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given price and sell capital at a lower price. We derive an explicit analytic solution for optimal
investment by a firm facing costly reversibility. In addition, we derive a local approximation to
the solution which highlights the effects of the parameters of the problem on the triggers for
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This prescription encompasses the case of irreversible investment as well as the standard
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associated with purchasing and selling capital are closer to those applicable under complete
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Optimal Investment with Costly Reversibility

In traditional capital theory, investment is costlessly
reversible and the optimal investment policy of a firm
maintains the marginal revenue product of capital equal to the
Jorgensonian user cost of capital. The firm prevents the
marginal revenue product of capital from rising above its user
cost by purchasing capital, and it prevents the marginal
revenue product of capital from falling below the user cost by
selling capital. Recent literature has shown that if investment
is completely irreversible, the nature of the optimal investment
policy is different: optimal investment can be characterized as
a trigger policy, in which capital is purchased to prevent the
marginal revenue product of capital from rising above an
optimally derived trigger. Values of the marginal revenue
product of capital that are lower than the trigger value
constitute a range of inaction in which the optimal rate of
investment is zero. The boundary of this range of inaction,
which is the trigger value for the marginal revenue product of
capital, is higher than the Jorgensonian user cost of capital.

Costlessly reversible investment and irreversible
investment are opposite ends of a spectrum in which there is
costly reversibility.  In this paper, we model costly
reversibility by introducing a difference between the price at
which the firm can purchase capital and the price at which it
can sell capital. This wedge between the purchase price and
the sale price of capital could arise from transactions costs or
from the firm-specific nature of capital.! When the wedge is
zero, we have the traditional case of costlessly reversible
investment, and when the sale price of capital is zero (so that
the wedge is 100% of the purchase price of capital) we have
the case of irreversible investment. Rather than limit attention

1A wedge between the purchase and sale prices of
capital would also arise if there were adverse selection in the
market for used capital goods. However, in this case there
would be heterogeneity across firms in purchase and sale
prices of capital.



to these special cases, we study optimal investment in the more
general case in which the wedge can be anywhere from zero to
100% of the purchase price of capital; our model of costly
reversibility encompasses the standard models of costlessly
reversible investment and irreversible investment. Although
this generalization of existing models is one motivation for our
analysis, our primary motivation is to achieve an added degree
of realism. In his seminal paper on irreversible investment,
Arrow (1968) states:

From a realistic point of view, there will be many
situations in which the sale of capital goods cannot be
accomplished at the same price as their purchase.
There are installation costs, which are added to the
purchase price but cannot be recovered on sale;
indeed, there may on the contrary be additional costs
of detaching and moving machinery. Again
sufficiently specialized machinery and plant may have
little value to others. So resale prices may be
substantially below replacement costs. For
simplicity, we will make the extreme assumption that
resale of capital goods is impossible, so that gross
investment is constrained to be non-negative. (pp. 2-
3)

In this paper we abandon the "simplicity” achieved by the
"extreme assumption” of irreversibility, yet we are able to
derive a tractable solution to the more realistic case of costly
reversibility.

We parametrically specify a continuous-time infinite-
horizon investment problem in section I. Optimal behavior is
easily characterized in terms of the shadow price of capital
which we call g. Although the actual prices at which the firm
can purchase and sell capital are fixed over time, the shadow
price g evolves stochastically over time. In particular, g is a
function of the underlying fundamentals and is determined by
a differential equation with boundary conditions. We present
the general solution for g in section II. In section III, we solve



the boundary conditions and characterize several features of
optimal investment behavior analytically.

Optimal behavior is a two-trigger policy in which the firm
purchases capital to prevent the marginal revenue product of
capital from rising above the upper trigger value and sells
capital to prevent the marginal revenue product of capital from
falling below the lower trigger value. Values of the marginal
revenue product of capital strictly between the two trigger
values define a range of inaction in which it is optimal to
neither purchase nor sell capital. While the general form of
the solution has been pointed out in a model of investment by
Bertola (1988) and in a model of entry and exit by Dixit
(1989), our analytic solution focuses attention on the size of
the range of inaction, which is measured by the ratio of the
upper trigger to the lower trigger. We show in section III that
this ratio is a strictly increasing function of the ratio of the
purchase price of capital to the sale price of capital.
Moreover, the ratio of the upper trigger to the lower trigger is
larger than the ratio of the purchase price of capital to the sale
price of capital. Indeed, we show that the derivative of the
trigger ratio with respect to the capital price ratio is infinite
when the capital price ratio is one. Thus, introducing even a
tiny wedge between the purchase price and the sale price of
capital has a substantial effect on the trigger ratio and
introduces a substantial range of inaction.

In section IV we generalize the concept of the user cost of
capital introduced in the case of costlessly reversible
investment by Jorgenson (1963). When there is a wedge
between the purchase and sale prices of capital, there are two
notions of the user cost of capital: (1) a user cost, ¢y, which is
relevant for purchasing capital; and (2) a user cost, ¢y, which
is relevant for selling capital. The concept of user cost allows
us to state the optimal two-trigger policy as a simple rule:
Purchase capital as needed to prevent the marginal revenue
product of capital from rising above the user cost c, sell
capital as needed to prevent the marginal revenue product
from falling below the user cost ¢, and neither purchase nor
sell capital if the marginal revenue product of capital is strictly
between c; and cy;. In section V we show that this rule
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encompasses the prescription for optimal investment in the
case of costlessly reversible investment discussed by
Jorgenson (1963) as well as the prescription for optimal
investment in the burgeoning literature on irreversible
investment (Bertola (1988), Bertola and Caballero (1994),
Pindyck (1988, 1991), Dixit (1989), and Dixit and Pindyck
(1994)).

The solution for optimal behavior derived in section III has
a simple recursive structure. The first step solves for the ratio
of the upper trigger value to the lower trigger value of the
marginal revenue product of capital. The individual trigger
values are then calculated as closed-form functions of this
ratio. Finally, these values are used in the closed-form
solution for g. Although much of the solution is characterized
by closed-form equations, the ratio of the upper trigger value
to the lower trigger is determined as the root of a nonlinear
equation. Our analysis of irreversibility in section V leads to
the development of a simple algorithm to compute this root.

The analytic solution derived in section III does not offer a
transparent view of the effect of various parameters on optimal
investment behavior. Section VI makes some progress in this
direction by presenting a local approximation to the solution.
The ratio of the upper and lower trigger values is shown to be
a locally cubic function of the ratio of the purchase and sale
prices of capital. The trigger ratio is also shown to be an
increasing function of the variance of the shocks facing the
firm and a decreasing function of the discount rate and the
depreciation rate of capital.

In section VII we explore the quantitative significance of
costly reversibility. We find that even relatively small
differences between the purchase and sale prices of capital can
cause the investment triggers to be closer to the triggers that
would hold under complete irreversibility than to the triggers
that would hold under costless reversibility. Equivalently, the
assumption of complete irreversibility can lead to better a
quantitative description of investment behavior than the
conventional assumption of costless reversibility, even when
the wedge between the purchase and sale prices of capital is
modest.



Concluding remarks are presented in section VIII, and the
multi-part Appendix is used to keep lengthy algebraic
derivations out of the main text.

I. The Firm's Optimization Problem

Consider a firm that produces output at time ¢ using its
capital stock K, and variable factors of production. The firm
sells all of its output, and the price of its output is determined
by a demand curve that depends on the random variable X;.
Assume that the operating profit of the firm, i.e., revenue
minus the cost of the variable factors of production, is given
by

oK .x)=—"_x7x-where h>0and0 < y< 1. (D
1-y

The specification in equation (1) can be derived for a firm
with a constant-returns-to-scale Cobb-Douglas production
function facing an isoelastic demand curve.2 It has been used,
for example, by Bertola (1988) and Dixit (1991) in their
analyses of irreversible investment.

According to equation (1), the instantaneous operating
profit of the firm depends on the firm's capital stock K, and on
the stochastic component of demand X,. Thus, the evolution
of the operating profit depends on the evolution of X; and K|
over time. The demand shock X, is assumed to evolve
exogenously according to a geometric Brownian motion

%zuxduaxdz, g, >0 (2a)

t

2Suppose that the production function is Q = L2k l-a

where Q is output, L is labor, K is capital, and 0 < < 1, and
the demand curve is P = X 'VQ v-1 where P is the price of
output, X is the demand shock, and 0 < v < 1. It can be shown
that operating profit, max (PQ - wL), where w is the wage, is

equal to hX"K'7, where h=(1-av) avY- and y= I-v
w 1-av
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where dz is an incEement to a standard Wiener process, with
E{dz} =0 and (dz)” =dt.

