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ABSTRACT

Mimicking portfolios have long been useful in asset pricing research. In most empirical applications,

the portfolio weights are assumed to be fixed over time, while in theory they may be functions of the

economic state. This paper derives and characterizes mimicking portfolios in the presence of

predetermined state variables, or conditioning information. The results generalize and integrate

multifactor minimum variance efficiency (Fama, 1996) with conditional and unconditional mean

variance efficiency (Hansen and Richard (1987), Ferson and Siegel, 2001). Empirical examples

illustrate the potential importance of time-varying mimicking portfolio weights and highlight

challenges in their application.
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I. Introduction 
Mimicking portfolios for economic factors are important in both asset pricing theory and 

empirical work.  Breeden (1979) showed how portfolios can replace the state variables in 

Merton's (1973) intertemporal asset pricing model.  These portfolios "hedge" the state 

variable risks, and their returns describe the risk premiums.  Mimicking portfolios are 

needed to identify the factor risk premiums when the risk factors in the model are not 

traded assets.  Huberman, Kandel and Stambaugh (1987) provide characterizations of 

mimicking portfolios that can replace the risk factors in empirical multiple-beta asset 

pricing models.   

  Many studies rely on mimicking portfolios.  Breeden, Gibbons and 

Litzenberger (1989) use them for aggregate consumption growth;  Chen, Roll and Ross 

(1986) for a number of macroeconomic factors.  Ferson and Harvey (1991) use mimicking 

portfolios to assess the amount of asset-return predictability captured by asset pricing 

models.  Eckbo, Masulis and Norli (2000) use them to measure the risk exposures of post-

seasoned-equity-offering stock returns.  Lamont (2001) forms “tracking” portfolios to 

study the relation of stock returns to a number of economic variables.  Ferson and Harvey 

(1993) employ mimicking portfolios to make inferences about the premiums attached to 

risk factors in international equity markets.  Fama and French (1993, 1996) propose a three-

factor model, which Fama (1998) interprets as a specification of mimicking portfolios for 

the state variables in a Merton (1973) style multibeta model. 

  Studies that employ mimicking portfolios typically use methodologies in 

which the weights that define the portfolios are either fixed over time, or vary over time in 

ad hoc ways (e.g., a rolling regression is used).  However, such an approach is not optimal 

when predetermined variables are available that are related to expected future returns and 

second moments.  This paper studies mimicking portfolios with weights that vary 

optimally over time in the presence of such conditioning information. 
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  Mimicking portfolios with conditioning information may be characterized 

with an extension of “unconditional” mean variance efficiency, as described by Hansen 

and Richard (1987) and Ferson and Siegel (2001).  The portfolios they describe use 

conditioning information to achieve efficiency with respect to the unconditional mean and 

variance.  They are a subset of the “conditionally efficient “portfolios that optimize with 

respect to the conditional moments. We show how these ideas extend to the “multifactor 

minimum variance” portfolios described by Fama (1996). 

  Using a sample of asset returns, economic factors and conditioning 

information similar to Lamont (2001), we explore the empirical advantage to constructing 

mimicking portfolios with the optimal, time-varying weights.  An example with a single 

risky asset and a riskless asset shows that we can more than double the correlation with an 

inflation factor.  In Lamont’s sample of industry portfolios and bond returns the potential 

improvement in the correlations is more than 20%, abstracting from estimation error.  Our 

analysis also illustrates how estimation error and errors in specifying the form of the data 

generating process present challenges for future research and applications. 

  The remainder of this paper is organized as follows.  Section II provides an 

overview of the central ideas.  Section III presents and interprets the main analytical 

results.  Section IV contains the empirical analysis.  Section V offers some additional 

results and discusses the relation of mimicking portfolios with conditioning information to 

utility maximization.  Section VI concludes. 

 

 

II. Overview of the Concepts and Results 

The primitives of the problem are a vector of N asset returns, Rt, a vector of L lagged 

instruments, Zt-1, (the conditioning information) and a K-vector of economic state 

variables or factors, Ft.  The conditioning information may include the lagged values of the 
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returns or Ft.  We assume there is a joint probability distribution for {Rt, Ft, Zt-1}, for which 

the relevant first and second moments exist.  To keep the notation simple, we will drop the 

time subscripts when they are not needed for clarity. 

 

Motivating Time-varying Weights 

  In asset pricing models, mimicking portfolios arise when there are stochastic 

changes in the consumption-investment opportunity set.  In the classical model of Merton 

(1973) an investor's optimal demand for assets may be expressed as a mean-variance 

component plus a component that hedges or mimicks, the unexpected shocks to the state 

variables that describe future investment opportunities.  The hedge portfolio weights are 

proportional to conditional multiple regression coefficients of the factor on the vector of 

asset returns, and therefore depend on the conditional covariances of the assets' returns 

and the conditional covariances of returns with the factors.   

  In a dynamic economy, the conditional means, covariances and the return 

covariances with the factors are functions of current information about the economic state. 

 These moments will typically vary over time as information about the state of the 

economy changes.  Indeed, a huge empirical literature documents time-variation in the 

conditional first and second moments of asset returns and their covariances with economic 

variables.  Despite these obvious arguments that mimicking portfolios should be dynamic, 

empirical applications often assumed fixed weights. 

 

Conditional and Unconditional Efficient Portfolios 

  Hansen and Richard describe portfolios with weights that may depend on 

the information, yet minimize unconditional variance for a given unconditional mean.  

Such portfolios are unconditionally efficient (UE) with respect to the information.  Hansen 

and Richard show that UE portfolios are a subset of the conditionally efficient (CE) 
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portfolios, which minimize conditional variance for a given conditional mean.  Ferson and 

Siegel (2001) derive solutions for UE portfolios and show that they are optimal for agents 

with quadratic utility, in a single-period model. 

  As characterized by Fama (1996), the optimal portfolios in Merton's (1973) 

dynamic multiperiod model minimize variance, for a given expected return and given 

covariances with the state variables or factors.  Because of the restriction on factor 

covariances, the portfolios are not minimum variance efficient.  Fama calls the optimal 

portfolios multifactor minimum variance.  We derive conditional and unconditional versions 

of these portfolios. 

  When all of the moments are conditioned on the information, Z, we have 

conditional multifactor minimum variance portfolios (CMMV).  These are the portfolios 

described by Merton (1973) and Fama (1996).  When the portfolios use the information Z, 

yet minimize unconditional variance for a given unconditional mean and covariances with 

the factors, the result is unconditionally multifactor minimum variance with respect to the 

information Z (UMMV).  These portfolios generalize the UE portfolios of Hansen and 

Richard (1987). 

  

Mimicking Portfolio Concepts 

  A portfolio is UMMV with respect to Z if and only if its weights, x(Z) solve 

the problem: 

 

  Minx(Z) Var[x(Z)'R] subject to E[x(Z)'R]=c, E[Fx(Z)'R]=d and x(Z)'1=1,         (1) 

 

where 1 is an N-vector of ones and c and d are constants.  A portfolio is CMMV with 

respect to Z if and only if its weights solve the problem: 
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   Minx(Z) Var[x(Z)'R|Z] s.t. E[x(Z)'R|Z]=c(Z), E[Fx(Z)'R|Z]=d(Z) and x(Z)'1=1,                (2) 

  

where c(Z) and d(Z) are known functions of Z.  Note that when the mean of the portfolio 

return is constrained, the constraint on the uncentered second comoment with the factors 

is equivalent to a constraint on the portfolio’s covariance with the factors. 

 

III. Analytical Results 

We present solutions for UMMV and CMMV portfolios and interpret their properties.  

UMMV portfolios are a subset of CMMV portfolios.  A subset of UMMV and CMMV 

portfolios maximize the correlation with a factor, in the set of all possible portfolio rules 

with weights that may depend on Z. 

 

Proposition 1: 
If a portfolio is UMMV it must be CMMV (almost surely in Z), but the converse is not true. 

(Proofs are in the Appendix.) 

 

  Proposition I extends a well-known result from Hansen and Richard (1987) 

to a multi-factor setting.  Hansen and Richard show that UE portfolios are a subset of CE 

portfolios.  This result has a striking implication for tests of the conditional CAPM, which 

Cochrane (2001) dubs the “Hansen-Richard Critique.”  Assume that the conditional 

CAPM implies that the market portfolio is mean variance efficient, conditional on an 

information set, Ω , that cannot be observed.  The econometrician can only test efficiency 

conditional on an observable subset of information, .Z Ω⊂   If you reject efficiency given 

Z, it does not imply that you reject efficiency given Ω , because portfolios that may use Ω  

and are efficient given Z, are a subset of the portfolios that are efficient given Ω .  Thus, in 

principle the conditional CAPM could be true despite all of the tests in the literature that 
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have rejected the efficiency of the market portfolio.  The Hansen-Richard critique applies 

even if it was possible to measure the “true” market portfolio. 

  Using similar logic, Proposition I implies a multi-factor version of the 

Hansen-Richard critique.  Assume, following Fama (1996) that Merton’s (1973) model 

implies the market portfolio is CMMV, and further assume that the relevant conditioning 

information, Ω , cannot be observed.  With a subset of the information, Z, we can reject 

that the market is CMMV with respect to Z, but this does not imply that we reject 

Merton’s model.  The multi-factor Hansen-Richard critique applies even if it is possible to 

measure both the true market portfolio and the relevant risk factors.1 

 

Explicit Solutions 

  We provide a constructive solution for UMMV portfolios, which from 

Equation (1) solve the minimization:  

 

  Minx(Z) E{[x(Z)'R]2} subject to E[x(Z)'R]=c, E[Fx(Z)'R]=d and x(Z)'1=1,         (3) 

 

Letting Λ  ≡ [E(RR'|Z)]-1 and µ(Z)=E(R|Z), write the Lagrangian for this problem as: 

 

   Minx(Z) E{ x(Z)' Λ -1x(Z) + 2λ 1[x(Z)'µ (Z)-c] + 2[x(Z)'E(RF'|Z)-d'] λ 2 + 2 γ(Z)[x(Z)'1-1]}. 

