.3. The Continuous Investment Critique

Our model differs in three key respects from the early models in the herd literature.

First, and most importantly, we have endogenous rather than exogenous timing of investment

decisions. Second, investments are continuous rather than discrete, zero-one decisions. Third,

information arrives slowly over time rather than arriving all at once at the beginning.

Our results overturn one critique of the early herd models, that their ability to generate

herds depends critically on the discreteness of the investment decisions, that is, on the action

space being coarse relative to the signal space (Lee [14]). In particular, Lee shows that if

investment decisions are continuous and the timing of investment decisions is exogenous, then

the early herd models cannot generate herds.

To understand this critique, consider a version of our benchmark model in which the

timing of investment decisions is exogenously specified. Specifically, suppose that in each

period t, only the newly informed investor can invest. We define both a perfect Bayesian

equilibrium and herds for this game in analogous ways to those in the game with endoge-

nous timing. The proof of the following proposition is a straightforward adaptation of the

arguments of Lee [14] and is available in the working paper version of our paper.
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Proposition 3. (The Continuous Investment Critique) Under assumptions (9) and

(10), the model with exogenous timing has no herds of investment.

The idea behind the proof is that as long as the prior is above the cutoff level p, the

investor in period t invests some positive amount, say, xt, given by (2). From the investor’s

first-order condition, the belief of the investor can be inferred to be pt = 1/f 0(xt). The

investor’s signal can then be uncovered using the public belief pt−1.

The basic idea in the exogenous timing model is that investors are forced to wait for

their signals, and given the continuous nature of investment, investors’ actions reveal their

signals. Hence, information does not become trapped, and there can be no inefficient cascades

of investment. In contrast, in the endogenous timing model, investors are not forced to wait

for their signals, and investors find it privately optimal to invest before they receive their

private signals. Since investors do not internalize the benefits to others of waiting to receive

signals and transmitting this information to the market, the outcomes are inefficient.

The assumption that, in each period, only the newly informed investor can invest

can be interpreted in at least two ways. The interpretation in the literature on herds with

exogenous timing is that all investors receive signals at the beginning of the game, but each

investor is assigned a specific period in which to invest. An alternative interpretation is that

both investment opportunities and information arrive slowly and at the same time.

2. Herds with Prices

The other critique of the early herd models is that if investors can trade investment

projects in the models, then the prices of the projects reveal information, and herds disappear

from the models (as in Avery and Zemsky [2] and Glosten and Milgrom [11]). Here we show

that with endogenous timing as well as prices, herds reappear. We also discuss the significant

differences between Avery and Zemsky’s [2] work and ours.
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2.1. The Economy

We consider a variant of the continuous investment model in which investors trade

investment projects. Here we replace one continuous variable, investment, with another

continuous variable, prices, and show that the model can generate herds. We add an infinite

number of risk-neutral market makers, who set prices in a competitive fashion, together with

some idiosyncratic traders. Otherwise, the basic setup is quite similar.

Including market makers is a convenient way of modeling competitive trade between

informed and uninformed investors. In our model, all trades occur between investors and

market makers. We could dispense with the market makers and have direct trades between

investors, but doing so would complicate the notation of the investors’ decision problems

without altering the results.

Introducing idiosyncratic traders guarantees that the equilibrium of our model has

trade. Moreover, in models without idiosyncratic traders, adverse selection leads market

makers to price assets at the extremes of the distribution of values: market makers will sell

a project only at its highest possible value and will buy a project only at its lowest possible

value. As the number of signals increases, so does the adverse selection problem, and trade

eventually disappears. While the adverse selection problem in our model with two signals

is not severe, having idiosyncratic traders ensures that our results immediately generalize to

models with many signals.

The signals about the underlying state arrive slowly to the economy, as in the contin-

uous investment model, and are drawn from a distribution given by (3). In addition to the

market makers, the model has an infinite number of risk-neutral agents. A fraction 1− α of

the agents are idiosyncratic traders, and the rest are (standard) investors.

Idiosyncratic traders are imagined to have some personal reason that makes them want

to buy or sell with probability 1/2 each, in any period, regardless of the price and any other

information. Since these agents trade for idiosyncratic reasons, we do not need to model their

investment decisions or payoffs.

Briefly, the model works as follows. The market maker loses money to the informed
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investors, makes money with the idiosyncratic traders, and makes zero expected profits on

trades. The zero expected profit condition is supposed to capture the idea that market makers

are competitive.

