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ABSTRACT

This paper provides an explanation for the run-up of U.S. inflation in the 1960s and 1970s and the

sharp disinflation in the early 1980s, which standard macroeconomic models have difficulties in

addressing. I present a model in which rational policymakers learn about the behavior of the

economy in real time and set stabilization policy optimally, conditional on their current beliefs. The

steady state associated with the self-confirming equilibrium of the model is characterized by low

inflation. However, prolonged episodes of high inflation ending with rapid disinflations can occur

when policymakers underestimate both the natural rate of unemployment and the persistence of

inflation in the Phillips curve. I estimate the model using likelihood methods. The estimation results

show that the model accounts remarkably well for the evolution of policymakers’ beliefs,

stabilization policy and the postwar behavior of inflation and unemployment in the United States.
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1 Introduction

This paper aims to explain the behavior of inflation and unemployment in the United States.

Figure 1 presents a plot of the annualized quarterly growth rate of the GDP deflator and the

total civilian unemployment rate over the postwar period. The striking feature of the graph

is the long and pronounced run-up of inflation, which occurred in the 1960s and 1970s. This

episode, known as the Great Inflation, is not just “America’s only peacetime inflation” (DeLong

1997), but has also been called “the greatest failure of American macroeconomic policy in the

postwar period” (Mayer 1999).

At least four stylized facts characterize the Great Inflation.

• Dimension. Between 1963 and 1981 the inflation rate in the United States rose by more
than 9 percentage points. If we exclude the peak in 1974 (which is due to the effect of the

first oil price shock), the rate of increase was approximately constant.

• Duration. The episode of high inflation lasted for more than 20 years. Inflation started
to increase around 1963 and came back under control, at a level of about 2 percent, only

around 1985.

• Asymmetry. The episode of high inflation was asymmetric. In the early 1980s, the du-
ration of the so called “Volcker disinflation” was much shorter than the phase of rising

inflation.

• Unemployment lagged inflation. Unemployment lagging behind inflation is a general char-
acteristic of the business cycle. However, this feature of the data was particularly evident

in the period of high inflation, with unemployment peaking always a few quarters after

inflation.

This paper puts forward a theory of the behavior of inflation and unemployment, which fits

the U.S. data well and, in particular, explains all four of the stylized facts above. This theory

is based on the evolution of policymakers’ beliefs about the structure of the economy.

Previous attempts to explain the Great Inflation fall apart in three categories, which I label

the “bad luck,” the “lack of commitment” and the “policy mistakes” views. I briefly discuss

each of these branches of literature below.

The “bad luck” view The first type of explanations is based on bad luck, in view of the

fact that it has been well documented that the volatility of the exogenous, non-policy shocks
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was higher in the 1960s and 1970s than in the last two decades of the century (see, for instance,

Cogley and Sargent 2003, Kim and Nelson 1999a, McConnell and Perez-Quiros 2000, Sims and

Zha 2004, Stock and Watson 2002). However, although non-policy shocks definitely played an

important role, it is hard to reconcile the existing estimates with the exceptional dimension and

duration of the Great Inflation.

The “lack of commitment” view The second class of explanations is what Christiano

and Fitzgerald (2003) have called the “institution vision of inflation”. According to this view,

inflation was high in the 1960s and 1970s because policymakers did not have any incentive to

keep inflation low. The motivation for this relies on the time-consistency problem of optimal

policy, first emphasized by Kydland and Prescott (1977) and Barro and Gordon (1983). The

importance of this line of research has been recently emphasized by Chari, Christiano, and

Eichenbaum (1998), Christiano and Gust (2000) and Christiano and Fitzgerald (2003).

However, the inflation bias generated by the time-consistency problem seems to be quantita-

tively too small to explain the high inflation of the 1960s and 1970s (see, for example, Reis 2003).

Ireland (1999) formally tests the inflation bias hypothesis on U.S. data. While he is not able to

reject it, his estimates suggest the presence of an inflationary bias of small magnitude. Moreover,

it is hard to reconcile the time-consistency view with the rapid Volcker disinflation. In fact, it

is not clear what exactly changed between the pre and post 1980s period from the institutional

point of view.1 The final difficulty with the “lack of commitment” approach is the fact that it

would predict unemployment leading, rather than lagging inflation. This is due to the fact that

the advantages of inflationary surprises depend on the level of unemployment. As mentioned

above, this is clearly at odds with the data.

The “policy mistakes” view This approach focuses on policy mistakes and stresses that

in the 1960s and 1970s monetary policymakers were not as good as the ones of the last two

decades. For example, many authors have argued that U.S. monetary policy was less responsive

to inflationary pressures under the Fed chairmanship of Arthur Burns than under Paul Volcker

and Alan Greenspan (among others, see Boivin and Giannoni 2002, Clarida, Gali, and Gertler

1 Recent work has made some progress in this direction. Sargent (1999), for example, explains the disinflation
as escape dynamycs from the inflation biased equilibrium. Rogoff (2003) argues that Central Banks’ lower
incentive to inflate is related to globalization and the consequent increase in world competition. Albanesi, Chari,
and Christiano (2003), instead, analyze the lack of commitment problem in an optimizing agents model and show
the existence of multiple equilibria, which can potentially explain the disinflation.

3



2000, Cogley and Sargent 2001, Judd and Rudebusch 1998, Lubik and Schorfheide 2004).2

In this respect, the line of research started by Orphanides represents an attempt to ra-

tionalize why the policy authorities behaved so differently in the pre and post 1980s period.

Orphanides (2000 and 2002) has argued that policymakers in the 1970s overlooked a break in

potential output. They overestimated potential output leading to overexpansionary policies,

which ultimately resulted in high inflation. Among others, this explanation has also been pro-

posed by Cukierman and Lippi (2002), Lansing (2002), Bullard and Eusepi (2003), Reis (2003)

and Tambalotti (2003). While this strand of literature represents a step forward, the dimension

of the high inflation episodes explained by such models is usually much lower than what we

observe in the data, unless the model is augmented with additional propagation mechanisms

like, for instance, private sector learning (as in Orphanides and Williams 2003). Furthermore,

the explanations based on the misperception of potential output fail to address the Volcker dis-

inflation, unless an exogenous shift in policymakers’ preferences is specified (see, for instance,

Bullard and Eusepi 2003).

