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of static equilibrium models. The test is based on a restricted

cost function framework together with the envelope conditions which

characterize static equilibrium for the quasi—fixed factors. We

also show how restricted cost function models can be exploited to

investigate some important issues such as the calculation of the

rates of return to quasi—fixed factors, the determination of over-

or underinvestmerit in particular assets, and the distinction

between short run excess capacity and long run economies of scale.

We provide an empirical application of these techniques to data on

the Bell System for the period 1947—1976, treating the stocks of

physical capital and of research and development (R&D) as quasi-

fixed inputs. The results suggest that there was substantial

overinvestment in capital and underinvestment in R&D compared to the

static equilibrium levels, and that the rates of return to capital

and R&D were about 4.5 and 10-15 percent, respectively.
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Introduction

A number of papers have appeared recently on the specification and

estimation of dynamic equilibrium models of factor demand and their

application to the explanation of productivity growth.1 These papers

represent a significant departure from earlier empirical work in this

area, which was based on static equilibrium models and dynamic models

with ad hoc adjustment mechanisms. The dynamic equilibrium models begin

with the theory of restricted cost functions, in which the firm minimizes

the costs of production over a set of completely variable inputs condi-

tional on a given stock of quasi—fixed factors (hereafter, fixed factors).2

The assumption is made that the firm faces smooth, convex costs of

adjusting the stocks of fixed factors and an intertemporal cost minimization

problem is solved to obtain explicit time paths for the fixed inputs.

These models yield many useful insights, especially in terms of the

dynamic pattern of input substitution and complementarity, but they make

stringent demands on the available data and have some conceptual limitations.

The assumption of smooth convex adjustment costs rules out potentially

interesting asymmetries regarding the costs of investment and disinvestment.

Moreover, there may be various reasons for a divergence between the actual

level and static equilibrium level of fixed factors which cannot be

summarized adequately by smooth convex adjustment costs, such as regulatory

restrictions, credit rationing and other institutional rigidities. One

can embrace the idea of dynamic equilibrium models and yet maintain that

the particular formulation should reflect the problem under study.

An alternative approach which sidesteps these complications is to

use a restricted cost (or profit) function framework but leave the levels
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of the fixed factors unexplained. These restricted equilibrium models

are more flexible in that they do not impose a particular structure on

the evolution of fixed factors, but for the same reason they yield no

information about dynamic substitution possibilities or the time path of

fixed inputs. This approach has been applied widely to analyze the short

and long run structure (but not the dynamic path) of factor demand and

costs (see papers in Berndt and Field 1981; also Lau and Yotopolous 1971),

to study productivity growth (Caves, Christensen and Swanson 1981), and to

estimate the divergence between the observed and static equilibrium levels

of the fixed inputs (Brown and Christensen 1981). In a recent important

paper, Berndt and Fuss (1982) show explicitly how measured growth in total

factor productivity reflects both shifts in the production possibility

frontier and any existing divergences of the fixed inputs f rpm their

static equilibrium levels, and they demonstrate that the correct adjustment

for this problem requires information on the shadow prices of the fixed

inputs. Given the focus of many of these studies, it is a natural

extension and would be very useful to develop an empirical test of the

divergence of fixed inputs from the static equilibrium levels and a

method to estimate their shadow prices directly. Unfortunately, such a

test is not yet available in the literature.

The first objective of this paper is to provide a usable empirical

test of the hypothesis that fixed inputs are at their static equilibrium

levels. In a restricted cost function framework, the static equilibrium

level of a fixed factor is defined by the well—known envelope condition

which equates the marginal savings in variable costs and the market rental

price of the fixed input (Samuelson 1953; Corinan 1968). We formulate a
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statistical test of whether the envelope conditions are validated by

the data. The test procedure should assist the empirical researcher in

choosing between the static, restricted and dynamic equilibrium modelling

strategies. We also show how to retrieve information about the long run

structure of costs and input substitution from the restricted cost

function. The second objective is to provide a method of estimating the

marginal rates of return to the fixed inputs from a restricted cost

function. Aside from their intrinsic interest, we suggest how estimates

of the rates of return (or the shadow prices to which they are related)

can be used to implement the proposal by Berndt and Fuss (1982) to

adjust measured productivity growth for departures of fixed factors from

their static equilibrium levels.

Finally, we provide an empirical application of these procedures

to data on the Bell System for the period 1947—1976, in which the stocks

of physical capital and of research and development (R&D) are treated as

fixed inputs. Summarizing briefly, the empirical results indicate that

the hypothesis of static equilibrium can be rejected strongly for capital

and (more ambiguously) for R&D, that there was excessive investment in

capital and underinvestment in R&D compared to the static equilibrium

levels, and that the marginal rates of return to capital and R&D were on

the order of 4.5 and 10—15 percent, respectively.

The paper is organized as follows. Section 1 sets out the restricted

cost function framework and shows how to retrieve characteristics of the

underlying long run technology. The procedure for testing the envelope

conditions is developed in Section 2. The method of estimating the rates

of return to fixed inputs is presented in Section 3. Section 4 provides
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an empirical application of the model to the Bell System. Concluding

remarks follow.

1. Methodological Framework

Let T(y,x,z) = 0 denote the underlying transformation function

connecting the level of output y, a set of variable Inputs x= (x1,. ..

and a set of fixed inputs z = (z1,... ,z). If T(.) satisfies certain

regularity conditions (Lau 1976) and the firm minimizes the variable costs

of producing y, conditional on the vector z and fixed prices for variable

inputs p, there exists a restricted (or variable) cost function

(1) 'YC = F(y,p;z).

The function F(y,p;z) is monotonically nondecreasing and concave in p,

nondecreasing in y, and nonincreasing and convex in z. By Hotelling's

Lemma the set of conditional demand functions for the variable factors is

obtained by differentiating F(.) with respect to variable input prices:

(2) x = F(y,p;z)

where a subscript denotes partial differentiation so F (F ,... ,F ).
p p1

The associated short run cost function includes the costs of fixed

factors:

(3) SC = F(y,p;z) + rz'

where a prime denotes a transpose of a vector, and r = (r1,. .. ,r) is a

vector of market rental (service) prices of the fixed inputs.
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The preceding functions are defined forrarbitrary positive levels of

*
z. The static equilibrium levels of z, z , are defined implicitly by the

envelope conditions (Sainuelson 1953; Gorman 1968):

(4) — F (y,p;z*) = r

The left hand side of (4) represents the marginal reduction in variable

costs due to z, or the shadow price of z. The envelope condition says

that fixed factors are at the static equilibrium levels if and only if

their shadow prices equal the market rental prices. Also note for future

reference that (3) and (4) imply that 3SC/z = 0 if and only if the

envelope condition for Zj holds, i.e., Zj = Z.. Finally, let z = H(y,p,r)

denote the demand functions for z implied by (4) and substitute into (3)

to obtain the long run cost function

(5) C = F(y,p,H(y,p,r)) + rH'(y,p,r) = G(y,p,r)

where the prime represents a transpose of the vector.