We assume that the firm is risk-neutral and maximizes the
expected present value of its cash flow over an infinite
horizon. Its cash flow at any point in time equals the operating
profit, 7(K;, X,;), minus the cost of purchasing capital at a
constant price by; > 0, plus the proceeds received from selling
capital at a constant price by > 0. In order for the firm's
optimization problem to be well-posed, we assume that by <
bU.3 Because the cost of adjustment is (piecewise) linear, the
rate of investment or disinvestment can be infinite.* The
evolution of the capital stock K, is therefore given by

dK, =1,—(8K,)dt (2b)
where 1, is gross investment at time t. More precisely, let U,
be a nondecreasing function of time representing the
cumulation of all positive gross investment up to time ¢, and let
L, be a nonincreasing function of time representing the
cumulation of all negative gross investment up to time t.
Defining I’ =dU, and [ =dL, gross investment is
I,=1"+1;. The capital stock depreciates at a constant
proportional rate & > 0 so that (6K,)dr is the amount of
depreciation that occurs over a small interval of time dt.
Assuming that the firm discounts future cash flows at the
constant rate r > 0, and that r > uX,S the value of the firm is®

31f this assumption were violated so that b, > b, the
firm could earn infinite profit by purchasing capital at price b,
and then selling it immediately at the higher price b, .

4The capital stock therefore follows a continuous, but
non-differentiable, path.

5Under optimal policy the marginal revenue product
of capital, h”X"K™?, satisfies ¢, ShX7K7 < ¢, where ¢, and ¢,
are constants given in equations (28) and (25) respectively.
Recalling that 0 < y< 1, so that ()1)/7< 0, this inequality is
equivalent to CL(r—l)lr >prry gt > cu(r-l)lr'
Multiplying this inequality by (h1%(1-¥))X and recalling that
mK, X) = (h/(1-P)X"K!, we obtain
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( X) max{l A }E{J. _"[ﬂ( 145 Hl) b llﬂ b IH: }‘(3)

Since U; and L, are not differentiable, the last two terms in
equation (3) are to be interpreted as Stieltjes integrals.

The Bellman equation associated with the optimization
problem in equation (3) is

4
y 4

v(k, x)_ yX'K“’ OKV, (K, X)+pu, XV (K, x)+1 o‘X’V,,(K X

The left hand side of equation (4) is the requnred return on the
firm. The right hand side of this equation is the fx ected
actual return consisting of the cash flow, [A/(1-P1X % , plus
the expected change in the value of the firm, - SKV(K, X) +

UYXVy(K, X) + (112)P y X2 Vyy(K, X).

(hllr /(l_ },))CL(Y-l)’YX > ﬂ,‘(X,K)Z(h"’ /(1_ y))CU(Y'l)/YX .

Since the expected growth rate of X is y,, the operating profit
of the firm is bounded above and bounded below by processes
with expected growth rates equal to i,. Therefore,

limeE, {n(X,,,.X,,,)} =0 if and only if gy < r. Thus the

expected present value of operating profits,
E{[ e mK..,. X,,,)ds}. is finite if and only if s < r.

6Suppose that the firm begins at time 0 with an initial
capital stock K. If the marginal valuation of capital V(K,X,)
is less than b;, the firm immediately sells enough capital to
make the marginal valuation equal to b,. If V (K, X,) > b,
the firm immediately buys enough capital to make the marginal
valuation of capital equal to b,,. If b, <V (K, X)) <b,,
there is no jump in the capital stock at time 0.

TThe right hand side of equation (4) does not contain
any terms reflecting the cash flows associated with purchasing
or selling capital. Each unit of capital purchased by the firm
increases the value of the firm by VK, X) and costs bU, so the
contribution of posmve investment to the maximand in
equation (3) is r (V(K, X) - b,). As shown later, under the
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Equation (4) holds identically in K. Thus, the partial
derivative of the left hand side with respect to K equals the
partial derivative of the right hand side with respect to K.
Performing this partial differentiation yields

Ve = ) - 0,0 BV (K Xt e (K, 0 S (.3) (5)

Equation (5) characterizes the marginal valuation of capital
VK(K.X). To get a simpler expression for the marginal
valuation of capital, define y= X /K, and note that the

marginal revenue product of capital is hyY. When the marginal
valuation of capital is in the interior of the interval [b7.,by/],
gross investment is zero, and the evolution of y is given by

%:uyduoydz where'uy =u, +8and 0, =0y. 6)

When the marginal valuation of capital reaches a boundary
of the interval [b7,by/], so that gross investment is non-zero,
investment occurs to prevent the marginal valuation of capital
from leaving this interval. The precise form of this policy will
be analyzed below with the boundary conditions for the
investment problem.

In our parametric specification of the optimization
problem, the value function V(K,X} is homogeneous of degree
one in K and X. Thus the marginal valuation of capital, Vg(K,
X), is homogenous of degree zero in K and X, and hence can

optimal policy 1t is nonzero only when the marginal valuation
of capital V (K, X) equals the purchase price of capital b so
that 1+(VK(K, X) - by) is always zero. Similarly, each unit of
capital sold by the firm increases the value of the firm by b, -
VK, X), so the contribution of negative investment to the
maximand in equation (3) is -/ (b, - V(K, X)). As shown
later, under the optimal policy / ~ is nonzero only when the
marginal valuation of capital V(K,X) equals the sale price of
capital b, so that -1 (b, - Vi(K, X)) is always zero. Thus, the
Bellman equation in (4) holds for nonzero as well as zero
optimal investment.



be written simply as a function of y, the ratio of X to K. Define
g(y) as the marginal valuation of capital

q(y)=Vi(K.X). ™
Differentiating the definition in equation (7) and using the
definition of y yields expressions for the following higher-
order partial derivatives of the value function

VKK(K,X)=:)%(),) (8a)
VMK,X):@ (8b)
Ve (K. X) = q”K(zy) : (8¢)

Substituting the definition of y, and equations (7, 8a, 8b,
8c) into equation (5) yields a second-order ordinary
differential equation for the marginal valuation of capital g(y),

!, 1 ”
(r+8)g(y)=hy" +u,yq (y)+50§.y2q (». ©

In addition to satisfying the differential equation (9), q(y)
must satisfy the boundary conditions.8 Recall that optimal
investment is zero when the marginal valuation of capital g(y)
is in the interior of the interval [by, by]. The firm will
undertake nonzero gross investment only if g(y) reaches one of
the boundaries by or by;. The values of y at these boundaries,
y7, and yyy, are given by the smooth-pasting conditions

q(y.)=b, (10a)
aly,)=b, - (10b)

In addition to satisfying the smooth-pasting conditions,
q(y), y1, and yy; must satisfy the high-contact conditions

8See Dumas (1991) for a clear presentation of the
smooth-pasting and high-contact conditions used below.
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g(y.)=0 (11a)
q'(y,)=0 (11b)

The high-contact conditions guarantee that if the upper
boundary is reached at time ¢z, the marginal valuation of an
additional unit of capital, g, will equal its cost, by, at both K.
and K;,. Similarly, if the lower boundary is reached at time ¢,
q must equal the resale price of capital, by, both at K; and
K;,- The high-contact conditions therefore ensure that the
marginal valuation of an additional unit of capital, ¢, does not
change when investment is nonzero.

II. The General Solution for g(y)

Our strategy in solving for the marginal valuation of
capital, g(y), is to obtain the general solution to the differential
equation (9) and then to use the four boundary conditions in
equations (10a,b) and (11a,b) to determine the two free
parameters in the general solution and to determine the values
of the triggers y; and y;.

The general solution to the second-order ordinary
differential equation (9) involves the roots of the following
quadratic equation (see, for example, Dixit and Pindyck
(1994))

p(n)s—%Gin’—(uy-%di]n+r+8=0' (12)

Note that p(n) is strictly concave, p(0) = r+8 > 0, and p(1)
=r+d- Hy > 0. Thus, p(y) >0. Also, note that p(n) = 0 has
two distinct roots, ap > 0 and ¢y < 0, which satisfy®

a,<0<y<l<a, . (13)
Using the roots of the quadratic equation p(7) = 0, we can
express the general solution to the differential equation (9) as

90ther properties of the roots of equation (12) are
given in Part A of the Appendix.
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a(y)= Hy' +Ay™ + By, where py _ _h __ (14)

and A and B are constants that will be determined by the
boundary conditions. It is straightforward to verify that the
expression for g(y) in equation (14) solves the differential
equation (9).

Recall that g(y) is defined as Vg(K, X), the marginal
valuation of a unit of capital. The marginal valuation of
capital equals the expected present value of marginal revenue
products of capital under optimal behavior, and equation (14)
expresses this expected present value as the sum of three
components: (1) The term Hyyis the expected present value
of marginal revenue products of capital if the firm were
prevented from ever purchasing or selling capital, (2) If the
firm has the option to purchase but not sell capital, this
opportunity to increase the capital stock in the future decreases
expected future marginal revenue products and changes the
expected present value of marginal revenue products by

By“", where the constant B is negative (see equation (20b)

below); and (3) If the firm has the option to sell but not
purchase capital, this opportunity to reduce the future capital
stock increases expected future marginal revenue products of
capital and increases the expected present value of future

marginal revenue products by Ay®" , where the constant A is

positive (see equation (20a) below). In the general case of
costly reversibility the firm can both purchase and sell capital,
so the marginal value of capital equals Hyy plus the effects of
the call option to purchase capital (Bya" ) and the put option
to sell capital (Aya” ). Bertola (1988) uses contingent claims
pricing to derive the general forms of these option terms but
does not derive explicit expressions for the constants Aand

A

B. In the next section, we use the boundary conditions to
obtain explicit expressions for these constants.
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II1. Solving the Boundary Conditions

The four boundary conditions (10a,b) and (11a,b)
determine the constants A and é in equation (14) as well as
the values of y; and y;;. These equations have a recursive
structure that we exploit by defining ¢; = Ju as the ratio of the

342
upper boundary on y to the lower boundary on y. Recall that
the marginal revenue product of capital is hyy so that hyl is

the lower trigger and hyl’,' is the upper trigger on the marginal
revenue product of capital. Therefore, GV is the ratio of the
upper and lower triggers on the marginal revenue product of
capital.