While there is clearly some truth in all of these theories, they also seem to have difficulties

in addressing at least some of the stylized facts of the hump-shaped behavior of inflation and

unemployment. This paper proposes instead an explanation of the Great Inflation that matches

all these stylized facts.

I present a model, in which rational policymakers form their beliefs about the behavior of the

economy in real time and set stabilization policy optimally, conditional on the information avail-

able to them. Although the equilibrium of the model is characterized by low inflation, episodes

of high inflation and unemployment can occur when policymakers simultaneously underestimate

both the natural rate of unemployment and the persistence of inflation in the Phillips curve. Such

initial conditions result in peculiar dynamics of policymakers’ beliefs, ultimately affecting also

their perception of the slope of the Phillips curve and of the cost of the inflation-unemployment

trade-off.

Intuitively, if real-time policymakers underestimate the natural rate of unemployment, this

results in overexpansionary policies and higher inflation. Moreover, if policymakers’ estimate

of the persistence of inflation in the Phillips curve is also downward biased, they rationally

choose not to react strongly to inflation, amplifying the initial effect. The reason is that the

2 This view is controversial. Other studies have in fact found either little evidence of changes in the systematic
part of monetary policy (for example, Bernanke and Mihov 1998, Hanson 2003, Leeper and Zha 2002, Primiceri
2005) or no evidence of unidirectional drifts in policy toward a more active behavior (Sims 2001b, Sims and Zha
2004).
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more stationary inflation is perceived to be, the sooner it is expected to revert to its mean and

the less urgent is the need for anti-inflationary action. This period of “overoptimism” ends

when inflation reaches a level that concerns policymakers. However, when policymakers start

reacting to inflation, pushing unemployment above the perceived natural rate does not seem

to reduce inflation. This is because they still have a downward biased estimate of the natural

rate of unemployment. In this period of “overpessimism”, they temporarily and mistakenly

perceive a very costly inflation-unemployment trade-off, which explains why anti-inflationary

policy is postponed even further. The disinflation occurs only when the perceived inflation-

unemployment trade-off becomes favorable, relative to the level of inflation.

Among others, Orphanides (2000), DeLong (1997) and Romer and Romer (2002) have argued

in favor of the policy misperception of potential output and the natural rate of unemployment in

the 1960s and 1970s. Policymakers’ misperception of the persistence of inflation in the Phillips

curve in the 1960s is also no longer controversial. For example, Blanchard and Fischer (1989)

and Mayer (1999) have noted that, at least until the early 1970s, most of the econometric

studies underestimated inflation persistence. In relation to the overpessimism phase, DeLong

(1997), Romer and Romer (2002) and Cogley and Sargent (2004) have emphasized that policy

was cautious in the 1970s because the cost of lowering inflation seemed too high.

From a quantitative and statistical standpoint, I show that the evolution of policymakers’

beliefs about the coefficients of the Phillips curve is very important to explain the behavior of

inflation and unemployment. I estimate the model using likelihood methods. The estimated

version of the model accounts remarkably well for the evolution of policymakers’ beliefs, stabi-

lization policy and the postwar behavior of inflation and unemployment in the United States.

The importance of policymakers’ learning dynamics has been recognized by many authors.

In the context of the “natural rate” literature, policymakers’ learning has been introduced by

Sims (1988). Theoretical advances include Sargent (1999), Cho, Williams, and Sargent (2002)

and Williams (2003). Empirical studies include Chung (1990), Sargent (1999), Cogley and

Sargent (2004) and Sargent, Williams, and Zha (2004). The main insight of this literature

is that policymakers’ learning introduces temporary deviations from the model’s equilibrium,

which is characterized by an inflation bias. These temporary deviations are in the direction of

the optimal, low inflation outcome. Unlike these studies, in this paper the equilibrium outcome

is a low inflation regime. Nevertheless, the model explains the run-up of U.S. inflation in

the 1960s and 1970s and the sharp disinflation in the early 1980s. Although the explanation

roughly belongs to the “policy mistakes” category, in this paper policymakers are assumed to be
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rational and optimizing. As a consequence, I find that the mismeasurement of the natural rate

of unemployment alone is not sufficient to generate fluctuations of the inflation rate comparable

to what we observe in the data. This differs importantly from Orphanides (2000) and other

similar approaches.

The paper is organized as follows. Section 2 presents the theoretical model of the economy

and policymakers’ behavior. Section 3 offers a model-based interpretation of the Great Inflation.

Section 4 focuses instead on statistical evidence, i.e. estimation, fit and quantitative simulation

results. Sections 5 and 6 demonstrate the robustness of the results to two modifications of the

baseline framework. In particular, section 5 introduces private agents’ forward looking behavior

in the model and section 6 allows for stochastic volatility of the exogenous innovations. Section

7 makes an attempt to uncover the deeper reasons of the Great Inflation, i.e. why policymakers

underestimated the persistence of inflation in the Phillips curve in the 1960s. Section 8 concludes

with some final remarks.

2 Imperfect Information and Inflation-Unemployment Dynam-

ics

In this section I present a simple model of inflation-unemployment dynamics when policymakers

have imperfect information. The source of imperfect information is the fact that policymakers

do not know the exact model of the economy. In particular, they are uncertain about the value

of the model’s parameters. Therefore, policymakers update their beliefs about the model’s

unknowns in every period and implement optimal policy, conditional on their current beliefs. In

turn, the policy variable affects the behavior of inflation and unemployment because it enters

the model describing the true evolution of key macroeconomic variables.

