
NBER WOR1NG PAPER SERIES

ROSACK Docnt No. 1

Semi-portability of FORTRAN Programs

Neil E. Kaden*
Virginia K1ema

Working Paper No. 103

Computer Research Center for Economics and Manageirrit Science
National Bureau of Economic Research, Inc.

575 Technology Square
Cambridge, Massachusetts 02139

September 1975

PreJ±ninary: not for quotation

NBER working papers are disibuted infonrfly and in limited nunbers for
caients only. They should not be quoted without written peiinission.

This report has not undergone the review accorded official NBER publications;
in particular, it has not yet been sunitted for approval by the Board of
Directors.

*
NBER Computer Psearch Center. Research supported in part by National Science
Foundation Grant #DCR 75-08802 to the National Bureau of Economic Psearch, Inc.



1

Table of Contents

•

Ac]nowledgernents .11
Pax't One

Part T.yo 3

References 10

Apperidi.x 11



11

Abstract

ansferring Fortran subroutines from one manufacturer' s machine to another

or from one operating system to another puts cerrtain constrains on the con-

struction of the Foran statements that are used in the subroutines. The

reliable performance of this mathematical software should be unaffected by

the host environment in which the software is used or by the compiler from

which the code is generated. In shorrt, the algori-thn is to he independent

of the computing environment in which it is run.

The subroutines of ROSEPAC1< (Robust Statistics Estimation Package) are

Fortran IV source code designed to be semi-portable where semi-portable is

defined to mean transportable with minimum change. *

Ac}oiowledgnents

The authors wish to thank J. Boyle and W. Cody for sharing their internal

document on progranmting conventions, J. Kirsch for his helpful suggestions

on documentation of subroutines, D. Hoaglin and G. RudenTian for their con-

structive criticism of this document, and Sheila Howard for her careful

typing of the manuscript.

*
W.J., "The Construction of Numerical Subroutine Libraries," SIAM

Review, Vol. 16, No. 1, pp. 36-46, January (1974).



-1—

Semi-portability of Fortran subroutines puts certain constraints on the

construction of Fortran statements, the declaration of variables, and the

representation of constants that are used in the subroutines. Many of these

constraints are needed for Fortran subroutines that are to be irribedded in

applications subsystems that are written in another language, say FL/i.

Inevitably, the nnerica1 algebra algorithms themselves are strengthened

when their perfonnce is unaffected by the arithmetic of the rich±ne on

which they are used and the Fortran compiler by which their code is generated.

The ruJ.es for structured progranuring [1,2,31, arid structured docunentation

(see Part Two, Section X of this docnt) should be followed insofar as possi-

ble. The corrnts within the program or subroutine should be sufficient to

inform the user about input parameters, output parameters, temporary storage

parameters, error exits, and the algorithm that the program implements.

This dociiint presents certain suggestions for prograrrming that will tend

toward requirements for semi-portability of ANSI Fortran IV (as described in

CACM, Vol. 7, No. 10, October '6.) subroutines and programs. We also suggest

certain conventions for cormients and general formatting of the Fortran code.

By "formatting" we mean the spacing and indentation that determine the

general appearance and readability of the code. Such formatting is suggested

to help the reader or the user understand the algorithm, the program, and the

flow of control within the program.

Part One

The suggestions for prograrrming are

I. C11N storage should not be used for arrays. This is not
an ANSI restriction, but driver programs become simpler to
write, and the use in a paged envirorurnt is enhanced if
one does not use C)M1)N.

II. All array arguments should have adjustable dimensions. These
dimensions should be made explicit in the declarations of the
formal parameters for each subroutine. For example,



—2—

REAL A(NN,N)

not
PEAL A(NM,l)

III. EQUIVALCE statements should not be used.

IV. Certain Fortran compilers do not distinguish more than six
characters of an identifier. Hold identifiers to six charac-
ters or fewer.

V. Do not use rrniltiple entry points or non-standard returns.

VI. Be sure that the precision of any Fortran library routine
or built-in function is explicit in all statements. For
example, DABS, not ABS, for absolute value for long preci-
sion computing. Do not use mixed mode arithmetic or assune
there is an implied conversion anywhere, riot even for con-
stants. For example

DØUBLIE PRECISION X

X X + l0.ODO

not
DØUBLE PRECISION X

X X + 10.0

VII. Constants that are used in iterations or convergence criteria
should be functions of the machine's precision, i.e., the
smallest floating point number, , representable in the machine
for which the floating representation of l+c>l. Certainly, a
constant that cannot be converted precisely on the machine
should never be used. For example, .1, is representative of
such numbers.

VIII. Test cases nnist be devised so that data can be converted uniformly
on all target machine. The word length of the machine determines
the truncation of the internal representation of floating point
numbers, and conversion routines do not treat floating point
numbers uniformly. The integers are treated uniformly with respect
to conversion so long as they lie within the precision range of arith-
metic of the computing machine. One suggestion for portability for
test cases used as input numbers is to read them in as integers and
then DFWAT to get the floating point representations.