The value of G (and hence of Gy) is given by the root of an
equation that does not depend on A, B, y, or yr;. After we
obtain the value of G, then we compute YL and Yu usinAg
closed-form functions of G. Finally, we compute A and B
using closed-form functions of G, y;, and yy;. Part F of the
Appendix verifies that the solution presented in this section

actually solves the differential equation (9) and the boundary
conditions (10a,b) and (11a,b).

IIL.A. The Solution for G
In order to simplify the notation in the subsequent analysis
we define the function 8(x) for x > 0 as

@p _ 7
ox) =S
X" —x (15)

In light of equation (13) it is obvious that 0 < &(x) < 1. Itis
straightforward to show that

9(0)=0<9(1)=0:""+;’<1=9(w) (16)

P
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In Part B of the Appendix!® we show that &(x) is a
monotonically increasing function of x.
The optimal value of the ratio G depends on g = by which
L
is the ratio of the purchase price of capital to the sale price of
capital faced by the firm. Given R > 1, the value of G is
defined implicitly by!1

JR.G)= R-G’—al(R—G"")e(G)-al(R-G"r)(l—e(c)):o-(17)
Proposition 1. For any R > 1, there exists a unique!2 G > I,
denoted G(R), such that J(R,G) = 0. G(1) = 1, and the function
G(R) is strictly increasing for R > 1.

Proof. See Part G of the Appendix.

Proposition 1 states that the wedge (expressed as a ratio)
between the upper trigger y;; and the lower trigger y; is a
strictly increasing function of the wedge (expressed as a ratio)
between the purchase price of capital by and the sale price of
capital b;. Proposition 2, which follows, implies that even a
tiny wedge between the purchase and sale prices of capital can
introduce a substantial wedge between the upper and lower
triggers.

Proposition 2. G*(1) = co.

10See especially equations (B.9) and (B.12).

11n Part F of the Appendix we verify that equation
(17) characterizes the optimal value of G.

12]n discussing the values of the two triggers, Bertola
(1988) remarks, "Although it does not seem possible to prove
analytically the uniqueness of their solution, numerical
procedures are not at all sensitive to the starting point of the
iteration, suggesting that the solution is indeed unique.” Our
Proposition 1 proves the uniqueness of G, the ratio of the
triggers, and later we show that the triggers are closed-form
functions of G, which implies that the triggers are unique, as
conjectured by Bertola.

13



Proof. Assume that R = 1. Therefore G =1. In Part D of the
Appendix it is shown that J(1,1)l;—q = O (see equation D.16)
and that Jp(1,1) > O (see equation D.8). Therefore, the
application of the implicit function theorem (equation G.1 in
the Appendix) shows that G’(l) =oo. q.e.d.

Interpreting R-1 as a transaction cost, Proposition 2 states
that the derivative of the (geometric) distance between the
upper and lower triggers with respect to the transaction cost is
infinite when evaluated at zero transaction cost. A similar
finding is also reported by Dixit (1989, p. 630) in a model of
entry and exit.

HILB. The Triggers Yy and y

Now that we have solved {?)r G, the ratio of the triggers,
we can compute their individual values. It is most convenient
to express the triggers in terms of triggers on the marginal
revenue product of capital hyy. The firm pursues an
investment policy that prevents the marginal revenue product

of capital from falling below the lower trigger hyl and from
rising above the upper trigger hy&'. The presentation of the
triggers is simplified by defining the function ¥(x)

o, (18)

‘P(x)z(r+5)ﬁl—_ywj>0'
o, - 7(1—“1))

Recall that r+6 > 0, op>v> 0,1-&1)>0,and 8'(x) >0
so that inspection of equation (18) reveals that ¥(x) is a
strictly decreasing function of x.

As verified in Part F of the Appendix, the trigger values for
the marginal revenue product of capital are

hy] =¥(G)p, (199)
ry! =¥(G™')b, (19b)

14



Observe that GY is the ratio of the trigger values of the
marginal revenue product of capital.  The following
proposition shows that if R, the ratio of the purchase and sale
prices of capital faced by the firm, is greater than one, then GY
is larger than R,

Proposition 3. 7 _ ¥(G") | with strict inequality if R > 1.
R ¥(G)

Proof. Divide each side of equation (19b) by the

corresponding side of equation (19a) to obtain
r WG, WG

rohve ( )”= ( )R. IfR>1,then G > 1
byl ¥(Gl,  ¥(G)

(Proposition 1). Therefore, G > G'l, and ‘P(G'l) > Y(G)

because ‘P(x) is strictly decreasing in x. q.e.d.

IILC. The Constants A and B

We can now complete our solution by computing A and
Bz usingAclosed—form functions of G, y L and y U Specifically
A and B are given by

A= ABG)y ™ = AB(G™)yl ™, (202)
where 4= A >0, and
Oy
B=8(1-o(G))y= = B(1- o(G))yr (20b)
where Bg-ﬂ<0 .
op

Notice that equation (20a) presents two alternative
equivalent expressions for A, and equation (20b) presents two
alternative equivalent expressions for B.13 Although either of

13The two expressions for A are equivalent because
ABG)y; ™= ABG)G™ 7y ™ = A8(G™)yy where the
first equality follows from y, =Gy, , and the second equality

15



the equivalent expressions will serve our purposes in most
cases, in special cases examined in section V, one or the other
of the equivalent alternatives turns out to be particularly

useful.  Substituting the expressions for A and B into
equation (14) yields the following equivalent expressions for

q(»)
q(y)=Hy' +A 19(G)yl(l]‘x~ +B(1- B(G))yl(lja’ (21a)

373 Yo

0=y + 460 L) +sli-do g 2)7 @D

Yu v

IV. The User Cost of Capital

In the standard neoclassical model of costlessly reversible
investment, the optimal policy is to adjust the capital stock
continuously to maintain the marginal revenue product of
capital equal to the user cost of capital. In a deterministic
framework, Jorgenson (1963) showed that the user cost of
capital is given by

¢, E(ms_&)px : (22)
Px

where pg is the price at which the firm can purchase or sel
capital. The user cost has three components: (1) interest cost,
rpk; (2) physical depreciation, dpg; and (3) the capital loss
associated with the decline in the price of a unit of capital,
— Py Of course, if p K is constant, the Jorgensonian user cost

is simply (r+8)pg.

follows from equation (E.7) in the Appendix. The two
expressions for é are equivalent because

B(1-8(G))yr " = B(1-&(G))G*~7yye = B(1- oG))yy
where the first equality follows from y,~Gy,, and the second
equality follows from equation (E.8) in the Appendix.
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In this section we extend the Jorgensonian concept of the
user cost of capital to the general case of costly reversibility
under uncertainty. When R > 1, so that there is a wedge
between the purchase and sale prices of capital, there is a user
cost relevant for the purchase of capital and a user cost
relevant for the sale of capital.

First consider the user cost relevant for the purchase of
capital. As we have shown, the firm purchases capital only
when y = yr;. The user cost of capital relevant for purchasing
capital when y =y, is

y E(r+5———E{dqu= yu}/dtJbu 23
a(y,)

The expression for ¢y in equation (23) is analogous to the
Jorgensonian user cost in equation (22). The components of
the user cost representing interest, rby;, and depreciation, by,
are the same as in the Jorgensonian user cost. The third
—Ef{dgly =y, }1dr

q(}’u)
the expected capital loss on a unit of capital as the expected
change in the shadow price of capital, g, rather than as the
expected change in the actual purchase price.!# When the
firm is purchasing capital, the expected capital loss (per unit of
time) is —E {dq] y= yv}/ dt. Recall from the smooth-pasting

condition in equation (10b) that byy/g(yy;) = 1, so that the

component of the user cost,

measures
b,

141n the case of costlessly reversible investment
studied by Jorgenson (1963), the shadow price of capital, g, is
always equal to the purchase and sale price of capital, p, so
there is no distinction between shadow price and actual price.
However, in the case of costly reversibility, as well as in the
case of complete irreversibility, the shadow price and actual
price of capital differ unless the firm is actually purchasing or
selling capital. When the shadow price differs from the actual
price of capital, it is the shadow price of capital that is relevant
for the user cost of capital.
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~E{dgly=y, }1ar
b,
Q()’U )

Notice that the expected capital loss when y = y;; is positive
because a decrease in X (recall that y= X / K) will cause
the shadow price of capital, g(y), to fall, but an increase in X
will induce the firm to increase its capital stock in order to
prevent g(y) from rising above by;. Thus, the expected value
of the change in g, given that ¢ is equal to its upper barrier, is
negative, and hence the expected capital loss is positive. This
expected capital loss causes the user cost ¢y to be higher than
(r+8)byy, which is the Jorgensonian user cost in the presence of
a constant price of capital, by;.