The duality theorems which link transformation and restricted cost

functions guarantee that the structure of production can be inferred from

the restricted equilibrium framework (see for example Lau 1976). The

structure of production is summarized by the long run output elasticity

of costs and the partial elasticities of substitution, and we now show

how to derive these measures from the restricted cost function.

Let n = lnVC/ lny and = lnSC/ my denote the output elasticity

of variable and short run (total) costs, respectively. Differentiating

(2) with respect to output and letting z vary arbitrarily, we obtain

(6) SC = F + F z' + rZ'
y y zy y
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To allow for inoptimal choice of z, let —F = r + d where d (d ,.. . ,d )z 1 n

denotes the deviations of the shadow prices from the market rental prices

of z. Using this notation and converting (6) to elasticities we obtain

(7) n (1 + ir)1[n —
IT fl's v dzy

where ir (1 + rz'/vc), — dz'/'I.rC and n = a lnz/a lny. Therefore, the

short run (total) cost elasticity reflects the variable cost elasticity.

the divergence of fixed inputs from their static equilibrium levels, and

the response of those inputs to changes in the level of output. If static

*
equilibrium holds, z = z and d = 0, short and long run costs coincide,

and the long run cost elasticity n = a inC/B my becomes

* —1 *
(8) n=(1+ir) n

* * *
where ii and n are evaluated at z = z . As noted by Hanoch (1975), the

proper measure of scale economies is given by n. It is important to

note that the long run cost elasticity can be retrieved from the variable

cost elasticity only in the neighborhood of the static equilibrium levels

*of fixed factors. That is, equation (8) holds only at z = z and

inferences based on (8) are invalid if z z. This finding contrasts

with Caves, Christensen and Swanson (1981) who claim to show that the

long run scale economies can be retrieved at any arbitrary level of z.3

The analysis also illustrates the classic problem of disentangling

the effects of "excess capacity" and economies of scale (Borts 1960).

Note from (7) and (8) that

**_1 * —1 1+ir— = (1 + — n) + (1 + ri) nv + C + . )
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Assume for simplicity that the restricted cost function is homogeneous in

output, so n is a constant and Suppose that excess stocks of

fixed factors are held (i.e., z > z, which implies d > 0 and d > and

that those inputs are normal (n > 0). Then it follows from (9) that

> n. In this case, incorrectly using observed (short run) data on z

and equation (8) to infer n would yield an underestimate of the true

and hence an overstatement of returns to scale. The contrary holds if

z < z. The correct procedure to infer nL from is either to test the

hypothesis z z and then (conditional on nonrejection) evaluate (8) at

*the observed z, or to estimate z as those values which solve the envelope

conditions and use them to evaluate equation (8). We return to this point

later.

Consider now the Allen partial elasticities of substitution (AES).

We limit the technical derivation to a brief summary and provide the

intuition behind the results. A complete technical derivation is presented

in Brown and Christensen (1981). Let and denote the variable

and long run AES between inputs i and j, and zk = Hk(ypr) be the demand

function for implied by the envelope conditions (3). The AES can be

expressed in terms of the restricted and total cost functions as (Uzawa

1962):

(lOa) = FF. ./F.F.V 13 13

(lOb) = GG ./G.G
i iJ ii

where F(.) and G(.) are the restricted and long run cost functions given

in (1) and (5), superscripts denote inputs, and subscripts denote partial

derivatives with respect to input prices unless otherwise noted. Of
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iicourse, o is defined only for variable inputs since fixed factors are

given in the short run. For clarity we partition inputs into a Bet of

variable factors (VF) and a set of fixed factors (FF), with associated

indices i,jVF and k,inE.FF.

The expressions for the are obtained by taking the derivations

required in (lOb) and using the envelope conditions (4) to simplify them.

The procedure is straightforward, except perhaps to note that in

differentiating G(y,p,r) with respect to prices of fixed inputs the

dependence of z on those prices, as shown in (5), must be recognized.

The results can be summarized as follows:

(ha) =
G(F. + FjkH')/FjF.

(hib) = G(F.kH)/H'F.

Chic) = GHk/HkHn

where F.k is the cross partial of F() with respect to p. and

Equations (ha—he) provide the long run AES between variable factors,

between variable and fixed factors, and between fixed factors, respectively.

Using (lOa) we can also write (ha) as = (1 + lr*)[cj3 + F(FkhI)/FlFJ

*
where r was defined earlier. This form of the long run AES allows a

simple intuitive interpretation. The consists of a direct and an

indirect effect of p. on x.. The term represents the direct effect,
1 3 V

holding z constant in the short run. The second group of terms in the

brackets represents the indirect effect of p on Xj via the effect of

on the optimal levels of the fixed factors k. To see this, recall that
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and note that by Shephard's Lemma Fjzk = Hence,

jzkHj — (xj/api)azk/apj is the indirect effect of P on
Xj through

the induced changes in the z's. Of course, in (llb) and (lic) = o

by the definition of fixed factors, and only the indirect effect remains.