 

where the scalars λ 1>0 and γ(Z)>0 (almost surely in Z) and the K-vector λ 2>0, are the 

multipliers.  Consider a perturbation w(Z) = x(Z) + ay(Z),  where x(Z) is the optimal 

solution and y(Z) is any other portfolio weight function.  If the weight function x(Z) is 

optimal, the derivative of the Lagrangian for w(Z) with respect to  a  must be zero when 

                                                 
1 An interesting solution to this problem occurs when the model is closed by assuming that the lagged 
values of the observed risk factors describe the relevant information, Ω .  Then the model is testable. 
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evaluated at a=0.  The first order condition may be written as: 

 

   E{ y(Z)'[ Λ -1x(Z) + λ 1 µ  (Z) + E(RF'|Z) λ 2  + γ(Z)1] } = 0.                   (4) 

 

Since Equation (4) must hold for all y(Z), it implies that the term in square brackets must 

be zero, almost surely in Z.  Solving for the optimal weight, we have: 

 

   x(Z)  =  - λ 1 Λ µ  (Z) - Λ E(RF'|Z) λ 2 - γ(Z) Λ  1.                                     (5) 

 

Evaluating the multiplier γ(Z) by imposing the constraint that x(Z)'1 = 1, the solution 

may be expressed as: 

 

  x(Z)   =  
1'1

1
Λ

Λ   + { }21 )Z'RF(E)Z(
1'1
'11 λ−µλ−







Λ

ΛΛ−Λ                                            (6) 

The CMMV solution is derived in similar fashion, except that the multipliers associated 

with c(Z) and d(Z) are functions of the information, λ 1(Z) and λ 2(Z):  

 

  x(Z)   =  
1'1

1
Λ

Λ   +  { })Z()Z'RF(E)Z()Z(
1'1
'11

21 λ−µλ−







Λ

ΛΛ−Λ                                 (7) 

Maximum Correlation Portfolios 

  Consider a portfolio that has maximum squared correlation with a single 

factor, F.  The portfolio variance must be minimal among all portfolios that have the same 

mean and the same covariance with the factor, because correlation is covariance divided 

by the product of the standard deviations.  It follows that there are values for the 

multipliers in Equations (6) and (7) for which the solutions maximize the unconditional 
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and conditional correlations, respectively, with the factor.  Thus, maximum correlation 

portfolios are special cases of CMMV and UMMV portfolios.   

 

Proposition 2: 
  The portfolio that maximizes its squared conditional correlation with a 

particular factor F, subject to portfolio weights that sum to 1.0, has weights given by 

equation (7), with: 

 
- γ1(Z)[E(F|Z) - γµF(Z)] + γµ(Z) γF(Z) 

  λ 1(Z) = 
γµ(Z)[E(F|Z) - γµF(Z)] + γF(Z)[ γµµ(Z)-1], 

 
 

- γ1(Z)[ γµµ(Z)-1] - γµ(Z)2 
  λ 2(Z) = 

γµ(Z)[E(F|Z) - γµF(Z)] + γF(Z)[ γ µµ(Z)-1], 
 

where: 
 

γ1(Z) = 1/(1' Λ 1),  γµ(Z) = 1' Λµ(Z)/(1' Λ 1), γF(Z) = 1' Λ E(RF′|Z)/(1' Λ 1), 
 

  Ω (Z) = [ Λ - Λ 1 1' Λ /(1' Λ 1)],  γµµ(Z) = µ(Z)' Ω (Z)µ(Z), 
 

           and γµF(Z)=  µ(Z)' Ω (Z)E(RF′|Z). 

 

  Portfolios that maximize the squared unconditional correlation with a factor, 

over all portfolio weights that may depend on Z, may similarly be obtained as a special 

case of Equation (6). 

 

Corollary: 
  The portfolio that maximizes its squared unconditional correlation with a 

particular factor F, subject to portfolio weights that sum to 1.0, has weights given by 
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equation (6), with: 

 

   1λ  = 
],1[])F(E[

])F(E[

FF

FF1

−γγ+γ−γ
γγ+γ−γ−

µµµµ

µµ
 

 
 

   2λ     = 
],1[])F(E[

]1[

FF

2
1

−γγ−γ−γ
γ−−γγ−

µµµµ

µµµ  

 
     
where:  

)),Z((E 11 γ=γ   )),Z((E µµ γ=γ   ))Z((E FF γ=γ  
)),Z((E µµµµ γ=γ  and )).Z((E FF µµ γ=γ  

 

Interpreting the Solutions 

  To interpret the various terms in the UMMV and CMMV solutions it is 

convenient to express equation (7) as the sum of three terms: 

 

                           ( ) ( ) ( ) ( ) ( ) ( )ZZwZxZZxZx 2HMV1GMS λ−λ−= ,                          (8) 

 

     
( )

( ) ( )
( ) ( ).ZFRE)Z(Zw

Z)Z(Zx
)11/(1Zx

H

MV

GMS

′Ω=
µΩ=

Λ′Λ=
  

 

Equation (6) may be decomposed using the same three terms, but replacing λ1(Z) and 

λ2(Z) with the constants, λ1 and λ2.  Equation (8) reveals that the solutions satisfy a K + 2 

fund separation theorem.  That is, any solution can be expressed as a combination of K + 2 

time-varying weight vectors, where the particular combinations depend on the values of 

the multipliers associated with the constraints.  (This is stated formally in Proposition 3.)  

Assuming that all values for the constraints are feasible, any solution can be obtained by 
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selecting particular values for the multipliers.  The values correspond to choosing 

particular targets for the mean return and the factor covariances.  The two N-vectors 

xGMS(Z) and xMV(Z), with the K columns of wH(Z) form a basis for the set of all CMMV 

(and thus UMMV) solutions.  In particular, by setting some of the multipliers to zero we 

obtain the solutions that relax the corresponding constraints. 

  If we set both λ1(Z) and λ2(Z) to zero the solution, xGMS(Z), minimizes the 

conditional second moment of returns subject only to the condition that the weights sum 

to 1.0.  This is the global minimum conditional second moment portfolio; hence the 

notation, xGMS.  The GMS portfolio’s conditional mean return is 

).Z()11/()Z(1]ZR)Z(x[E GMS µγ=Λ′µΛ′=′   Its unconditional mean return is ( )( ) µµ γ=γ ZE .   

  Other coefficients in Proposition 2 may be interpreted in terms of the K + 2 

spanning portfolios.  The global minimum second moment portfolio must have the same 

conditional second co-moment with every risky asset2, equal to ).Z()11/(1 1γ=Λ′   The 

conditional second co-moment of this portfolio with the factors are 

).Z()11/()ZFR(E1 Fγ=Λ′′Λ′   The unconditional second co-moments are ( )[ ] FF ZE γ=γ . 

  If we set λ2(Z) to zero in Equation (8) we drop the constraint on covariances 

with the factors.  The resulting solution, ( ) ( ) ( )ZxZZx MV1GMS λ− , minimizes the conditional 

second moment of return for a given conditional mean.  This solution is therefore CE, as 

defined previously.  In the special case where λ1(Z) = λ1 is a constant, the solution is the 

UE solution studied by Ferson and Siegel (2001).  

   Note that Ω(Z) is an NxN matrix such that , if multiplied by any N-vector, 

will produce a set of portfolio weights that sum to zero.  In particular xMV(Z) = Ω(Z)µ(Z) 

and wH(Z) = ( )ZFRE)Z( ′Ω  are vectors of portfolio weights that sum to zero.  Applied to 

the vector of returns R, weights that sum to zero produce excess returns.  The implied 

                                                 
2 If a portfolio has unequal conditional second moments on any two assets it cannot be the global minimum, 
since by reducing the weight in the asset with the higher comoment and increasing the weight on the asset 
with the lower comoment, the portfolio’s second moment could be reduced. 
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portfolio is “long” those assets with positive weights and “short” those assets with 

negative weights.  The portfolio return is therefore the return to the long positions in 

excess of those to the short positions.  It follows 

that ( ) ( ) ( ) ( )ZZZZ]ZR)Z(x[E MV µµγ=µΩ′µ=′ , and µµµµ γ=γ )}Z({E , are the conditional and 

unconditional expected excess returns of the xMV(Z) portfolio. 

  Finally, consider the NxK matrix of weights, wH(Z).  These weights deliver 

the excess returns of the K hedging portfolios for the state variables or factors.  Their 

conditional mean excess returns are )Z()ZFR(E)Z()Z( Fµγ=′Ω′µ  and the unconditional 

means are [ ] F)ZFR(E)Z()Z(E µγ=′Ω′µ . 

 

A Numerical Example 

  We provide further intuition about the solutions using a simple, special case. 

The example is similar to one in Brown and Warner (1980).  Assume that we are given two 

assets: A riskless asset with return fr , a risky asset with return R, a single factor F, and a 

single instrument, Z.  The vector )Z,F,R( t1t1t ′++  has a trivariate normal distribution with 

mean ( ), ,R F Zµ µ µ ′ and covariance matrix 

 
2

2

2

R RF RZ

RF F FZ

RZ FZ Z

 σ σ σ
 σ σ σ 
 σ σ σ 

. 

 

 Our objective is to find a portfolio weight function ( )w Z  such that the portfolio 

return ( )( )w f fR r w Z R r= + −  minimizes ( )2
wE R  subject to the constraints ( )wE R c=  and 

d)FR(E W = .  The weight function represents the amount invested in the risky asset while 

investing [1 – )]Z(w  in the risk-free asset.   The optimal weight function is given by: 
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                                            ( )
( ) ( )

( )
1 2

2

|
,

f f

f

E R r Z E R r F Z
w Z

E R r Z

 λ − + λ − =
 −  

                                     (9) 

 
where  

( ) ( )2| RZ
f R f Z

Z

E R r Z r Zσ− =µ − + −µ
σ

 

 

( ) ( ) ( )2 2 2
RZ F RZ FZ

f RF R f Z F Z
Z Z Z

E R r F Z r Z ZΖ    σ σ σ σ − = σ − + µ − + −µ µ + − µ     σ σ σ   
 

 

( ) ( )
222 2

2 2
RZ RZ

f R R f Z
Z Z

E R r Z r Z
 σ σ − = σ − + µ − + −µ    σ σ 

 

 

and the constants 1λ  and 2λ  are chosen to achieve the constraints.  (The Appendix 

provides a derivation.) 