Uninformed investors observe the trades in the market and infer some information

about the informed traders’ signals. This inference works as follows. In the relevant region

of the equilibrium, when an investor sells a project to the market maker, the uninformed

investor infers that the seller was either an informed investor with a low signal or an idio-

syncratic trader. Likewise, when an investor buys a project from the market maker, the

uninformed investor infers that the buyer was either an informed investor with a high signal

or an idiosyncratic trader. The uninformed investors then update their beliefs according to

Bayes’ rule. The prices the market maker charges for buying and selling reflect the same set

of inferences.

The uninformed investors face the same tension as in the continuous investment model,

between investing immediately and waiting for more information, which is costly because of

discounting. At some point, the gains from more information are outweighed by the costs

of discounting, and the uninformed investors invest. Since these investors ignore any social

benefits their actions may have in providing more information to the market, their actions are

privately optimal but socially suboptimal. Thus, the model can generate inefficient cascades

that we call herds.

More specifically, the rest of the model is as follows. Each investor is endowed with

a risky project. Each project requires an investment of one unit of effort to become viable.

Here the cost of effort generates an opportunity cost to investing in the risky project similar

to that of the safe project in the continuous investment model. This investment pays off A

units if the state is high and zero if the state is low. Thus, if an investor has beliefs p that

the state is high and already owns a project, then the payoff from investing, net of the effort

cost, is pA− 1.
In terms of market trades, the investors have three options: sell the project to a market

maker, buy a second project from the market maker, or not trade. In terms of investments,
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we assume that if an investor buys a second project, then the investor must invest in both.

This assumption is innocuous since in equilibrium an investor who wants to buy will always

also want to invest as much as possible. The choices of investors in any period are, then,

four: to sell a project, to buy a second project and invest in both, to invest in their own

project without trading, or to do nothing and wait. We denote these choices by S,B, I,N,

respectively.

These choices are affected by market prices. In general, there may be a vector of

selling prices and a vector of buying prices. Clearly, only the highest selling price and the

lowest buying price are relevant to agents’ decisions. We let QSt denote the price at which

projects are sold to market makers, namely, the highest selling price, and QBt the price at

which projects are bought from market makers, namely, the lowest buying price.

Let Bt denote the number of agents who buy and St the number who sell in period t.

These agents include both the idiosyncratic traders and the investors. The publicly observable

events are zt = (Bt, St, QBt, QSt). The public history is ht = (z0, z1, . . . , zt−1). Here, as before,

hit denotes the history of investor i in period t. This history records the signal the investors

have received, if any, and the period in which they received it, in addition to the public history.

The model’s active agents include idiosyncratic traders as well as the newly informed, the

previously informed, and the uninformed investors. Strategies do not need to be defined for

either idiosyncratic traders or inactive investors.

An investor’s strategy and beliefs are sequences of functions xt(hit) and pt(hit) that

map the investor’s histories into actions {S,B, I,N} and into the probability that the state
is high. The payoff to an investor who buys in period t with history hit and current prices

QBt and QSt is

VBt(hit) = [pt(hit)A− 1] + [pt(hit)A− 1−QBt]

while the payoff to an investor who sells is QSt and the payoff to an investor who chooses I

is VIt(hit) = pt(hit)A− 1. The payoff to an investor who waits in period t is

Wt(hit) =
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X
hit+1

µt(hit+1|hit)max{VBt+1(hit+1), QSt+1(ht+1), VIt+1(hit+1),Wt+1(hit+1)}/(1 + r)

where µt(hit+1|hit) is the conditional distribution over history in t + 1 given the history in

t. The future histories and the conditional distributions are induced from the strategies and

the structure of exogenous uncertainty of the game in the obvious way.

Consider now the market makers. They do not receive signals. In each period t, each

market maker posts prices at which an agent can buy or sell one risky project. The market

maker understands that investors’ signals determine whether investors want to buy or sell.

Thus, when an agent wants to buy a risky project, the market maker has a different posterior

than when an agent wants to sell. Hence, the market maker charges different prices for buying

and selling. In equilibrium, competition among market makers ensures that the buying and

selling prices each yield zero expected profits.