2.1 The Model Economy

As a “true” model of the economy, I consider a simple rational expectations model that can be

rewritten as a backward looking one. Even if conceptually similar to modern New-Keynesian

specifications, the benchmark model is more in the spirit of the empirical literature following

along the lines of King, Stock, and Watson (1995) and, more recently, Gordon (1997 and 1998),

Rudebusch and Svensson (1999) and Staiger, Stock, and Watson (1997 and 2001).

This framework, not only is tractable and convenient for estimation, but is also simple and

transparent, providing a clear intuition for the role played by policymakers’ learning dynamics
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in the behavior of inflation and unemployment. Integrating learning dynamics in a forward

looking specification is instead computationally more expensive and this case in analyzed in

section 5.

The private sector part of the model is described by the following equations:

πt = πet − θ̃(L)(ut−1 − uNt−1) + εt. (1)

(ut − uNt ) = ρ(L)(ut−1 − uNt−1) + Vt−1 + ηt, (2)

uNt = (1− γ)u∗ + γuNt−1 + τ t. (3)

Equation (1) represents a standard expectation augmented Phillips curve, where πt is the in-

flation rate, πet is the agents’ expected inflation rate, ut is the unemployment rate and uNt is

the time varying natural rate of unemployment. θ̃(L) is a lag polynomial and εt is a random

innovation, assumed to be i.i.d. N(0, σ2ε).
3 I assume that some of the agents are fully rational,

while the rest of them form their expectations adaptively, so that

πet = (1− α̃(1))Et−1πt + α̃(L)πt−1. (4)

α̃(L) is a lag polynomial and the combination of (1) and (4) leads to the following familiar

reduced form Phillips curve:

πt = α(L)πt−1 − θ(L)(ut−1 − uNt−1) + εt, (5)

where α(L) = α̃(L)/α̃(1) and θ(L) = θ̃(L)/α̃(1). Note that, no matter what the exact fraction

of agents with adaptive expectations is, α(1) = 1, implying the absence of a long run trade-off

between unemployment and inflation, which is consistent with the natural rate hypothesis. The

interpretation of (5) is straightforward: the inflation rate changes either because of a random

“cost push” term or because unemployment is not in line with the natural rate.

Equation (2) is a very simple aggregate demand equation, where ρ(L) is a lag polynomial,

ηt is an i.i.d. N(0, σ2η) random innovation and Vt is a variable controlled by policymakers. In

other words, unemployment deviates from the natural rate either because of a random shock or

because of policymakers’ decisions about stabilization policy.

Although a natural interpretation of the policy variable Vt is of real rate of interest, more

generally Vt can be thought as capturing the joint effect of monetary and fiscal policy. In

particular, this modeling strategy avoids complications related to the specification of two aspects

3 The case of heteroskedastic innovations is particularly interesting in the context of learning models and is
analyzed in section 6.
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of the policy process: the relative importance of the monetary and fiscal policy actions on real

activity and the particular channels through which monetary and fiscal policy affect real activity.

This is in the spirit of the recent renovated interest on the effect of fiscal policy (see, among

others, Blanchard and Perotti 2002, Mountford and Uhlig 2002) and the direct role of monetary

aggregates in macro models (Favara and Giordani 2002, Leeper and Roush 2003).

Equation (3) describes the exogenous stochastic process for the natural rate of unemploy-

ment, which is assumed to evolve as an AR(1), where τ t is i.i.d. N(0, σ2τ ). u∗ represents the

unconditional expectation of uNt . This assumption on the evolution of u
N
t is standard in the

literature (see, for instance, Staiger, Stock, and Watson 2001, although they set γ = 1 in their

empirical specification).

2.2 Optimal Policy under Imperfect Information

The value of the policy variable V is chosen in every period by policymakers. They base their

decision on the available information and on current beliefs about the state of the economy.

I assume that policymakers know the structure of the true model of the economy (given by

equations (5) and (2)), but they are uncertain about the value of the unobservable variables

(the natural rate) and the coefficients. Policymakers estimate the model’s parameters in every

period and use these estimates as true values, neglecting both estimates uncertainty and the

possibility of future updates.4

Policymakers’ beliefs about unobservables and the model’s constant coefficients are denoted

by hats. All these beliefs are formed at time t, but the subscript is omitted for simplicity. In

particular, ûNt−1 stands for ûNt−1|t and indicates the estimate at time t of the value of the natural

rate at time t−1. Policymakers determine the optimal value of the policy variable V by solving

the following optimization problem:

min
{Vt}

L = Ê
∞X
t=s

δt−s
h
(πt − π∗)2 + λ

¡
ut − kûNt

¢2
+ φ (Vt − Vt−1)2

i
, (6)

s.t. πt = ĉπ + α̂(L)πt−1 − θ̂(L)(ut−1 − ûNt−1) + ε̂t, (7)

(ut − ûNt ) = ĉu + ρ̂(L)(ut−1 − ûNt−1) + Vt−1 + η̂t. (8)

L represents the familiar quadratic loss function, which depends on deviations of inflation and

unemployment from the respective targets. λ represents the weight on the unemployment

objective. Notice that, like in Barro and Gordon (1983), the target for the unemployment

4 These assumptions are standard in the adaptive learning literature, although the resulting policymakers’
behavior is suboptimal. For alternative approaches, see Beck and Wieland (2002) and Wieland (2000a and 2000b).
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rate is given by kûNt . When k = 0 the unemployment target is equal to zero and policymakers’

preferences resemble Kydland and Prescott’s (1977). This would be the case in which the policy

time-consistency problem is most pronounced. On the other hand, when k = 1, the target is the

natural rate and the time-consistency and the related inflation bias completely disappear from

the policy problem. Blinder (1998), among others, has argued in favor of these kind of policy

preferences. The loss function has also a “smoothing” component, which penalizes big shifts

of the policy variable. From an empirical perspective, this term is crucial in order to match

the actual policy behavior because it helps to account for the strong autocorrelation shown

by the instruments of economic policy (Dennis 2001, Favero and Rovelli 2003 and Soderstrom,

Soderlind, and Vredin 2003). See also Woodford (2003) for an overview of the theoretical

desirability of the smoothing term in the monetary policy context. Moreover, it is easy to

think to models in which instrument smoothing is desirable also for fiscal policy (for example,

Barro 1979).