IX. Obscure underflows can often produce side effects that give
divide checks or overflows. This problem is particularly acute
because the range of arithmetic on many machines is not suretric
about zero. For example the range of arithmetic on the IBM 360 /
370 machines is about 10 >x> l08. That an algorithm will
exhibit overflow, underfiow, or divide check problems is often
not known in advance. However, some linear systems routines have
this problem when an inner product is formed or when multiple
divides are encountered. Be prepared to isolate such problems.



—3—

One solution is to reorder arithmetic expression. Another
solution is to resort to extended precision arithmetic for
those critical sections of code.

X. The usual rules for separate sections for error handling
and input-output that are required for applications sub-
systems are equafly applicable for semi-portable Fortran
programs. The error handling from the subroutines should
be uniform. The input-output should be confined to main
programs or special 1-0 subroutines; that is to say, compu-
tation subroutines should be 1-0 free. The goal of the
error recovery is to permit computation to continue without
resorting to system termination.

XI. We expect the subroutines in ROSEPACK to be compiled with
Fortran compilers with the highest level of optimization.
We have not used hand optimization in the subroutines

Part 'Io

The suggestions for formatting are

I. Identifiers
Identifiers, i.e., variable names, should correspond to
default declarations in Fortran. Ho.iever, explicit declara-
tions should be written for each identifier.
Variables from the calling sequence, internal variables, and
function names should all be declared separately. For a
suggestion on how to accomplish this see X Internal L)ocumen-
tation Section B (PARAMETERS), Section C (LOCAL VARIABLES),
and Section D (FUNCTIONS) of the description of the Prologue.

II. Labels

If the order of labels within a subroutine is not linear the
convention used should be explicitly described. This order-
ing of statement labels should be linear and could proceed
in multiples of 10 for interior program sections. The next
level of program section could proceed as 100, and perhaps the
next as 1000.
Do not use unreferenced labels.
Code for error exits should be surrounded by coirurnts and
located at the end of the program or subroutine. The labels
for error exits should be 2 or 3 digits, the first of which
is 9, the last non-zero.
One format statement may be used by rrore than one print state-
rnent in a program. Therefore we suggest that all format state-
ments be labeled with 4 digit n.mibers the last of which is non-
zero and placed after RETURN and before END of the program.



Preferably all input-output should be written in subroutine
for!n. We suggest that a DATA statement be used to fix units
of 1-0 and that this DATA statement be made particular to a
given installation.
The variables containing this 1-0 unit information should be
passed as parameters to all subroutines using these 1-0 units.
This device allows a global change of an 1-0 unit without
recompiling individual subroutines.

III. Use of blank spaces
There should not be extra blank spaces around dummy variables
or constants ThO loops. Blank spaces should delimit symbols
in assiiment statements. Blank spaces should be used wherever
such use will enhance readability of elements of ecpressions or
statements.

IV. Tab Spacings
Throughout this document we are assuming tab setting in columms
1, 7, 10, 15, 20, 25, etc.

V. Continuation Characters

Second and subsequent lines of all continuation statements should
be numbered 1 through 9, then A through Z in columm 6. The text
of each continuation statement should be indented one tab space
from the initial line of the statement.

VI. DO loops
All D0 loops should be surrounded by comment statements which
may be blank. Text conunents should follow a blank comment state-
ment. If more than one statement is in the range of a DO loop,
the closing statement of the DO loop should be a CONTINUE. This
CONTINUE should be unambiguous. Statements between DO and CONTINUE
should be indented one additional tab space to correspond to a block
structure.
Inner loops should be indented one tab space to the right of their
surrounding outer loop.
For examples of indentation of DO loops see the examples in

Appendix I.

VII. DATA Statements

Data statements should be used to set installation-dependent
constants, such as data-set numbers for I/O, and machine preci-
sions, underflow tolerances, or other machine-dependent constants.
See X, Internal 1)zcumethation, Section L, for more details.
If a non-numeric character string must be used in a DATA state-
ment, it should be packed as one character per machine word
and always stored in an array.



—5—

VIII. Structured programming
The prograirunirig and fonnattirig conventions that we describe
are similar to structured programming in the following ways:
1. format for readability and understanding
2. indentation for major and minor loops
3. array dijrnsions are adjustable
Li. temporary storage arrays are passed as parameters
5. documentation is sictured such that it is contained

within the routine.

IX. Printed output
All printed output should be fonratted such that it is not
greater than 8 1/2 inches in width. Most line printers print
10 characters per inch, and 80 characters per line allows ample
margins. This will eatly aid in reproduction of the output.