Let Q
0
Bt and Q

0
St denote the prices of a particular market maker. If an agent buys a

project from this market maker, then the market maker receives a payoff of

Q0
Bt −max{pB(ht, Q0

Bt)A− 1, 0} (14)

where pB(ht, Q0
Bt) is the posterior of this market maker. This posterior depends on the market

maker’s posted price because the mix of agents attracted to the market maker depends on

the posted price. (Of course, the mix also depends on prices posted by other market makers,

QBt(ht) and QSt(ht), but these prices are known functions of the history ht and, hence, are

suppressed.) If an agent sells a project, then the market maker receives a payoff of

max{pS(ht, Q0
St)A− 1, 0}−Q0

St (15)

where pS(ht, Q0
St) is the posterior of the market maker given Q0

St.

One interpretation of these payoffs is that each market maker is endowed with a project

which the market maker can run, and each market maker can buy a second project and run it

too. The opportunity cost of selling the project to an agent ismax{pS(ht, Q0
Bt)A−1, 0}. Thus,

if an agent buys a project, the profits of the market maker are given by (14). Clearly, if an

agent sells a project, the profits of the market maker are given by (15). Another interpretation
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of the payoffs is that market makers are intermediaries between the agents in this market and

uninformed agents outside of it.

2.2. Equilibrium

An equilibrium in this model is a collection of strategies xt(hit, QBt, QSt), pricesQBt(ht)

andQSt(ht), and beliefs pt(ht), pB(ht, QBt), pS(ht, QSt), and pt(hit) such that (i) the strategies

xt(·) are optimal for the investors, (ii) the prices set by market makers maximize profits given
in (14) and (15), (iii) a market maker’s profits evaluated at QBt(ht) and QSt(ht) are equal

to zero, and (iv) where possible, the beliefs satisfy Bayes’ rule.

Consider first the beliefs and strategies of the market makers. Competition among

market makers drives their expected profits to zero on both purchases and sales. In equilib-

rium, the market maker loses by trading with informed investors and gains by trading with

idiosyncratic investors. Before trading, the market makers’ beliefs are the public beliefs. The

information revealed in trading leads market makers to value individual projects between the

value implied by public beliefs and the value assigned by the investor given the investor’s

private information.

In terms of characterizing the equilibrium, it is easier to write the strategies as func-

tions of the public beliefs p = pt(ht) rather than the histories ht directly. The equilibrium

prices charged by market makers fall into one of two regions; which one depends on the level of

public beliefs p. First, consider a discriminating region in which the newly informed investor

buys when the signal is high and sells when the signal is low. This is the only interesting

discriminating action by the informed investor because selling when the signal is high and

buying when the signal is low cannot be part of an equilibrium. We claim that in such a

region the equilibrium prices are

QBt(p) = max{PU(p)A− 1, 0} (16)

QSt(p) = max{PD(p)A− 1, 0} (17)

where

PU(p) =
p[(1− α)/2 + αq]

(1− α)/2 + α[pq + (1− p)(1− q)]
(18)

19



PD(p) =
p[(1− α)/2 + α(1− q)]

(1− α)/2 + α[p(1− q) + (1− p)q]
. (19)

In this region, PU(p) turns out to be the posterior beliefs of the market maker conditional

on receiving a buy order, and PD(p) turns out to be the posterior beliefs conditional on

receiving a sell order. (The subscripts U and D indicate that the beliefs move up and down,

respectively.)

We show that in the discriminating region, profits are zero at the equilibrium prices,

and no market maker can gain by deviating. To evaluate the expected profits of the market

maker, we need to form the posteriors of the market maker. Consider a buy decision by an

agent. Using Bayes’ rule, we see that the posterior of the market maker is PU(p), given in

(18). The probability that the agent is an idiosyncratic trader is (1− α)/2. The probability

that the agent is an investor and receives a high signal is αq. The prior probability that the

state is H is p. Thus, the probability that the state is high and an agent buys from the market

maker is given by the numerator of (18). The denominator of (18) is simply the probability

that an agent buys from the market maker. Similar reasoning establishes that the posterior

of the market maker to whom agents sell is given by PD(p), or (19). Given these posteriors,

it follows from (14) and (15) that the expected profits of the market maker are zero at the

prices given by (16) and (17).

In this region, no market maker can gain by deviating. The interesting deviations are

those that lower the price at which investors can buy and raise the price at which investors

can sell. Clearly, in either case, expected profits are negative.