  The weight w in Equation (9) is a ratio of two quadratic polynomials in Z, 

where the denominator has no real roots (assuming that the risky asset is not perfectly 

correlated with Z). Therefore the weight function is continuous and has a single horizontal 

asymptote as Z → ±∞ . This may be compared and contrasted to the optimal weights for 

UE portfolios (Ferson and Siegel, 2001) which do not constrain the covariance with a 

factor.  In this special case, obtained by setting 02 =λ  in Equation (9), the optimal weight 

function is the ratio of a linear to a quadratic function, implying a single horizontal 

asymptote with a value of zero.   Thus, Ferson and Siegel showed that the UE solution 

exhibits a “conservative” response to extreme realizations of the information Z.  As Z gets 

large the weight in the risky asset approaches zero.3   

  Equation (9) illustrates that the hedging component of the UMMV solution 
                                                 
3 The conservative behavior of the UE solution contrasts with CE solutions, such as under exponential utility 
and conditional normality, where the portfolio weight is linear in Z.  In such cases the optimal weight is 
unbounded for large values of Z.  Ferson and Siegel (2003) employ UE weights in a version of the Hansen 
and Jagannathan (1991) bounds, and find that the conservative response to large realizations translates into 
superior finite-sample properties of the estimated weights. 
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modifies the conservative response of the UE component, but the solution remains 

bounded for large values of Z.  Thus, the hedging component of the solution approaches a 

constant for large values of Z in this example.  We may therefore anticipate that estimates 

of the UMMV solution could be more “robust” to extreme data observations and have 

better sampling properties, compared with the CMMV solution. 

  We illustrate Equation (9) using monthly data for the Standard and Poors 

stock index return as the risky asset and inflation as the factor.  The lagged instrument is a 

percentage term spread; the data are described below.  The parameters are 0.003690fr = , 

0.009376Rµ = , 0.003375Fµ = , 0.503563Zµ = , 0.040540Rσ = , 0.003949Fσ = , 0.503743Zσ = , 

0.000003380RFσ = , 0.001781RZσ = − , and 0.0004730FZσ = .  

  Consider a portfolio with time-varying weights that has minimum 

(unconditional) variance subject to the constraints that it have the same unconditional 

expectation as the risky asset ( )( )0.009376R wE R cµ = = =  and the same unconditional 

covariance with the factor as the risky asset ( )( ), 0.000003380RF w FCov R F d cσ = = = − µ .  

The values of the multipliers are 1 0.079850λ = −  and 2 87.122801λ = , found with an iterative 

approximation method using numerical integration to evaluate the expectations.  We find 

that the variance has been reduced from 001643.02
R =σ  to .001480.02

Rw =σ    The weight 

function that achieves this is shown in Figure 1.  The x-axis extends above and below Zµ  

by3.89 Zσ , representing 99.99% of Z values.  Over this range the optimal weight is a 

concave function of the conditional mean of the risky asset.4 

  The behavior of the optimal weight function is shown in Figure 2 for 

extended Z values.  There is a single asymptotic limit for both large and small Z, but for 

large Z values the asymptote is approached from below. 

  If we seek to maximize the correlation between the portfolio and the factor in 
                                                 
4 Concavity arises because 0FZRZ <σσ  in this example.  If the product is positive the function is convex in 
Z.  Brown et al (2004) describe situations where optimizing portfolio managers may prefer concave 
investment strategies. 
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this example, we more than double it, increasing the correlation from 0.0211 (between the 

risky asset and the factor) to 0.0481 by using the optimal portfolio weight with 

1 0.33740λ = −  and 2 100λ = .5 

 

IV. Empirical Results 
The main feature of our solutions to the mimicking portfolio problem is portfolio weights that 

vary over time with the conditioning information.  The following empirical examples 

therefore focus on the effects of time-varying weights. 

 

The Data 

  The data are taken from Lamont (2001), who studies the period from January of 

1947 through December of 1994.6  Mimicking portfolios are most important in empirical asset 

pricing when the factors are not traded assets.  Our examples therefore focus on the subset of 

Lamont's factors that are not traded assets.  These are US inflation, labor income growth and 

industrial production growth.7  The lagged conditioning variables include a one-month 

Treasury bill rate, a term spread for one-year bonds, a "default" spread, or the difference 

between low grade and high grade corporate bond yields, a spread between commercial 

paper and Treasury rates, the lagged growth rates of industrial production and inflation (for 

the year ending one month prior to the monthly return), and the lagged annual excess return 

on the stock market index.8  The base assets used to form the mimicking portfolios also follow 

                                                 
5 Any multiple of the vector ( )1 2,λ λ  will achieve this same maximal correlation. 
6 We are grateful to Owen Lamont for making his data available to us. 

7 Lamont also studies US consumption expenditure growth, but these data are limited to a shorter monthly 
sample, so we do not use consumption. 

8 Lamont also includes a long-term yield spread and a market dividend yield.  Neither of these produce t-ratios 
larger than two in the regressions reported in Lamont's Table 1 for the three factors we study.  Furthermore, with 
the full set of instruments his covariance matrices are sometimes singular (see his footnote 6), and we find the 
same result.  We therefore exclude these two instruments. 
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Lamont (2001).  These are monthly returns for eight industry-grouped common stock 

portfolios, shown in Table 1, a broad market index, three maturities of Treasury bonds and a 

"junk" bond.9  

  Table 1 presents monthly regressions for the base asset returns and the factor 

growth rates on the lagged instruments.  The purpose of this table is to summarize the data 

and to introduce the parameterization of our simulation exercises.  The fitted regressions are 

used to represent the conditional means of the returns, ).Z(µ   The sample covariances of the 

residuals from these regressions define the conditional covariances when they are assumed to 

be fixed over time (heteroskedastic models are described below).  The other parameters of the 

simulations are constructed from these building blocks.  For example, for each value of Z, the 

matrix Λ(Z) = E(RR'|Z)-1 = [Cov(R|Z) + µ (Z) µ (Z)']-1 is constructed with Cov(R|Z) and 

µ (Z).  For a given factor the vector E(RF|Z) = Cov(R,F|Z) + µ (Z)E(F|Z) is constructed in a 

similar way. 

  The regressions in Table 1 show that the fitted conditional means represent 

about 10% of the variance of the monthly returns on average, with the R-squares ranging 

between 5% for the energy industry to 50% for the one-year bond return.  For the monthly 

factors the R-squares are smaller, ranging from 0.2% to 13 %, and based on these results we 

assume constant factor means in some of the exercises to follow.  The coefficients seem 

generally consistent with previous studies, such as Fama and Schwert (1977), Keim and 

Stambaugh (1986), Fama (1990) and Ferson and Harvey (1991). 

  Panels C and D of Table 1 use overlapping monthly observations for quarterly 

and annual future growth rates, respectively.  The adjusted R-squares increase with the 

horizon of the growth rates, but because of the overlapping data the R-squares for the longer 

                                                 
9 We use CRSP data for the market index (the Standard and Poors 500 total return), the Treasury bond returns (a 
one-year, a seven year and a 30 year return) and the industry portfolios.  The industry portfolios are courtesy of 
Ken French, and are combinations of the 48 industry groups used in Fama and French (2000). 
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horizons are likely to be biased.  The standard errors in Table 1 are Newey-West (1987) 

heteroskedasticity and autocorrelation-consistent, using 24 moving average terms as in 

Lamont (2001)  The t-ratios based on these standard errors do not indicate that the 

explanatory power is greater for the longer-horizon growth rates.  

  

Relation to Lamont's (2001) Tracking Portfolios 

  Lamont (2001) forms "tracking portfolios" as the linear combination of returns, 

b'Rt, where the weights, b, are estimated by a linear regression of the future growth rates of 

an economic factor from t to t+k, on returns and lagged conditioning variables:10 

 

                           Ft+k = a + b'Rt + c'Zt-1 + εt+k.                                                             (10) 

 

Lamont interest is in maximizing the squared correlation of changes in expectations of the 

future factor growth rate, Et(Ft+k)-Et-1(Ft+k), with the unexpected excess returns, Rt - Et-1(Rt), 

where Et-1(.) denotes the conditional expectation at time t-1.  He notes (in his footnote 1) that a 

useful extension would allow conditional coefficients in the tracking portfolios.  Our 

examples explore this extension. 

  Lamont’s (2001) tracking portfolios maximize the (squared) correlation, 

assuming that fixed weights are optimal.  A special case, dropping the Zt-1 term from the 

regression (10), maximizes the unconditional correlation under the same assumptions.  We 

compare our methods empirically to these two fixed-weight approaches. 

  To see how the results in this paper refine the approach of Lamont, write Ft+k = 

Et(Ft+k) + v, with Et(v)=0, and assume as in Lamont that Et-1(.)=E(.|Zt-1), so that the lagged 

instruments proxy for the available information at time t-1.  Let Rpt = b’Rt be the tracking 

                                                 
10 Lamont uses excess return in his regressions, but we use raw returns for comparability.  The weights, b, 
are not constrained to sum to 1.0 in Lamont’s regression, unlike our portfolio solutions.  When the weights 
are fixed over time this does not affect the correlations of b'Rt with the factors. 
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portfolio return.  Then:  

 

     Cov{ Et(Ft+k) - Et-1(Ft+k), Rpt - Et-1(Rpt) }                                                                 (11) 

  =  Cov{ Ft+k - E(Ft+k|Zt-1), Rpt - E(Rpt|Zt-1) } 

  =  Cov{ Ft+k, Rpt } - Cov{ E(Ft+k|Zt-1), E(Rpt|Zt-1) } 

  =  E[Cov{Ft+k,Rpt|Zt-1}]. 

 

Thus, Lamont's approach focusses on the expected value of the conditional covariance.  We 

refine this approach in two ways.  First, our solutions allow time-varying weights to replace 

the fixed coefficient, b.  The CMMV solution in particular, focusses on the conditional 

covariance, Cov{Ft+k,Rpt|Zt-1}, which may vary over time with Zt-1.  Maximizing the squared 

conditional correlation for each value of Z implies maximizing the expected squared 

conditional correlation. 11  Thus, with time-varying weights we should obtain a higher 

expected conditional correlation.  Of course, the solution with the maximum expected 

conditional correlation need not have the maximum unconditional correlation. 

  Our second refinement relates to the unconditional correlation.  For intuition, 

consider the unconditional covariance: 

 

     Cov{ Ft+k, Rpt }  

  = E[Cov{Ft+k,Rpt|Zt-1}] + Cov{ E(Ft+k|Zt-1), E(Rpt|Zt-1) }.                                     (12) 

 

The unconditional covariance between portfolio returns and a factor depends on two terms.  

Lamont's approach controlls the first term.  Our UMMV solution allows the time-varying 

                                                 
11 Let the maximum squared conditional correlation be f(x(z)).  Then for any other solution, f(y(z)), we have 
f(x(z))≥ f(y(z)) almost surely in z, implying that the integral against a positive measure and thus the expectation, 
is also higher. 
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weights to optimally control the covariation of the conditional means in the second term as 

well.12 

  In summary, our solutions should attain larger correlations with a factor than a 

fixed-weight approach.  By allowing for time-varying weights the average conditional 

(squared) correlations should be higher.  By controlling the conditional means with the time-

varying weights, the unconditional correlation should also be higher. 