X. InterTlal icumentation
All For'an programs should be well doc.mented by liberal use
of comment statements. Proper doci.mntation will enhance read-
ability and appearance of the code, improve understanding of the
algorithm used, help ensure proper use of the program, and aid
in future modifications. When semi-portability is also considered,
proper documentation serves to isolate those portions of the code
which are installation-dependent.
In-line documentation of Fortran programs can be considered in
two major sections, the Prologue and the Program-flow comments.
The latter consists of the corrunent statements embedded within
the code describing how the algorithm is being carried out as
the flow of control passes from statement to statement. The
former consists of certain non-executable FORTRAN statements
found at the beginning of the subprogram which fully describe the
proper use of the software, as well as infcrmnation concerning
its development. Any user familiar with the guidelines has the
added advantage of 1owing where to find specific information
concerning the program. The Prologue also identifies and isolates
installation-dependent aspects of the program and thus enhances
semi-portability. The Prologue is the major docimentation for
the use of the program subroutine.
Program-flow comments should be delimited by special characters
to enhance their readability and appearance. In ROSEPACIK the
colon C:) is used. Such comments should also follow the rules
for statement indentation described elsewhere in this document.
In most cases, the text of the comment should be preceded and
followed by a string of 10 special characters (colons). At least



—6—

one blank space, but not more than three blank spaces, should
be put between the special character strings and the text of the
comment. If this method is used for a comment extending over
several lines, all lines should have a "C" in colturm 1, arid all
but the first line should be indented one additional tab (beyond
the current level of indentation).

Building on the suggestions of Boyle and Cody, an alternative
method of delimiting comments, recommended for important comments
or those extending over several lines, is to surround them by
a "box" of special characters. The following is an example of
what is meant by a "box":

C

:: THIS ISACONT
C :

Blank comment statements (i.e., comment statements containing
blanks in colizins 2 through 72) may be used wherever their use
enhances the readability of the program.

The statement irrmediately before the END statement should always
be a comment statement delimiting the end of the program and con-

taining the name of the program. An example follows:

C ::::::::::: LAST CARD OF (NAME OF SUBROUTINE) :::::::::::
END

The Prologue consists of the declarations of the calling sequence
and variable names of the subprogram, a number of sections of
text on the subprogram, and any flATA or EQUIVALCE statements.
It contains a number of headings denoting the different logical
sections of the Prologue. The headings are coimnt statements
with the character "k" in columns 7 through 11 and the heading name
beginning in column 12 and followed by a colon (:). A blank comment
statement should not immediately follow a heading. If the section
denoted by the heading line is empty, the heading should be followed
by a comment statement containing "NONE" in columns 7 through 10 and
then a blank comment statement.
The different headings, in the order they should appear, are:

-PARAMETERS
-LOCAL VARIABLES
-FUNCTIONS
-PURPOSE
-PARAMETER DESCRIPTION
-APPLICATION AND USAGE RESTRICTIONS
-ALOORITHM NOTES
-REFERENCES
-HISTORY
-GENERAL
-BODY OF PROGRAM



—7—

Three delimiter lines, consisting of a blank conment statement,
a cnment statement consisting of the special character colon
(:) in co1uns 7 through 72, and then a second blank coirment
statement, should occur mneidately before the purpose heading
arid mnediately after the GENERAL section. All lines between
these delimiters should be comnnt statements. When colms
73 through 80 of each card contain serialization or identifica-
tion characters, this gives a box-like appearance to the part
of the Prologue containing text.
An exanle of two programs following these guidelines is in
Appendix I.
What follows is a brief description of each section of the
Prologue. Note that no blank connt statements should occur
until after the FUNCTIONS section.

A. CALLING SEQUENCE

The SUBROUTINE or FUNCTION statement should be the
first line of the subprogram. Blanks should be used
to enhance readability.

B. PARA1TERS

Declaration statements should be grouped by type, i.e
first INTEGER, then REAL, then DØUBLE PRECISION, or REAL*8,
then REAL*l6, then Cø'PL'(, CøMPLD*32, then LØGICAL. Within
each type grouping, variable names should be listed in
the order they occur in the calling sequence. By para-
meters, we mean all of the variable names appearing in
the calling sequence.

C. LOCAL VARIABLES

As with the preceding section, declaration statements are
grouped by type, and in the same order. Within each type,
variable names should be listed alphabetically.
ALL variables used in the program should be explicitly
declared.

D. FUNCTIONS

All functions called by the program should be explicitly
declared. Declaration statements are grouped by type.

E. PURPOSE

Briefly describe the purpose of this subprogram. Give
references when necessary. More detail can be given in
later sections.

F. PARAMETER DESCRIPTION

This section contains 3 subsections. The first describes
input parameters, the second describes output parameters,
and the third subsection describes parameters used for
temporary storage by the subprogram. If the contents of
any parameter variable can be changed by the subprogram,



—8—

it should be considered an output parameter. See
the examples in Appendix I for the forirat, keywords,
punctuation and indentation used in this section.