To evaluate the O'B empirically, one requires the derivatives of

the restricted cost function F() and of the long run demands for the

fixed factors Hk(.) which appear in (ila—lic). The latter can be

expressed in terms of the derivatives of F(.) by performing comparative

statics on the system of envelope conditions given in (4) (see Brown and

Christensen 1981 for details). It is important to emphasize that the

derivation of (ila—lic) uses the envelope conditions, and hence these

*
formulas are valid only for z = z . This point also applies to the long

run cost elasticity, as we noted. There are two approaches to this

*
problem. The first is to estimate the z as those values which solve the

system of envelope conditions (4), given the data on y, p and r and the

parameter estimates of the restricted cost function, and then to evaluate

(ha—lie) at the estimated z*(Brown and Christensen 1981). One limitation

of this approach is that it is not possible to determine whether the

*
divergence between the estimated z and the observed z is statistically

*
significant or simply reflects sampling error in the estimated z . An

alternative approach which we propose is to test the hypothesis that

z = z. If the hypothesis is not rejected, then (ha—lie) can be

evaluated at the observed levels of z. If the hypothesis is rejected,

*
the evidence supports a significant divergence between z and z and the

first approach must be used. In the next section we develop such a test.
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2. A Test of Static Equilibrium

The test Is conducted under the null hypothesis (H0) that the static

equilibrium levels of fixed factors are held. Under H0 the fully specified

model consists of the restricted cost function, the conditional demands

for the variable inputs, and the long run demands for fixed factors. That

is, we have the following system of (structurally recursive) simultaneous

equations:

(12a) ye = F(y,p,z;0) + c,

(12b) x = F (y,p,z;B1) + C2

(12c) z = H(y,p,r;3) + £3

where the cs are stochastic disturbances which reflect randOm optimization

and other errors and which in general are correlated across equations, and

the 's are parameter vectors. The validity of the restricted equilibrium

framework (for arbitrary z) is a maintained hypothesis. This implies that

that is the vector which parametrizes (12b) is a subset of

in (12a). These cross—equation parameter constraints are maintained here.4

Also note that 11o allows for random error in the determination of the

static equilibrium levels of z. This seems distinctly preferable to the

*
more restrictive and less realistic hypothesis that z = z exactly. It

will turn out that the test of H0 which we propose is equivalent to the

Hausman test for misspecification applied to the system of simultaneous

equations (12a—12c) (Hausman 1978). Since this is by no means obvious,

we now discuss the intuition behind the test and then present It formally.

10



The substantive implication of H0is that B2c80, since (12c) is

derived from (12a) by using the envelope conditions. Partition the vector

Bo as B (B,8) where the elements of appear in (12a) but not in

(12c) under Then H0 implies the restrictions B2 3. The st

direct test of H0 is a standard likelihood ratio test of B2 = 3. Let B

be the asymptotically efficient, constrained estimator of from (12a—12c)

under the restrictions B2 = and be the unconstrained estimator from

(12a—12c), where both and take account of the cross—equation correlation

among the stochastic disturbances. The standard test is based on a

comparison of the values of the likelihood function under and B. In

order for this test to be valid, B must be a consistent estimator of 8

under H but inconsistent under H1, while must be consistent under both

H0 and H1. This requirement is met only under a rather narrow class of

alternative hypotheses, in particular that under H1 the observed z are

some arbitrary function of only y, p and r. In this case (12c) remains

properly specified under H1, but with 82 3& 3. This specification of H1

is too narrow, however, because almost any dynamic specification of the

determination of z will yield demand functions for z which depend on

additional variables beside y, p and r. Under a broader formulation of

H1, however, the standard test breaks down because then (12c) is

misspecif led under H1 and the unconstrained estimator is inconsistent.

The inconsistency arises because the misspecification in (12c) is

transmitted to B through the covariance in the 's used to construct .

A valid test can be developed by recognizing that, regardless of how z

is determined under H, the system (12a—12b) remains properly specified

since it holds for arbitrary z. Hence, we propose to test H0 by comparing
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the asymptotically efficient, constrained-estimator from (12a—12c) under

the restrictions — 8, , to another estimator obtained from (12a—12b),

13. As required for a valid test, is consistent under H0 but not under

(the more general) while is a consistent estimator under both H0

and H1.

The test procedure can be formalized as follows. Suppose that

(12a—12c) can be expressed as linear equations in the parameters. Write

(12a—12b) in stacked matrix form:

(13) Y=X13+U

where Y is an (in + 1)T x 1 vector consisting of T observations on variable

cost followed by those on the m variable factors, X is an (in + 1)T x k

matrix on y, p and z (k in number), 13 is a (k x 1) parameter vector, and

U is an (in + 1)T x 1 vector of disturbances with E(U) = 0 and E(UU') = I 0

where I is a T x T identity matrix. Let the system augmented by (12c) be

-Y Ix1 -U

=
Lxi— z —

or

(14)

where z is an nT x 1 vector of observations on the n fixed factors, X

is an nT x k matrix on y, p and r, and c is an nT x 1 vector of disturbances

with E(c) = 0, E(cc') = I 0 , and E(eU') = I 0 i. Finally, let E(t') =

I 0 L, where Z =

L
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Since z--is-endogenous under H0 and appears inX and X, instrumental

variable (IV) estimators are required. Let P and P be conformable

matrices of suitable instruments for X and X (such that P'(I 0 ')X and

P'(I 0 are square and nonsingular). The generalized covariance IV

estimators of 8 from (13) and (14) are

(15) = [P'(I 8 ' 1)X] 1P'(I 0

= 8 + [P'(I 0 Z 1)X] 'P'(I 0

and

(16) = [P'(I 0 E 1)X] P'(I 6 E1)Y

= 8 + [P'(I 0 Z 1)X]_1P'(I 0

It follows that v'f ( — ) N(0,V) and V ( — ) N(0,V1) where

means asymptotically distributed, V0 = plim[P'(I 6 1 )X/T]
1
and

V1 = plim[P'(I 8 1)X/T}. From (15) and (16)

(17)
— = [P'(I 8 1)X]'P'(I 0

— ['(I 8 I)]'(I 6

Hence, , ( — N(0,V) where it can be shown that V =
V1

—

V0.5
Let

V be any consistent estimator of V. Then we obtain the test statistic

N = T( — )91( — x where q Is the number of restrictions being

tested (i.e., embodied in 82 = 82).

To test the null hypothesis that all fixed factors are at their

static equilibrium levels, the computed test statistic M is compared to

the critical value of the Chi—square deviate with q degrees of freedom.
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The procedure can also.be used to test the hypothesis that only a subset

of fixed inputs are at their optimal levels, leaving the others free to

be at arbitrary levels. In this case the estimator is defined as

before, but B is obtained from (12a—12b) plus the subset of (12c)

corresponding to the fixed factors to be tested. Finally, It may be

recognized that the test procedure provided here is equivalent to a

Hausman test for specification error In a system of simultaneous equations

(Hausman 1978). Hence, the existing literature on the power of the liausman

test is relevant here (e.g., Hausman 1978; Holly 1982).

3. Rate of Return to Quasi—Fixed Factors

In this section we show how to derive estimates of the Internal

rates of return (IRR) to fixed factors from the restricted equilibrium

framework. One preliminary point is in order. As noted in Section 1,

the restricted cost function must be convex in z, and one of the

implications of this condition is that the long run demand functions for

z are downward sloping (i.e., the shadow price —F declines with z).

