NBER WORKING PAPER SERIES

{
W) 0
ROSEPACK Document No. 1
Semi-portability of FORTRAN Programs

Neil E. Kaden®
Virginia Klema®

Working Paper No. 103

Computer Research Center for Economics and Management Science
National Bureau of Economic Research, Inc.
575 Technology Square
Cambridge, Massachusetts 02139

September 1975

Preliminary: not for quotation

NBER working papers are distributed informally and in limited numbers for
comments only. They should not be quoted without written permission.

This report has not undergone the review accorded official NBER publications;

in particular, it has not yet been submitted for approval by the Board of
Directors.

& _
NBER Computer Research Center. Research supported in part by National Science
Foundation Grant #DCR 75-08802 to the National Bureau of Economic Research, Inc.

Table of Contents

ADStract . & . L L L e 11

Acknowledgements « « ¢ « ¢+ ¢ ¢ s e 4 e 4 e e e e e e e e e e e e e e i1
Part One . . . o v it e e s e e e e e e e e e e e e e e e e e e e 1
Part TWo . .« . o v v o e s e 3
References v i i i i it e e e e e e e e e e e e e e e e 10

ii

Abstract

Transferring Fortran subroutines from one manufacturer's machine to another
or from one operating system to another puts certain constrains on the con-
struction of the Fortran statements that are used in the subroutines. The
reliable performance of this mathematical software should be unaffected by
the host environment in which the software is used or by the compiler from
which the code is generated. In short, the algorithm is to be independent
of the computing envirornment in which it is run.

The subroutines of ROSEPACK (Robust Statistics Estimation Package) are

Fortran IV source code designed to be semi-portable where semi-portable is

defined to mean transportable with minimum change.*

Acknowledgments

The authors wish to thank J. Boyle and W. Cody for sharing their intermal
document on programming conventions, J. Kirsch for his helpful suggestions
on documentation of subroutines, D. Hoaglin and G. Ruderman for their con-
structive criticism of this document, and Sheila Howard for her careful

typing of the manuscript.

*Egdy, W.J., "The Construction of Numerical Subroutine Libraries," SIAM
Review, Vol. 16, No. 1, pp. 36-u46, January (1974).

Semi~portability of Fortran subroutines puts certain constraints on the
construction of Fortran statements, the declaration of variables, and the
representation of constants that are used in the subroutines. Many of these
constraints are needed for Fortran subroutines that are to be imbedded in
applications subsystems that are written in another language, say PL/1.

Inevitably, the numerical algebra algorithms themselves are strengthened
when their performance is unaffected by the arithmetic of the machine on
which they are used and the Fortran compiler by which their code is generated.

The rules for structured programming [1,2,3], and structured documentation
(see Part Two, Section X of this document) should be followed insofar as possi-
ble. The comments within the program or subroutine should be sufficient to
inform the user about input parameters, output parameters, temporary storage
parameters, error exits, and the algorithm that the program implements.

This document presents certain suggestions for programming that will tencd
toward requirements for semi-portability of ANSI Fortran IV (as described in
CACM, Vol. 7, No. 10, October '64) subroutines and programs. We also suggest
certain conventions for comments and general formatting of the Fortran code.

By "formatting' we mean the spacing and indentation that determine the
general appearance and readability of the code. Such formatting is suggested
to help the reader or the user understand the algorithm, the program, and the

flow of control within the prograr.

Part One
The suggestions for programming are

I. COMMPN storage should not be used for arrays. This is not
an ANSI restriction, but driver programs become simpler to
write, and the use in a paged environment is enhanced if
one does not use COMMON.

II. All array arguments should have adjustable dimensions. These
dimensions should be made explicit in the declarations of the
formal parameters for each subroutine. TFor example,

VII.

VIII.

IX.

REAL. AQNM,N)
not
REALL. A(NM,1)

EQUIVALENCE statements should not be used.

Certain Fortran compilers do not distinguish more than six
characters of an identifier. Hold identifiers to six charac-
ters or fewer.

Do not use multiple entry points or non-standard returns.

Be sure that the precision of any Fortran library routine
or built-in function is explicit in all statements. For
example, DABS, not ABS, for absolute value for long preci-
sion computing. Do not use mixed mode arithmetic or assume
there is an implied conversion anywhere, not even for con-
stants. TFor example

D@UBLE PRECISION X
X = X + 10.0D0

not
D@UBLE PRECISION X
X = X+ 10.0

Constants that are used in iterations or convergence criteria
should be functions of the machine's precision, i.e., the
smallest floating point number, e, representable in the machine
for which the floating representation of l+e>l. Certainly, a
constant that cannot be converted precisely on the machine
should never be used. TFor example, .l, is representative of
such numbers.