We can compute a closed-form expression for ¢y using
the following expression for the expected change in g(y) when
y is at either the upper or lower boundary

expected capital loss per unit of time is

1 .
E{dqu:yi}/dt=50’:yiq”(yi) fori=LU. (24)

As shown in Part H of the Appendix, equation (24) is
derived by applying Ito’s Lemma to the function g(y) and then
using the high-contact conditions (equations (1la,b)) which
state that g'(y;) = 0 for i = L, U. It is also shown that applying
equation (24) to the expression for g(y) in equation (21b) and
substituting the result into the definition of ¢y, yields

¢, =¥(G)p, - (25)

Recall from equation (19b) that the upper trigger value of

the marginal revenue product of capital is Ay = \P(G")bu. In

light of equation (25) this trigger value can be stated simply as
hy! =¢,. (26)

We now turn our attention to the user cost relevant for selling
capital. We define this user cost as

CLE[r+8_ Eldaly =y.brar), @7
q()’L)

18



This definition is analogous to the definition of cj, except
that the sale price of capital by replaces the purchase price of
capital by, and the expected capital loss is computed at y;, the
lower boundary for y. Notice that when y = yj, so that g(y) is
at its lower boundary by, an increase in X will increase g(y)
but a decrease in X will not decrease g(y) because the firm will
sell capital to prevent y from falling below y;. With the
possibility of an increase in g(y), and no possibility of a
decrease in g(y), the expected change in g(y) is positive. This
expected capital gain makes the user cost of capital cy lower
than the corresponding Jorgensonian user cost (r+8)by .

The analogs to equations (25) and (26) are derived in Part
H of the Appendix. The user cost of capital relevant for
selling capital is

c, =¥(G)b, . (28)
and thus the lower trigger value for the marginal revenue
product of capital is

hyl =¢, . 29)
The two user costs, ¢y, and cyy, allow us to characterize
optimal investment behavior by a simple rule: Keep the
marginal revenue product of capital from leaving the closed

interval [CL »Cu] = [‘I’(G)bL,\P(G")bU ] To implement this

rule, purchase capital to prevent its marginal revenue product
from rising above the user cost ¢, and sell capital to prevent
its marginal revenue product from falling below ¢;. If the
marginal revenue product of capital is in the interior of the
interval ¢/, ¢y}, then it is optimal to neither purchase nor sell
capital.

V. Polar Cases: Irreversibility and Costless Reversibility
We have shown that in the general case of costly
reversibility, optimal investment behavior is characterized by a

two-trigger policy that prevents the marginal revenu]e product
of capital from leaving the interval [¥(G)by, WG ¥yl In
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this section, we show how this characterization of optimal
investment also applies to the special cases of irreversibility
and costless reversibility.

We begin our analysis of special cases by using equation
(16) to evaluate the function ¥(x) atx=0,x=1, and X =00

¥(0)= (r+8)( -L) (30a)
¥Y()=r+68 (30b)
‘I‘(oo)=(r+5)( _ai) (30)

We consider three special cases. First, suppose that
investment is costlessly reversible as in standard neoclassical
theory. In this case, byy = by and hence R = 1. Therefore, it
follows from Proposition 1 that G =1 which implies that ‘¥(G)
=W(G ') =W(1)=r+d. Letting pg denote the common value
of by and by, the interval [W(G)by, ‘P(G'l)bU] becomes
[(r+dpg, (r+Opg] which is degenerate. Thus, the
prescription to prevent the marginal revenue product of capital
from leaving this degenerate interval is equivalent to adjusting
the capital stock to maintain the marginal revenue product of
capital always equal to (r+d)pg.

Next consider irreversible investment. In this case, the sale
price of capital, by, is zero and thus R =oo. Therefore,
G =ocoand G| = 0 'so that ¥(G) = (r+8)(1-Worp) and W(G ™)
= (r+8)(1-foy). The interval [‘\P(G)by, ‘P(G'l)bU] becomes
[0, (r+8)(1-Yan)by)l. In our model, no sales of capital are
ever needed to prevent the marginal revenue product of capital
from falling below the lower bound of this interval. However,
the firm will sometimes need to purchase capital to prevent the
marginal revenue product of capital from rising above the
upper boundary of the interval. As emphasized in the
irreversibility literature (see, for example, Pindyck
(1988,1991) and Dixit and Pindyck (1994)), the trigger value
for the marginal revenue product in this case is higher than the
standard Jorgensonian user cost (r+8)by;. But as shown in the
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previous section, (r+&)by, is not the user cost of capital in this
case. Instead, the user cost of capital is
&, =(1=y/ ay)(r+8)b, > (r+&by, and the optimal policy
is to purchase capital to prevent the marginal revenue product
of capital from rising above this user cost.!5

Now consider irreversible disinvestment which is formally
symmetric to the standard irreversible investment case. In this
case, the sale price of capital, by, is positive and finite, and the
purchase price of capital, by, is infinite, so that R=o0. Asin

the case of irreversible investment, =00 and G =0 so
that W(G) = (r+6)(1-#op) and W(G ") = (r+0)(1-Aoyy). The
interval Y (G)py, Y(G byl becomes

[(r + 5)(1 -yl a P)bL ,oo]. Notice that no purchases of capital

are ever needed to prevent the marginal revenue product of
capital from rising above the upper boundary of this interval.
However, the firm will sometimes need to sell capital to
prevent the marginal revenue product of capital from falling
below the lower boundary of the interval,
¢, =(—y/a,)(r+8)b,, which is lower than the
corresponding Jorgensonian user cost (r+0)by .

The consideration of irreversibility, in particular equations
(30a) and (30c), leads to the following corollary.

Corollary to Proposition 3. For any finite R > 1,

e
G oy
R |2

aP

15Dixit and Pindyck (1994, p. 145) thank Guiseppe
Bertola for pointing out that the trigger value for the marginal
revenue product of capital can be interpreted as the user cost
of capital. However, neither they nor Bertola show that the
value of the trigger is equal to the sum of the costs associated
with interest, physical depreciation, and the expected capital
loss on a unit of capital, as we have done in section IV. This
demonstration gives economic content to an otherwise formal
definition of user cost, and illustrates how this definition of
user cost is based on Jorgenson’s definition.
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Proof. Using Proposition 3, equations (30a,c) and the fact that
. . _r

W(x) is strictly decreasing we have G _ ¥(c™) . ¥(0) ) 1 a, "
R ¥(G) W) _r
*p

q.e.d.

The importance of this corollary is that, along with
Proposition 3, it defines a closed interval on the real line that
contains GVR. Equivalently, given the capital price ratio R,
Proposition 3 and its corollary define a closed interval on the
real line that contains GY. Specifically, G E[ R,l_ v/ay R)'

1-v/a,

According to Proposition 1, for R > 1 the optimal value of G is
the unique root of the equation J(R,G) = O in this interval.
This root can be calculated to any desired degree of precision
in a finite number of steps using a simple algorithm: divide
the interval in half, choose the half interval for which J(R,G) is
of opposite sign at the endpoints, and repeat this procedure
until the desired degree of precision is achieved.

V1. A Local Approximation for the Optimal Value of G

We have presented analytic results characterizing the
optimal value of G (see Propositions 1, 2, and 3 and the
Corollary to Proposition 3), and we have described a finite
algorithm to numerically compute the optimal value of G. In
this section we present an approximate solution for the optimal
value of G that holds in the neighborhood of R = 1. This
approximation yields a simple expression that relates G to the
parameters of the problem facing the firm.

Recall that for a given value of R, the optimal value of G
satisfies J(R,G) = 0. In Part D of the Appendix we show
(equation (D.29)) that taking a Taylor's series approximation
of J(R,G) around the point R = G = 1, and setting J(R,G) equal
to zero yields
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1 3 _
—E‘IGGG(]’I)(G_I) = (31)

[1,(1,1)+ Joe (LG~ 1)+%]RGG(1,1)(G— 1)’](R— 1)

Equation (31) reflects the fact that J;(1,1) = 0 and
J(1,1) = 0, so that the relationship between R-1 and G-1 is
locally cubic at R = G = 1. The terms involving (G-1) and (G-
1)2 in brackets on the right hand side of equation (31) are
negligibly small in the neighborhood of R = G = I and may be
ignored. Part D of the Appendix (see equation (D.31)) shows
that by substituting expressions for J;;5(1,1) and JR(1,1)
into equation (31) we obtain

173
Gsl+[}(6r;':’6)] (R-1)"" (32)

According to equation (32) the wedge between the upper
and lower boundary values of y, G - 1, is proportional to the
cube root of the wedge between the purchase and sale prices of
capital, R - 1. 16 This cubic function displays the infinite value
of dG/dR at R =1 as presented in Proposition 2.