Recall that the static equilibrium level of z, z , is determined by

equalizing the shadow price and the opportunity cost of funds. Since

(as we show below) the shadow price is directly related to the IRR, it

follows that a divergence between the IRR at the observed z and the

opportunity cost of funds is a reflection of a divergence between the

observed and static equilibrium levels of z. In fact the two problems

can be viewed as the duals of each other. As a consequence It Is

meaningful to estimate the IRR only if a statistically significant

*
divergence between z and z has been established. Therefore, the test
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of static equilibrium proposed in Section 2 should be conducted prior to

the computation of the IRR to fixed factors.

In the present framework investments in z shift the restricted (or

variable) cost curve downward and establish a new long run equilibrium

price for output. The market price, however, may adjust with some lag.

In each period the gross private returns to the investment ae the

difference between total revenue and the new level of short run costs,

evaluated at the prevailing short run equilibrium. These rents arise

from the firm's temporary monopoly power resulting from the cost

reduction or, equivalently, the sluggishness of price adjustment. The size

of these rents depends both on the level of the new equilibrium price and

the speed of adjustment toward it, and hence varies with the specific

market structure under consideration. In this section and in the

subsequent empirical application we analyze the case of a regulated,

single product monopoly. (The modification for an unregulated competitive

firm will be noted later.) No assumption is made regarding the degree of

returns to scale. The firm is constrained to earn zero economic profits

eventually. That is, the regulatory authorities fix the price of output

at the intersection of the demand and average total cost curves, possibly

with some lag, and the firm is required to meet demand at that price.

The measure of average total cost used by the regulators for price

determination includes a remuneration to the surviving (i.e., undepreciated)

stock of fixed inputs. While in practice the determination of this

"allowed return" is a complicated procedure, we assume that it reflects

the opportunity cost of funds, or the market rental price of the fixed

factors.
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Suppose the firm makes an investment in z which lowers both the

average variable and average total cost curves. If there is no regulatory

lag, the price of output adjustB immediately to the new level of average

total cost and the investment earns only the market rental price which is

reflected in that cost. However, if there is any regulatory lag in

adjusting the price, the firm also enjoys some rents and the total private

return to the investment exceeds its opportunity cost.6 Other things

equal, the realized private returns vary directly with the length of the

regulatory lag. Since static equilibrium requires that the marginal

investtnent in z earn only the normal rate of return, the question which

arises is whether (and under what condition) there can be an equilibrium

level of z in the presence of regulatory lag. This can occur only if the

marginal investment in z does not shift the total cost curve since in this

case the equilibrium price of output remains unchanged, there are no

realized rents to the investment and the effect of regulatory lag is

thereby neutralized. This condition holds if and only If the reduction

in variable costs just equals the market rental price of z, hich is

exactly the familiar envelope condition (equation (4) above). We conclude

that in this regulated environxnent with sluggish price adjustment the

static equilibrium level of z, z, is defined by the standard envelope

*
condition. This conclusion does not imply that z is independent of

*
regulatory lag. The length of regulatory lag affects z through its

impact on the rents which accrue to investment in z. For example, a

slower price adjustment generates larger private returns to such
*

investment and hence a larger equilibrium stock of fixed factors z

16



We have argued that the private benefits from an investment in the

stock of fixed input z consists of a stream of rents over time due to

regulatory lag in adjusting the output price, plus the market rental

price paid each period to the surviving stock z. The rents which accrue

each period are the difference between the prevailing output price and

the new level of average total cost, multiplied by the level of output.

The time path of private returns is determined by three parameters. The

first is the rate of growth of demand for output. Given the exogenously

set price, the level of output and hence the size of the rents depend on

the level of demand. The second is the rate of price adjustment toward

the new, lower level of average cost. The third factor is somewhat more

subtle. A unit of investment today raises by one unit the current stock

of z. This stock represents the productive capacity of the cumulated

past investments in z and it is this "surviving" stock which appears in

the restricted cost function. In general there will be some decay in

the productive capacity of an investment as it ages, which we refer to

as the rate of deterioration. Therefore, an investment today raises the

surviving stock of z by a diminishing amount over time, or put another

way, it reduces the average total cost by an amount which erodes over

time as deterioration sets in. This rate of deterioration affects the

private returns in two ways. First, it shrinks the realized rents which

accrue to the initial investment. Second, it reduces the effective

remuneration for the opportunity cost of funds, since that compensation

is paid on the basis of the surviving stock of z.

On the basis of the preceding discussion we can formalize the

derivation of the IRR as follows. Define the average total cost function

17



(18) C — (y,p,z) + rz'

where a bar denotes normalization by the level of output, F() is the

restricted cost function, and r is a vector of market rental prices for

z. Note that C/z may be positive or negative and it will equal zero

only if the envelope conditions hold (see Section 1).

Consider a unit investment in a particular quasi—fixed factor z

(we omit the identifying subscript for simplicity). The marginal net

(internal) rate of return to this investment at time zero, p, is defined

by the equation

(19) e0 = f BtePtdt
0

where 0 is the gestation lag between the investment and its impact on

F(s) (assumed to be a fixed rather than a distributed lag, for simplicity),

and Bt denotes the gross private returns at time t from the investment.

Assume that the demand for output grows at rate g. Let ó be the rate of

adjustment of the output price toward the new level of average cost and

be the rate of deterioration. Then

(20) B = (P — C)y0et + ret

where the first term represents the rents accruing at time t and the

second is the normal remuneration to the surviving piece of the investment.

To capture the price adjustment let — C =
(C0

—
C)e

cst
But by

definition = + C0/3z, and from the argument about deterioration

= (0/z0)et. Substituting these relations into (20) and

noting C0 = C0y0,
we obtain
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(21) — — / )(_6_4))t + ret.

Using (18) and (21) in (19) and performing the integration (assuming

6 + 4) > g), we can write the IRR, p, in the following implicit form:

(22) e6(p + 6 + 4) - g) - r ( +
-

We know from the earlier discussion that when the envelope

condition holds the investment earns only the opportunity cost of funds.

Then the net rate of return is equal to the (appropriate) market rate

of interest, 1. In other words, p = i when aC0/az0 = 0. Using this

condition and (18) in (22), we can solve for the market rental. price, r.