 

Potential Improvements Using Time-varying Weights 

  Our first exercise examines the potential improvements that time-varying 

weights could provide in the absence of estimation error.  We abstract from estimation 

error in a simulation, by forming the mimicking portfolios with full knowledge of the 

form and parameters of the data generating process.  We keep the initial simulations 

simple by holding E(F│Z) fixed at the sample means and assuming homoskedasticity in 

the conditional covariances.  Heteroskedasticity and time-varying factor means present 

additional sources of time-variation, which increase the potential advantage of our 

solutions relative to a fixed-weight approach. 

  We simulate a sample with one million observations from the data 

generating process, described more completely in the Appendix.     The parameters that 

involve expectations, such as )}11/(1{E1 Λ′=γ  and the regression (10), are estimated from 

the one million observations.  The parameter estimates should essentially be at their 

probability limits with so many observations, there by abstracting from estimation error 

(10,000 observations produces similar results).13 

                                                 
12 The maximum correlation solution controls the time-varying expected portfolio return to minimize the 
unconditional return variance, given its covariance with the factor.  Thus, the UMMV solution refines the 
fixed-weight solution even if we assume E(F│Z) is a constant. 
 
13 While a one million observation sample effectively abstracts from estimation error, there will still be come 
simulation error due to numerical imprecision.  For example, we compute expectations by summing over 
one million observations and dividing the result by one million.  These errors typically amount to less than 
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  We examine the unconditional correlations of mimicking portfolio returns 

with the factors, and also the expected conditional correlations.  Given the parameters of 

the data generating process, the squared unconditional correlations may be computed 

directly.  For Lamont’s approach the solution is )]F(bVar)R(Covb/[)]F,R(Covb[ 2 ′′  where b 

and the variances and covariances are the estimates from the one-million-observation 

artificial sample.  Letting F21p )R(E µµµµ γλ−γλ−γ=  and )}ZFR(E)Z()ZRF(E{EFF Ω′=γ  the 

squared unconditional correlation for the UMMV solution given in the corollary to 

Proposition 2 is: 
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  For a given portfolio weight, x(Z), the expected squared conditional 

correlation is: 
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To compute the expected conditional correlation we take the average of the expression 

inside the expectation in (14), over the one million simulated Z observations, where the 

x(Z) are formed using the true parameter values, and the conditional covariances are the 

true parameters of the data generating process. 

  There are two timing conventions for the monthly factors shown in Table 2.  

When k=1 Lamont’s regression, Equation (10), produces a portfolio, tRb′ , to track the 

future factor Ft+1.  However, in some settings, such as hedging, we may be interested in a 

portfolio that is maximally correlated with the contemporaneous factor, Ft.  Our solutions, 

                                                                                                                                                                  
3% of the figures reported in tables 2 and 3, as is illustrated below. 
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as well as Lamont’s regression, can accommodate either timing convention and we 

present both versions.  For the longer horizon factors, we follow Lamont and present the 

mimicking return, Rpt, for the factor growth rate from month t to t+k. 

  Table 2 shows the potential correlations, abstracting from sampling error.  

The unconditional correlations of the fixed-weight solution are obtained by dropping the 

lagged instruments from regression (10).  The value is 13.5%, averaged across the factors 

and horizons.  The average expected conditional correlation of Lamont’s solution is 17.5%. 

 These two figures would be identical if there was no information in the lagged Z about 

the future returns and factors. 

  The potential improvements from time-varying weights can be substantial.  

Averaged across the examples in the table, the absolute unconditional correlations are 

16.5% using the UMMV solution with time-varying weights.  This represents an 

improvement of about 22% over the fixed-weight solution’s 13.5%.  The expected 

conditional correlation for Lamont’s solution and the CMMV solutions are identical.  This 

reflects the assumptions under which the two solutions are generated.  It can be shown that if 

conditional mean returns are linear in Z and conditional covariances are fixed over time, then 

the CMMV solution that maximizes the squared conditional correlation has fixed weights 

and is equivalent to Lamont’s solution. 

 

Heteroskedasticity 

  To illustrate how time-varying weights in a CMMV solution can offer 

improved conditional correlations, we introduce a simple form of conditional 

heteroskedasticity.  The heteroskedasticity is driven by time-varying factor betas, which 

are assumed to be linear functions of Z.  For asset i the conditional beta is Bi(Z) = boi + 

Zb i1′ .  We calibrate the betas to regressions with interaction terms.  When the returns and 

factors are measured contemporaneously the regression is: Rit+1 = aoi + i1a ′ Zt + boiFt+1 + 
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i1b′ (ZtFt+1) + vit+1.  The conditional covariances are then modelled as functions of Z: 

Cov(Rit+1 Rjt+1│Zt) = Bi(Zt) Bj(Zt) 2
Fσ  + Cov(vi, vj), and Cov(Rit+1, Ft+1│Zt) = Bi(Z) 2

Fσ , where 
2

Fσ  and Cov(vi vj) are fixed parameters. 

  Using the simple model of heteroskedasticity there are signs of overfitting 

the moments in Lamont’s data.  When we use all seven lagged instruments we find that 

the fitted conditional covariances appear unreasonably large.  The simulated potential 

correlations of the time-varying weight solutions approach 99% in a few cases.  To provide 

a more realistic comparison we use a subset of the lagged instruments for the experiments 

in Table 3.  The one-year term spread, used in the numerical example above, is the first 

choice.  Additional experiments also include the risk-free rate and default spread. 

  Table 3 shows that under conditional heteroskedasticity, time-varying 

weights can produce larger expected conditional correlations than the fixed-weight 

approach.  Averaged across the horizons and instruments, the conditional correlations of 

the fixed-weight solutions are 32.9% for industrial production, 33.5% for labor income and 

24.3% for inflation.  The time-varying weight solutions average 49% for industrial 

production, 53.2% for labor income and 36.0% for inflation.  The average ratio of the 

conditional correlation for a time-varying solution to the fixed-weight solution is 1.57, so 

the potential improvement is about 57% on average. 

 

Sample Results 

  The next two tables present the actual sample performance of the mimicking 

portfolios.  In Table 4 the parameters are estimated assuming that the homoskedastic 

process with linear conditional mean returns is correct, and estimating the parameters 

using the Generalized Method of Moments (GMM, Hansen, 1982).  The “average 

conditional correlations” are the sample correlations of the residuals from regressing the 

fitted mimicking portfolio returns and the factors on the lagged conditioning variables.  
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Under the homoskedastic model assumptions the average conditional correlations 

produced by the CMMV solution and Lamont’s regression approach are identical.  These 

range from 14.7% to 31.1% depending on the factor and the horizon, with no clear patterns 

across factors or horizons. 

  The unconditional correlations are the sample correlations between a fitted 

mimicking portfolio and its factor.  The regression approach delivers a larger 

unconditional correlation than the UMMV solution in every example.  In the case of labor 

income and at shorter horizons the differences are often small.  However, at the annual 

horizon the regression performs markedly better. 

  In Table 5 the sample performances are compared again, this time assuming 

that the data generating process features linear conditional means and heteroskedasticity, 

driven by time-varying betas as described above.  The results with all seven instruments 

are reported in the first of the two rows of figures for each example.  In the first row of 

figures only the lagged term spread is used as an instrument.  The fixed-weight 

approaches obviously produce the same results as in the previous table when all seven 

conditioning variables are used. 

  Under the heteroskedastic model the UMMV solution performs better than 

under the homoskedastic model.  The unconditional correlations are larger than in Table 4, 

often substantially so.  The UMMV solution also slightly outperforms the regression 

method.  For example, averaged across the horizons and instrument choices, the UMMV 

solution delivers correlations of 24.9% for industrial production, 30.1% for labor income 

and 26.7% for inflation.  The corresponding figures for the fixed-weight regression are 

20.7%, 29.0% and 26.1% respectively.  Together with the results in Table 4 this shows that 

with a more accurate data generating process it is possible to obtain better results with the 

UMMV solution. 

  The conditional correlations in Table 5 also present some interesting 
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patterns.  First, the CMMV solution performs much worse than the simpler approach of 

Lamont.  Many of the CMMV conditional correlations are insignificantly different from 

zero, and the averages are about 1/3 of the values produced by Lamont’s approach.  

Second, the choice of instruments has a pronounced effect on the CMMV solutions, and 

overfitting is apparent when all seven are used.  Assuming heteroskedasticity, the CMMV 

correlation is larger using the term spread alone than using all seven instruments, in all 

but three examples. 

  In summary, the UMMV solution performs about as well, or better, when all 

seven conditioning variables are used as when the single instrument is used.  The CMMV, 

in contrast, typically performs less well with seven instruments.  This is interesting given 

our previous observation that the heteroskedastic model appears overfit with all seven 

instruments.  When the conditional second moment matrix is overfit its inverse is less 

stable numerically, which hurts the sampling properties of the estimators.  The UMMV 

solution should be more robust than the CMMV solution to extreme values in the sample, 

as are likely to be produced by overfitting. 

 

Estimation Error 

  Estimation error in some form must explain why the optimal time-varying 

weight solutions do not fully deliver their potential performance in the sample.  

Estimation error enters the problem in several ways.  First, the mimicking portfolio 

weights depend on parameters that can only be estimated with error.  This introduces 

randomness in repeated samples that affects the sampling distribution of the mimicking 

portfolio returns.  For example, even if the asset returns are normally distributed, the 

products of returns with the estimated weights are nonnormal.14   

                                                 
14 This problem was encountered in different contexts by Brown and Warner (1980), who examine the use of 
“control portfolios” in event studies, and by Dybvig and Ross (1985), who study the optimal portfolios of 
informed investment managers. 
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  The second effect of estimation error relates to our ability to evaluate the 

various approaches.  In finite samples our estimates of the expected conditional and 

unconditional correlations are subject to estimation error. 

  The third effect relates to the specification of the form of the data generating 

process.  The “true” generating process for the data is difficult to discover, and might be 

more complex than our examples imagine. 

  We present additional simulation exercises to address these issues.  We can 

control the second effect in a simulation setting, as described below.  This leaves the 

effects of parameter estimation error and specification error in the data generating process. 