Test cases must be devised so that data can be converted uniformly

on all target machine. The word length of the machine determines

the truncation of the internmal representation of floating point
nurbers, and conversion routines do not treat floating point

numbers uniformly. The integers are treated uniformly with respect
to conversion so long as they lie within the precision range of arith-
metic of the computing machine. One suggestion for portability for
test cases used as input numbers is to read them in as integers and
then DFLOAT to get the floating point representations.

Obscure underflows can often produce side effects that give
divide checks or overflows. This problem is particularly acute
because the range of arithmetic on many machines is not symmetric
about zero. For example, the range of arithmetic on the IBM 360/
370 machines is about 1075 »|x|> 10-78, That an algorithm will
exhibit overflow, underflow, or divide check problems is often
not known in advance. However, some linear systems routines have
this problem when an inner product is formed or when multiple
divides are encountered. Be prepared to isolate such problems.

Part Two

One solution is to reorder arithmetic expression. Another
solution is to resort to extended precision arithmetic for
those critical sections of code.

The usual rules for separate sections for error handling
and input-output that are required for applications sub-
systems are equally applicable for semi-portable Fortran
programs. The error handling from the subroutines should
be uniform. The input-output should be confined to main
programs or special I-@ subroutines; that is to say, compu-
tation subroutines should be I-@ free. The goal of the
error recovery is to permit computation to continue without
resorting to system termination.

We expect the subroutines in ROSEPACK to be campiled with
Fortran compilers with the highest level of optimization.
We have not used hand optimization in the subroutines

The suggestions for formatting are

I.

II.

Identifiers

Identifiers, i.e., variable names, should correspond to
default declarations in Fortran. However, explicit declara-
tions should be written for each identifier.

Variables from the calling sequence, internal variables, and
function names should all be declared separately. For a
suggestion on how to accomplish this see X Internal Documen-
tation Section B (PARAMETERS), Section C (LOCAL VARTABLES),
and Section D (FUNCTIONS) of the description of the Prologue.

Labels

If the order of labels within a subroutine is not linear the
convention used should be explicitly described. This order-
ing of statement labels should be linear and could proceed

in multiples of 10 for interior program sections. The next
level of program section could proceed as 100, and perhaps the
next as 1000.

Do not use unreferenced labels.

Code for error exits should be surrounded by comments and
located at the end of the program or subroutine. The labels
for error exits should be 2 or 3 digits, the first of which
is 9, the last non-zero.

One format statement may be used by more than one print state-

ment in a program. Therefore we suggest that all format state-
ments be labeled with 4 digit numbers the last of which is non-
zero and placed after RETURN and before END of the program.

ITI.

VI.

VII.

Preferably all input-output should be written in subroutine
form. We suggest that a DATA statement be used to fix units
of I-9 and that this DATA statement be made particular to a
given installation.

The variables containing this I-@ unit information should be
passed as parameters to all subroutines using these I-@ units.
This device allows a global change of an I-@ unit without
recampiling individual subroutines.

Use of blank spaces

There should not be extra blank spaces around dummy variables
or constants In DO loops. Blank spaces should delimit = symbols
in assignment statements. Blank spaces should be used wherever
such use will enhance readability of elements of expressions or
statements.

Tab Spacings

Throughout this document we are assuming tab setting in columns
1, 7, 10, 15, 20, 25, etc.

Continuation Characters

Second and subsequent lines of all continuation statements should
be numbered 1 through 9, then A through Z in colum 6. The text
of each continuation statement should be indented one tab space
from the initial line of the statement.

D@ loops

A1l DP loops should be surrounded by comment statements which

may be blank. Text comments should follow a blank comment state-
ment. If more than one statement is in the range of a DO loop,

the closing statement of the DO loop should be a CONTINUE. This
CONTINUE should be unambiguous. Statements between DO and CONTINUE
should be indented one additional. tab space to correspond to a block
structure.

Inner loops should be indented one tab space to the right of their
surrounding outer loop.

For examples of indentation of DO loops see the examples in
Appendix I.

DATA Statements

Data statements should be used to set installation-dependent
constants, such as data-set numbers for I/0, and machine preci-
sions, underflow tolerances, or other machine-dependent constants.
See X, Internal Documetnation, Section L, for more details.

If a non-numeric character string must be used in a DATA state-
ment, it should be packed as one character per machine word
and always stored in an array.

VIIT.

Structured programming

The programming and formatting conventions that we describe
are similar to structured programming in the following ways:

format for readability and understanding
indentation for major and minor loops

array dimensions are adjustable

temporary storage arrays are passed as parameters

documentation is structured such that it is contained
within the routine.

a F ow N+

Printed output

All printed output should be formatted such that it is not
greater than 8 1/2 inches in width. Most line printers print
10 characters per inch, and 80 characters per line allows ample
margins. This will greatly aid in reproduction of the output.

Internal Documentation

All Fortran programs should be well documented by liberal use

of comment statements. Proper documentation will enhance read-
ability and appearance of the code, improve understanding of the
algorithm used, help ensure proper use of the program, and aid

in future modifications. When semi-portability is also considered,
proper documentation serves to isolate those portions of the code
which are installation-dependent.