This yields:

(23) r = e01(i + 4).

Equation (23) defines the appropriate market rental price for z to be

used in the empirical work when the envelope conditions are imposed

(neglecting tax parameters). Substituting it back into (22) we obtain

(24) eOP(p + 6 + 4) - g) - e01(6 - g) (1 ) = -

Equation (24) is the nonlinear equation which implicitly defines the IRR,

p, given the values for the other parameters. The term —F0/z0

represents the shadow price of z, evaluated at the observed (not the

static equilibrium) level of z. It is retrieved from the estimated

restricted cost function (i.e., using the system of equations (12a—12b)

in Section 2).
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The discussion to this point has been based on a regulated firm.

The derivation of the IRR for an unregulated competitive firm can be

viewed as a special case, if we are willing to maintain the assumption

that the level of output is exogenous to the firm. (Otherwise a decision

rule for the determination of output must be incorporated into the

analysis.) For the competitive firm the only source of private returns

to investments in z are the rents which arise from sluggish price

adjustment in the market. The second set of terms in (24) vanishes and

the equation for the IRR collapses to e(p + 6 + 4) — g) =
—F0/z0.

The term 6 + 4) — g can be interpreted as the rate of obsolescence of the

value of the fixed asset, reflecting price adjustment 6, deterioration 4),

and the capital gains due to market growth, g. An expression of this

7
form can be found in Pakes and Schankerman (1984).

As noted, the computation of the IRR requires an estimate of the

shadow price, —3F0/z0, which can be obtained from the estimated

restricted cost function. This shadow price may also be useful in

studying the growth in total factor productivity of firms or industries

in which static equilibrium is violated. In an important paper Berndt

and Fuss (1982) analyze the nonparametric measurement of productivity

in cases where fixed factors diverge from their static equilibrium levels.

They show that measures based on the market rental prices of fixed factors

confound under— or overutilization of those factors with true productivity

growth. They prove that the correct remedy is to use the (ex ante)

shadow prices in place of market rental prices for the fixed inputs, and

they suggest the use of Tobin's—q to approximate the expected shadow

price. Our framework delivers direct estimates of the shadow prices
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(though ex post ones) which could also be used to implement the Berndt—

Fuss proposal.8 This may be a particularly attractive alternative in

models with more than one fixed factor, since it is not clear to us how

Tobin's—q can be used to identify the shadow prices of several fixed

inputs simultaneously.

4. An Empirical Application

In this section we provide an empirical application of the techniques

developed in Sections 1—3 to data on the Bell System for the period

1947—1976. We first briefly summarize the empirical framework and then

present and discuss the results.

The empirical work is based on a generalized Cobb—Douglas restricted

cost function. Letting lower case letters denote loragithms, the form

we use is

(25) vc — y = + czp1 + kZk +
k#i

Yk9kZP. + Ajp1z

where i,j = 1,...,m denote the variable inputs, k,P. = 1,...,n denote

fixed factors, and all variables are defined around some expansion point.

The form in (25) is a special case of the more general translog

specification, allowing only linear interactions among variable factor

prices and fixed inputs and imposing constant short run average cost.

The model we estimate is based on two variable inputs, labor and materials,

and two fixed inputs, the stocks of capital and of R&D. We experimented

with the full translog specification and found that it was seriously

overparametrized. The time series data used here cannot sustain such

complicated parametric specifications.9 Christensen, Cummings and
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Schoech (1980) used similar data and encountered the same difficulties in

a model with one fixed input, and the presence of two fixed factors here

only exacerbates the problem.

Applying Shephard's Lemma to (25) yields the set of share equations

for variable inputs

(26) S1 a1 + AjkZk

where S1 = P1X/VC
is the share of input i in variable cost. If in

addition the fixed factors are at their static equilibrium levels, the

envelope conditions (4) hold. Applying (4) to (25) yields the equations

(27)
—

TTk
= + + ik1

where lTk = rkzk/VC
is the ratio of the fixed cost for input k to variable

cost. Equations (27) hold only at the static equilibrium levels of .Zk.

We impose the theoretical requirement of linear homogeneity in input

prices using the restrictions = 1 and 2ik = 0. The symmetry

I i

restriction on and are also imposed. The formulation in (25)

imposes a unitary variable cost elasticity and elasticity of substitution

(AES) between variable inputs. The long run cost elasticity is given by

* * *

n = (1+ ¶ ) where it = and the lTk'S are evaluated at the static

k

equilibrium levels of all variables. The long run AES are retrieved

using the procedure outlined in Section 1.10

The basic model consists of (25) and (26). This corresponds to

(12a — 12b) in Section 3 and makes no assumption about how fixed factors
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are determined. To conduct the tests of static equilibrium, we also

require that the envelope conditions (27) for the fixed factors being

tested be included. We specify jointly normal, additive disturbances

with contemporaneous correlation across equations. The equations are

estimated by iterated three stage least squares (3SLS), using a set of

instruments for the fixed factors.'1 One variable share equation is

dropped due to the normalization on shares, but the parameter estimates

are invariant to which equation is omitted. A diagonal specification

for first order autocorrelation is made in accordance with the requirements

of a singular system of equations (Berndt and Savin 1975).

We use annual data for the Bell System over the period 1947—1976.

The data are described in detail in Nadiri and Schankerman (1981a) and

only a brief suary is provided here.'2 The measure of aggregate output

is the sum of operating revenues for four service categories——local

service, intrastate toll, interstate toll, and a small miscellaneous

category. The operating revenues for each category are deflated by a

category—specific Paasche price index. The quantity of labor input is

the man hours actually worked adjusted for changes in the composition of

the work force. Man hours are classified into twenty—two categories

based on occupation and years of service and a composition adjustment is

made by weighting the man hours in each category by the relative wage

rates in the base year, 1967. (The data were not available to use varying

relative wage rates as weights.) An implicit price index for labor is

constructed as the ratio of total employee compensation to the quantity

of labor input. The materials input consists of six categories of

materials, rents and supplies, each separately deflated. An implicit
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price index for the materials input is then constructed.