Policymakers minimize their loss function subject to two constraints, (7) and (8). These

constraints are the estimated counterparts of the true Phillips curve and aggregate demand

equations. Observe that in the policymakers’ model α̂(1) is not constrained to be equal to one

and ĉπ in (7) controls their beliefs about the level of average inflation. ĉu in (8) instead controls

their beliefs about the effect of setting V equal to zero. In other words, −ĉu represents the
“natural” level of policy, i.e. the level of V that does not affect unemployment.5 Notice that,

without further assumptions, ĉπ, ĉu and ûNt would not be separately identified in the policy

econometric model. A discussion about this issue is postponed until the next subsection.

The optimal rule for fixing Vt is given by

Vt = g(β̂)St, (9)

where β̂ represents the vector of values for the model’s parameters that policymakers treat as

certainty-equivalents; g(β̂) is the standard solution of a linear-quadratic problem, obtained solv-

ing the corresponding Riccati equation. St meanwhile denotes the set of relevant state variables

and beliefs about unobservable states of the economy. To be more concrete, assuming that all the

lag polynomials have order one, β̂ would be given by the vector
h
ĉπ; α̂1; α̂2; θ̂1; θ̂2; ĉu; ρ̂1; ρ̂2; û

N
t

i
and St by the vector

£
1;πt;πt−1;ut − ûNt ;ut−1 − ûNt−1;Vt−1

¤
.

5 In the true model the “natural” level of policy is normalized to zero.
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2.3 Learning

To implement the optimal rule and fix the value of the policy variable Vt, policymakers must

estimate the parameters of interest, which are the unobservables and the coefficients. While I

relax this assumption in Primiceri (2004), here I assume that policymakers form their beliefs

about the natural unemployment rate using univariate methods, i.e. they extract information

about the natural rate, only looking at the behavior of unemployment. Observe that this is

suboptimal as, conditional on the true model of the economy, better estimates could be obtained

by exploiting the information contained not only in the unemployment rate, but also in the

inflation rate. However, there are several reasons motivating this choice.

First, historical narrative evidence (see, for instance, DeLong 1997, Romer and Romer 2002)

suggests that this is a realistic assumption for the behavior of past policymakers. Even now,

univariate algorithms are commonly used to define the potential of the economy, especially in the

output gap and monetary policy literature (see, for instance, Orphanides and Van Norden 2001,

Lansing 2002, Taylor 1999). Second, Staiger, Stock, and Watson (2001) show that the natural

rate estimated using formally the Phillips curve approach is basically indistinguishable from the

univariate trend in unemployment. The last reason is substantial. In fact, as mentioned above,

ĉπ, ĉu and ûNt are clearly not separately identified in equations (7) and (8). Therefore, I assume

that policymakers solve this identification problem by imposing the prior belief that on average,

unemployment is equal to its natural rate. This assumption provides a very natural way of

estimating the natural rate, which is to use univariate algorithms on the series of unemployment,

in order to isolate the low frequency component. Furthermore, observe that this assumption

is not contradictory and respects the coherence of the policymakers’ model because, as will be

shown in section 2.4 and appendix A, it correspond to a self-confirming equilibrium.

Conditional on their estimate of the natural rate of unemployment, policymakers can esti-

mate the model’s coefficients using standard regression methods. Following a large part of the

most recent literature (see, among others, Sargent 1999, Williams 2003) in the baseline specifica-

tion of the model I assume that policymakers update their beliefs using constant gain algorithms

(CG). These algorithms allow to update beliefs discounting the past and giving more weight to

recent data. Recent data are considered more informative possibly because of the suspicion of

drift in the parameters.

As mentioned above, the estimation works in two steps. In the first step policymakers obtain
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an estimate of the current value of the natural rate using the following updating formula:

ûNt|t = ûNt−1|t−1 + gNR
−1
N,t−1

³
ut − ûNt−1|t−1

´
, (10)

RN,t = RN,t−1 + gN (1−RN,t−1) . (11)

Equation (10) states that the current estimate of the natural rate is obtained by updating the

previous estimate according to the current realization of the unemployment rate. The weight

given to the last observation depends on the gain (gN ) and the inverse of the variance of the

regressor (the constant 1 in this case), which, in turn, is updated in equation (11).

In the second step, policymakers use their estimate of the natural rate to update their beliefs

about the Phillips curve and aggregate demand coefficients:

β̂
i
t = β̂

i
t−1 + gR−1i,t−1x

i
t

³
yit − xi0t β̂

i
t−1
´
, (12)

Ri,t = Ri,t−1 + g
¡
xitx

i0
t −Ri,t−1

¢
, i = {π, u} , (13)

where β̂
π
t = [ĉπ; α̂1; α̂2; θ̂1; θ̂2]

0; yπt = πt; xπt = [1;πt−1;πt−2;ut−1 − ûNt|t;ut−2 − ûNt|t]; β̂
u
t =

[ĉu; ρ̂1; ρ̂2]
0; yut = ut− ûNt|t−Vt−1; xut = [1;ut−1− ûNt|t;ut−2− ûNt|t]. Notice from the expressions of

the vectors xπt and xut that policymakers approximate û
N
t−1|t and ûNt−2|t with their last estimate

of the current level of the natural rate, ûNt|t. Equations (12) and (13) update beliefs with a

mechanism similar to the one illustrated for equations (10) and (11).

Observe that I allow for the possibility of different gain parameters in the algorithms for the

estimation of the natural rate and the coefficients (respectively gN and g). The gain parameters

control the rate at which new information affects beliefs. If g and gN were decreasing and equal

to 1
t−1 , equations (10), (11), (12) and (13) would be recursive representations of ordinary least

squares estimates (if properly initialized).