 The time-varying-weight approaches involve more estimated parameters, and they 

require that the functional form of the conditional means and covariances be specified.  If 

parameter estimation error can explain the gap between the potential and realized 

performance of the mimicking portfolios it suggests that research can be profitably 

directed at obtaining better parameter estimates.  If not, we are left with the problem of 

better specifying the form of the generating process.  Perhaps, both issues deserve our 

attention.15 

 

Parameter Estimation and Data Generating Process Errors 

  The next experiments focus on parameter estimation error and errors in 

specifying the form of the data generating process (DGP), either in isolation or taken 

together.  The first type of error is present in all of the approaches, although perhaps the 

performance is affected to varying dergrees.  It is interesting to see which approaches are 

more affected by estimation error.  The fixed-weight approaches do not need to specify the 

                                                 
15 Of course the two issues interact in general.  If we could know the data generating process down to the 
form of the probability distribution, we could estimate the parameters by maximum likelihood and attain 
the Cramer-Rao efficiency bound.  Our interest here focuses on the central parameters of the problem—the 
conditional means and covariance matrix—and their functional relation to the lagged conditioning 
variables. 
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form of the DGP and thereby avoid the second type of error.  If the time-varying weight 

approaches specify the wrong DGP they are no longer the optimal solutions, so it is 

interesting to see how sensitive their results are to DGP error.  Finally, the two types of 

errors may interact, so we are interested in the combined effects. 

  The first experiment isolated estimation error in the parameters of the 

mimicking portfolio weights, abstracting from errors in specifying the form of the data 

generating process.  Estimation error is captured by simulating artificial samples with 576 

observations, matching the sample of Table 1.  The heteroskedastic DGP is used to 

generate the data and the correct form of the process is assumed when estimating the 

parameters.  We abstract from estimation error in our evaluation of the results by 

extending each of the 300 simulated samples to one million observations.  The mimicking 

portfolio solutions continue to rely on the noisy parameter estimates based on the first 576 

observations.  However, the factor correlations with the mimicking portfolio returns are 

estimated using the one million observations.  The results of the first experiment are 

shown in the first two columns of tables 6 and 7. 

  The second experiment isolates the effects of errors in specifying the DGP, 

abstracting from parameter estimation error.  Here we generate data from the 

heteroskedastic process, but the “artificial analyst” in the simulations assumes the 

homoskedastic process.  We abstract from parameter estimation error by using an artificial 

sample with one million observations. 

  The third experiment combines the effects of parameter estimation and DGP 

error.  This experiment is essentially the same as the experiment with parameter 

estimation error, except that the artificial analyst incorrectly assumes that the 

homoskedastic DGP is correct. 

  Tables 6 and 7 summarize the results by reporting the ratio of each expected 

absolute correlation (as a percent) to the potential absolute correlation, computed as in 
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Table 3.  We concentrate on the industrial production factor. 

  Focussing on the pure effects of parameter estimation error, the first two 

columns of table 6 show the impact on the unconditional correlations for the fixed-weight 

and UMMV approaches.  The time-varying weight UMMV solution delivers smaller 

fractions (15% - 68%) of its potential unconditional correlation than the fixed-weight 

solution, which delivers 54% - 92%.  This makes sense given that the UMMV solution 

requires the estimation of more parameters.  However, the potential correlations of the 

UMMV solution are larger, as shown in Table 3.  Multiplying the two figures shows that 

the UMMV solution is expected to deliver slightly larger correlations on average (13.7%, 

versus 13.1% for the regression approach). 

  Table 7 shows the impact of estimation error on the expected conditional 

correlations, comparing Lamont’s fixed-weight approach with the time-varying-weight 

CMMV approach.  The fractions are in favor of the fixed-weight approach, which range 

from 72% to almost 100% of the potential correlations.  The time-varying-weight approach 

delivers 33% - 89% of its potential.  This makes sense given the larger number of 

parameters in the CMMV solution.  The fact that the percentages are closer together than 

in Table 6 also makes sense, as the numbers of parameters to be estimated in the two 

approaches is more similar in this experiment. 

  Average across the examples in Table 7, and considering the potential 

conditional correlations shown in Table 3, the expected conditional correlations are 29% 

for Lamont’s method, versus 36% for the CMMV approach.  Thus, while parameter 

estimation error hurts the time-varying-weight approaches more in percentage terms, the 

higher potential correlations of the optimal solutions can offset the effect. 

  The middle column of Table 6 focusses on DGP error in isolation.  Only the 

UMMV solution is shown, because the fixed-weight regression is not affected by DGP 
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error and thus delivers 100%.16  Similarly, the results of this experiment are not reported in 

Table 7, as both solutions deliver 100%.  (Recall that the CMMV solution is identical to 

Lamont’s solution when it assumes linear expected asset returns and homoskedasticity.)  

The UMMV solution delivers between 82% and 98% of its potential correlation under pure 

DGP error. 

  The right-hand column of Table 6 combines DGP error and parameter 

estimation error.  Only the UMMV solution is shown, because the fixed-weight solution 

produces the same results as in the first column of the table.  (In Table 7, the results for 

this experiment are the same as for the case with parameter error only, for the reason 

described previously.)  Compared to the second column with parameter error only, the 

overall percentages are similar.  In some cases, the UMMV solution actually performs 

better than in the second column.  This illustrates an interaction between DGP error and 

parameter estimation error.  With the much smaller number of parameters in the 

homoskedastic process, the reduction in parameter estimation error can offset the effects 

of DGP error, and result in better performance even when the DGP is wrong. 

 

Step-Ahead Comparisons 

  We conduct step-ahead comparisons of the approaches.  We use the first Te 

observations to estimate the parameters, then we apply the estimated weights to the 

returns, ,R 1Te +  to form a mimicking portfolio return for Te + 1.  We roll the entire 

procedure forward one period, and repeat until the end of the sample.  With T 

observations in the sample, we produce T – Te step-ahead returns.  The rolling window is 

Te = 120 months (Te = 60 results in similar conclusions).  These mimicking portfolios are 

feasible in the sense that they could have been estimated using the available data at the 

                                                 
16 We ran the analysis, and the variation of the results around 100% illustrates the effects of the numerical 
errors described previously.  These are never more than 2.2 % of the figures in Table 3. 
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portfolio formation date.  However, a rolling procedure may convey an “unfair” 

advantage to a fixed-weight approach.  In each window the “fixed” weights can be 

different, and the weights will therefore vary slowly over time.  We use the simple 

homoskedastic model assumptions consistent with Table 2.  We also examine an example 

where we assume heteroskedasticity, driven by linear conditional betas.  The results are 

similar using all seven instruments, slightly better when only a single instrument is used.   

  The step-ahead performance of all the fixed and time-varying-weight 

approaches are poor.  Using the approximation eTT/1 −  to the standard error of a 

sample correlation, only 15 out of 42 cases examined, are significantly different (two 

standard deviations) from zero.  The “fixed” weight solution outperforms the time-

varying weight solution in 19 out of 24 comparisons. 

 

   

V. Additional Results 

This section presents additional results that include a generalization of the representation 

of UE and CE portfolios in Hansen and Richard (1987).  We also describe the utility 

functions for which UMMV portfolios are optimal, and present an alternative 

representation of the CMMV solution. 

 

Characterizations 

  Hansen and Richard (1987) show that it is possible to represent all UMV and 

CMV portfolios in terms of two returns that are conditionally minimum variance.  The 

first return, R *
0 , is a portfolio with weights that sum to 1.0.  The second, R *

e , is an excess 

return with weights that sum to 0.0.  They show that all CMV portfolio returns may be 

expressed as R *
0  + w(Z)R *

e , where w(Z) is a scalar function of Z, while all UMV portfolios 

may be expressed as R *
0  + w R *

e , where  w  is a constant.   Our solutions generalize this 
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result for UMMV and CMMV portfolios.    

 

Proposition 3: 
  Any CMMV portfolio may be expressed as *

0R  + w(Z) *
eR  + Σj=1,...,Kvj(Z) *

ejR , 

where *
eR  and *

ejR  are CMMV excess returns, with weights that sum to 0.0, and the vj(Z) 

are a scalar functions of Z.  Any UMMV portfolio may be expressed as *
0R  + w *

eR  + 

Σj=1,...,Kvj
*
ejR , where w and the vj, j=1,...,K are constants.   

 

Relation to Utility Maximization 

  Fama (1996) describes how under the assumption of normality, agents in 

Merton's (1973) model choose multifactor minimum variance portfolios.  This refers to 

CMMV portfolios given the agents' information sets.  The optimization problem at time t-1 

is to choose the consumption expenditures Ct-1 and the portfolio weight x(Zt-1) to: 

 

   Max u(Ct-1) + E{J(Wt,Ft)|Zt-1}, subject to Wt=(Wt-1-Ct-1)x(Zt-1)'Rt, x(Zt-1)'1=1,         (15) 

 

where J(W,F) is the indirect utility function for wealth, which depends at time t on the 

state variables or factors, Ft.  The first order condition for this problem with respect to the 

portfolio choice is: 

 

   (Wt-1-Ct-1)E{ Jw(Wt,Ft) Rt |Zt-1} + 1γ (Zt-1)1 = 0,                                       (16) 

 

where Jw(.,.) denotes the partial derivative with respect to the first argument and 1γ (Zt-1) is 

a Lagrange multiplier.  Expand the expectation of the product into the product of the 

expectations plus the covariance, and use Stein's (1973) Lemma to write Cov(Jw,R|Z) = 

E(Jww|Z) Cov(W,R|Z) + E(JwF|Z)' Cov(F,R|Z).  Now, Cov(Wt,Rt|Zt-1) =  
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(Wt-1-Ct-1)Σ(Z)x(Z), where Σ(Z)is the conditional covariance matrix of Rt.  The solution for 

x(Z) can be expressed as: 

 

   x(Z) = a1(Z)Σ(Z)-11 + a2(Z)Σ(Z)-1µ(Z) +  Σ(Z)-1E(RF'|Z)b(Z)               (17) 

 

for scalar functions of the information a1(.), a2(.) and K-vector b(.).  The solution therefore 

minimizes the conditional variance of x(Z)'Rt subject to constraints on E[x(Z)'R|Z], 

E[Fx(Z)'R|Z] and x(Z)'1=1.  Minimizing conditional variance, for each Z, subject to 

constraints that fix the conditional mean, implies minimizing the conditional mean of the 

squared return.  Therefore the solution in Equation (17) also solves the problem in 

Equation (2), and is CMMV.  Thus, Merton's (1973) agents choose CMMV portfolios, and 

the solution for the optimal portfolio weight is the same as given by Equation (7).   The 

Appendix provides a representation for UMMV portfolios, analogous to Equation (17), 

written in terms of covariances instead of second moment matrices. 