The stock of capital Is the sum of net tangible plant, cash, net

accounts receivable and inventories. Tangible plant, which accounts for

the bulk of capital stock, is constructed from twenty—three categories

of capital, each identified by vintage, separately depreciated and

deflated using the Bell Telephone System Plant (Laspeyres) Indices. As

required by equation (23), the service price of capital is constructed as

the sum of the cost of investment funds and the rate of depreciation,

multiplied by an investment goods deflator and adjusted for various tax

parameters in the standard way.13

The stock of R&D is constructed as a geometrically weighted sum of

deflated non—military R&D expenditures by the Bell System, lagged for

years. The lag is designed to reflect the mean gestation period between

R&D expenditure and its impact on the level of variable costs. R&D flows

are deflated by the implicit GNP price index. The cumulation of R&D

flows is based on an assumed rate of deterioration of 0.05 (but the

empirical results are robust to alternative assumptions). The service

price of R&D is constructed as required by equation (23), multiplied by

the implicit GNP deflator. No adjustment for tax parameters is made

because R&D expenditures are treated for tax purposes by the company as

an operating expense rather than as a capital asset.

Table 1 presents the parameter estimates for the basic model. As

required by the theory, increases in the stocks of fixed factors reduce

the level of variable cost (k<0r<O)• The estimated restricted cost

function satisfies the theoretical requirements of monotonicity and

concavity in variable factor prices, and convexity in fixed factors, at

24



every sample observation. The fits of the share equations are rather low,

but this is not surprising since these equations have been almost first—

differenced in the estimation (p — 0.9).

Before turning to the implied characterization of the long run cost

function, we first must conduct the tests of static equilibrium for the

fixed factors using the procedure developed in Section 2. The test is

based on a comparison between the parameter estimates from (25) and (26),

and the estimates from (25), (26) and the subset of (27) which corresponds

to the fixed factors being tested. The procedure allows us to test capital

and R&D separately (leaving the other free) as well as jointly. Table 2

summarizes the results. The first row indicates strong rejection of

static equilibrium for capital. The computed test statistic of 17.8

greatly exceeds the critical value of 7.8 at the five percent level of

significance. By contrast, the second row shows that we cannot reject

the hypothesis of static equilibrium for R&D when it is tested separately.

liowever, the joint hypothesis that both capital and R&D are at their

static equilibrium values during the sample period is easily rejected.

There is of course no contradiction between these results for the

individual and joint hypothesis tests. It is worth noting, however, that

the nonrejection of static equilibrium for R&D is not robust. If we

specialize the restricted cost function in (25) to a Cobb Douglas form

and rerun the tests, we find that static equilibrium is rejected for both

R&D and capital, individually and jointly.

We can use the parameter estimates in Table 1 to solve for the

implied static equilibrium levels of capital and R&D, and then use these

values to retrieve characteristics of the long run cost function. Table 3
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Table 1. Parameter Estimates for the Restricted Cost FUflCiOfla

0
.061

1lcr
—.097

(.031) (.110)

.746
ALk

.030

(.017) (.041)

b
.254 A —.044m Lr

(.017) (.029)

—.597 —.030

(.142) (.041)

8 —.164 A .044r mr
(.121) (.029)

R2,p , DWC

Cost Function = .94, 0.8, 1.48

Labor Share = .12, 0.9, 1.81

Materials Share = .12, 0.9, 1.92

Notes

a
Estimated standard errors are in parentheses.

bNotethat =1—c ,A =—A andA =—A
in L ink Lk mr Lr

C
P refers to the autocorrelation coefficient used to adjust the

equation.
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Table 2. Tests of Static Equilibrium for Fixed Factors

Quasi—Fixed Factor Ma d.f. Critical x205

Capital 17.8 3 7.8

R&D 6.1 3 7.8

Capital and R&D 32.9 6 12.6

a
The test statistic N (described in Section 2) distributes

asymptotically as a Chi—square deviate.
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Table 3. Characteristics of the Long Run Cost Functiona

aLK
1.07

ELL
—0.69

1.10 —0.88

2.14 —0.74

1.38 —0.67

aNR —0.55, 0.13 0.55

—0.48, 0.28

a
The terms a, c and fl refer to the AES, own elasticities of

factor demand, and cost elasticity, respectively. Reported

values are those at the expansion point of the sample (1961)

but they are stable over time——except for o andc. These

estimates are trended; the first reported number is the

average over the period 1948—1961 and the second for 1962—

1976.
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presents the results. The AES Indicate considerable long run substitution

among inputs, except between R&D and materials and R&D and capital where the

estimates vary over time and are much smaller. The long run elasticities

of factor demand are negative, as required by theory. It is interesting

to note that the factor demands are price inelastic and similar across

inputs. The long run cost elasticity is estimated at 0.55, which implies

a scale elasticity of about 1.8. This is almost identical to the finding

in Nadiri and Schankerman (1981) but at the upper end of the range

reported in Christensen, Cummings and Schoech (1980).14

Table 4 summarizes information on the divergence between observed

levels of capital and R&D and the static equilibrium levels implied by

the estimated restricted cost function. The first two rows give the ratio

of observed to static equilibrium stocks of capital and R&D by subperiods.

The evidence suggests that the Bell System was substantially overcapitalized,

by between 21 and 50 percent depending on the subperiod. The extent of

overcapitalization increased sharply during the decade 1958—1967, which

interestingly is the period when the Bell System undertook large investment

programs in new technologies. This finding of overcapitalization is

consistent with the well—known Averch—Johnson effect of rate of return

regulation, for which there is some evidence in the literature (Courville

1974, Cowing 1978, and Spann 1974 on the electric utility industry). Other

interpretations are suggested later. In sharp contrast, Table 4 indicates

substantial underinvestment in R&D. The static equilibrium stock of R&D

is about three times as large s the observed one. This result may not

be as unreasonable as it first appears. The average observed R&D intensity

(R&D expenditure/total cost) for the Bell System during 1948—1976 was
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Table 4. Characteristics of the Divergence Between Observed and Static

Equilibrium Levels of Capital and R&D

Period

Variable'\
1948—1957

30

1958—1967 1968—1973

*
K/K 1.21 1.47 1.50

*
R/R 0.49 0.32 0.32

FK/rK
0.68 0.51 0.56

3.19 3.50 3.69

(C_C)/C* 0.048 0.073 0.117



only .2.1 percent, which is less than half of the R&D intensity in other

technologically dynaxnicindustrles.such as Chemicals and Professional and

Scientific Instruments (National Science Foundation, annual). The static

equilibrium R&D intensity which we compute is about 7.3 percent, which

may be plausible considering the scientific richness of the telecommuni-

cations field. Of course, in order to make a complete and valid comparison

other factors (such as the degree of vertical integration) must be taken

into account.