In-line documentation of Fortran programs can be considered in
two major sections, the Prologue and the Program-flow comments.
The latter consists of the comment statements embedded within
the code describing how the algorithm is being carried out as
the flow of control passes from statement to statement. The
former consists of certain non-executable FORTRAN statements
found at the beginning of the subprogram which fully describe the
proper use of the software, as well as information concerning
its development. Any user familiar with the guidelines has the
added advantage of knowing where to find specific information
concerning the program. The Prologue also identifies and isolates
installation-dependent aspects of the program and thus enhances
semi-portability. The Prologue is the major documentation for
the use of the program subroutine.

Program-flow comments should be delimited by special characters
to enhance their readability and appearance. In ROSEPACK the

colon (:) is used. Such comments should also follow the rules
for statement indentation described elsewhere in this document.

In most cases, the text of the comment should be preceded and
followed by a string of 10 special characters (colons). At least

one blank space, but not more than three blank spaces, should

be put between the special character strings and the text of the
comment. If this method is used for a comment extending over
several lines, all lines should have a "C" in colum 1, and all
but the first line should be indented one additional tab (beyond
the current level of indentation).

Building on the suggestions of Boyle and Cody, an alternative
method of delimiting comments, recommended for important comments
or those extending over several lines, is to surround them by

a "box" of special characters. The following is an example of
what is meant by a "box":

OOO0O00

Blank comment statements (i.e., comment statements containing
blanks in columns 2 through 72) may be used wherever their use
enhances the readability of the program.

The statement immediately before the END statement should always
be a comment statement delimiting the end of the program and con-
taining the name of the program. An example follows:

C Tililililll LAST CARD OF (NAME OF SUBROUTINE) .iiiiiiiics

The Prologue consists of the declarations of the calling sequence
and variable names of the subprogram, a number of sections of

text on the subprogram, and any DATA or EQUIVALENCE statements.

It contains a number of headings denoting the different logical
sections of the Prologue. The headings are comment statements

with the character "#" in colums 7 through 11 and the heading name
beginning in column 12 and followed by a colon (:). A blank comment
statement should not immediately follow a heading. If the section
denoted by the heading line is empty, the heading should be followed
by a comment statement containing "NONE" in columns 7 through 10 and
- then a blank comment statement.

The different headings, in the order they should appear, are:

~PARAMETERS

-LOCAL VARTABLES
~FUNCTIONS

~PURPOSE

-PARAMETER DESCRIPTTON
-APPLICATION AND USAGE RESTRICTIONS
~-ALGORITHM NOTES
~-REFERENCES

-HISTORY

~GENERAL

-BODY OF PROGRAM

Three delimiter lines, consisting of a blank comment statement,
a comment statement consisting of the special character colon
(:) in colums 7 through 72, and then a second blank comment
statement, should occur immeidately before the purpose heading
and immediately after the GENERAL section. All lines between
these delimiters should be comment statements. When columns

73 through 80 of each card contain serialization or identifica-
tion characters, this gives a box-like appearance to the part
of the Prologue containing text.

An example of two programs following these guidelines is in
Appendix I.
What follows is a brief description of each section of the

Prologue. Note that no blank comment statements should occur
until after the FUNCTIONS section.

A, CALLING SEQUENCE

The SUBROUTINE or FUNCTION statement should be the
first line of the subprogram. Blanks should be used
to enhance readability.

B. PARAMETERS

Declaration statements should be grouped by type, i.e.,

first INTEGER, then REAL, then D@UBLE PRECISION, or REAL¥*S,
then REAL*16, then CEMPLEX CAMPLEX*32, then L@GICAL Wlthln

each type grouping, variable names should be listed in
the order they occur in the calling sequence. By para-
meters, we mean all of the variable names appearing in
the calling sequence.

C. LOCAL VARTABLES

As with the preceding section, declaration statements are
grouped by type, and in the same order. Within each type,
variable names should be listed alphabetically.

ALL variables used in the program should be explicitly
declared.

D. TFUNCTIONS

All functions called by the program should be explicitly
declared. Declaration statements are grouped by type.

E. PURPOSE

Briefly describe the purpose of this subprogram. Give
references when necessary. More detail can be given in
later sections.

F. PARAMETER DESCRIPTION

This section contains 3 subsections. The first describes
input parameters, the second describes output parameters,
and the third subsection describes parameters used for

temporary storage by the subprogram. If the contents of
any parameter variable can be changed by the subprogram,

it should be considered an output parameter. See
the examples in Appendix I for the format, keywords,
punctuation and indentation used in this section.

APPLICATION AND USAGE RESTRICTIONS

If any other programs in this package can call this
subprogram, or are called by it, they should be des-
scribed here. If this subprogram is part of a group
of programs which are called in scme specified order,
this should also be included. Give references except
when a reference is implicit, as with another member
of the same package.