Consider next the region of beliefs in which the newly informed investor takes a nondis-

criminating action, that is, the same action regardless of the signal. We claim that in such

a region, the equilibrium prices are QBt(p) = max{pA− 1, 0} and QSt(p) = max{pA− 1, 0}.
Clearly, now a buy or sell decision does not convey any information to the market maker, and

the market maker’s posterior stays at the public belief p. Substituting these posteriors and

the equilibrium prices into (14) and (15) gives that the expected profits of the market maker

are zero at these prices. Clearly, any deviation by a market maker leads to negative profits.

In equilibrium, public beliefs in period t + 1 are the same as the market maker’s
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posteriors after trading in period t. These public beliefs will always be equal to p(k) for some

integer k, where p(0) = p0, p(1) = PD(p0), p(−1) = PU(p0), and so on. This follows since PU

and PD are symmetric, in the sense that PU(PD(p)) = PD(PU(p)) = p.

To characterize the equilibrium strategies of investors, we assume the analogs of (9),

(10), and (11), that

p(0)A > 1 (20)

p(−1)A < 1 (21)

p(0)A− 1 < vB(p(0))[p(1)A− 1]/(1 + r) (22)

where vB(p) = [(1− α)/2] + α[pq + (1− p)(1− q)] is the probability that investors will see a

buy when the public beliefs are p.

Under these assumptions, if the fraction of idiosyncratic traders, 1− α, is sufficiently

small, then the equilibrium outcome path is very similar to that in the continuous investment

model. For such a fraction, the strategy for newly informed investors is to take a discriminat-

ing action if public beliefs are at p(−1) or higher and to wait otherwise. The discriminating
action is to buy if their signal is high and sell if their signal is low. The strategy of the

uninformed and previously informed investors is to invest in the risky project if their beliefs

are at least p(1) and to wait if their beliefs are at or below p(0). These investors never trade.

From these strategies, it is easy to construct how beliefs evolve.

These strategies lead to the following equilibrium outcomes. Whenever the newly

informed agent is an idiosyncratic trader, the equilibrium outcome is obvious. We focus on

outcomes in which the newly informed agent is an investor. The newly informed investor in

period 0 takes a discriminating action, and all uninformed investors wait.

If the agent in period 0 buys, then the public beliefs in period 1 rise to p(1), and

all uninformed investors invest, setting off a cascade of investment. If the agent in period 0

sells, these public beliefs fall to p(−1), and uninformed investors wait. The newly informed
investor in period 1 buys if the signal is high and sells if the signal is low.
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If the agents in both periods 0 and 1 sell, then public beliefs fall to p(−2), and no
investor invests in period 2 or any subsequent period. This history starts a cascade of no

investment. If there has been no investment in period 0, but an investment in period 1, then

both the uninformed investors and the previously informed investor have a prior of p(0), they

wait, and the newly informed investor invests if and only if the signal is high.

Consider now the equilibrium outcomes for arbitrary α. For any given α, let k be

defined as the smallest integer that satisfies

PL(p(k))A < 1 < PH(p(k))A.

The newly informed investors’ strategies are to take a discriminating action if public beliefs

are at p(k) or greater and to not trade otherwise. Note that under (20) and (21) when α =

0, k = −1. Thus, for α sufficiently small, k = −1 as well.

2.3. Herds

As before, we now define a herd relative to a public signal game. The public signal

game which captures some of the information constraints of the private signal game is the

following. In each period t, with probability α, a signal H or L is drawn from the distribution

in (3); this signal is received by the agent at the beginning of the period and becomes public

at the end of the period. With probability (1−α)/2, an idiosyncratic trader buys, and at the

end of the period, the public sees the signal H. With probability (1− α)/2, an idiosyncratic

trader sells, and at the end of the period, the public sees the signal L. The outcomes of the

public signal game again correspond to the efficient outcomes of a suitably defined mechanism

design problem.

The following assumption, the analog of (13), implies that the equilibrium cascades

are inefficient:

p(1)A− 1 <
n
vB(p(1))[p(2)A− 1] + vS(p(1))vB(p(0))[p(1)A− 1]

o
/(1 + r) (23)

where vS(p) = [(1− α)/2] + α[p(1− q) + (1− p)q] is the probability that investors will see a

sell when the public beliefs are p. In the appendix, we prove the following proposition:
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Proposition 4. (Herds with Prices) Under (20)—(23), the model has herds of both

investment and no investment.