As robustness checks, I also consider the cases in which policymakers form estimates of the

natural rate using a moving average and estimates of the coefficients by ordinary least squares

(OLS) or discounted least squares (DLS), a weighted least square method with weight ∆t−s to

time s observation (where t is the time period of the most recent data and ∆ < 1 is a discount

factor).

2.4 Equilibrium and Steady State

As is standard in most of the recent literature on learning, I focus on the concept of self-

confirming equilibria.6 In period t, policymakers form beliefs about the model’s parameters.

6 For a formal treatment of the issue, see Sargent (1999), Evans and Honkapohja (2001), Williams (2003).
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Their beliefs imply an optimal value for the policy variable Vt, which, in turn, affects the

stochastic data generating process and, ultimately, next periods beliefs. This defines a map from

today’s beliefs to tomorrow’s beliefs. A fixed point of this map is a self-confirming equilibrium.

In other words, a self-confirming equilibrium is a situation in which policymakers’ beliefs are

expected not to change with the new vintage of data. Appendix A gives a formal definition and

derives the model’s self-confirming equilibrium for the baseline case in which beliefs are formed

using the CG algorithm.

I define the model’s steady state as the unconditional mean of the stationary stochastic

process for the vector
£
πt, ut, Vt, u

N
t

¤
in a self-confirming equilibrium. Observe that, in steady

state, (5) implies ut = u∗. Consequently, Vt = 0 follows from (2). Finally (9) implicitly defines

the steady state inflation as a function of the equilibrium beliefs.

As an example and for simplicity, consider the intuitive case of a constant natural unem-

ployment rate.7 Notice that, if k = 1, the steady state inflation is just the inflation target π∗.

In other words, if policymakers do not wish to push unemployment below the natural rate, the

outcome is the optimal one in which unemployment is at the natural level and inflation at the

target. If 0 ≤ k < 1 instead, the steady state inflation will be higher. As it will be clear later,

the data favor a model with a limited amount of inflation bias, due to the fact that postwar

policymakers did not seem to have an excessively low unemployment target.

3 Interpreting the Great Inflation

In section 2 I have presented the baseline model of the paper and discussed the related technical

issues. I now introduce a simplified version of the model and use it to interpret and explain the

postwar behavior of inflation and unemployment in the United States. Therefore, while the rest

of the paper focuses on estimation and simulations, the objective of this section is to provide

the intuition and the main ideas necessary to interpret the quantitative results.

7 In the case of a constant natural rate of unemployment it is easy to check that, in the self-confirming
equilibrium, beliefs about the model’s coefficients coincide with the true values. As shown in the appendix, when
V ar uNt is bigger than zero equilibrium beliefs about the model’s parameters do not necessarily coincide with
the true parameters of the model, but can be arbitrarily close.

12



3.1 A Special Case

As an illustrative example, consider the special case of the previous model given by the following

simplified Phillips curve and aggregate demand equations:

πt = πt−1 − θ(ut−1 − uN ) + εt (14)

(ut − uN) = Vt, (15)

where policymakers determine V by solving the following problem:

min
{Vt}

L = Ê
∞X
t=s

δt−s
h
π2t +

¡
ut − kûN

¢2i
,

s.t. πt = ĉπ + α̂πt−1 − θ̂(ut−1 − ûN ) + bεt, (16)

(ut − ûN ) = ĉu + Vt.

Observe that in order to obtain a closed form solution I have modified the timing of V in (15).

The set of estimated parameters is given by β̂ = [ĉπ; ĉu; α̂; θ̂; û
N ] and the states of the policy

optimization problem are collected in St = [1;πt]. The solution of the policy problem is given

by the following linear control rule:

Vt = g(β̂)St = −ĉu +A(β̂) +B(β̂)πt, (17)

where

A(β̂) = −(1− k)ûN +

³
1 +B(β̂) α̂

θ̂

´ ¡
ĉπ + θ(1− k)ûN

¢
θ̂
³
1 +B(β̂) α̂

θ̂

´
−
³
α̂
θ̂
− 1

δθ̂

´
and

B(β̂) =
−
³
1
δθ̂
+ θ̂ − α̂2

θ̂

´
+

r³
1
δθ̂
+ θ̂ − α̂2

θ̂

´2
+ 4α̂2

2bα .

Observe that B(β̂) is always positive (for positive values of α̂). This implies that policy reacts

to inflation by pushing the unemployment rate upwards. Substituting (17) into (15) and the

resulting equation into (14) we obtain the following equation for the inflation rate:

πt = θ
¡
uN − ûN

¢− θA(β̂) +
³
1− θB(β̂)

´
πt−1 + εt. (18)

This equation can be interpreted as a local approximation of inflation dynamics for given policy-

makers’ beliefs about the state of the economy. Notice that the mismeasurement of the natural

rate of unemployment shifts the mean of the inflation process. Instead, the strength of the

policy reaction to inflation affects the persistence and therefore both the mean and the variance
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of the inflation process. In other words, the stronger policy reacts to inflation in the feedback

rule, the more stationary and less volatile is inflation. In particular, it is easy to show that B(·)
is a positive function of α̂ (the estimated persistence) for all positive values of α̂ and θ̂ (the

estimated slope of the Phillips curve). This implies that the lower the estimated persistence of

inflation in the Phillips curve, the lower the reaction to inflation and, given (18), the higher the

actual persistence of the univariate, reduced form process for inflation.

Similar perverse dynamics can occur for wrong estimates of θ. In fact, B(·) is a positive
function of θ̂ for values of θ̂ <

q
1
δ − α̂2, which corresponds to estimated set of possible values of

θ̂.8 This means that the lower the estimated slope of the Phillips curve, the lower the reaction

to inflation and, given (18), the higher the actual inflation persistence. That is, if policymakers

perceive a costly inflation-unemployment trade-off, they will not be willing to accept higher

unemployment for a limited relief from inflation. Therefore, they will react to inflation less

strongly, ultimately leading to a less stationary inflation.