Also included in this section are any warnings about
special cases or possible errors which can occur if there
are errors in the subprogram call. Warnings about misuse
of tolerance parameters belong here. The entry in
PARAMETER DESCRIPTION should refer the reader to this
section where applicable.

ALGORITHM NOTES

Anything special about the algorithm used or its implemen-
tation should be listed here. Any special conventions
regarding statement labeling or commenting should be
mentioned. If there is anything special about error hand-
ling which has not yet been mentioned, it should be
described here.

REFERENCES

References from elsewhere in the documentation, as well as
any other references pertaining to the subprogram, should
be listed.

HISTORY

The author of this subprogram, as well as the date and place
of origin should be listed. If the subprogram is a transla-
tion of a program in another language or is based on another
program, a reference should be given. If the program has

been modified since it was written, the date and person
making the modification should be noted. If this subprogram
has been released as part of a subroutine library, the current
release date of the library should be given.

GENERAL

If this subprogram was developed under research supported by
a grant requiring acknowledgment, the required information
should occur here. The person to contact concerning comments
and problems with the subprogram should have his address in
this section.

DATA and EQUIVAIANCE Statements

Following the second occurrence of delimiting comment
statements (a blank comment statement, a comment state-
ment with colons in colums 7 through 72, and a second
blank comment statement) is where all DATA and EQUIVALENCE
statements should occcur. If a DATA statement contains an
instaliation-dependent constant, comment statements explain-
ing its value and mentioning the installation's designation,
should precede the DATA statement. Those comment statements
should conform to the standards of program-flow comments.

All DATA statements should precede any EQUIVALENCE staements.

BODY OF PROGRAM

This heading denotes the end of the Prologue and the beginning
of the program body.

-10-

References

[1] Dahl, 0.H, Dijkstra, E.W., Hoare, C.A.R., Structured Programming, Academic
Press, (1972).

[2] Kernighan, B.W., Plauger, P.J., "Programming Style: Examples and Counter-
%xggﬁ%es," ACM Computing Surveys, Vol 6, No. 4, pp. 303-319, December,
l *

[3] Kernighan, B.W., Plauger, P.J., "The Elements of Programming Style," Bell
Telephone Laboratories (1974).

Appendix
This appendix contains listings of two subroutines that are samples of
candidates for inclusion in ROSEPACK. The reader is reminded that we
are relying on Fortran compiler optimization of sub-expressions within

loops.

OOOO0OO00000000000000000000a0000000000000000000CGOO0O00O00000000000a0000

SUBROUTINE MINSOL(NM,N,V,W,IP,B,RKTOL,IERR,RV1)

#%#%%PARAMETERS :
INTEGER NM,N,IP,IERR

REAL*8

V(NM,N),W(N),B(NM,IP),RKTOL,RV1(N)

##%%%#[OCAL VARIABLES:
INTEGER I,J,K

REAL*8

RKTOL1,X,2

#XEXXFUNCTIONS:
NONE

oo o0
oo 0 0 0 .

[R ..
® e 06 5 0000000000000 00

*%%¥%XPURPOSE:
THIS SUBROUTINE DETERMINES A CANDIDATE SOLUTION TO THE LINEAR

T

SYSTEM AX=B, AFTER THE SINGULAR VALUE DECOHMPOSITION AzUSV OF A

REAL M BY N RECTANGULAR MATRIX, FORMING
ALREADY BEEN PERFORMED.
RANK TOLERANCE PARAMETER, RKTOL, OR THE
WHICH IS THE SQUARE ROOT OF THE MACHINE

#*#$#PARAMETER DE

Gi

ON

T

U 3 RATHER THAN U,HAS
SOLUTION IS BASED ON THE
DEFAULT, 2.0D0*¥(-~26),
PRECISION 2.0D0O#*%¥(~52).

THIS CANDIDATE

SCRIPTION:

INPUT:

NM MUST BE SET TO THE ROW DIMENSICN OF THE TWO DIHENSIONAL
ARRAY PARAMETERS AS DECLARED IN THE CALLING PROGRA!
DIMENSION STATEMENT;

N IS THE NUMBER OF ROWS OF B, AND THE ORDER OF V;

V CONTAINS
VALUE

THE SQUARE MATRIX V (ORTHOGANAL) OF THE SINGULAR
DECOMPOSITION;

W CONTAINS THE N (NON-NEGATIVE) SINGULAR VALUES OF A (THE
DIAGONAL ELEHMENTS OF S). THEY ARE UNORDERED;

IP IS THE NUMBER OF COLUMNS OF B;

T
8 CONTAINS THE RECTANGULAR MATRIX U B;

RKTOL IS THE RANK TOLERANCE WHICH WILL BE USED.
NOT POSITIVE, THEN THE DEFAULT WILL BE USED.