G. APPLICATION AND USAGE RESTRICTIONS

If any other programs in this package can call this
subprogram, or are called by it, they should be des-
scribed here. If this subprogram is part of a group
of programs which are called in some specified order,
this should also be included. Give references except
when a reference is implicit, as with another member
of the same package.
Also included in this section are any warnings about
special cases or possible errors which can occur if there
are errors in the subprogram call. Warnings about misuse
of tolerance parameters belong here. The entry in
PARAETER DESCRIPTION should refer the reader to this
section where applicable.

H. ALGORITHM NOTES

Anything special about the algorithm used or its implernen-
tation should be listed here. Any special conventions
regarding statement labeling or camienting should be
mentioned. If there is anything special about error hand-
ling which has not yet been mentioned, it should be
described here.

I. REFERENCES

References from elsewhere in the documentation, as well as
any other references pertaining to the subprogram, should
be listed.

J. HISTORY
The author of this subprogram, as well as the date and place
of origin should be listed. If the subprogram is a transla-
-don of a program in another larigiiage or is based on another
program, a reference should be given. If the program has
been rrdified since it was written, the date and person
making the itodification should be noted. If this subprogram
has been released as part of a subroutine library, the current
release date of the library should be given.

K. GENERAL

If this subprogram was developed under research supported by
a grant requiring ac]<owlednent, the required information
should occur here. The person to contact concerning coninents
and problems with the subprogram should have his address in
this section.



—9-.

L. DATA and EQUIVALANCE Statements

Following the second occur'ence of deliting comment
statements (a blank comment statement, a cojmnt state-
ment with colons in colurrris 7 through 72, and a second
blank colTrnent statement) is where all DATA and EQUIVALENCE
statements should occur. If a DATA statement contains an
installation-dependent constant, coimnt statements explain-
ing its value and mentioning the installation's desiation,
should precede the DATA statement. Those conunent statements
should conform to the standards of program-flow comments.
All DATA statements should precede any EQUIVALENCE staements.

M. BODY OF PROGRAM

This heading denotes the end of the Prologue and the beginning
of the program body.



—10—

References

El] Dahl, 0 .H, Dijks'a, E .W., Hoare, C .A. R., S1ictured Pograimning, Academic

Press, (1972).

[2] Kerriighan, B.W., Plauger, P.J., "Prograiiing Style: Examples and Counter-

Examples," ACM Coriuting Surveys, Vol 6, No. J., pp. 303-319, December,
(197'i.).

[3] Kernighan, B. W., Plauger, P. J., "The Elements of Proanimirig Style," Bell
Telephone Laboratories (l97L.).



-U-

Appendix

This appendix contains listings of two subroutines that are samples of

candidates for inclusion in ROSEPACK. The reader is reminded that we

are relying on Fortran compiler optfriization of sub-expressions within

loops.