The third and fourth rows in Table 4 compare the shadow and market

rental prices for capital and R&D. As noted in Section 3, the differences

between shadow and market rental prices are the dual of the divergences

between observed and static equilibrium stocks of these assets. Following

Berndt and Fuss (1982), the shadow prices should be used for the measurement

of total factor productivity. All of the available measurements of

productivity growth in the Bell System utilize market rental prices,

but the evidence in Table 4 suggests that this might yield quite inaccurate

results. Finally, Table 4 provides the percentage deviation of actual

total costs from the level which would occur if all factors were at their

static equilibrium levels. The latter Is evaluated by using equilibrium

stocks of capital and R&D, and the associated equilibrium levels of

variable factors which depend on those stocks. The results indicate that

"inoptimal" choice of capital and R&D raised total costs by about five to

ten percent over the sample period.

One important qualification is in order. The preceding evidence

does not imply that the Bell System's use of capital and R&D was inoptimal

given the set of constraints it actually faced, but rather than the static
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equilibrium levels were not.held. The choice may well have been optimal

under a richer set of constraints such as rate of return regulation or

severe costs of adjustment. The only conclusion we draw at this stage

is that a static equilibrium representation of the Bell System is

inadequate.

The remaining task is to compute the net internal rates of return

to capital and R&D. These rates of return, p, are computed as the

solution to the nonlinear equation (see Section 3):

e0'(p + 6 + 4) — g) — eOi(6 — g) ( + = 0

whene 0 is the gestation lag, g is the expected rate of growth of output,

I Is the opportunity cost of funds, 4) the rate of deterioration, 6 is

the rate of output price adjustment, and 3F/az is the estimated shadow

price of the asset (evaluated at the expansion point, 1961, but the

results are robust). We use the following parameter values: i = .055,

g = .07, 4) = .05, 0 = 0, 2, 4 (years), and 6 = .25, .30, 3515 Since

the opportunity cost of funds is measured net of taxes, the computed rates

of return are after—tax.

Table 5 presents the results. The net rate of return to capital

is estimated at about 4.5 percent and is robust to variations in 0 and 6.

The fact that this rate of return is lower than the measured opportunity

cost of funds reflects the overcapitalization (relative to static

equilibrium) found earlier. The net rate of return to R&D Is markedly

higher, reflecting underinvestment in this input. The results are

reasonably robust to variations in 6 and 0, except in the case where

o = o.16 Pakes and Schankerman (1984) conclude that 0 2 for
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Table 5. Net Rates of Return to Capital and R&D in the Bell System

Capital

\\
0 2 4

.25 .041 .041 .044

.30 .044 .045 .046

.35 .046 .047 .046

R&D

0 2 4

.25 .242 .150 .115

.30 .225 .138 .109

.35 .198 .128 .102
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manufacturing industries and this probably understates the gestation lag

for telecommunications reBearch. Therefore, we conclude from Table 5 that

the net rate of return to R&D in the Bell System is between 10 and 15

percent.

Concluding Remarks

In the literature two methodologies are used to estimate the

structure of production and factor demand equations. One is the static

equilibrium approach, which treats all factors of production as variable

and assumes away the problem of costs of adjustment. The other are

dynamic equilibrium models which are based on the theory of restricted

cost functions and arbitrarily assign costs of adjustment to certain

inputs. What is missing from the literature is an analytic approach to

testing statistically which class of models is appropriate for the

analysis of a given set of data. The main contribution of this paper

is to provide a statistical test to assess the adequacy of the static

equilibrium model, which should be used prior to specifying a fully

dynamic equilibrium model. We also show how restricted cost function

models can be exploited to investigate some important issues such as the

calculation of the rates of return to fixed factors, the determination of

over— orunderinvestment in particular assets, and the distinction

between short run excess capacity and long run economies of scale.

The specific contributions of the paper may be summarized briefly.

First, a restricted cost function framework is specified and it is shown

how to derive expressions for the long run cost elasticity and elasticities

of substitution. Second, a statistical test of static equilibrium is
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formulated by using the restricted equilibrium model in conjunction with

the envelope conditions which characterize static equilibrium for the

fixed factors. Our test procedure is equivalent to a Hausxnan test for

specification error in a system of simultaneous equations. Third, we

provide a method of computing the internal rates of return to fixed

factors and show how these rates of return depend on the shadow prices

of fixed factors, the growth of demand for output, the rate of price

adjustment, and the rate of deterioration of the stocks of fixed factors.

We also show that a divergence between the rate of return (at the observed

level of fixed factors) and the opportunity cost of funds is the dual

of the divergence between the observed and static equilibrium levels of

fixed factors. The methodology also provides direct estimates of the

shadow price of fixed inputs which can be used to adjust measured

productivity growth in cases where fixed factors diverge from their

static equilibrium levels.

To illustrate our methodology we have used data for the Bell System

for the period 1947—1976 to estimate a generalized Cobb—Douglas restricted

cost function with capital and R&D treated as fixed factors. The

empirical results indicate substantial long run economies of scale and

substitution among most of the inputs. The hypothesis of static

equilibrium Is rejected strongly for capital and (with qualification)

for R&D. The evidence Indicates that the Bell System was substantially

overcapitalized, particularly during 1958—1967 when it undertook large

investment programs in new technologies. However, there is evidence of

substantial underinvestment in R&D for the Bell System. The results

also suggest substantial divergence between the shadow and market rental
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prices for capital and R&D,—which reflects—the divergence -between the observed

and optimal levels of fixed factors. The same picture emerges when the

rates of return are considered. The net rates of return to capital and

R&D are 4.5 percent and 10—15 percent respectively, compared to an

opportunity cost of funds of about 5.5 percent. The "inoptimal" choice

of fixed factors raised total costs by five to ten percent over the static

equilibrium level.

The approach proposed in this paper is applicable to other areas

of economics and is not confined to empirical studies of production and

cost functions. It provides a procedure for researchers to examine whether

static equilibrium models are satisfactory or whether a fully dynamic

equilibrium model is warranted, and it suggests a number of issues which

can be explored prior to estimation of dynamic models.

36



Footnotes

* We would like to thank R. Frydman, R. Gordon, P. Mohnen,

and J. Ramsey for constructive comments on earlier

versions of this paper. This research was supported by the National

Science Foundation Grant PRS—7727048, and by a grant from the American

Telephone and Telegraph Company.