TF RKTOL IS

OUTPUT:
V REMAINS UNCHANGED;

W CONTAINS THE PSEUDOINVERSE OF THE DIAGONAL MATRIX S.
ANY SINGULAR VALUES THAT ARE LESS THAN RKTOL 7TIMES THE
LARGEST SINGULAR VALUE ARE SET TO ZERO IN THE PSEUDO~
INVERSE;

B HAS BEEN OVERWRITTEN BY THE SOLUTION X;

IERR IS SET TO
ZERO FOR NORMAL RETURN,
-1 IF THE MAXIMUM SINGULAR VALUE
A ZERO A~MATRIX IN THE
DECUGHPOSTITION).

IS ZERO
SINGULAR VALUE

(INDICATING

MINOGO1D
1IKN00020
MINODO30
MINOOOYD
MINOQOSD
MINO0060
MIN0DO70
MINOONEO
MINO00GO
MINOO100
MINOO110

::MINOD120

MINOG130
MINOOT4D
MINOO150
MINDO160
MINOO170
MINDO180
MINOO190
MIN00200
MINQ0O210
MINGQ229
MINOO230
HMINOQOZ240
MINO0250Q
HINOD26D
AI002T70
MIND0280
HIND0290
MINOO300
MINOOZ10
MIN00320
MINOO330
HINOO34D
MINON359
MILON360
MINDO370
MINDO380
MINOO390
MINOOY00
MINOOL10
HINOO420
MINONY30
MINOOYY40
MINOOY450
MINODOY460
HINO0470
AINONYSD
MINOOY490
MINOOS00
MINOOS1d
MINOOS2D
MINDO530
MINOOS40
MINDO550
MIKNO0560
MINOOSTO
MINOO580
MINOOSGO
MINOO60OO
HINOO610
MINOO620
HINGOG 30
HINGOALN
MItLON650

an QOOO000000000000000000O000000000000000000000000000000000

(@]

RV1 IS A TEMPORARY STARAGE

#4422) PPLICATION AND USAGE
IT IS RECOMMENDED THAT THE
SINGULAR VALUE DECOMPOSITION.

THE IERR PARAMETER SHOULD BE CHECKED BEFORE CALLING MINSOL.

SETTING THE RANK TOLERANCE SHOULD ONLY BE DONE IF THE USER KNOWS
THE SINGULAR VALUES OF THE A-MATRIX WITH RESPECT TO THE CERTAINTY

OF THE DATA.

###&E#ALGORITHM NOTES:
NONE

#RERAREFERENCES:

(1) ARGONNE NATIONAL LAB.,

(2) BECKER,R.,KADEN,6N.,
(JULY 1974)

(3) GOLUB,G.H., AND REINSCH,C.,
AND LEAST SQUARES SOLUTIONS®

®EXRRHTSTORY:

RESTRICTIONS:
SUBROUTINE MINFIT (1) PERFORM THE

FORTRAN SUBROUTINE MINFIT, ANLF233s.
’ SINGULAR VALUE

AND KLEMA,V., 'T
NBER WORKING PAPER NO. 46,

ANALYSIS IN MATRIX COMPUTATION

"SINGULAR VALUE DECOMPOSITION

,IN J.H. WILKINSON AND C. REINSCH
(EDS.) HANDBOOK FOR AUTOMATIC COMPUTATION,VOLUME II:LINEAR
ALGEBRA, SPRINGER VERLAG,134-151 (1971); PREPUBLISHED IN
NUMER. MATH. 14,403-420 (3970).

MIN00660
MIN00670
MINO0680
MIN00690
MIN0O700
MINOO740
MINOO720
MINOO730
MINOOT40
MINOOT750
MINOOT760
MINOOT70
MIN0O780
MIN00790
MIN00800
MINO08 10
MINO0820
MIN008 30

MINOO0840
MIN0O0850
MINO0860
MIN0O0870
MIN00880
MIN00890
MINN0900
MINO0910
MIN00920

MINSOL IS BASED ON CODE WRITTEN BY FRED CIARAMAGLIA (NBER/COMDUTVRMIN0093O

RESEARCH CENTER; MAY 4,

ADAPTED BY NEIL KADEN (NBER/COMPUTE

DATE LAST MUODIFIED: JUNE

IUEQ“IONS AND COMMENTS SHOULD BE DIRECTED T

SUPPORT STAFF MANAGEH

COMPUTER RESEARCH CENTER FOR ECONOMICS AND MANAGEMENT SCIENCE
NATIONAL BUREAU OF ECONOMIC RESEARCH

575 TECHNOLOGY SQUARE

CAMBRIDGE, MASSACHUSETTS 02139.