SUBROUTINE I1INSOL(NM,N,V,W,IP,B,RKTOL,IERR,RV1) 1INOO01O
C 11N00020
C *****PARMIETERS: !'IIN0003O

INTEGER NM,N ,IP, IERR MIN0oOO
REAL*8 V(Nt•1,N),W(N),B(NM,IP),RKTOL,Rv1(N) MIN0005O

C *****LQCAL VARIABLES: r1IN00060
INTEGER I,J,K fiIN0007O
REAL*8 RKTOL1,X,Z MIN000BO

C *****FUNCTIONS: MIN0009O
C NONE IINOO100
C NINOO1lO
C : :::::: : : : : : : : : : : : : : : : : : : : : : : : ::::::: : : : : : : : : : : : : : : : : : : : : : ::::: :MINOO 120
C tiINOGl3O
C *****PURPOSE: MINOOV4O
C THIS SUBROUTINE DETERMINES A CANDIDATE SOLUTION TO THE LINEAR NINOO15O
C T :11N00160
C SSTEf1 AXB, AFTER THE SINGULAR VALUE DECOMPOSITION AUSV OF' A NINOO17O
C T NINOO18O
C REAL Ii BY N RECTANGULAR MATRIX, FORMING U B RATHER THAN U,E!AS tIINOO190
C ALREADY BEEN PERFORMED. THIS CANDIDATE SOLUTION IS BASED ON THE NINOO200
C RANK TOLERANCE PARAMETER, RKTOL, OR THE DEFAULT, 2.ODO**(_26), M1NOO21O
C WHICH IS THE SQUARE ROoT OF THE MACHINE PRECISION 2.ODO**(_52). N1N00220
C P11N00230
C NINOO2O
C *****PARANETER DESCRIPTION: NINO02O
C ON INPUT: M1U00260
C 11U00270
C NM MUST BE SET TO THE ROW DIMENSION OF THE TWO DIMENSIONAL MINOO28O
C ARRAY PARAMETERS AS DECLARED IN THE CALLING PROGRAM M1N00290
C DIMENSION STATEMENT; MINOO300
C NINOO31O
C N IS THE NUMBER OF ROWS OF B, AND THE ORDER OF V; M1N00320
C M1N00330
C V CONTAINS THE SQUARE MATRIX V (ORTHOGANAL) OF THE SINGULAR t1IN0O30
C VALUE DECOMPOSITION; 11N00350
C N1N00360
C W CONTAINS THE N (NON—NEGATIVE) SINGULAR VALUES OF A (THE M1N00370
C DIAGONAL ELEMENTS OF S). THEY ARE UNORDERED; U1N00380
C MINOO39D
C IP IS THE NUMBER OF COLUMNS OF B; MINO000
C MIN0O41O
C T MrNOOI42O
C N CONTAINS THE RECTANGULAR MATRIX U B; MINOO3O
C MINOO!O
C FKTOL IS THE RANK TOLERANCE WHICH WILL BE USED. IF RKTOL IS NINO045O
C NOT POSITIVE, THEN THE DEFAULT WILL BE USED. MINOO46O
C MItJOO.47O
C lIN008O
C ON OUTPUT: UINOO9O
C 11U00500
C V REMAINS UNCHANGED; !11N00510
c M1N00520
C W CONTAINS THE PSEUDOINVERSE OF THE DIAGONAL MATRIX S. fl1N00530
C ANY SINGULAR VALUES THAT ARE LESS THAN RKTOL TIMES THE MINOO54O
C LARGEST SINGULAR VALUE ARE SET TO ZERO IN THE PSEUDO— HINOO55O
C INVERSE; NINOO6O
C H1N00570
C B HA.S BEEN OVERWRITTEN BY THE SOLUTION X; NINOOS8O
c 1INOO59O
C IERR IS SET TO rltNOO600
C ZERO FOR NORMAL RETURN, MINOO61O
C —1 IF THE MAXIMUM SINGULAR VALUE IS ZERO (INDICATING M1N00620
C A ZERO A—MATRIX IN THE SINGULAR VALUE N1N00630
C DECOMPOSITION).
C M1N00650



C M1N00660
C RVI IS A TEMPORARY STARAGE ARRAY. F11N00670
C M1N00680
C *****APPLICATION AND USAGE RESTRICTIONS: M1N00690
C IT IS RECOMMENDED THAT THE SUBROUTINE MINFIT (1) PERFORM THE MINOO700
C SINGULAR VALUE DECOMPOSITION. MINOO7t1O
C THE IERR PARAMETER SHOULD BE CHECKED BEFORE CALLING MINSOL. MINOO72O
c M1N00730
C SETTING THE RANK TOLERANCE SHOULD ONLY BE DONE IF THE USER KNOWS MINOO7!O
C THE SINGULAR VALUES OF THE A—MATRIX WITH RESPECT TO THE CERTAINTY M1N00750
C OF THE DATA. M1N00760
C M1N00770
C *****ALGQRITH1 NOTES: N1N00780
C NONE MINOO79O
C IIINOO800
C *****BEFERENCES: IIINOO81O
C (1) ARGONNE NATIONAL LAB., FORTRAN SUBROUTINE MINFIT, ANLF233S. tiINOO82O
C (2) BECKER,R.,KADEN,N., AND KLEMA,V., 'THE SINGULAR VALUE 111N00830
C ANALYSIS IN MATRIX COMPUTATION', MBER WORKING PAPER NO. L6, t1INOO8i4O
C (JULY i97Z) tIINOO85O
C (3) GOLUB,G.H., AND REINSCH,C.,'SIt4GULAR VALUE DECOMPOSITION M1N00860
C AND LEAST SQUARES SOLUTIONS,IN J.H. WILKINSON AND C. REINSCH MINOO87O
C (EDS.) HANDBOOK FOR AUTOMATIC COIIPUTATION,VOLUME II:LINEAR r4INOO8O
C ALGEBRA, SPRINGER VERLAG,.1314—151 (1971); PREPUBLISHED IN M1N00890
C NU1ER. MATH. 14,O3_t12O (4970). MINOO900
C MINOO91O
C *****HISTQRY: MINOO92O
C MINSOL IS BASED ON CODE WRITTEN BY FRED CIARAMAGLIA (NBER/COtIPUTERMIN0O93O
C RESEARCH CENTER; MAY , 1973). 1IN0O90
C N1N00950
C ADAPTED BY NEIL KADEN (NBER/coMpuTER RESEARCH CENTER) JUNE ,197!IriCo
o Jfl7
o DATE LAST MODIFIED: JUNE ii, 1975.
C ltN3fl99J
C 1I 1 )fl
C QUESTIONS AND CO1MENTS SHOULD BE DIRECTED TO: MINO1O1O
C SUPPORT STAFF MANAGER MINO1O2O
C COMPUTER RESEARCH CENTER FOR ECONOtIICS AND IIANAGEMENT SCIENCE ?11N01030
C NATIONAL BUREAU OF ECONOMIC RESEARCH M1N010140
C 575 TECHNOLOGY SQUARE MINO1O5O
C CAMBRIDGE, MASSACHUSETTS 02139. 1IN01060c MINO1O7O
C DEVELOPMENT OF THIS PROGRAM SUPPORTED IN PART BY MINO1O6O
C NATIONAL SCIENCE FOUNDATION GRANT GJ—1154X3 AND flINOlO9O
C NATIONAL SCIENCE FOUNDATION GRANT DCR75—08802 UINO1100
C TO NATIONAL BUREAU OF ECONOMIC RESEARCH, INC. IIINO111O
C 1IN01120
C : : : : : : : : : : : : : : : : : : : : : : :::::::: : : : : : : : : : : : : : :::::: : : : : : : : : : : : : : : :MINO1130
c r1IN01140
C :::::::::: RKTOL.1, FOR THESE APPLICATIONS, IS A MACHINE DEPENDENT MINO11SO
C PARAMETER BASED ON THE SQUARE ROOT OF THE RELATIVE PRECISION MINO116O
C OF FLOATING POINT ARITUMATIC. 111N01170
C MACHE? = 16.ODO**(_13) FOR DOUBLE PRECISION ARITHMETIC MINO118O
C ON S360 AND S370. : ::::::::: tIINO119O