The extreme case of a unit root in the reduced form, univariate inflation process (18) occurs

if policy does not respond to inflation at all. For example, this can happen if the perceived slope

of the Phillips curve is zero. Figure 2 gives an idea of the shape of the function B(·). Figure
2a shows B as a function of α̂, when θ̂ is fixed to three different values. Besides the positive

slope in all cases, notice the pronounced nonlinearity of B as a function of α̂, especially for high

values of α̂. Figure 2b shows instead the opposite case in which α̂ is fixed to three different

values and θ̂ is allowed to change. Interestingly, the effect of increasing θ̂ on B, heavily depends

on the value of α̂: the higher the estimate of inflation persistence, the higher the effect of the

estimate of the slope of the Phillips curve on the strength of the reaction to inflation. This will

be crucial to explain the sharpness of the disinflation.

It is important to realize that the case of weak policy reaction to inflation leads to inflation

close to a unit root process. This is particularly dangerous for the stability of this economy.

The reason is that if inflation is stationary, a mistake in the estimation of the natural rate shifts

the mean of the process. If inflation exhibits a unit root instead, a mistake in the estimate of

the natural rate creates a time trend in the inflation process.

It is easy to check that for this simple economy, the self-confirming equilibrium corresponds

to β̂ = β =
£
0;α; θ;uN

¤
. It follows that the associated stationary stochastic process for the

random vector [πt, ut, Vt] is a simple VAR(1), whose coefficients are omitted for brevity. The

steady state is [πt, ut, Vt] =
h

(1−k)uN
θ+B(β)+1−1/δ ;u

N ; 0
i
. Notice that if k = 1 the steady state inflation

8 Overall B(·) is a hump-shaped function of θ̂. See Rudebusch (2001) for an example of parameter values for
which, locally, B(·) is a negative function of θ̂.
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is equal to zero. If 0 ≤ k < 1 instead, we have a positive inflation bias. For values of k close to

one, the inflation bias is rather small.

3.2 A Simple Story for the Great Inflation

The Great Inflation refers to the high inflation and unemployment episode of the 1960s, 1970s

and early 1980s (figure 1). The model of the previous section provides a useful and powerful

tool for the interpretation of this long and important episode of U.S. recent economic history.

I begin the imaginary simulation in 1960. Figure 3 plots real-time estimates of the natural

rate of unemployment, inflation persistence in the Phillips curve and the slope of the Phillips

curve, starting in 1960 and formed using data from 1948. These represent measures of real-

time policymakers’ beliefs affecting the choice of the policy variable V . Inflation persistence is

measured by the sum of coefficients on lagged inflation, i.e. α̂(1) in (7). The slope of the Phillips

curve is measured as the sum of coefficients on unemployment deviations from the natural rate,

i.e. −θ̂(1) in (7). Finally, these estimates are constructed using the baseline, constant gain
learning algorithm of section 2.3, but their qualitative behavior is very robust to the alternative

specifications of the learning algorithm.

3.2.1 The period of overoptimism

To start, notice that in the first part of the sample policymakers’ estimates of the natural rate

of unemployment were between 4 percent and 5 percent. These are low numbers, compared

to our current estimates of the level of the natural rate in the 1960s and the first part of the

1970s.9

This erroneous belief that the natural rate was so low led to overexpansionary monetary and

fiscal policies. However, while this can explain why inflation started rising in the early 1960s,

it is not sufficient to explain why rational policymakers let inflation increase so much and for

such a long period of time. What is key to rationalize policymakers’ behavior in the 1960s and

1970s, is realizing that they were uncertain not only about the value of the natural rate, but

also about the value of all remaining parameters of their model. In particular, observe that the

real-time estimate of inflation persistence (α(1)) in the early 1960s was approximately equal to

0.5 (figure 3b).10

9 For example, compare figure 3a to the model-based, smoothed estimates of the natural rate of unemployment
plotted in figure 4.
10 Remember that if the sum of coefficients on past inflation in the Phillips curve is less than one, this implies

the existence of a long-run trade-off between inflation and unemployment.
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According to the model, a low estimate of α̂(1) implies a low reaction to inflation, due to

the wrong belief that inflation is rather stationary around some mean. This explains the passive

behavior of policymakers in the 1960s. I will refer to this period as the overoptimism period,

during which inflation was perceived as stationary, the natural rate of unemployment as low

and the optimal policy was keeping unemployment close to the estimated natural rate, without

much concern for the accelerating inflation.

By now, it is not controversial that policymakers’ real-time estimates of the natural rate,

inflation persistence and the inflation-unemployment long run trade-off were too optimistic in

that period (see, for example, Orphanides and Williams 2002, DeLong 1997, Mayer 1999 and

Romer and Romer 2002).

3.2.2 The period of overpessimism

Slowly something changed. In fact, as suggested by the model and confirmed by figure 3b the

estimates of α(1) should be slowly revised upwards, towards the true value of one.

However, while this would imply a reinforcement of the policy reaction to inflation, policy

reaction remained low because of the following perverse mechanism: policymakers noticed that

pushing unemployment above the underestimated natural rate did not provide any relief from

inflation. As a consequence they revised toward zero their beliefs about the slope of the Phillips

curve (θ̂ decreases in the early 1970s, as shown in figure 3c). As implied by the model, this

reduced the strength of policy reaction to inflation. In other words, even after the overoptimism

period, policymakers kept reacting weakly to inflation, this time because they perceived a very

costly inflation-unemployment trade-off. Okun (1978) provides clear evidence that this was

actually the case. In fact, he surveys a number of papers written in the 1970s by important

economists and concludes that “the average estimate of the cost of 1 point reduction in the

basic inflation rate is 10 percent of a year’s GNP” (Okun 1978, p. 348). Another example that

the perceived sacrifice ratio was very high is the following statement by the Economic Report

of the President (EROP):

When inflation failed to respond significantly to macroeconomic policy, a 90-day

wage and price freeze was announced on August 15, 1971; it was followed by a

period of mandatory wage and price controls. (EROP 1979, pp. 54-55.)