DEVELOPMENT OF THIS PROGRAM SUPPORTED IN PART BY
NATIONAL SCIENCE FOUNDATION GRANT GJ-1154X3 AND

NATIONAL SCIENCE FOUNDATION GRANT DCR75-08802

TO NATIONAL BUREAU OF ECONOMIC RESEARCH,

$iiisiiist RKTOLY, FOR THESE APPLICATIONS, IS A MACHINE DEPENDENT
PARAMETER BASED ON THE SQUARE ROOT OF THE RELATIVE PRECISION
OF FLOATING POINT ARITHMATIC.
MACHEP = 16.0D0O*%*(-~13) FOR DOUBLp PRECISION ARITHMETIC
ON S360 AND S370. ::scissss:

DATA RKTOL1/Z3AUOOOOOOOOOOOOO/

*®%##2BODY OF PROGRAM:
IERR = 0

IF (RKTOL .LE. 0.0D0) RKTOL = RKTOL1
ssiisiesr: FIND MAXIMUM ELEMENT OF W

Z = 0.0D0

DO 750 J = 1, N
X = W(J)

IF (X .LE. Z) GO TO 750

Z = X

750 CONTINUE

RESEARCH

MINDO940
MINOO950

F5LUHMTINNO96D

wrrgngva
T e
[Y

AINONg99
HINOIO00

MINO1010
MINO1020
MINO10320
MINO1040
MINO1050
HINO106D
MINO10T70
MINO1080D
11INO1090
MINO1100
MINO1110
MINC1120

::MINO1130

MINO1140
MINO1150
MINO1160
MINO1170
MINO1180
MINO1190
MINO1200
MINO1210
MINO1220
MINO1230
MINO1240
MINO1250
MINO1260
MINO1270
MIND1280
MINO1290
1fINO1300
MINO1310
MINO1320
MINO1330

790
800

810

890
900

999
1000

O O O O O

PR

850

IF (Z .EQ. 0) GO TO 999

t1:::2223: FORM PSEUDO INVERSE OF DIAG(W)

DO 800 J = 1, N

X = W(J) 7 2

IF (X .LE. RKTOL) GO TO 790

W(J) = 1.0D0 / W(J)

GO TO 800

W(J) = 0.0DO
CONTINUE
s2s23:22:: FORM X (RETURNED IN B) gz
DO 900 J = 1, IP

DO 810 I = 1, N

RVA(I) = W(I) * B(I,J)
CONTINUE
DO 890 I = 1, N
X = 0.0D0
DO 850 K = 1, N
X = X V(I,K) * RV1(K)
CONTINUE
B(I,J) = X
CONTINUE
CONTINUE
GO TO 1000
$2::0s2:0: ERROR IF MAX SINGULAR VALUE =
IERR = -1
ts:¢2:::3: RETURN TO CALLING PROGRAM ::::
RETURN
sesrsecrsy LAST CARD OF MINSOL :f:scsevcesce:
END

MINO1340
MINO1350
MINO1360
MINC1370
MINO1380
MINO1390
MINO1400
MINO1410
MINO1420
MINO1T430
MINO1440
MINO1450
MINO1460
MINO1470
MINO1480
MINO1490
MINO1590
MINO1510
MINO1520
MINO1530
MINO1540
MINO1550
MINO1560
MINO1STO
MINO1580
MINO1590
MINO1600
MINO1610
MINO1620
MINO1630
MINO1640
MINO1650
MINO1660
MINO1670
MINO1680

3

OO0 0O00O0000

hOOOOOOOOOOOOOOOOOOOOOOOOOOOOO(?OOOOOOO(?O

SUBROUTINE LUDCMP(MN,M,N,A,IHTTC,ICOL,IROW,IERR, ICMAX)
#x#®2PARAMETERS:

INTEGER MN,M,N,IHTTC(N),ICOL(N),IROW(M),IERR,ICMAX(N)

REAL#*8

A(MN,N)

###a#l OCAL VARIABLES:
INTEGER I,IMIN,IPIVOT,ITEMP,J,MAXCOL

REAL*8

AMAX,RATIO,TEMP

#R#REFUNCTIONS:
INTEGER MINO
REAL#8 DABS

#%#%#PURPOSE:
THIS SUBROUTINE DOES AN LU DECOMPOSITION ON THE REAL M BY N
RECTANGULAR MATRIX A, WITH MODIFIED COMPLETE PIVOTING, AND

RETURNS BOTH THE STRICT LOWER TRIANGLE OF L AND THE FULL
UPPER TRIANGLE OF U.