In the model, we have investors making investment decisions as well as trading deci-

sions. To better understand the role the investment decisions play, consider a version of the

model with no investment decisions. In this version, imagine that all investment projects have

been undertaken before the model starts. In the exogenous timing version of this model, in

each period of the active phase, the private signal of the informed investor is revealed through

market trades, and herd behavior cannot occur. (This version of the model and the results

are very similar to those of Avery and Zemsky [2] and Glosten and Milgrom [11].)

The endogenous timing version of the model without investment decisions also has no

herds. Here the only possibilities are to buy, to sell, and to wait. Clearly, the only way to get

a herd in this version of the model is to have all the uninformed investors buy or sell at some

public prior. Suppose that in some period there is a herd in which all uninformed investors

buy. In this period, with positive probability, one of the buyers is informed. The market

maker sets the buy price so as to make zero profits across the different types of buyers. At

this price, the market maker loses by trading with informed investors and therefore must gain

by trading with uninformed investors. Since uninformed investors would lose if they traded

with the market maker, they would optimally choose not to trade. Therefore, there cannot

be such a herd. A similar argument applies to herds of sales.

Our notion of a herd is quite different from that of Avery and Zemsky [2]. We follow

the rest of the literature in assuming that a herd must be a cascade. In a cascade with

investment, the uninformed investors choose not to wait for their private signals and invest

in the market. In a cascade without investment, the uninformed investors choose not to wait

for their private signals and invest outside of the market. In either case, the notion of cascade

captures the idea that the uninformed investors are in some sense “following the crowd.” In

our definition of a herd, we add to this notion of cascade that the crowd is taking a socially

inefficient action relative to some benchmark. Avery and Zemsky [2] modify the model of

Glosten and Milgrom [11] in an attempt to revive herds. In their Proposition 2, however,
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they show that their model cannot generate cascades. Thus, if they had used any version of

the standard definition of herds in the literature, their Proposition 2 also would prove that

there are no herds in their model. Indeed, in their model, the public beliefs converge to a

degenerate distribution on the true state, so there is no sense in which information becomes

trapped forever.

Avery and Zemsky [2] pursue a different tack. They propose a definition of a herd quite

different from that in the literature and then show that their model can produce this kind

of behavior. Briefly, Avery and Zemsky say that an informed investor who buys in period t

engages in herd behavior if three conditions are met. First, this investor’s private information

about the state is negative. Second, along the equilibrium path, the pattern of trading leads

to an increase in the market maker’s prior about the mean value of the asset. Third, after

such a path of trading, the investor buys. Avery and Zemsky show that this seemingly odd

behavior can occur when, in addition to private signals, all investors have a common piece of

information that market markers do not have. In this setup, the market makers infer a noisier

version of the underlying signal from the equilibrium trades than investors infer. This noisier

inference leads market makers to update their beliefs more slowly than investors. Hence,

even though an investor’s private signal is negative, a string of buys can lead this investor to

become more optimistic about the value of an asset than the market maker and hence lead

the investor to buy.

Our view is that while the behavior generated by Avery and Zemsky’s [2] model is

both interesting and perverse, their notion of herds is quite different from that in the rest of

the literature. In relation to our definition, it might be more precise to label the behavior

they uncover “waves of optimism and pessimism” rather than herds.

3. Conclusion

We have here taken a step toward developing models of herd behavior that can be

used in applied work. We have demonstrated that recent critiques of early herd models can

be overturned when the exogenous timing of investment decisions in the models is replaced
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by a more natural endogenous timing. We think, therefore, that models of herd behavior

have the potential to help us understand financial crises in emerging markets and elsewhere.

Here we have considered a variant of the early herd models with homogenous individ-

uals and a simple structure for signals. Smith and Sorensen [17] extend the herd literature to

heterogeneous individuals and a more general structure for signals to allow for situations in

which, in equilibrium, agents’ actions settle down to some limit distribution over a nontrivial

set of actions, but learning is never complete. To capture this situation, the notion of a

herd must be appropriately modified. With that modification, our results might fruitfully be

extended to some of the more general setups considered by Smith and Sorensen.
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Appendix
Definitions and Proofs

Defining Strategies and Beliefs
Here we formally define strategies and beliefs for our continuous investment model.

At p = pt(hit), the strategy for all uninformed and previously informed investors is

xt(hit) = {x(p) if p ≥ p(1)} (24)

and xt(hit) = 0 otherwise, while the strategy for newly informed investors is

xt(hit) = {x(p) if p ≥ p(0)} (25)

and 0 otherwise. Notice that in order to invest, the uninformed and previously informed

investors must be more optimistic than the newly informed investors. We refer to p(1) and

p(0) as the cutoff levels–p(1) for the uninformed and previously informed investors and p(0)

for the informed investors.