Commenting on the current economic conditions, the 1972 EROP further referred to a:

tendency to an unsatisfactorily high rate of inflation which persists over a long
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period of time and is impervious to variations in the rate of unemployment, so that

the tendency cannot be eradicated by any feasible acceptance of unemployment.

(EROP 1972, p. 113.)

Even in 1979, the EROP wrote:

We will not try to wring inflation out of our economic system by pursuing policies

designed to bring about a recession. That course of action ... would be ineffective.

Twice in the past decade inflation has accelerated and a recession has followed, but

each recession brought only limited relief from inflation. (EROP 1979, p. 7.)

I will refer to this period as the overpessimism period, during which policy did not fight

inflation because policymakers “did not believe it would work at an acceptable cost” (DeLong

1997, p. 264). The overpessimism period is successive to the overoptimism one and accounts

for the long duration of the hump-shaped episode.

3.2.3 The disinflation

In the meantime, policymakers’ estimate of inflation persistence in the Phillips curve had been

updated toward the true value of one. In this situation, even small changes of the policy variable

are perceived to have long-lasting consequences on the inflation rate. Hence, as shown in figure

2b, the model predicts that small updates of the estimate of the slope of the Phillips curve have

large effects on the strength of the policy reaction. Therefore, the episode of high inflation ended

after a proper revision of the estimate of the slope of the Phillips curve. This happened because

of a sequence of new exogenous shocks, which caused updates of θ̂ toward the self-confirming

equilibrium. When the bias of θ̂ decreased and the perceived inflation-unemployment trade-off

improved, policymakers reacted strongly to high inflation, because they finally had a model of

the economy that was approximately correct. Consequently, unemployment was pushed quickly

way above the estimated natural rate. The sharp disinflation was the result of this prompt and

strong action. Policy maintained a high unemployment rate until inflation came back under

control. At that point unemployment slowly returned to levels close to the natural rate.

Notice that the model’s predictions match very well the stylized facts. In fact, not only is the

model able to account for the dimension and the duration of the episode, but it is also able to

explain why the disinflation period was shorter than the run-up period and why unemployment

increased and decreased during the 1970s and early 1980s, lagging behind inflation.
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It is important to stress that this paper offers an explanation of the Volcker disinflation,

which is not based on a sudden change of policymakers’ preferences in the late 1970s. Here,

instead, the disinflation occurs when the perceived inflation-unemployment trade-off becomes

favorable, relative to the level of inflation.

3.2.4 The cost of disinflation

The fact that the disinflation is delayed due to the perceived high sacrifice ratio represents an

important difference between this paper and Sargent (1999). In Sargent (1999), policymakers

believe that policy is able to affect real activity only by directly controlling inflation. Therefore,

when the correlation between inflation and unemployment approaches zero (like in the early

1970s), for Sargent’s (1999) policymakers this represents a unique opportunity to disinflate,

since it can be done at no cost in terms of real activity. This does not seem to correspond to

what we observe in the data.

Like this paper, also Cogley and Sargent (2004) interpret the rise and fall of inflation as

the result of a learning process of U.S. policimakers. However, the policymakers in their paper

consider the prescriptions of three policy models and the delayed disinflation is explained by

their concern for robustness. Although I do not deny that this might be an important part of

the story, here I move in another direction. In fact, I show that a perfect explanation of the

behavior of inflation can be obtained when policy is based simply on one model of the economy,

if only one is willing to assume that policymakers in the 1960s and 1970s regarded real activity

and not inflation under their control. Although they do not provide conclusive evidence, the

quotes of section (3.2.2) suggest that this might have actually been the case. Building a model

with this feature constitute one important innovation of this paper.

Another crucial difference between this paper and Cogley and Sargent (2004) (as well as

Sargent 1999 or Sargent, Williams, and Zha 2004) is the fact that, as a “true” structure of the

economy, I use a reduced form new-Keynesian model, which allows me to explain the behavior of

unemployment during the Great Inflation. The use of a “true” model of the economy similar to

Lucas (1972) and Sargent (1973) (together with their assumption about the public’s expectations

formation) prevents Cogley and Sargent (2004), Sargent (1999) and Sargent, Williams, and Zha

(2004) from offering any explanation for the hump-shape behavior of unemployment.
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4 Empirical Evidence

This section presents empirical evidence supporting the model of section 2 and the dynamics

illustrated in section 3.

I estimate the model by maximum likelihood methods, over a sample period running from

1960:I to 2002:IV, using quarterly data on inflation and unemployment.11 I let policymakers es-

timate the approximate model and, consequently, choose V in every period. Putting the model

in state space form, the likelihood can be computed using the Kalman filter (see appendix

B). The likelihood is maximized with respect to nine parameters,
£
α1; θ1; θ2; ρ1; ρ2; k;φ;σ

2
ε;σ

2
η

¤
,

while I fix δ = 0.99, π∗ = 2, λ = 1, u∗ = 6, γ = 0.99, σ2τ = 0.0199. Fixing δ is standard

practice. I fix π∗ = 2 because this number is close to the estimates of the inflation target level

for the post-Volcker era (see, for instance, Bullard and Eusepi 2003, Schorfheide 2003, Favero

and Rovelli 2003). However, differently from these previous studies, there is no exogenous

switch in the level of the inflation target in my model. λ is set to 1 to be consistent with

some previous studies (for example, Sims 1988 and Sargent 1999).12 Finally, for the coef-

ficients of the exogenous process driving the natural rate, u∗ = 6 is chosen to match the

average of unemployment during the sample period. γ is fixed at 0.99 and σ2τ at 0.0199 to

impose the prior belief that the natural rate is smoother than unemployment itself. Notice

that the value of γ and σ2τ imply an unconditional variance of one for the natural rate. Fur-

thermore, in the case of the constant gain learning, g is set to 0.015 and gN to 0.03. Ob-

serve that the constant gain for the estimation of the natural rate of unemployment is higher

than the one for the estimation of the parameters. This captures the fact that policymak-

ers expect the natural rate to drift more than the model’s coefficients. I calibrate the initial

beliefs in the most natural way, that is using the actual data from 1948 to 1960.13 This pro-

cedure results in the following set of initial beliefs in 1960:
h
ĉπ; α̂1; α̂2; θ̂1; θ̂2; ĉu; ρ̂1; ρ̂2; û

N
i
=

[1.156; 0.330; 0.131;−0.914; 0.885; 0.012; 1.536;−0.717; 4.701].