###¢¥PARAMETER DESCRIPTION:

ON

ON

INPUT:

NM MUST BE SET TO THE ROW DIMENSION OF THE TWO~DIMENSIONAL
ARRAY PARAMETERS AS DECLARED IN THE CALLIMG PROGRAN
DIMENSION STATEMERT;

4 MUST BE SET TO

THE NUMBER OF ROWS IN THE MATRIX;

N MUST BE SET TO THE WUMBER OF COLUMNS IN THE MATRIX;

A CONTAINS THE MATRIX TO BE
WITH COMPLETE PIVOTING;

FACTORED BY THE LU~DECOMPOSITION

IHTTC IS SET SUCH THAT IF IHTTC(J) IS LESS THAN ZERO THEN THE
J=TH COLUMN OF THE INPUT MATRIX CANNOT BE PIVOTED INTO
THE FIRST N COLUMNS OF ITS LU~DECOMPOSITION.
OF THIS VECTOR SHOULD BE SET TO ZERO TO INSURE
PIVOTING;

NORITAL

OUTPUT:

A CONTAINS THE L~MATRIX
A(ROW(I),COL(J))
THE (I,J) ELEMENTS

AND THE U-MATRIX AS FOLLCWS:

OF THE UPPER TRIANGULAR U-MATRIX;
A(ROW(I),COL(J)) FOR I GREATER THAN J CONTAINS THE
SUB~DIAGONAL (I,J) ELEMENTS OF THE L-MATRIX.
OF THE L-MATRIX CONTAINS ALL ONES;

IROW REFLECTS THE ROW PIVOTING PERFORHMED., IF IROW(J) IS

EQUAL TO K THEN THE J-TH ROW WAS PIVOTED INTO THE K~TH

ROW~POSITION. SEE ALSO THE QUTPUT DESCRIPTION OF A;

ICOL REFLECTS THE COLUMN PIVOTING PERFOURMED.

QUTPUT DESCRIPTION OF IROW;

SEE ALSO THE

IERR IS SET TO ZERGC FOR NORMAL EXITS.

IT IS SET TO K, WHERE K IS AN INTEGER DENOTING THE
CURRENT ITERATION. IF NO ACCEPTABLE PIVOTS COULD BE FOUND
(AN ACCEPTABLE PIVOT IS A NON-ZERO ONE WITH THE
CORRESPONDING ELEMENT OF IHTTC NON-NEGATIVE).

IF AN ERROR EXIT IS TAKEN, THE DECOMPOSITION HAS ONLY
BEEN PZRFORMED FOR K-~1 ITERATIONS.

ALL ELEMENTS

FOR I LESS THAN OR XQUAL TG J CONTAINS

THE DIAGONAL

LUD00010
LUDOG020
LUD00C30
LUDOOO40
LUDO0GS0
LUD00069
LUD00070
LUD00080
LUD00090
LuDGoo100
LuD0o0O110
LuDgoG120
Lupgoo130
LUD0O0140
LUD00150
LUD00160
LUD00170
LUD0OO180
LUD00190
LuD0n0200
Lubosd210
LuDg0220
LuUb0023%
Lubpoczud
LUDONZ2EC
LUD00260
LuDno270
LUD0N0230
LUDN029%
LUDN2300
Lubpno31o
LUDN2320
LUD00330
LUDCO340
LUDGO35¢C
LUD00360
LuD00370
1.UDD0330
LUDNN399
LUDO0400
LUDO0O410
LUD0Q429
LUP00430
LUDN0O440
LUD00450
LUDON460
LUDOG470
LUDO0450
LUD004g0
LuDonsCo
LUDOJ510
Lub00O520
LUDNOS30
LUDN0540
LUDO0550
LLUD0OS60
LUD00570
LUD0O0O580
LUD00590
LUD00600
LUDO0610
LUD00620
LUD00630

aOOO00O00O00000000000000000000000000000000

10

20

30

40

ICMAX IS USED FOR TEMPORARY STORAGE BY THE SUBROUTINE.

R¥%#¥%APPLICATION AND USAGE RESTRICTIONS:
LUDCMP CAN BE USED IN SOLVING A LINEAR SYSTEM AX=B.

SPECIAL CARE SHOULD BE EXERCISED IN THE USE OF THE PARAMETER
IHTTC.

k% #%%ALGORITHM NOTES:
LUDCHMP USES INDIRECTION IN FORMING THE L~MATRIX AND THE U~MATRIX
TO AVOID ACTUALLY INTERCHANGING ROWS AND COLUMNS IN MAIN

#* % ##REFERENCES:
NONE

##%%*HTSTORY:
WRITTEN BY NEIL KADEN (NBER/COMPUTER RESEARCH CENTER) JULY 31,
1974,
DATE LAST MODIFIED: JUNE 17, 1975.
##%®*GENERAL:
QUESTIONS AND COMMENTS SHOULD BE DIRECTED TO:
SUPPORT STAFF MANAGER
COMPUTER RESEARCH CENTER FOR ECONOMICS AND !ANAGEMENT SCIENCE
NATIONAL BUREAU OF ECONOMIC RESEARCH
575 TECHNOLOGY SQUARE
CAMBRIDGE, MASS. 02139.