The beliefs of uninformed investors clearly coincide with the public beliefs. We say

that public beliefs are in the discriminating region if they are equal to either p(−1) or p(0)
and are in the nondiscriminating region otherwise. Given pt−1(ht−1) and a total investment of

Xt−1 in period t−1, the public beliefs in t are as follows. For pt−1(ht−1) in the discriminating
region,

pt(ht) =

 PL(pt−1(ht−1)) if Xt−1 = 0

PH(pt−1(ht−1)) if Xt−1 > 0

 (26)

where p0(h0) = p(0). In the nondiscriminating region, pt(ht) = pt−1(ht−1).

The beliefs of the newly informed investors at history hit = (ht, s, t) are simply the

public beliefs, updated by the newly informed investor’s signal: pt(ht, s, t) = Ps(pt(ht)) for
s = H,L.

The beliefs of the previously informed investor in t who received a signal in t− 1 with
history hit = (ht, s, t − 1) are defined as follows. If no other investor invested in t − 1, this
investor’s beliefs are the same in t as they were in t− 1: pt(ht, s, t) = Ps(pt−1(ht−1)) for s =
H,L. If some other investor invested in t−1, then pt(ht, s, t) = p(2). The beliefs of previously

informed investors who received their signals before period t− 1 are recursively defined using
(26) except that the recursion starts in period v, with the beliefs of the newly informed

investor in v: pv(hiv, s, v). These strategies and beliefs induce the conditional distributions

µt(hit+1|hit) in the obvious way.
Built into these beliefs is the idea that investors look at previous investors’ actions and

try to infer their signals. On the equilibrium path and for deviations that they cannot detect,
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investors infer the following. Consider the uninformed investors with public beliefs p in the

discriminating region. If these investors see Xt = x(PH(p)), then they infer that the newly
informed investor received a high signal. If they see Xt = x(PL(p))= 0, then they infer that
the newly informed investor received a low signal. If public beliefs are equal to p(−2), then
uninformed investors expect to see no investment regardless of the newly informed investor’s

signal. Both the newly informed and the previously informed investors simply update the

public beliefs with their private signal. We have also filled in beliefs off the equilibrium path

in an intuitive way. Our results are unaffected by these choices.

Proving Propositions

Proposition 1. Under assumptions (9)—(10) and (11)—(12), the strategies and beliefs

described above constitute a perfect Bayesian equilibrium.

Proof of Proposition 1. By construction, the beliefs in (26) satisfy Bayes’ rule. We

repeatedly use the observation that by construction, for any history hit, pt(hit) = p(k) for

some integer k.

Consider first optimality for histories with no detectable deviations. Start with the

strategies of the uninformed investors. With public beliefs p(0), (11) ensures that waiting

is optimal, while with beliefs p(−1) and below, (10) ensures this. With public beliefs p(1)
and above, all uninformed investors are supposed to invest. Suppose that an uninformed

investor instead deviates and waits. Recall that for such a history, all other active investors

have already invested. Thus, by waiting, the uninformed investor receives no new information

from others. The only reason to wait, therefore, is that the investor might receive a signal. An

upper bound on the payoffs from waiting is given by the case in which the investor is certain

to receive a signal in the following period. Assumption (12) ensures that this deviation is not

profitable.

Now turn to the strategies of the informed investors at some history hit. The interesting

histories are those in which public beliefs are p(0) or p(−1) and the newly informed investor
has just received a high signal. Suppose, first, that the public beliefs are at p(−1). A deviation
by the informed investor causes public beliefs to drop to p(−2) and triggers a cascade with
no investment. This deviation brings the investor no new information, so by discounting, it

is better to invest immediately.

Suppose next that the public beliefs are at p(0), and the newly informed investor re-

ceives a high signal, so now has beliefs p(1). The strategy for the newly informed investor

specifies invest, but suppose this investor instead deviates and waits, presumably to garner

information about the signals of subsequent informed investors. Note first that, in all subse-

quent periods, the beliefs of this deviating investor are 2 higher than those of the uninformed
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investors, in the sense that if public beliefs are at p(k), the deviating investor’s beliefs are at

p(k+2). The reason is that the newly informed investor’s private signal raised the investors’

beliefs by 1 and the deviation by the newly informed investor lowered the uninformed in-

vestors’ beliefs by 1 without affecting the investor’s own beliefs.