  Since UMMV portfolios are a special case of CMMV portfolios, the question 

remains as to which subset of agents would find UMMV portfolios optimal.  Ferson and 

Siegel (2001) show that UMV portfolios are optimal for agents with quadratic utility 

functions in a single period model.  The next proposition generalizes this finding for 

UMMV portfolios in an intertemporal model. 

  

Proposition 4: 
  In an intertemporal model, agents with the indirect utility function given by 

J(W,F) = W - a W2 - b'FW, where a and b are constants, and who observe the conditioning 

information Z, choose optimal portfolios that are UMMV.   

  Proposition 4 establishes that a class of generalized quadratic utility 

investors will find UMMV portfolios to be optimal choices.  Unlike our derivation of 



31 

Equation (17), the proposition does not assume normal distributions.  The utility function 

may be interpreted as augmenting the quadratic utility with a preference for covariance 

with the factor, via the product term.  Alternatively, the utility function may be written as 

[1-b'F]W - a W2, a quadratic utility with "state dependent" utility that depends on F.   

 

V.  Conclusions  
Mimicking portfolios for economic risk factors have long been useful in asset pricing 

research.  In many applications the weights are assumed to be fixed over time, while in 

theory they should be functions of the economic state.  We study mimicking portfolios 

where the weights depend on predetermined state variables, or conditioning information. 

 This leads to extensions of results on conditional and unconditional mean variance 

efficiency, as developed by Hansen and Richard (1987), generalizations of the closed-form 

solutions for unconditionally mean variance efficient portfolios in Ferson and Siegel 

(2001), and conditional and unconditional versions of multifactor minimum variance 

portfolios, as described by Fama (1996).   The relation between conditional and 

unconditional multifactor minimum variance portfolios is analogous to the relation 

between conditional and unconditional minimum variance efficient portfolios.  

  Under the assumption of normality, agents in Merton's (1973) model choose 

multifactor minimum variance portfolios given the agents' information set.  We show that 

a class of generalized quadratic utility investors will choose unconditional multifactor 

minimum variance portfolios.  The utility function may be interpreted as having state 

dependent risk aversion that depends on the factor.  These results do not require 

normality.   

  Special cases of our solutions are maximum correlation portfolios that refine 

the "economic tracking portfolios" studied by Lamont (2001).  In this case the correlation 

with an economic factor is maximized over the set of portfolio weight functions that may 
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vary over time, depending on lagged conditioning variables. 

  We provide empirical examples to illustrate the implications of our results.  

Using a sample of asset returns, economic factors and conditioning information similar to 

Lamont (2001), we explore the potential advantage to constructing mimicking portfolios 

with the optimal, time-varying weights.  The potential advantages can be large.  A 

numerical example with a single risky asset and a riskless asset shows that we can more 

than double the correlation with an inflation factor.  In Lamont’s sample the potential 

improvement is more than 20%, abstracting from estimation error. 

  Estimation error in mimicking portfolio weights presents challenges for 

future research and for practical applications.  We present simulation experiments that 

isolate the effects of parameter estimation error and error in specifying the form of the 

data generating process (DGP).  The first type of error is present in all the approaches, but 

to a greater extent in the time-varying optimal solutions because they involve more 

parameters.  The fixed-weight approaches (based on OLS regression) do not need to 

specify the DGP.  If the time-varying weight approaches use the wrong DGP they are no 

longer optimal. 

  We find that the time-varying weight solutions are affected more by 

parameter estimation error than the fixed-weight approaches, and their performance 

suffers when the wrong DGP is assumed.  The tradeoff is thus similar to the tradeoff 

between efficiency and robustness that is frequently encountered in econometric practice.  

We found examples where the higher correlations delivered by an optimal solution more 

than offset the negative effects of parameter estimation error.  However, the actual sample 

performance of the fixed-weight approaches is typically superior.  This leads us to 

conclude that in a setting where the correct DGP is known or specified as part of the 

model (e.g., when the forcing processes are a part of the model to be examined) the 

optimal solutions may be preferred in practice.  Where robustness to the form of the DGP 
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is also at issue, the simpler regression methods may be expected to perform better. 

 

Appendix 

Proof of Proposition 1: 

  We show that UMMV implies CMMV almost surely by contradiction.  Assume that 

the portfolio Rp, with weights wp(Z), is not almost surely CMMV.  Let Ω be the subset of possible 

values of Z for which Rp is not CMMV, a set with positive measure.  Define the portfolio Rw = 

w(Z)'R, where the weights w(Z) are defined as follows.  If z ε Ω, then w(z) is CMMV with 

w(z)'E(R|z) = E(Rp|z) and w(z)'E{RF|z} = E(RpF|z).  Otherwise, w(z) = wp(z) for all values of z not 

in Ω.  It follows that Var(Rw|z) ≤ Var(Rp|z) for all z, with strict inequality for z ε Ω, while 

E(Rp|Z)=E(Rw|Z) and E(FRp|Z)=E(FRw|Z).  By iterated expectations, this implies E(Rp)=E(Rw) and 

E(FRp)=E(FRw).  Since the conditional means of the two portfolios are identical, Var(Rw|Z) < 

Var(Rp|Z) implies E(Rw
2|Z) < E(Rp

2|Z) with positive probability, which implies E(Rw
2) < E(Rp

2), 

which implies Var(Rw) < Var(Rp).  Thus, Rp cannot be UMMV, and we have established that 

UMMV implies CMMV almost surely. 

  To show that CMMV does not imply UMMV, it suffices to find a portfolio that is 

CMMV but not UMMV.  The example has three assets with returns {R1,R2,R3}.  The information 

set is chosen to have two points, so that Z=1 with probability 0.5 and Z=2 with probability 0.5.  The 

asset returns are chosen to be conditionally independent of each other, given Z.  Each asset has two 

possible returns, each value observed with conditional probability 0.5.  When Z=1 the possible 

values are: R1={5%, 15%}, R2={4%, 14%}, R3={6%, 16%}.  When Z=2 the possible values are: 

R1={5%, 15%}, R2={6%, 16%}, R3={4%, 14%}.  For the factor, we choose the first asset, so that 

F=R1.  Consider the CMMV portfolio with the choice c(Z)=E(R2|Z), d(Z)=E(FR2|Z) and x(Z)'1=1.  

This imposes three constraints for each Z.  With three assets, the solution is generally unique.  Thus 

R2 is CMMV with this choice of c(Z) and d(Z).   While R2 is CMMV, it is not UMMV because it is 

dominated by the equally-weighted portfolio formed from assets 2 and 3 (which is UMMV).  The 
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variance of R2 is 0.0026, while the variance of (R1+R2)/2 is 0.00125, a reduction of more than half. 

 The constraints are satisfied in the sense that E(R2)=E{c(Z)}=E{(R1+R2)/2}=10%, and  

E(FR2)=E{d(Z)}=E{F(R1+R2)/2}=0.01.  QED  

 

Proof of Proposition 2: 

  The proof follows by maximizing the squared conditional correlation, or 

equivalently x(Z)'Cov(RF|Z)/[x(Z)'Cov(R|Z)x(Z)]1/2, over the choice of weight functions x(Z).  The 

search for the optimal weights may be restricted to weight functions that satisfy Equation (7).  

Since the squared correlation is invariant to a constant linear transformation, the search may be 

limited, for each z, to the space of random variables of the form d(z) + c(z)x(z)'R = d(z) + c(z)R' Λ 1 

/(1' Λ 1) - λ1(z)c(z)R'Ω(z)µ(z) - λ2(z)c(z)R'Ω(z)E(RF|z) =  d(z) + c(z)U1  - λ1(z)c(z)U2 - 

λ2(z)c(z)U3, where U1 = R' Λ 1 /(1' Λ 1), U2 = R'Ω(z)µ(z) and U3 = R'Ω(z)E(RF|z).  For given 

values of z, this expression may be recognized as the fitted values of a regression equation 

to predict the factor, F, with the regressors U1, U2 and U3.  The coefficients are b(z)=  

[d(z),c(z),-λ1(z)c(z),-λ2(z)c(z)]'.  Letting X=(1,U1,U2,U3)' the coefficients satisfy b(z) = 

[E{XX'|Z}]-1E{XF|Z}.  The coefficients given in the proposition are the solution to this 

system of equations.  QED. 

  The proof of the Corollary is a special case of Proposition 2, and proceeds by 

simply replacing d(z), c(z), λ1(z) and λ2(z) by the constants d, c, λ1 and λ2.  QED. 

 

Proof of Proposition 3: 

  The proposition follows directly from inspection of Equations (6) and (7).  

The first term of these equations gives the weight for R *
0  = x1(Z)'R, with x1(Z) = 

Λ 1/(1' Λ 1).  This is a portfolio with weights that sum to 1.0.  In particular, R *
0  is the global 

minimum conditional second moment portfolio.  The global minimum conditional second 

moment portfolio has some conditional mean return and some conditional covariance 
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function with each factor.  From equation (7) it is a CMMV portfolio, with target 

conditional mean and covariance with the factors equal to the values that correspond to 

the "unconstrained" global minimum second moment solution (λ1(Z)=λ2(Z)=0).  The 

remaining terms of equation (6) and (7) describe portfolio weights that sum to zero, as can 

be seen by premultiplying the terms in square brackets by 1'.  These two terms define the 

excess returns R *
e  and R *

e
fj, j=1,...,K.  The scalar weights {λ1(Z) and λ2j(Z), j=1,...,K} on these 

excess returns are functions of Z in equation (7), when the solution is CMMV.  In the 

UMMV solution of equation (6), these scalars are constants. 

 

Proof of Proposition 4: 

  The proof of Proposition 4 does not require normality.  First, we establish 

that if a portfolio weight function x(Z) maximizes the conditional expectation 

E{J(Wt,Ft)|Zt-1}, subject to the constraints, then it must also maximize the unconditional 

expectation E{J(Wt,Ft)}, subject to the constraints.  Suppose, by contradiction that another 

solution y(Z) maximizes the unconditional expectation and implies the indirect utility J(y), 

while x(Z) maximizes the conditional expectation and implies J(x).  Then E{J(x) - J(y)|Z } ≥ 

0, implying E{J(x) - J(y)} ≥ 0, contradicting that y(Z) maximizes the unconditional 

expectation, unless y(Z) = x(Z), almost surely.  Using the specific form of the indirect 

utility we have  E{J(W,F)} = E{W - aW2 - b'FW} = E(W) - a[Var(W) + E(W)2] - b'[Cov(W,F) - 

E(W)E(F)].  Maximizing this function is equivalent to minimizing the unconditional 

variance for a given unconditional mean return and covariances with the factors.  The 

solution is therefore UMMV.  QED. 