For a given value of ¥ the wedge GY between the upper
and lower trigger values of the marginal revenue product of
capital is an increasing function of g . The intuitive

explanation for this result is that an increase in the variance of
y shortens the expected length of time for y to move from any
given value to any other given value. Thus, if the boundaries
yr, and y;; were to remain fixed, an increase in the variance of
y would shorten the expected length of time between changing
the capital stock when y is at one boundary, and then
subsequently changing the capital stock in the opposite
direction when y is at the other boundary. The wedge between
the purchase and sale prices of capital when R > 1 means that

161n models in different economic contexts, Delgado
and Dumas (1994) and Shreve and Soner (1994) have found a
similar locally cubic property.

23



it is costly to reverse a change in the capital stock, and by
increasing the expected frequency of such reversals, an
increase in the variance of y would increase the expected costs
facing the firm for given y; and yy;. To mitigate this increase
in expected costs, the firm increases the wedge between the
upper and lower boundaries.

For a given value of ¥, the wedge G7 between the upper
and lower trigger values of the marginal revenue product of
capital is a decreasing function of r+8. An increase in r means
that the firm discounts the future more heavily and thus
attaches less weight to the cost associated with future reversals
of changes in the capital stock. Therefore, the firm is willing
to incur a higher expected frequency of such reversals and
narrows the wedge between the upper and lower boundaries of
y. An increase in & means that a smaller fraction of any
current change in the capital stock will remain at any future
date. Therefore, the expected cost associated with any future
reversal of a current change in the capital stock will smaller.
Thus, as in the case of an increase in r, the firm will choose to
incur a higher expected frequency of such reversals and will
narrow the wedge between the upper and lower trigger values.

Notice that the approximation for G in equation (32) does
not depend on Hy» the drift in y. The reason that G is locally
independent of the drift is that in the neighborhood of R = 1,
the optimal value of G is very close to one, which means that
the wedge between the upper and lower boundaries on y is
very small. The dynamics of y from one boundary to the other
boundary infinitesimally far away, and thus the expected costs
associated with reversals of changes in the capital stock, are
governed by O'ydz rather than by pydt because dt is of second
order compared to dz. Thus G is independent of Hy in the
neighborhood of R = 1.
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Table 1

Exact and approximate values of G

R G
exact approximation

1.000001 1.021202 1.020977
1.00001 1.046264 1.045194
1.0001 1.102619 1.097367
1.001 1.23737 1.209771
1.01 1.623379 1.451938
1.1 3.68156 1.973672
1.5 22.2637 2.664956
2 97.66962 3.097712
3 749.9818 3.642952
uyx=0.01,0y=02,6=01, r=0.03, y=0.2

Table 1 illustrates the quality of the local approximation
for an example in which uy = 0.01, oy =02, 6= 0.1, r =
0.03, and y = 0.2. Recognizing that 0y, = Ox = 0.2 and
substituting the parameter values into equation (32), we have
G=1+2(R-1)". Table 1 illustrates that for tiny differences

between the purchase and sale prices of capital, i.e., for values
of R very close to one, the approximation is very good.
However, even for values of R as small as 1.01, the
approximation shows signs of deteriorating in quality. When
R is 1.1 the exact value of G differs from the approximation by
almost a factor of two, and when R = 3, the approximation
differs from the exact value by more than a factor of 200.
Fortunately, as shown in Figure 1, the values of the upper and
lower triggers (cg; and cy) computed using these approximate
values for G can be very close to the values computed using
the exact values of G.
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In Figure 1, the value of the purchase price of capital by; is
normalized to one, the value of the sale price of capital is by =
1/R, and the other parameter values are the same as in Table 1.
In this case, the user cost relevant for purchasing capital, cyy,
equals (G ), and the user cost relevant for selling capital,
g, equals ‘W(G)/R. The fact that R appears to have a much
larger effect on the user cost ¢z, than on the user cost ¢y in
Figure 1 reflects our normalization in which by; is held fixed
and by falls as R increases. As we have noted, the values of
the user cost computed using the approximate values for G are
strikingly close to those computed using the exact values of G,
perhaps surprisingly so in light of the poor quality of the
approximation for values of R greater than 1.1. (In fact, the
exact and approximate values of ¢, are indistinguishable from
each other in Figure 1.) These approximate values of the user
cost turn out so close to the exact values because the user costs
are most sensitive to the value of G for values of G close to
one, and this is precisely the range of values where the
approximation is quite good. For values of R and G outside
the neighborhood of R = G = 1, the functions ¥(G) and
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‘P(G_l) are relatively insensitive to G, and thus the poor
quality of the approximation for G does not adversely affect
the approximations of the user cost.

VII. The Quantitative Significance of Costly Reversibility

The user costs of capital (which are the triggers for the
marginal revenue product of capital) under costly reversibility
are intermediate between the corresponding user costs in the
cases of irreversibility and costless reversibility. To measure
the extent to which the user costs under costly reversibility are
closer to those under costless reversibility or under
irreversibility, define the ratios F7(G) and FyA(G) as

=S=C _ \{‘(])—\{‘(G) a
o= e %) ¥l 3

e, ¥(G7)-w(), 33b
F”(G)=c‘,, —c,  ¥(0)-¥() 33

where a circumflex () denotes the value of a user cost under
complete irreversibility as in section V. Because W(x) is
strictly decreasing in x, and G 2 1, it follows that 0 < F;(G) < 1
and F;(G)>0fori=L, U.

Treating the case of costless reversibility as the baseline
case, the effect on the user costs relevant for purchasing capital
is 5U =€, > 0 under irreversibility and is ¢, —¢, > 0 under
costly reversibility. Thus, the fraction FAG) is the increase in
the user cost due to costly reversibility relative to the increase
due to irreversibility. Similarly, the fraction F7(G) is the
decrease in the user cost relevant for selling capital due to
costly reversibility relative to the decrease due to
irreversibility.  Because F7(G) and Fp{G) are strictly
increasing in G, which is strictly increasing in R, we see that an
increase in R causes the user costs to approach their values
under irreversibility.
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Figure 2 presents the values of Fy(G) and F/(G) for the
numerical example introduced in section VI. The horizontal
axis displays 1 - 1/R which equals (by; - by)/by, the wedge
between the purchase and sale prices of capital expressed as a
fraction of the purchase price. Notice that except for tiny
values of the wedge, the user costs are much closer to those for
irreversible investment than for reversible investment. For
instance, with a mere 5% wedge between the purchase and sale
prices of capital, the user costs are more than half of the
distance toward the values that would arise under
irreversibility (Fy (G) = 0.5815; Fyy(G)=0.9839). Thus, even
for a modest wedge between the purchase and sale prices, the
values of the user costs are closer to the values computed
under the assumption of complete irreversibility than to those
computed under the assumption of costless reversibility.

Figure 2
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VII. Concluding Remarks

Our point of departure was Arrow's observation that
investment is generally reversible, but only at a cost. For the
sake of simplicity, Arrow chose to examine the special case of
irreversible investment, spawning a literature that has
produced a variety of insights about optimal investment under
uncertainty. A smaller literature has examined the general
case of costly reversibility, with the result that optimal
investment in this case is characterized by a two-trigger policy.
Our paper contains three contributions to the understanding of
optimal investment behavior in the presence of costly
reversibility: (1) an explicit analytic solution to the optimal
investment problem; (2) a finite algorithm to numerically
compute this solution; and (3) a local approximation that
provides a transparent view of the effects of various
parameters on the values of the triggers.

In addition to solving the problem of costly reversibility in
a parametric framework, our paper offers a prescription for
optimal investment that encompasses the entire spectrum from
costless reversibility to complete irreversibility. This
prescription is based on a natural extension of Jorgenson's
definition of the user cost of capital to the case of uncertainty.
We define and calculate cg;, the user cost relevant for
purchasing capital, and c;, the user cost relevant for selling
capital. Using these definitions, the prescription for optimal
investment is simply stated: Purchase and sell capital as
needed to prevent the marginal revenue product of capital
from leaving the closed interval [c;, cyl. In the case of
costless reversibility, the closed interval collapses to the single
point ¢; = cy;; maintaining the marginal revenue product of
capital in this degenerate interval requires that the marginal
revenue product of capital is continuously equated with the
Jorgensonian user cost. In the case of irreversible investment,
the lower bound of this interval is zero; for the cases
discussed in the irreversibility literature (where the marginal
revenue product of capital cannot possibly be negative),
optimal investment can be completely characterized by only
the upper bound of this interval, c;.
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By casting the prescription for optimal investment in terms
of the user cost of capital, our analysis takes a decidedly
neoclassical perspective. In fact, the encompassing
prescription for optimal investment makes the irreversible
investment problem seem more neoclassical than it is
presented in the irreversibility literature. For two reasons this
neoclassical perspective is intended as a complement rather
than a challenge to the major contributions of the
irreversibility literature.  First, the irreversibility literature
provides a multitude of insights and techniques that facilitated
the development and solution of the more encompassing
model. Second, as a matter of economic substance, the
considerations raised by the irreversibility literature appear to
be quantitatively important. As we showed in section VII, the
assumption of irreversibility provides a closer approximation
to investment behavior than does the conventional assumption
of costless reversibility, even when the transaction cost
associated with the difference between the purchase and sale
prices of capital is very small.
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Appendix
A. Identities involving roots of p(7) = 0 in equation (12)