Next note that a herd of investment starts when uninformed investors’ beliefs are at

p(1), and a herd of no investment starts when they are at p(−2). Hence, in any period after
the deviation, the deviating investor’s beliefs can never be below p(0) or above p(3).Moreover,

if this investor’s beliefs reach p(0), they stay there because the uninformed investors’ beliefs

are at p(−2), and there is a cascade without investment. Consequently, it is optimal for the
deviating investor to invest immediately at beliefs p(0). If this investor’s beliefs reach p(3),

they stay there because the uninformed investors’ beliefs are at p(1), and there is a cascade

with investment. Consequently, it is optimal for the deviating investor to invest immediately

at beliefs p(3).

Since it is optimal for the deviating investor to invest at p(0) and p(3), a recursive

application of (12) implies that the original deviation is not profitable. To see this formally,

suppose that the optimal continuation strategy for the deviating investor is to invest at p(2).

Then (12) implies that the original deviation cannot be profitable. The reason is that then

the right side of (12) is the payoff to the deviation of waiting and the left side is the payoff

to investing immediately, where both sides are evaluated at p = p(1). Similar reasoning

establishes that if the optimal continuation strategy for the deviating investor is to invest

at p(1), then the original deviation cannot be profitable. The only possibility that remains

is that the optimal continuation strategy for the deviating investor is to wait at both p(1)

and p(2). We will rule out this possibility by contradiction. Suppose that the deviating

investor waits at p(1) and p(2). LetW(p(1)) andW(p(2)) denote the payoffs at these beliefs,
respectively. These payoffs are given by

W(p(1)) = [r + vH(p(1))W(p(2))+ vL(p(1))V (p(0))]/(1 + r) (27)

W(p(2)) = [r + vH(p(2))V (p(3))+ vL(p(2))W(p(1))]/(1 + r). (28)

Using (12), we can see that Eqs. (27) and (28) imply that

W(p(1)) < V (p(1))+ vH(p(1))[W(p(2))− V (p(2))]/(1 + r) (29)

W(p(2)) < V (p(2))+ vL(p(2))[W(p(1))− V (p(1))]/(1 + r). (30)

Substituting (30) into (29) gives an immediate contradiction. Thus, the optimal continuation

strategy for a deviating investor must be to invest at either p(1) or p(2). It follows that the

original deviation cannot be profitable.
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For histories in which the newly informed investor’s beliefs are at or below p(−1), (10)
implies that deviating to investing is not optimal.

Finally, it is easy to show that for histories off the equilibrium path, the strategies for

all investors are optimal. Q.E.D.

Proposition 4. (Herds with Prices) Under (20)—(23), the model has herds of both

investment and no investment.

Proof of Proposition 4. The proof that these strategies of the investors are optimal

and that the beliefs satisfy Bayes’ rule is essentially identical to the proof of Proposition 1.

The proof that the prices are optimal is in the text. The proof that there are herds of no

investment is immediate.

To see that there are herds of investment, consider a period t in either the private or the

public signal game in which public beliefs are at p(1). In the private signal game, all investors

invest. In the public signal game, (23) implies that the uninformed investors wait. Waiting

dominates investing. To see that, consider the following (possibly suboptimal) strategy: Wait

in t. If the end-of-period t public signal is H, invest in t + 1. If the end-of-period t public

signal is L, wait in t+1. If the end-of-period t+1 signal is H, invest in t+2; otherwise, never

invest. The payoff to this strategy is the right side of (23), which by assumption is larger

than the payoff to investing in t, p(1)A− 1. Q.E.D.
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Notes

1One interpretation of this environment is that the risky project consists of investments

in an emerging economy while the safe project consists of investments in the United States.

Returns from the risky project depend on whether the emerging market’s government expro-

priates the investments. Herds in this context consist of sudden reversals of capital flows. For

a model of herd behavior and expropriation with this interpretation, see Chari and Kehoe

[8].
2We can imagine that agents are randomly drawn without replacement from the pool

of agents and assigned a number designating the period in which each will receive a signal.

Neither the names of the agents who will receive the signals nor the periods in which these

agents will receive signals are observed, but the process for assigning names and periods is

common knowledge.

Also note that conceptually, it is easy to instead allow signals to arrive intermittently,

say, according to a Poisson process. The results are similar; however, the resulting algebra is

more complicated.
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