1. The relevant literature is quite extensive. Leading examples

include Morrison and Berndt (1981), Denny, Fuss and Waverman (1981), and

Epstein and Denny (1983). For a partial review of the literature see

Berndt, Morrison and Watkins (1981).

2. Restricted cost functions fall under the tre general heading

of restricted profit functions, of which they are a special case. See

Lau (1976).

3. Caves, Christensen and Swanson (CCS) show that the degree of

returns to scale, RTS, can be expressed as RTS = (1 —a 1nVC/a lnz)n.

At z = z this reduces to equation (8) (where RTS =n ), but in general

it implies that the degree of long run scale economies can be retrieved

from the restricted cost function at arbitrary levels of z. The equation

derived by CCS is correct. The problem with their analysis is that RTS

is not the correct measure of scale economies in general. The concept

of RTS Is based on equiproportional increases in all inputs, including z.

As Hanoch (1975) showed, the correct concept of scale economies is

measured along the expansion path. The two concepts are the same only if

the production structure is homothetic, in which case the expansion path

is linear and equiproportional expansion of all inputs corresponds to
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long run cost minimizing behavior. That is, the envelope conditions are

*
assumed implicitly to hold, and z z . Therefore, the only case when RTS

is the correct measure of scale economies corresponds to the case where

*
z z . If the technology is not -honiothetic, the CCS measure of RTS is

equivalent to the reciprocal of the short run cost elasticity. To show

this, suppose that all inputs are increased equiproportionally but not

along the expansion path. This is equivalent in (7) to assuming that

= n, since if all inputs grow at the same rate then (short run) costs

must also grow at that rate. Then (7) reduces to n (1 + ii +
lTd) 'ny.

Since + — B 1nVC/B lnz, n (1 — B 1nVC/B 1n)1n . Then the CCS

result is simply RTS = n1. In other words the CCS result should be

interpreted as a special case of (7), pertaining to the short run cost

elasticity. As indicated before, in order for it to relate to long run

*
scale economies, the assumption z = z must be made.

4. The assumption of restricted cost minimizing behavior could be

examined by testing these cross—equation parameter constraints. Appelbaum

(1978) takes this approach in the context of an unrestricted cost function.

5. To prove this note that it follows from (17) that plus T( —

= V0 + V1 — W — W' where W V1plim[P'(I 0 1)UçT 1(1 0 E1)P]V0.

—1
- iJ)'1—1

But p1im(Uc/T) ( ) and = . Using the formula for a

partitioned inverse one obtains plim(U/T)(I 0 E) (I 0). Now partition

P as P = (P P)t where P contains instruments in P but not in P. Using

these results in the expression for W yields W = V1V11V0 V0. Since V0

is symmetric we get pl1mT( — ) ( — )' =
V0

—

V1
—

V0
— V =

V1 V0.

6. This assumes, as stated, that the marginal investment in z
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lowers the (average) total -cost- curve. Thi8 will hold if the stock of z

is less than the static equilibrium level (since from (3) C — F + r

and — F > r if z < z ). If z > z then the investment will raise
z

average total costs even though it reduces average variable costs. Then

regulatory lag induces negative rents and the private return falls short

of the opportunity cost. The conclusion which follows, however, holds

for both cases.

*
7. Letting 6 = 6 + 4, — g, note that the equation for the IRR is

* 01 *
e (p + 6 ) — F0/z0, while in equilibrium e (i + 6 ) = r. This makes

it clear that departures of the shadow price from the market rental price

are reflections of the divergence between the IRR and the opportunity

cost of funds.

8. An alternative but less direct approach, suggested by Nadiri

and Schankerinan (1981b), Is to compute the IRR to the fixed factors and

then use them (instead of the opportunity cost of funds) to evaluate the

service prices of the fixed Inputs. Since a divergence between the shadow

and market rental prices reflects a deviation.of the IRR from the cost

of funds (see note 7), this approach is equivalent to the Berndt—Fuss

proposal.

9. It is worth noting that the specification in (25) is marginally

accepted at the 0.01 level when tested against the full translog form.

The computed 4 is 20.0, against a critical value of 20.1.

10. In the full translog specification, the long run AES take on

a very simple form If there is only one fixed factor——which arises

frequently in practice. Since this form does not utilize any of the

translog parameters which are omitted in (25), we state the result here.

39



The derivation is lengthy and is available on request. Using the

notation in (25) the results are:

(1 + —
(4,.

—
S1r)(

—
S7r)/S1S1r]

and 0iz = (1 — 1/S1ir), where all variables are evaluated at their static

equilibrium values.

11. The instruments include the exogenous variables in the model

plus a time trend and its square, the level of output and its square, and

the stock of federal government capital. The empirical results without

instruments are not very different from those reported in the text.

12. The raw data used in this paper were provided by the Bell

System. These data are proprietary and inquiries regarding them should

be addressed to M. A. Chaudry at the American Telephone and Telegraph

Company.

13. The service price of capital is constructed as

r =
P1(1

— uz — w)(i + 4)/(1 — u) + T where P1 is the investment goods

deflator, u is the corporate income tax rate, w and z are the effective

rate of investment tax credit and the present value of depreciation

allowances, T is the indirect tax rate, i is a weighted average of debt

and equity costs, and 4 is the depreciation rate. These parameters are

constructed from Bell System data whenever possible.

14. We can illustrate the problem of disentangling "excess

capacity" and economies of scale which was discussed in Section 1. The

* —1
long run cost elasticity n = (1 + ) , evaluated at the static

equilibrium levels of capital and R&D, is n = 0.55. If the observed

levels are used instead, we get the short run cost elasticity, n = 0.45.
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Note that since n c n ,- the incorrect use of observed levels woulds £

overstate the degree of scale economies. This reflects the "excess

capacity" in capital reported in Table 4 (the underuse of R&D is

insufficient to counterbalance this effect).

15. Note two points. First, the values I — .055 and g .07 are

the average values for the Bell System during the sample period. Second,

the parameter 6 can be interpreted as follows. From the discussion

preceding equation (21), Pt — = (CO/Zt)eót, so eót is the fraction

of the reduction in average cost which is not yet reflected in the price

of output t years later. The range of 6 used in the text, .25 < 6 < .35,

implies that 20—30 percent of the cost reduction Is still not reflected

in the price after five years.

16. For R&D the estimate of p varies inversely with 6 and 0 because

p > i. For example, a higher value of 6 means faster dissipation of the

positive rents which accrue to R&D. For capital, p varies directly with

6 and 0 because p < i. Also see note 6.
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