Applying the standard formula for the roots of a quadratic
equation, we obtain

—(#y—%":)*J(l‘y"%dﬁ) +20%(r+9)
o =

b= 0-2 >0 (A.l.a)
1 1,Y
- uy_io': - u’_ia: +20':(r+5) (Alb)
o, = <0 .
" a,
2(r+é
o, =— (O'i ) (A2)
1
P(Tl)=—502y(fl—ap)(ﬂ—a~) (A.3)
Equation (A.3) implies
2
(y-a)y-a,)=- ’;(27) (A4)
y
Dividing equation (A.4) by equation (A.2) yields
a,a, r+é

B. Properties of 6(x)

The function &(x) is defined for x > 0. This part of the
Appendix shows that 6(x) is strictly increasing for x > 0, and
that 8 '(1), 8 "(1), and 8 "(1) are all finite. In addition, the
values of 6(1) and 8'(1) are computed. Observe that

ox)= =X =X (B.1)

X — x| xor
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Define b=o,-0,>a=a,—y>0 and rewrite
equation (B.1) as

o(x)=1"% (B.2)
1-x
It follows immediately from equation (B.2) that
doo) =1 (B.3)

To calculate 6(0), multiply numerator and denominator of

equation (B.2) by xb to obtain
b-a

b—
ox)=2""2 b ad (B.4)
x’ =1

It follows immediately from equation (B.4) that
&0)=0 (B.5)

To evaluate 6(x) and its derivatives at x =1, we will need to
apply L'Hopital's Rule (repeatedly in the case of the
derivatives).

Here we will evaluate 6(1) and 8 '(1) and we will show that
6 "(1) and 8 "(1) are both finite. First we consider a function

f( x) = i(x% where n(x) and d(x) are infinitely differentiable.
di{x

The derivative of this function with respect to x is

f’(x)slgg)) where  N(x)=n’(x)d(x) - n(x)d"(x) and

D(x)= [d (x)]z. Let c be an arbitrary constant. If N(c) = D(c)

= 0, then L'Hopital's Rule must be used to compute f' (c). Let
N(i)(x) and Dg)(x) be the jth derivatives of N(x) and D(x)
rcsgcctivcly, and let J be the minimum value of j for which
NU (c) or D(l)(c) is not equal to zero. Provided that N(J)(c)
is finite and D(J)(c) is not equal to zero, f ' (c) is finite.
Anticipating the need for higher order derivatives of N(x) and
D(x) we calculate the first eight derivatives of each function,
suppressing the argument x.
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N’ =n"d —nd”

N =n"d+n"d’—n'd” —nd"”

N =n"d +2n"d’~2n'd" — nd®

N =14+ 30"’ +2n"a” — 2n"d" - 3n'd" —nd®
N® =n®+4n%" + 519" - 5n"d“ — an’d® — na®

N® =n"d +5n93" +9n%a” +5nd” — 5n”d"“ ~9n"d" —5p’d"® — nd”
N =n®d +6n"d’ +14n®d” +14n%d” —14n7d® ~14n7d"® —6n’d" — nd®

N® =nd+7n®d’ +20n"d” +28n9d" +14n9d"
-14n“d" —28n”d® - 20n"d” - 7n’d® - nd®

D’ =2dd’
D”=2d" +2dd”

D™ =6d'd” +2dd"”

DY =6d"* +8d'd" +2dd"

DY =204"d” +10dd") +2dd"

D' =20d"*+30d"d" +12d'd® +2da"®

D" =70d"d" +42d"d® +144'a® +2dd"

D =704’ +1124"d" +564"d" +164'd™ +2dd®

Recalling the definition of 8(x) in equation (B.2) we have
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6(x) = ny(x) where no(x) =]1-x"" and do(x)E 1-x* (B.6)

For any positive integer j, the j th derivatives of np(x) and
dp(x) evaluated at x = 1 are

A1) = (1) (a+#) 24 d(1)= )" [I+)  ®BD

i=0 i=0

’
Note that ng(1) = do(1) = 0, ny (1) =a, and dg'(1) = b.
Therefore, application of L'Hopital's Rule yields

0<8&l)=

a_ %7 .. (B.8)
b o,-a,

Do(x) E[do(x)]z. Therefore, No(l) =N, (l) =0, and
Ny (1)=n, (), (1)=n, (1),

decivative of
Define n,(x) = Ny(x) = n, (x)dy(x) - ny(x)d, (x) and

d,(x)= D,(x) =[ O(x)]z, and observe that g+()= Zlg .

St

N

Observe that "l(l) =n, (1= O,n!”(l) =abb-a)s
d(1)=d, (1)=0,and dl”(l) =2b*. Applying L'Hopital's
Rule, and using equation (A.4) we obtain

6,(1)=a(b—a) - (2 —7Nr-ay) A7) 50-(B.9)

2b 2(aP—aN) _ol(ap_arv)

y
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Define N,(x)= nll(x)d,(x)—n,(x)d,l(x) and
x)=[d,(x)]- Note that N(1)=D{(1)=0,j=0,1,2,3,

NEO0)=2(nP()a, (D-n (D4P(1),and

”2
DP(1)=6d, (1)=24b".

Define n,(x)= N,(x) and d,(x) = D,(x), and observe
thatg #(,) = m(x) | Observe that

d (x)
”( =dP(1) =0.j=012.3,
2(n g, (1)-n, (1420 )), and 4{%(1) = 24b*.
)
Therefore,e ”( )E m is finite. Define
a(1)

N (x)=n, (x)dy(x)=my(x)d, (x) and D, (x )=[d,(x)] -
NotethatN“’()=D§f’(1) 0,j=01,..,7,
M) =140 (0D ()P () (1)), and
p® =70(a® (1)) =70(p¥ (1))’ > 0.
Third derivative of &x),
Define n,(x) = Nz() x) and d,(x) = D,(x), and observe
dz(x
n(1)=d(1)=0,j=0.1,...7,

0= 14[ 2 0(0) - P (01 an

d(g)(1)=70 D(d)(]) > 0. Therefore,g » = ns (x) is
3 ( 1 ) (1) 6

thatg ”(x) = Observe that

v

finite.

We have already shown (equation (B.9)) that 8' (1) > 0.
To determine the sign of 8" (x) for x # 1, note that 8 '(x) has
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the same sign as Ng(x) because Dg(x) > 0 for x # 1. Observe
that Ng(x) can be rewritten as

b _ a _
No(x) - al{x 1 _X___l)x-(1+a+b) (B.10)
b a

We can determine the sign of N(x) using the following
lemma.

Lemma 1. Define ¢(7) = = B for B=1, x>0, andz>0- If
b4

(a) B> 1 or (b) x#1, then ¢'(z) > 0.

Proof. Observe that olz)= e™ - B so that

z
_ (zlnx-1)x* +ﬁ=1(_z_), where
z : Z Z
z)=(zlnx-1)x* + 8.
Differentiating V(z) yields
v '(z) =x’ lnx-f-(zlnx—l)xZ Inx= z(]nx)zxZ >0 forz>
0. Note that v(0) = -1 + > 0. Therefore, (a) if 8> 1, Wz) >0
for z > 0 which implies that ¢’(z)>0 forz>0; (b)if x #1,
V/(z) > 0 so Wz) > 0 for z> 0 which implies that ¢’(z) >0 for

z2>0. q.ed.
Using the definition of ¢(z) in Lemma 1 above (setting the
parameter 3 equal to one), rewrite equation (B.10) as

No(x)=ab{p(b) - pla))x " >0 for x#1  (B.1D)

o(2)= x'Inx x*-8

where the inequality follows from b > a > 0 which implies
(p(b) > q)(a). Therefore, (since we have already shown that
6'(1) > 0), we have

8'(x)>0 (B.12)

C. A Useful Lemma
The following lemma will help in some subsequent
derivations.

Lemma 2. 1_a_7:+6(1)(:7_’+_7_)=ﬂ.

o, a,) r+é

36



Proof. Note that

e I

oo,

Using equation (B.8) to substitute for (1) on the right
hand side of equation (C.1) yields

1-_+9(1) St S Pl It 4 (C2)
oy aP p ety

Combining terms on the right hand side of equation (C.2)

yields
o7l _ (C3)
+q1){ oy ar) (aPaN }(a Y)

Using equation (A.5) to obtain an equivalent expression for
the right hand side of equation (C.3) yields

+9(1)(_+ 7’] P(Y) (C.4)

o,) r+ r+é
q.e.d.