DEVELOPMENT OF THIS PROGRAM SUPPORTED IN PART BY
NATIONAL SCIENCE FOUNDATION GRANT GJ-1154X3

TO NATIONAL BUREAU OF ECONOMIC RESEARCH, INC.
#%%%%XBODY OF PROGRAM:
IMIN = MINO(M,N)
IERR = 0
DO 10 I=1,M
IROW(I) = I
CONTINUE
DO 20 I=1,N
ICOL(I) = I
CONTINUE
tiisss: s sBEGINNING QF OUTER LOOP:sescsssss

DO 110 IPIVOT=1,IMIN

DO 40 J=IPIVOT,N
ICMAX(J) = IPIVOT
DO 30 I=IPIVOT,M
IF (DABS(A(IROW(I),ICOL(J))) .LE. DABS(A(IROW(
ICHAX(J)),ICOL{(J)))) GO TO 30
ICMAX(J) = I
CONTINUE

CONTINUE

STORAGE.

LUD0O0O6Y40
LUDDN0650
LUD00660
LUD00670
LUD00680
LUD00690
LUD00T00
LuDoo710
LUD0OT720
LUDO0730
LUDOOT40
LUD00750
LUDOOT760
LUD0Q7T70
LUD0OOT780
LUDP0O0790
LUD00800O
LUDNO810
LUDOD820
LuUD0N830
LUD0O0840
LUD03850
LUDO0E6O
LUDOO370
LUD0088O
LUD00890
LUD00S00
LUD00910
LUD00Og20
LUD00930
LUD0O0O940
LUD00950
LUD00g60
LUD0O9T7O
LUD0N95Y
LUD0O990
LUDO10ND
Lubo1010
LUDC1020
LUD01039
LUDO1040
LUDN1050
LUD01069
LUD01070
LUD01080
LUDO10g0
Lubo1100
Lupo1110
Lubpo1120
LUD0O1130
LUDO1140
LUDO1150
LUDO1160
LUDo1170
LUD01180
LUD01190
Lub0o12C0
LuUDo1210
Lubo1220
LuDpo1230
LuUD01240
Lubpo1250

(@]

a o o O o O

50

60

70

80
90
110

99
100

1

= 0

AMAX 0.0D0
HEHE ::¢FIND PIVOT:s::csz::
DO 50 JsIPIVOT,N

IF (IHTTC(ICOL(J)) .NE. 0) GO TO 50

TEMP = DABS(A(IROW(ICMAX(J)),ICOL(J)))

IF (TEMP .LE. AMAX) GO TO 50

AMAX = TEMP

MAXCOL = J
CONTINUE

HAXCOL

14 .
. .

IF (MAXCOL .EQ. 0) GO TO 99

IF (MAXCOL .EQ. IPIVOT) GO TO 60
tessses et COLUMN EXCHANGE: stz
ITEMP = ICOL(IPIVOT)

ICOL(IPIVOT) = ICOL(MAXCOL)

ICOL(MAXCOL) = ITEMP

CONTINUE

IF (ICMAX(MAXCOL) .EQ. IPIVOT) GO TO 70
$strisss e ROW EXCHANGE: sz

ITEMP = IROW(IPIVOT)

IROW(IPIVOT) = IROW(ICMAX(MAXCOL))
IROW(ICMAX(MAXCOL)) = ITEMP

CONTINUE

$00i30 23 sPIVOTING ACCOMPLISHED: sz
IF (IPIVOT .EQ. M) GO TO 1410

ITEMP = IPIVOT + 1

DO 90 I=ITEMP,M
RATIO = A(IROW(I),ICOL(IPIVOT)) / A(IROW(IPIVOT),ICOL(
. _ IPIVOT))
A(IROW(I),ICOL(IPIVOT)) = RATIO
IF (IPIVOT .EQ. N) GO TC 90

PO 80 J=ITEMP,N
A(CIROW(I),ICOL(J)) = A(IROW(I),ICOL(J))-RATIO*A(
IROW(IPIVOT),ICOL(J))
CONTINUE

CONTINUE
CONTINUE
siisirsstdEND OF OUTER LOOPescsezse
IERR = IPIVOT
RETURN

22222022 LAST CARD OF LUDCMP:::s:zszs::
END

LUD01260
LuD01270
LUD0 1280
LUD01290
LUD0O1300
LuDo1310
LUD0O1320
LUDO1330
LUDO1340
LUD01350
LUD0O1360
LUDO1370
LUDO1380
LUDO01390
LUD01400
LUDO1410
LUDO1420
LUDO1430
LUDO 1440
LUDO1450
LUDO1460
LUDO1470
LUDN1480
LUDO1599
LUD0O1500
LUD01510
LUDO1520
LUD01530
LUDO1540
LUD01550
LUD01569
Lupo1s7¢o
LUDO1580
LUDO1530
LUDN1600
LUD01610
LUD01620
LUD01630
LUD01640
LUD01650
LUDN1660
LUDO1670
LuUD01680
LUD01690
LUDO1700
LUD01T710
LUD01720
LUD01730
LUD01740
LUD01750