 
Derivation of Equation (9):  

The Lagrangian is 
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We proceed by perturbation, assuming that ( )w Z  is the optimal solution and allowing 

( )y Z  to be any function for which expectations exist.  Then we have ( )
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for all such functions ( )y Z , which in turn implies that 
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from which we obtain the functional form of the optimal solution: 
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Now observe that the conditional distribution of ( ),R F  given Z (using the joint normal 
distribution assumption) is 
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From this we immediately have 
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Alternative Characterization:  

  Equation (17) provides an alternative representation for the CMMV solution 

of Equation (7), expressed in terms of covariances instead of second moment matrices.  

Here we provide a corresponding alternative formula for the UMMV optimal weight 

function.  Let the conditional covariance matrix of the returns be )ZR(Cov)Z( =Σ=Σ .  

The weight function (6) may be written as17 

 
 

            (A.1) 

( ) 







λ−











µΣµ′+Σµ′
µΣ′Σ′µΣ=

−

−−

−−
−

1

1

11

11
1 1

)Z()Z(11
)Z(111)Z(1)Z(x  

( ) .)]ZF(E)Z()ZF,R(Cov[
)Z(

1
)Z(11)Z(

)Z(111)Z(1I 2
1

1

11

11
1 λ′µ−′Σ


























µ′

′











µΣµ′+Σµ′
µΣ′Σ′µΣ−− −

−

−−

−−
−  

 

 

Simulation Details 
                                                 
17 A derivation of this characterization is available by request to the authors. 
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  The simulations are calibrated to the sample moments of the actual data, 

using the sample means and covariances and the sample regression functions on the 

lagged variables as parameters of the data generating process.  One prominent feature of 

the data is the high degree of persistence in the lagged instruments.  We capture this 

through a first order vector autoregression: ,U)ZZ(A)ZZ( Zt1tt +−=− −  where the matrix 

A becomes a parameter of the simulation.  We generate the artificial data using a 

parametric bootstrap approach.  For a given factor, the )1Ln(T ++×  matrix of sample 

residuals, { } tFtZtRt )u,u,u(u =  serves as the population of shocks, where the Ftu  are the 

unexpected factor realizations and the Rtu  are the regression residuals for the asset returns 

on the lagged instruments.  We randomly resample rows from u with replacement.  The 

lagged instruments are then built up recursively using the matrix A.  The returns are 

formed as their conditional means, given the lagged Z, plus a shock. 

  When the data generating process features conditional heteroskedasticity 

driven by linear beats, we modify the simulations as follows.  The regression 

tFt1tFtoRt vu)ZZ(Bubu +⊗−+= −  determines the parameters (bo,B) for the linear 

conditional betas.  We resample from the residuals tFtZtt )}u,u,v{(  and generate the draw 

for uRt from the regression function. 
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Table 1 

 
Regressions to Determine the Parmeters of the conditional means in the Simulations.  The sample period is 
January 1947 through December, 1994 (576 months).  Continuously compounded returns and factors are 
regressed monthly on the seven lagged instruments indicated in the columns.  rflag is the lagged Treasury bill 
rate, term1y is the one-year term spread, defbond is the default-related bond yield spread, defcp is the spread of 
commercial paper over short term Treasury yields.  Laginf, lagipx and lagrm are the lagged values over the 
preceding year for inflation, industrial production growth and the stock market return, respectively.  The 
coefficient estimates are shown on the first line and Newey-West (1987) standard errors with 24 moving 
average terms are shown on the second line.  Rsq is the adjusted coefficient of determination.  Quarterly and 
annual factors are measured as overlapping monthly observations.  All variables are in natural decimal units.  
The intercepts are not shown. 
 
     rflag   term1y defbond defcp lagipx laginf lagrm  Rsq 
                                                                                                                                 
Panel A: Monthly returns   
   
market return   -2.82 -0.729  2.51  -0.022 -0.040  0.031  0.072       0.117 
       0.877  0.462   0.547    0.454  0.023  0.043  0.012   
   
basic industries   -2.87  -0.965   2.72   -0.195 -0.048  0.058  0.083       0.108 
       1.16   0.448   0.645    0.527  0.026  0.055  0.014   
   
capital goods   -3.08    -0.831   2.57    -0.296 -0.061  0.022  0.068    0.082 
        1.16   0.531   0.826    0.506  0.036  0.069  0.015   
 
construction    -4.82  -0.958   2.91   -0.294  -0.123   0.170   0.105     0.086 
        2.57   0.909    1.25    0.851  0.055  0.125  0.025  
 
consumer goods    -2.07 -1.01   3.12     -0.507  -0.067 -0.031  0.065      0.134 
       0.951   0.406   0.605    0.595  0.027  0.047   0.014   
   
energy    -3.71  -0.588   1.36      0.101 -0.049  0.22  0.071     0.050 
       1.30   0.692   0.685    0.508  0.033  0.07    0.022   
   
finance     -2.94   -1.17   3.22     -0.189   -0.043  0.032  0.079    0.110 
       1.09  0.571   0.743     0.546  0.035  0.062  0.016  
   
transportation   -3.49  -1.61    3.81     -0.580   -0.028  0.064  0.080      0.104 
       1.40     0.664   0.889    0.767   0.039  0.080   0.018   
 
utilities     -1.50     -1.60      2.80      0.211   -0.025  -0.061   0.035      0.112 
       0.87     0.480   0.648    0.317    0.023   0.036   0.010  
 
longbond    -0.049 -1.88   2.47    0.737   0.051  -0.125  -0.009      0.166 
       0.911   0.270   0.397    0.281    0.016   0.044   0.009  

 
intermediate bond   0.455  -1.54      1.80      0.456    0.041 -0.088 -0.013      0.247 
       0.600   0.203   0.278    0.190    0.0107  0.0301   0.007 
 
one year bond    0.876  -0.467   0.607    0.148    0.012 -0.027  -0.004      0.508 
       0.182    0.087   0.105     0.057   0.004   0.010   0.002   

 
junk bond   -0.826  -1.44   2.79   -0.133    0.034  -0.010  0.001      0.193 
      0.672   0.263   0.391    0.203    0.013  0.027   0.007   
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     rflag   term1y defbond defcp lagipx laginf lagrm  Rsq 
                                                                                                                               
Panel B: Monthly Factor Growth Rates   
   
industrial production  -1.15    0.0453   0.511     0.183   -0.024 -0.044  -0.003     0.076 
       0.266   0.125   0.174   0.129  0.011  0.022   0.005  
   
labor income    -0.622   0.274  0.022    0.151   -0.014  -0.026   0.002    0.002 
       0.285   0.110   0.132     0.082   0.007  0.013   0.003  
 
inflation       0.410   0.136   -0.160     0.0343  -0.000  0.019   0.001      0.131 
       0.175    0.0549  0.096   0.0671   0.005   0.015   0.001 
 
Panel C: Quarterly Factor Growth Rates   
 
industrial production   -3.10  -3.8E-05 1.43   0.408   -0.067  -0.120 -0.012      0.127 
       0.726   0.322  0.423    0.345    0.028   0.062  0.014   
 
labor income     -1.56   0.392  0.181   -0.129   -0.036  -0.051  -0.006     0.026 
       0.638  0.268  0.328    0.216  0.018  0.038  0.008   
 
inflation       1.28     0.342  -0.436     0.0487  -0.001 0.053   0.002      0.185 
      0.512    0.178   0.287    0.194  0.015  0.044   0.004 
 
Panel D: Annual Factor Growth Rates   
 
industrial production    -9.29    1.35    3.30    -2.28    -0.272  -0.362  0.069       0.401 
        2.60   0.810    1.46      0.859    0.096   0.222    0.027  
 
labor income     -5.39     0.371    2.01     -0.469   -0.038  -0.289    0.054     0.432 
      1.58     0.391    0.846    0.550  0.049  0.095  0.017  
 
inflation        5.37     0.547   -1.75     -0.246    0.051   0.481   0.009    0.522 
      1.74     0.392   0.919   0.466    0.034   0.136    0.013   
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Table 2 

 
Potential correlations of Mimicking Portfolios.  The absolute correlations, in percent (%), between mimicking portfolios 
and economic factors are shown.  The computations abstract from sampling error in the estimation of the mimicking 
portfolios weights, via a simulation with one million time-series observations.  The data generating process features linear 
conditional expected returns, fixed factor means and homoskedasticity.  The simulations are calibrated to the sample in 
Table 1. The Fix-weight solutions use a simple regression of the factor on returns where unconditional correlations are 
shown, and follow Lamont (2001), where expected conditional correlations are shown. The TV-weight solutions allow for 
optimal, time-varying weights that depend on the conditioning variables. 
                                                                                                                                             
 
                      Industrial Production     Labor Income                      Inflation    
  Fix-weight TV-weight Fix-weight TV-weight Fix-weight TV-weight 
                                                                                                                                             
 
 
Panel A:  Contemporaneous Monthly Factors 
 
Unconditional 9.0  15.3  26.0  30.4  17.9  18.3 
Correlation 
 
Expected 16.3  16.3  31.0  31.0  21.1  21.1 
Conditional 
Correlation 
 
Panel B:  Monthly future Factors 
 
Unconditional 11.4  13.3  13.8  19.8   10.9  13.0 
Correlation 
 
Expected 13.9  13.9  20.8  20.8   14.1  14.1 
Conditional  
Correlation 
 
Panel C:  Quarterly future Factors 
 
Unconditional 12.7  14.7   18.7  21.7  10.5  12.7 
Correlation 
 
Expected 15.1  15.1  22.2  22.2  14.0  14.0 
Conditional 
Correlation 
 
Panel D:  Annual future Factors 
 
Unconditional  6.2  10.2  8.1   10.7  16.9  17.0 
Correlation 
 
Expected  11.3   11.3   11.8   11.8  18.3  18.3 
Conditional 
Correlation 
 
Averages: 
 
Unconditional 9.8  13.4  16.7  20.7  14.1  15.3 
Conditional 14.2  14.2  21.5  21.5  16.9  16.9 
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Table 3 