D. Properties of J(R,G)
Calculation of J(R.1) and J (R, )
Recall the definition of J(R,G) in equation (17):

XR.G)=R-G" - L(r-G=)8(G) - L(r-G")1-8(c)) P

N 4

Setting G =1 in equation (D.1) yields
J(R1)= (R—l)lil -Yo)-L(1- 9(1))} (D.2)
o, o,
Using Lemma 2 to rewrite the right hand side of equation
(D.2) yields
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J(R,1)=(R—1)il'2 >0 (D.3)
r+é
To evaluate lim_,, J( R, G), multiply equation (D.1) by

(G"" -G* )/(G"’ -G )and use the definition of &(G) in
equation (15) to obtain

1

) R —
ARG)= L

(D4)

[(R-avxoa»_m)-al(n-mxm -G7)—al(k-c;“r)(c7-a"~)]

Now multiply equation (D.4) by G™ / G™* to obtain
J(R,G)=#_;[(R—Gr)(l-cﬂﬂr)- 14 (R-G“w)(l—GM)—Ey:(R—G*)(GM-G“r"r)]

o,
(D.5)

Next divide each term in brackets by GYand multiply the
expression in brackets by G to obtain

XRG) =—L[(RG'7 -1)- G"""")--g—(RG"’ el | -G""')-al(RG" -GG -G )]

l_G"r"r
(D.6)
Finally, let G — =oand obtain
. 7 |, ap~7). (D.7)
limg__J(RG)={-140+-L llim,, G"=— —2—{lim;,_G"=-»
a, a,
Calculati f Derjvati f J(R

Partially differentiating equation (D.1) with respect to R

JR(R.G)=1—;}6(6)——(1-6(0))=£d+,e(c)(;‘--L)m

Y
ap ap p Oy
(D.8)

Evaluating this derivative at R = G = 1 and using Lemma 2
yields

Jo(1,1)= ﬁ% (D.9)
r+

Observe from equation (D.1) that J(R,G) is linear in R so
that
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Jex(R,G)=J e (R,G)= J s (R,G)=0  (D.10)

To compute J;(R,G) , partially differentiate equation (D.1)
with respect to G to obtain

J,(R.G)=—1G™ +)G"~-'e(c)-a—7(k-c"~)e'(0)+ )G"'-'(n-e(c))+al(k-c“')9'(c)
(D.11)

Simplifying equation (D.11) yields
1,(R,G)= %[—G’ +G* +dG)(G™ -G )]+ v '(G)[

(D.12)

o, ay

R-G™ R—G"":I

Observe that
~G"+G* +§(G)(G* ~G*)=-G"+G* -(G* -G?)=0

so that

J;(R,G)=-1 '(G)M(R,G) (D.13)
where
M(r,G)= S —R_G™ -R (D.14)
o, oy

Differentiating M(R,G) with respect to G we obtain
M (R,G)=G*' -G*' and
My (R,G)=(a, —1)G*? —(a, —1)G*-2. Therefore,

M(1,1)=0 (D.15a)
Ma(1,1)=0 (D.15b)
Mgc(L.)=ap- ay (D.15¢)

It follows from equations (D.13) and (D.15a) and the fact
that 6'(1) is finite that
Jg(1,1)=0 (D.16)

Differentiating equation (D.13) with respect to G yields

Joo(R.G)=—18 "(G)M(R.G)- 19 '(G)M;(R,G) (D.17)
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Evaluating equation (D.17) at R = G = 1, using equations
(D.15a,b) and the fact that 8 '(1) and 8 "(1) are both finite, we

obtain
Joc(1,1)=0 (D.18)

Differentiating equation (D.13) with respect to R yields

Jox(R,G)=-16 (G)M(R,G) (D.19)
Differentiating M(R,G) in equation (D.14) with respect to
R yields
=41 _1 (D.20)
My(R.G) =~ —-—
+(R.G) [a, aNJ
Substituting equation (D.20) into equation (D.19) yields
1
Tal.6) =10 (6 -] ®2D
I N
Evaluating equation (D.21) at R = G = 1 yields
1 1
JellLll}=99 '"1)) —~— (D.22)
)= 0 -

Differentiating equation (D.21) with respect to G and
evaluating the result at R = G = 1 yields

Joer(1,1) =10 ”(1)(0%_L (D.23)

I N

Differentiating equation (D.17) with respect to G yields

Jsoo(R,G)=-16 "(G)M(R,G)+20 "(G)M,(R,G)+6 (G)M(R,G))
(D.24)

Evaluate equation (D.24) at R = G = 1 using equations
(D.15a,b,c) and the fact that 8 "(1) and 8 "'(1) are finite to
obtain

Joos (L) =-10 ‘(@ -ay) (D29

Using the expression for 8'(1) in equation (B.9) we obtain

Jooo(1,1) = = ”;(]) (D.26)

y
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A third-order Taylor's series approximation of equation
(D.1)around R=G =1is
(D.27)
J(R.G) = 1(1,1)+ 1,(1L)Y(R-1)+ 1, (1,1{G-1)

+%[J,,(l,l)(R—l)2 2056 (LI(R=-1G -1+ Jog(11)G 1) ]

+%[J,,,(1,1)(R—1)3 +3J g (L(R=1)(G =1)+ 3/ g (1R - 1XG ~1)" + Jm(l,l)(c—l)’]

Observe that
J(]»])= JRR(]’])E JRRR(I’I)E JRRG(I’I)E Jc(lvl)E ‘]GG(I’])EO
so that

(D.28)
J(R,G)= J(LI(R=1)+ J,c(1,1)(R-1)(G-1)
#2310 (LDR=1)G =1 + Ve (L1NG 1) ]
Setting J(R,G) = 0 in equation (D.28) yields

(D.29)

—%IGGG(I,I)(G— 1) = [1,(1,1)+ Jea (LG - l)+%!,m(l,l)(0— 1)’](R—1)

The terms involving (G-1) and (G- 1)2 in brackets on the
right hand side of equation (D.29) are negligibly small in the
neighborhood of R = G =1, so that

(G-1f =622l (g _y) (D30)
Jooe(1,1)
Substituting equations (D.9) and (D.26) into equation
(D.30) yields
3 o
(G-1=——2=(R-1) (D.31)

r+8)
(R.G) <0 when J(R.G) = 0 and R>]

Observe from the definition of J(R,G) in equation (D.1)
that

41



R-G’ R-G™ _ O(G)I:R—G“" _ R—G“’] when J(R,G) =0.
Y o, ay a,
(D.32)

Rearranging equation (D.32), using the definition of
M(R,G) in equation (D.14), and assuming that G >1 (to avoid
G =0 since &0) = 0) yields

1 |[G*~R G'-R
M(R'G)’I(R.G)'O = dG)l: a, - y ] (D-33)

Observe from Lemma 1 that the term in brackets on the
right hand side of equation (D.33) is positive for R >1. Also
recall that &G) > 0 for G > 0 so that equation (D.33) implies
that

M(R,G)[ >0 forR>1 (D.34)

JHRG=0
Since 8'(G) > 0 and 7> 0 it follows from equations (D.34)
and (D.13) that

J5(R.G) <0 forR>1. (D.35)

J(R.G)=0
E. Properties of ¥(x)

Recall the definition of ¥(x) in equation (18)

¥(x)=(r+8)—2 Y
)
p=Y 1—a(1)
Observe from equation (B.8) that
1-6&1)=(y-a,)/(a, - a,) so that equation (E.1) becomes

¥(x)=(r +4) i _"; ‘))7 E2)

x, = YW(aP -aN)

(E.1)

Multiply the numerator and denominator of equation (E.2)
by oy - yto obtain
_ (- ey -7) (E.3)
¥(x)=(r+2) a0, —a,y+ \1-6x))a, -a,)
Dividing the numerator and denominator of equation (E.3)
by apayy yields
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¥(x)=(r+6) (@ = V)(aty - 1)/ (@) (E4)
- Lo L Zo-otx)

N v @p
Using equation (A.5), we rewrite equation (E.4) as

oly) (E.5)
I—EZ;G(x) Y (1-6(x))

a
Recall from equation (14) that p( y) = h/ H and use the
definitions of A and B in equations (20a,b) to obtain

h
6= % o(G)+ B(1- &G)) €0

To derive an expression for ‘P(G'l) we use the following
identities based on the definition of 6(x) in equation (15)

- Gar+aN-Y —_ GaN G'ar'aN G-Y —_ G—ar _
Ga YdG)= Gor o G—ap—aN = G- _G_a’ = dG 1)
(E.7)
and

Gﬂr —_ G“N*ﬂr—f G‘“r’ﬂn G — G—Y
r-Y(1 — = = =]- -
G (l qc)) Ga, - Ga” G-ﬂ’-ﬂy G-ﬂn - G—Gr l dG )
(E.3)

Observe from equation (E.6) that
- h E.9)
¥(G)= (
(67) H+A(G™)+B1-6G™))
Substitute equations (E.7) and (E.8) into equation (E.9)
and multiply the numerator and denominator by G” to obtain

hG"
N (E.10)
¥(c”) HG'" + Ad(G)G*™ + B(1- 6G))G*
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F. Verification of the Solution
Verification of smooth-pasting condition, equation (10a)

Evaluate equation (21a) at the lower trigger y; to obtain

q(y.)= YZ[H+A6(G)+B(1—8(G))]=$%L;_)=},L 1)

where the second equality follows from equation (E.6) and
the third equality follows from equation (19a).