DATA RKTOL1/Z3ALW000000000000/ HINO1200
C r'IINO121O
C *****BODY OF PROGRAM: H1N01220

IERR o £11N01230IF (RKTOL .LE. O.ODO) RKTOL RKTOL1 f'1INO124O
C :::::::::: FIND MAXIMUM ELEMENT OF W :::::::::; fIINO125O

Z 0.000 rIINO126O
C M1N01270

DO 750 J = 1, N ?11N01280
x W(J) 1INO1290
IF (X .LE. Z) GO TO 750 UINO1300
Z X 11N01310

750 CONTINUE 1IN0 1320
c

tIINO133O



850

B(I,J) X
890 CONTINUE

900 CONTINUE

GO TO 1000
C

999 IERR = —1

C
1000 RETURN

C
END

C

C

C

MINOI 3110
MINOl 350
MINOl 360
M1N01370
MINO1 380
'1IN01 390
HINOI 1400
HINO1111O
HINO 11420
1 IN 011130

M1N0111110
M IN 01 1450

H IN 01 1460

N IN 01 1470

HINO 11180

MIND 11490
H IN 01500
HINO151O
MINOl 520
MINO 1530
N IN 015140

HIN 01 550

MIN0 1560
HINO1 570
MIND 1 580
1 IN 0 1 590

1IN0 1 600

HIND 1610
ri INO 1620
IIINO 1630
IINO1 6140
II N 01 650

MINO1 660
N IN 01670
MINO168O

IF (Z .EQ.0) GO TO 999
C :::::::::: FORM PSEUDO INVERSE OF DIAG(W) ::::::::::

DO 800 J 1, N
x W(J) / Z
IF (X .LE. RKTOL) GO TO 790
w(J) 1.ODO / W(J)
GO TO 800

790 W(J) = O.ODO
800 CONTINUE

C :::::::::: FORM X (RETURNED IN B)
DO 900 J 1, IF

C
DO 810 I 1, N

RV1(I) w(I) * B(I,J)
810 CONTINUE

C
DO 890 I = 1, N

X O.ODO
C

DO 850 K 1, N
X = X + V(I,K) * RV1(K)

CONTINUE

ERROR IF MAX SINGULAR VALUE 0 :: ::::
RETURN TO CALLING PROGRAM

LAST CARD OF MINSOL



SUBROUTINE LUDCMP(MN,M,N,A,IHTTC,ICOL,IROW,IERR,ICMAX) LUD000IO
C *****PARAtIETERS: LUD0002O

INTEGER tiN,M,N,IHTTc(N),IcoL(N),IRow(r1),IERR,ICMAx(N) LUD0003O
REAL*8 A(MN,N) LUDOOO4O

C *****LQCAL VARIABLES: LUD0005O
INTEGER I,nIIN,IPIVOT,ITEMP,J,MAXCOL LUD0006O
REAL* AMAX,RATIO,TEMP LUD0007O

C *****FUNCTIONS: LUD0008O
INTEGER IIINO LUD0009O
REAL*8 DABS LU000100

C LUDOO11O
C ::::LUDOO12O

c LUDOO13O
C *****pURPOSE: LUDOO1O
C THIS SUBROUTINE DOES AN LU DECOMPOSITION ON THE REAL N BY N LUDOO15O
C RECTANGULAR MATRIX A, WITH MODIFIED COMPLETE PIVOTING, AND LUDOO16O