 
Potential correlations of Mimicking Portfolios.  The expected absolute conditional correlations, in percent (%), between 
mimicking portfolios and economic factors are shown.  The computations abstract from sampling error in the estimation 
of the mimicking portfolios weights, via a simulation with one million time-series observations.  The data generating 
process features linear conditional expected returns, and heteroskedasticity driven by linear conditional betas.  The 
simulations are calibrated to the sample in Table 1. The Fix-weight solutions follow Lamont (2001).  The TV-weight 
solutions allow for optimal, time-varying weights.  L refers to the number of lagged instruments.  When L = 1 the term 
spread is the only instrument.  When L = 2 the lagged, risk-free rate is included.  When L = 3 we also include the lagged 
default spread. 
                                                                                                                                             
 
                      Industrial Production     Labor Income                      Inflation    
  Fix-weight TV-weight Fix-weight TV-weight Fix-weight TV-weight 
                                                                                                                                             
 
Panel A:  Contemporaneous Monthly Factors 
 
L = 1  17.8  25.0  28.8  36.4  28.8  36.3 
 
L = 2  35.6  53.4  29.6  64.7  31.6  44.2 
 
L = 3  24.4  48.7  28.5  70.0  26.1  45.3 
 
Panel B:  Monthly future Factors 
 
L = 1  17.9  22.8  20.2  25.6  20.7  23.5   
 
L = 2  34.9  58.9  35.4  52.6  16.3  37.0 
 
L = 3  28.0  60.8  30.1  56.6  15.0  42.2 
 
Panel C:  Quarterly future Factors 
 
L = 1  21.1  25.3  25.9  29.1  27.0  28.5 
 
L = 2  50.4  61.7  39.7  62.5  15.0  27.9 
 
L = 3  39.5  60.7  35.1  66.9  14.2  31.9 
 
Panel D:  Annual future Factors 
 
L = 1  35.3  37.0  36.3  39.6  38.3  39.1 
 
L = 2  47.8  68.3  49.1  67.6  28.5  37.5 
 
L = 3  38.0  67.1  43.8  67.1  30.0  38.0 
 
 
Averages 32.9  49.1  33.5  53.2  24.3  36.0  
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Table 4 

 
Sample performance of mimicking portfolios.  The sample is the same as in Table 1.  The estimates assume that the data 
generating process features linear conditional expected asset returns and homoskedasticity.  The Fixed solution estimates 
the weights with an OLS regression of the factor on the vector of contemporaneous returns where unconditional 
correlations are shown, and uses the method of Lamont (2001) where average conditional correlations are shown.  The 
TVW solutions allow weights that depend on the lagged conditioning variables in the previous month.  The 
unconditional correlations are the sample correlations between the fitted mimicking portfolio returns and the factors.  The 
Average conditional correlations are the correlations between the regression residuals of the returns and the factors, 
regressed on the lagged instruments.   
                                                                                                                                             
 
                     Industrial Production                  Labor Income                        Inflation              
     
    Fixed   TVW  Fixed   TVW  Fixed                  TVW  
                                                                                                                                             
 
Panel A:  Monthly Contemporaneous Factors 
 
Unconditional    
Correlation   15.6  11.8  31.1  31.1  23.2  11.9 
 
Average Conditional   
Correlation   17.1  17.1  31.3  31.3  22.8  22.8 
 
 
Panel B:  Monthly future Factors 
 
Unconditional    
Correlation   15.4  10.5  20.6  19.4  21.0  8.6 
 
Average Conditional   
Correlation   14.5  14.5  20.9  20.9  15.1  15.1 
 
 
Panel C:  Quarterly future Factors 
 
Unconditional    
Correlation   19.2  14.3  26.4  24.1  23.5  7.4 
 
Average Conditional    
Correlation   16.0  16.0  22.8  22.8  15.5  15.5 
 
 
Panel D:  Annual future Factors 
 
Unconditional    
Correlation   32.6  4.4  37.8  6.5  36.8  10.1 
 
Average Conditional   
Correlation   14.7  14.7  15.6  15.6  25.6  25.6 
 
Averages: 
 
Unconditional   20.7  10.3  29.0  20.3  26.1  9.5 
 
Conditional   15.6  15.6  22.7  22.7  19.8  19.8 
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Table 5 

 
Sample performance of mimicking portfolios.  The sample is the same as in Table 1.  The estimates assume that the data 
generating process features linear conditional expected asset returns, and heteroskedasticity driven by linear conditional 
betas.  The Fixed solution estimates the weights with an OLS regression of the factor on the vector of contemporaneous 
returns where unconditional correlations are shown, and uses the method of Lamont (2001) where average conditional 
correlations are shown.  The TVW solutions allow weights that depend on the lagged conditioning variables in the 
previous month.  The unconditional correlations are the sample correlations between the fitted mimicking portfolio 
returns and the factors.  The Average conditional correlations are the sample correlations between the regression 
residuals of the returns and the factors, regressed on the lagged instruments.  The first row of numbers is based on the 
lagged term spread only.  For the second row all seven lagged instruments are used. 
                                                            
 
                     Industrial Production                  Labor Income                        Inflation              
     
    Fixed   TVW  Fixed   TVW  Fixed                  TVW  
                                                                                                                                             
 
Panel A:  Monthly Contemporaneous Factors 
 
Unconditional   15.6  17.7  31.1  33.3  23.2  25.2 
Correlation   15.6  27.0  31.1  30.7  23.2  29.3 
 
Average Conditional  15.6  0.8  31.1  5.5  22.4  0.7 
Correlation   17.1  0.1  31.3  4.9  22.8  19.6 
 
 
Panel B:  Monthly future Factors 
 
Unconditional   15.4  19.7  20.6  22.5  21.0  20.9 
Correlation   15.4  23.0  20.6  32.6  21.0  24.8 
 
Average Conditional  15.4  0.9  20.5  22.6  19.0  1.1 
Correlation   14.5  1.5  20.9  3.2  15.1  0.3 
 
 
Panel C:  Quarterly future Factors 
 
Unconditional   19.2  22.7  26.4  28.2  23.5  27.2 
Correlation   19.2  28.8  26.4  31.7  23.5  23.8 
 
Average Conditional   18.9  21.4  26.3  6.2  21.3  6.3 
Correlation   16.0  4.2  22.8  0.0  15.5  2.5 
 
 
Panel D:  Annual future Factors 
 
Unconditional   32.6  32.6  37.8  38.7  36.8  39.9 
Correlation   32.6  27.8  37.8  23.2  36.8  22.6 
 
Average Conditional  32.4  32.1  36.8  3.4  34.7  17.7 
Correlation   14.7  3.1  15.6  5.8  25.6  4.5 
 
Averages: 
 
Unconditional   20.7  24.9  29.0  30.1  26.1  26.7 
 
Conditional   18.1  8.0  25.7  6.5  22.1  6.6 
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 Table 6 
 
Effects of parameter estimation error and error in specifying the form of the data generating process on the unconditional 
correlations of mimicking portfolios.  The table shows the ratio of actual to potential absolute unconditional correlations 
with an industrial production growth factor, in percent.  The potential correlations follow Table 3, assuming that the data 
generating process (DGP) features linear conditional mean asset returns and heteroskedsticity driven by linear 
conditional betas.  In the colums labelled "Parameter error only," the simulations incorporate estimation error but the 
correct form of the DGP is used.   In the columns labelled "DGP Error only," the simulations abstract from estimation 
error by using a sample with one million observations, but the portfolios incorrectly assume that the DGP features linear 
conditional asset returns and homoskedasticity, as in Table 2.  In the columns labelled "Both DGP and Parameter Error," 
there is estimation error and the homoskedastic process is incorrectly assumed.  The simulations are calibrated to the 
sample in Table 1.  When L=1 only the lagged term spread is used as a conditioning variable.  When L=2 the lagged risk-
free rate is also included and when L=3 the lagged default spread is included as well. The FIX solution estimates the 
weights with an OLS regression of the factor on the vector of contemporaneous returns.  The TVW solutions are the 
UMMV solutions that allow weights to depend on the lagged conditioning variables in the previous month.     
                                                                                                                                             
 
                     Parameter Error Only      DGP Error Only   DGP and Parameter Error 
     FIX  TVW      TVW    TVW 
                                                                                                                                             
 
Panel A:  Contemporaneous Monthly Factor 
  
L=1                          70.7       15.4        93.0        15.8  
L=2                          57.7       20.3                 88.9    21.1  
L=3                          57.6       43.2                84.2    44.4  
 
 
Panel B:  Monthly future Factor 
 
L=1                          71.4       26.2                 94.7    59.6  
L=2                          56.4       23.1                 85.3    63.3  
L=3                          54.5       30.2                 83.9    30.9  
 
Panel C:  Quarterly future Factor 
 
L=1                          79.5       42.6                 93.2    41.4  
L=2                          67.3       34.4                 84.5    37.0  
L=3                          60.2       45.4                 82.4    46.1  
 
 
Panel D:  Annual future Factor 
 
L=1                          92.2       68.2                 98.1    67.7  
L=2                          70.7       17.4                 83.8    16.5  
L=3                          58.8       19.0                 85.3    12.7  
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Table 7 

 
Effects of parameter estimation error on the expected conditional correlations of mimicking portfolios.  The table shows 
the ratio of actual to potential absolute unconditional correlations with an industrial production growth factor, in percent. 
 The potential correlations follow Table 3, assuming that the data generating process features linear conditional mean 
asset returns and heteroskedsticity driven by linear conditional betas.  The simulations incorporate estimation error, and 
the correct form of the DGP is used.   When L=1 only the lagged term spread is used as a conditioning variable.  When 
L=2 the lagged risk-free rate is also included and when L=3 the lagged default spread is included as well.  The FIX 
solution estimates the weights using the regression approach of Lamont.  The TVW solutions are the CMMV solutions 
that allow the weights to depend on the lagged conditioning variables in the previous month.     
                                                                                                                                             
 
                      Parameter Error Only     
        FIX  TVW   
                                                                                                                                             
 
Panel A:  Contemporaneous Monthly Factor 
  
L=1       71.9  65.2 
L=2                             79.1  72.1 
L=3                              88.9  66.3 
 
 
Panel B:  Monthly future Factor 
 
L=1                             73.2  33.5 
L=2                             89.3  75.0 
L=3                              97.9  74.8 
 
Panel C:  Quarterly future Factor 
 
L=1                             77.3  72.1 
L=2                             75.4  78.4 
L=3                             95.1  74.7 
 
 
Panel D:  Annual future Factor 
 
L=1                             90.7  88.8 
L=2                              85.1  78.1 
L=3                              82.3  77.5 
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Figure 1 
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Figure 2 
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