Verification of smooth-pasting condition, equation (10b)
Evaluate equation (21a) at the upper trigger y; to obtain

a(yy) = yIG'[H+AB(G)G™ 7+ B(1-§(G))G™ "] F2)
Recall that ¥} = y]G? and use equations (E.7) and (E.8)
to rewrite equation (F.2) as
alw)=yi[H+A0(G")+Bl1-0GY))]  ®3)
Finally, use equations (E.9) and (19b) to obtain
hyp b, (F.4)

q(yu)=m

Verification of high-contact condition, equation (11a)
Differentiate equation (21a) with respect to y to obtain

g'(y)= vy + o, ANG)y[ ™y + o, B(1- 6(G))y]*r y=r"
(F.5)

Evaluate g'(y) at the lower trigger y; and use the
definitions of A and B in equations (20a,b) to obtain

q'(v.)=y"[1-6(G)-(1-8(G))]=0  (F6)

Verification of high-contact condition, equation (11b)
Evaluate ¢'(y) in equation (F.5) at the upper trigger y A
obtain
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q'() =y + o, ABG)y Ly + 0, B(1- 8(G))y} " y5™
(E.7)

Use the fact that y;, = yZG7 and use the definitions of A
and B in equations (20a,b) to obtain

q'(y)= #y;"[1-8(G)G™7 - (1-8(G))G"]  (E8)

Finally, use equations (E.7) and (E.8) to rewrite equation
(F.8) as

q'(y)= )’HYJ"[I—G(G")—(I—G(G“))]=0 (F.9)

Verification that J(R,G) = 0
Observe from the definition of J(R,G) in equation (17) that

HJ(R.G)= R{H—%ﬂ— dG)—Eﬂ(l—dG))]—G"[H—aﬂ 6(G)G"~"—aﬂ(1— e(G))G""'}
(F.10)

Use the definitions of A and B in equations (20a,b) to
obtain
HI(R,G)=R[H+A8(G)+ B(1- 8(G))]-G'[H+ A8(G)G* " + B(1- 8(G))G* ']
(F.11)
Now use equations (E.6) - (E.9) to rewrite equation (F.11)
as
hR hG” (F.12)
HJ(R,G)=——-
(%.6) ¥(G) w(G")
Substitute equations (19a) and (19b) into equation (F.12)
to obtain
Y
HI(R,G)=RbL_Cb _by b _ (.13
yi oy oy oy
G. Proof of Proposition 1. We prove existence and
uniqueness of the root of J(R,G)=0 separately for R > 1 (Case
I) and for R = 1 (Case II).
Existence: Case I Assume that R > 1. Recall that p() > 0
and r+68> 0. Therefore, it follows immediately from equation
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(D.3) that J(R,1) > 0. Recall from equation (D.7) that
lim,__ J(R,G) = —eo. Therefore, since J(R,G) is a
continuous function of G on the interval [1,00), there is at least
one root of J(R,G) =0 in (j,c).

Case II. Assume R=1. Observe that J(1,1) =0so that G
= 1 is a root of the equation J(1,G) = 0.

Uniqueness: Case I: Assume R > 1. Recall from equation
(D.35) that J (R,G)|J_0 < 0 when R > 1. Therefore, since
J(R,G) is a continuous function of G on the interval [1,%)s
there is at most one root of J(R,G) = 0 in this interval.

Case II: Assume R = 1. To show that there are no roots
other than G = 1 in the interval [1, ), it suffices to show that
J(1,G) < 0 for G >1. Recall that Y0 '(G) > 0 so that equation
(D.13) implies that J;(1,G) has the opposite sign as

G* -1 G™ -1 .
M(1,G) = - . Recall from equation (D.15a)
aP aN
that M(1,1) = 0 and note that M (1,G)=(G* -G*)G™' >
0 for G > 1. Thus M(1,G) >0 for G > 1 and hence J;(1,G) <
OforG>1.

Strictly increasing: Apply the implicit function to

J(R,G(R))=0 to obtain
14(R.G),., . (G.1)

G'(R)=-—"——+=2
Jo(R.GY,
Recall from equation (D.8) that Jp(R,G) > 0, and recall

from equation (D.35) that J;(R,G)| 10 < OforR> 1.
Therefore, G'(R) >0 for R> 1. q.e.d.

H. User Cost of Capital
Recall that y =(X / K), so that

dy=————=/ ydt+0,ydz - yiK’E, where dK is the

increment to accumulated gross investment. Using Ito's
Lemma and the fact that g(y) in equation (21) is twice
continuously differentiable yields
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d
dg(y) =[1, 34’ (N +1 63y’ q"(N]de + 6,4 ()2 —-Ex ¥q'(y):

(H.1)

At the boundaries of the range of inaction, where gross
investment is nonzero, the high-contact conditions in equations
(11a) and (11b) must hold; these require that
q(y,)=q'(y,)=0. Since dx is finite even when it is

nonzero, the product dK yg'(y)/K evaluated at the boundaries
is zero.17 Since all terms in equation (H.1) involving g '(y)
are zeroaty =yy and y = yy,

1 ” .
E{dQ’y=yi}/dt=-2—o'§yiq (y,) fori=Lu  (H2)

Disi he | | |
Define the user cost of capital relevant for disinvestment as
E( oo M}, H3)
q(yL) ‘
Differentiating equation (21a) twice with respect to y, and
evaluating the second derivative at y = y; yields

viq"(y.) = Hy]{y-1)+ AKG)ylay (e, — 1)+ B(1- 8(G))ylat, ot,
(H4)

Use the definitions of H, A, and B in equations (14), (20a),
and (20b) respectively to obtain

via"(v, yL[r(Y -1 eG)ay -1)- A1-6G))(e,

(H.5)
Use equation (A.4) to obtain an expression for O’i and

substitute this expression and equation (H.5) into equation
(H.2) to obtain

17Control at the boundaries is infinitesimal, so the capital
stock does not "jump”. Also note that 1/K is finite if the
bounds are finite.
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)’Z[}‘(Y' )-19(G)(exy -1)- 7(1 B(G)a,,-l)]

_ _ -h
Bldy =y}t~

(H.6)
Recall from equation (F.1) that
hy!
=L (H.7)
q (y L) ‘P( G)

Dividing equation (H.6) by equation (H.7) yields

E{dgly=y.}rar _ Ay-1)-r(G)ay -1)- A1-&(G))(e, - 1)
q(y.) (r-a,Ny-ay)
(H.8)

¥(G)

Observe from equation (E.4) that

"*5)=E3T?Jm[‘“a—z*[a~ L e(c))] (@)
(H.9)

Now subtract equation (H.8) from equation (H.9) to obtain

(r+8)-

E{dq‘}’:)’L},d'_ 1 [apa;v-Wﬁﬂarap:)(l-B(G))H”—7 \p G)
av) (=N -1)| -1y + 1+ Aay - 1)(1- 86)) - Aa, -1)1-4G))
(H.10)

Simplifying equation (H.10) yields

r+ _E{dq|y=yl-}/dt_araﬁ_mr"'yz_mfv —
. A IR (et e B
(H.11)

Finally, substituting equation (H.11) into equation (H.3) yields
=¥(G)b, (H.12)
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Investment at the upper boundary

Define the user cost of capital relevant for (positive)
investment as

o =[res Bl =xodrd), g3
q()’u)

Differentiating equation (21b) twice with respect to y, and
evaluating the second derivative at y = y; yields

Wwq ( ) Hy, 7(7" +AdG )yJaN( —1 +B( dc_l)))’uar( P_])
(H.14)

Use the definitions of H, A, and B in equations (14), (20a),
and (20b) respectively to obtain

Yudq (YU J’U [7(7 1 MG —] 7(1 dG ) ]

(H.15)
Use equation (A.4) to obtain an expression for o and

substitute this expression and equation (H.15) into equation
(H.2) to obtain

Eldaly = v} 1t = oS v [y 1) 106 Ny =)= o1~ 66" e -1)]
(H.16)

Recall from equation (F.4) that
hy] (H.17)

q(yu)=ﬂa%5

Dividing equation (H.16) by equation (H.17) yields

E{dqu = yu}/dt _ 79(6 (ay-1)- Y(I_B(G‘l )(a,. -1) o
O (r=a,)r=a) #e)
(H.18)
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Observe from equation (E.4) that

(r+8)= $[l—l+(l—l)(l— o(G“))}P(G-‘)

(ap - 7)(a~ - 7) ay ay a,
(H.19)

Now subtract equation (H.18} from equation (H.19) to obtain

E{dq|y=yu}/dl B 1 l-a,a,,—7u,+r(a,—a,,)(l—6(G"))+Y’-7
avo)  (a,-ay - | -1, + 7+ e -1)1-6(6"))- fer, -1Y1-6(G™))

(r+8)-

]‘F(G")
(H.20)

Simplifying equation (H.20) yields

(r+6)- E{dqu'_' yU}/dt _xpay -w,+yY -,

o) o=y F7)=¥(6)

(H.21)
Finally, substituting equation (H.21) into equation (H.13)

yields
¢, =¥(G, - (H.22)
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