C RETURNS BOTH THE STRICT LOWER TRIANGLE OF L AND THE FULL LUDOO17O
C UPPER TRIANGLE OF U. LUDOO18O

c LUDOO19O
C *****PARMIETER DESCRIPTION: LUDOO200
C ON INPUT: LUDOO21O

C LU00022O
C NM MUST BE SET TO THE ROW DIMENSION OF THE TWO—DIMENSIONAL LUDOO23O

C ARRAY PARAMETERS AS DECLARED IN THE CALLING PROGRAM LUDOO24O

C. DIMENSION STATEMENT; LUDOO2O
C LUDOO26O

C H MUST BE SET TO THE NUMBER OF ROWS IN THE MATRIX; LU00027O
c LUDOO2SO

C U MUST BE SET TO THE NUMEH OF COLUMNS IN THE MATRIX; LUDOO29O
C LUDOO300
C A CONTAINS THE MATRIX TO BE FACTORED BY THE LU—DECOMPOSITION LUDOO31O
C WITH COMPLETE PIVOTING; LUDOO32O
C LUDOO33O
C IHTTC IS SET SUCH THAT IF IHTTC(J) IS LESS THAN ZERO THEN THE LUDOO3O
C J—TH COLUMN OF THE INPUT MATRIX CANNOT BE PIVOTED INTO LUDOO3SO
C THE FIRST N COLUMNS OF ITS LU—DECOMPOSITION. ALL ELEMENTS LUDOO36O
C OF THIS VECTOR SHOULD BE SET TO ZERO TO INSURE NORMAL LUDOO37O
C PIVOTING; LLTDJ0380
C LUDOO39J
C ON OUTPUT: LUDOOOO
C LUDOO1O
C A CONTAINS THE L—MATRIX AND THE U—MATRIX AS FOLLOWS: LUD001420
C A( ROW(I),COL(J) ) FOR I LESS THAN OH EQUAL TO J CONTAINS LUDOO3O
C THE (I,J) ELEMENTS OF THE UPPER TRIANGULAR U—MATRIX; LUDOO!4O

C A( ROW(I),COL(J) ) FOR I GREATER THAN J CONTAINS THE LUDOO5O
C SUB—DIAGONAL (I,J) ELErIENTSOF THE L—NATRIX. THE DIAGONAL LUDOO6O
C OF THE L—UATRIX CONTAINS ALL ONES; LUDOO7O
C LUDOOt8O
C IROW REFLECTS THE ROW PIVOTING PERFORMED. IF IROW(J) IS LUDOO49O
C EQUAL TO K THEN THE J—TH ROW WAS PIVOTED INTO THE K—TN LU000500
C ROW—POSITION. SEE ALSO THE OUTPUT DESCRIPTION OF A; LUDOO51O
C LUDOO52O
C ICOL REFLECTS THE COLUMN PIVOTING PERFORMED. SEE ALSO THE LUDOOS3O
C OUTPUT DESCRIPTION OF IROW; LUDOO54O

C LUDOOS5O
C IERH IS SET TO ZERO FOR NORMAL EXITS. LU00056O
C IT IS SET TO K, WHERE K IS AU INTEGER DENOTING THE LUDOO57O
C CURRENT ITERATION. IF NO ACCEPTABLE PIVOTS COULD BE FOUND LU00058O
C (AN ACCEPTABLE PIVOT IS A NON—ZERO ONE WITH THE LUDOO59O
C CORRESPONDING ELEMENT OF IHTTC NON—NEGATIVE). LUDOO600
C IF AN ERROR EXIT IS TAKEN, THE DECOMPOSITION HAS ONLY LtJDOO61O
C BEEN PERFORMED FOR K—i ITERATIONS. LUDOO62O

LU DO 0 6 30



C ICMAX IS USED FOR TEMPORARY STORAGE BY THE SUBROUTINE. LUDOO6O
C LUDOO65O
C *****APPLICATION AND USAGE RESTRICTIONS: LUDOO66O
C LUDCMP CAN BE USED IN SOLVING A LINEAR SYSTEM AXB. LUDOO67O
C LUDOO6O
C SPECIAL CARE SHOULD BE EXERCISED IN THE USE OF THE PARAMETER LUDOO69O
C IHTTC. LUDOO700
C LUDOO71O
C *****ALGQRITH?1 NOTES: LUDOO72O
C LUDCr-IP USES INDIRECTION IN FORMING THE LMATRIX AND THE U—MATRIX LUDOO73O
C TO AVOID ACTUALLY INTERCHANGING ROWS AND COLUMNS IN MAIN STORAGE. LUDOO74O
C LUDOO75O
C *****REFERENCES: LUDOO76O
C NONE LU00077O
C LUD00780
C *****HISTORY: LUDOO79O
C WRITTEN BY NEIL KADEN (NBER/CONPUTER RESEARCH CENTER) JULY 31, LUDOO800
C 197L. LUDOO81O
C LUDO'J820
C DATE LAST MODIFIED: JUNE 17, 1975. LUDOO83O
C LUD0O84O
C *****GNRAL: LUDOO85O
C QUESTIONS AND COMMENTS SHOULD BE DIRECTED TO: LIJDOO56O
C SUPPORT STAFF MANAGER LUDOO87O
C COMPUTER RESEARCH CENTER FOR ECONOMICS AND MANAGEMENT SCIENCE LUDOO88O
C NATIONAL BUREAU OF ECONOMIC RESEARCH LUD00890
C 575 TECHNOLOGY SQUARE LUDOO900
C CAMBRIDGE, MASS. 02139. LUDOO91O
C LUDOO92O
C DEVELOPMENT OF THIS PROGRAM SUPPORTED IN PART BY LU00093O
C NATIONAL SCIENCE FOUNDATION GRANT GJ—1154X3 LUDO09O
C TO NATIONAL BUREAU OF ECONOMIC RESEARCH, INC. LUDOO9SO
C LU000960
C : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :::::: : : : : : : : : : : : : : : : : : : : : : : : : : : LUDOO97O
C LUDOOYbO
C *****BODY OF PROGFAM: LUDOO99O

ThIN = 1INO(tl,N) LUDO1000
IERR 0 LUDO1O1O

C LUDO1O2O
DO 10 I1,M LUDO1O3O

IROW(I) = I LUDO1O!10
10 CONTINUE LUDO1OSO

C LUDO1O6O
C LUDO1O7O

DO 20 I=1,N LUDO1O8O
ICOL(I) I LUDO1O9O

20 CONTINUE LIJDO1100
C LUDO111O
C ::::::::::BEGINNINGQFOUTERLOOP:::::::::: LUDO112O

DO 110 IPIVOT=1,IMIN LUDO113O
C LUD011O

DO !40 J=IPIVOT,N LUDO115O
ICMAX(J) IPIVOT LUDO116O

C LUDO117O
DO 30 I=IPIVOT,M LUDO1ibO

IF (DABS(A(IROW(I),ICOL(J))) .LE. DABS(A(IROW( LUDO119O
1 ICMAX(J)),ICOL(J)))) GO TO 30 LUDO12CO

ICMAX(J) = I LUDO121O
30 CONTINUE LUDO122O

c LUDO1230
4O CONTINUE LUDO124O

c LUDO125O



MAXCOL 0 LUDO1260
AMAX 0.ODO LUDO127O

LUDO 1280
DO 50 J=IPIVOT,N LUDO129O

IF (IHTTC(ICOL(J)) .NE. 0) GO TO 50 LUDO1300
TEMP = DABS(A(IROW(ICMAX(J)),ICOL(J))) LUDO131O
IF (TEMP .LE. AMAX) GO TO 50 LUDO132O
AMAX = TEMP LUDO133O
MAXCOL = J LUD0134O

50 CONTINUE LUDO13SO
C LUDO136O

IF (MAxC0L .EQ. 0) GO TO 99 LUDO137O
IF (MAXCOL .EQ. IPIVOT) GO TO 60 LUDO138O

C ::::::::::COLUMNEXCHANGE:::::::::: LUDO139O
ITEMP = ICOL(IPIVOT) LUD0100
ICOL(IPIVOT) = ICOL(MAXCOL) LUD011O
ICOL(UAXCOL) = ITEMP LUDOV42O

60 CONTINUE LUD013O
IF (ICMAX(MAXCOL) .EQ. IPIVOT) GO TO 70 LUDO10

C ::::::::::HOWEXCHANGE::.::::::: LUDO1!450
ITEM? IROW(IPIVOT) LUDO1.!460
IROW(IPIVOT) = IRow(ICMAxUIAxC0L)) LUD0170
IROW(ICMAx(MAXCOL)) ITEMP LUDO1480

70 CONTINUE LUD01L90
C ::::::::::PIVOTING ACCOMPLISI-IED::::;::::: LUDO1500

IF (IPIVOT .EQ. Ii) GO TO 110 LUDO151O
ITE?IP IPIVOT + I LUDO1S2O

C LUDO1S3O
DO 90 I=ITEMP,M LUDO15LO

RATIO = A(IROW(I),ICOL(IPIVOT)) / A(IROW(IPIVOT),ICOL( LU301550
1 - - IPIVOT)) LwD01560

A(IROW(I),ICOL(IPIVOT)) RATIO LUDO157O
IF (IPIVOT .EQ. U) GO TO 90 LUDO158O

c LUDO159O
Do 80 J=ITErIP,N LUDO1600

A(IROW(I) , ICOL(J)) A(IROI(I) , ICOL(J))_RATIO*A( LUDO161O
1 IROW(IPIVOT),ICOL(J)) LUDO162O

80 CONTINUE LUDO163O
C LUDO164O

90 CONTINUE LUDO165O
C LUDO16ÔO

110 CONTINUE LUDO167O
C :::::::::.ENDOFOIJTERLQOP::;::::::: LUDO168O

GO TO 100 LUDO169O
C ::::::::::NO NON—ZERO PIVOT FOUND:::::::::: LUDO1700

99 IERR = IPIVOT LUDO1710
C LUDOl 720

100 RETURN LUDO173O
C ::::::::::LASTCARDOFLUDCMP:::::::::: LUDO17LO

END LUDO175O