4.1 Statistical Evidence

The point estimates and the standard errors of the free coefficients are reported in table 1 for

the three specifications of the learning algorithm. Four results stand out. First, the estimates

11 As in the rest of the paper, inflation is measured by the annualized quarterly growth rate of the GDP deflator
and unemployment by quarterly averages of the monthly civilian unemployment rate.
12 Interestingly, if λ is treated as a free parameter in the estimation procedure, the point estimate is 0.99, with

a standard error of 0.36.
13 I used the DLS algorithm with discount rate ∆ = 1− 1/120.
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obtained using different assumptions for the policymakers’ learning process are very similar to

each other. Second, the estimate of φ, the smoothing coefficient in the policy loss function,

might appear as too high. However, once movements in the policy variable V are interpreted

in terms of deviations of unemployment from the natural rate, the size of φ is not a puzzle

anymore.14 Third, all the other coefficients have reasonable sign and size. Fourth, the estimate

of k, the parameter that affects the unemployment target in the loss function (6), is close to

unity, casting doubt on the inflationary bias story that I mentioned in the introduction.

Figure 4 plots the smoothed estimate of the natural rate of unemployment, which resembles

previous estimates in the literature (Staiger, Stock, and Watson, 1997 and 2001, Gordon, 1997).

Figure 5 plots the evolution over time of the model’s policy variable V . A measure of the

real rate of interest (rescaled)15 is reported for comparison. Notice the similarities between the

two series, especially in the second part of the sample. This is remarkable, if we consider that

the time series for V has been obtained without any information related to the interest rate.

4.2 Model’s fit

In order to evaluate the fit of the model, I compare it to the fit of unrestricted multivariate

linear models, i.e. bivariate vector autoregressions (VAR) with inflation and unemployment,

similar to the ones used in King and Watson (1994). I consider the three alternatives of a

VAR(2), a VAR(3) and a VAR(4), where the number in parenthesis indicates the number of

lags included in the VAR. Table 2 reports three measures of fit for the learning models and the

reference ones. The first column of table 2 reports the value of the log-likelihood, evaluated

at the peak. The log-likelihood is useful, but certainly not very informative in a case in which

the candidate models have such a different number of free parameters. A VAR(2) has 13 free

parameters, a VAR(3) has 17 and a VAR(4) has 21, as opposed to the 9 free parameters of

my model. The difference in the number of free parameters is so large that, even though the

models are non-nested, it is reasonable to expect a lower log-likelihood for the learning models

with respect to the reference ones.

To solve this problem, the second column of table 2 reports the Bayesian Information Crite-

14 For example, consider a permanent unitary increase in the level of Vt. This would create a permanent
deviation of unemployment from the natural rate equal to 1

1−ρ(1) . Therefore the term φV 2
t in the loss function

could be expressed in terms of deviations of unemployment from the target as φ (1− ρ(1))2 ut − ûNt
2
, where

the weight becomes φ (1− ρ(1))2. If unemployment is very persistent, ρ(1) will be close to one and φ (1− ρ(1))2

will be a small number, despite a very high φ.
15 The real rate of interest is computed as federal funds rate minus the quarterly inflation rate averaged over

the last four quarters.
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rion (BIC). BIC is an asymptotic approximation of the marginal likelihood and automatically

penalizes models with higher number of parameters.

The third column of table 2 is in principle the most reliable measure of fit. The last column

in fact reports the logarithm of the marginal likelihood itself, which, is proportional to the

posterior probability of the model, under flat prior on the models’ space.16

From table 2 it is clear that, as expected, the log-likelihood of the learning models is lower

than the unrestricted alternatives. However, once the different number of parameters is taken

into account, it seems that the learning models fit the data better than the reference VARs. In

particular, the marginal likelihood favors the learning models over the alternative ones. Observe

that the results of the model comparison exercise are robust to different policymakers’ learning

schemes.

4.3 Simulations

This subsection considers quantitative simulations of the model in the case of the benchmark

(CG) specification. The purpose of these simulations is twofold. First, they show that the

model produces a pronounced, prolonged and asymmetric hump-shaped behavior of inflation

and unemployment. In addition, these simulations highlight that the mismeasurement of the

natural rate of unemployment alone is not sufficient to reproduce this kind of hump-shaped

behavior.

In order to do so, I conduct the following exercise. I start in 1960:I, assuming that data on

inflation and unemployment are the actual data from 1948:I to 1959:IV. In 1960:I, policymakers

optimize their objective function, on the base of the current estimates and fix the value of V

for the current period. Unemployment and inflation in 1960:II are determined through the true

Phillips curve and aggregate demand equations, (5) and (2). In the next period, policymakers

reestimate their approximate model and choose the new value for the policy variable. With this

mechanism I simulate 42 years of quarterly data, up to 2002. In the simulations I assume that

the true value of the model’s parameters are the values estimated in the previous subsection and

reported in the first column of table 1. Also as “true” natural rate of unemployment I use the

smoothed estimate plotted in figure 4. Finally, I perform the simulations generating sequences

16 The marginal likelihood is computed using the Laplace method, based on a second order approximation of the
posterior around the peak. For the VAR models instead, it is possible to compute the exact marginal likelihood.
Since the computation of the marginal likelihood requires the use of a proper prior, to remain as agnostic as
possible, for the model comparison I use training sample priors. Therefore, while the original sample starts in
1960, I extend it back to 1953. The (properly rescaled) likelihood of the training sample is then interpreted as a
prior density for the original sample. Further details can be found in Sims (2002) and Sims (2003).
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of i.i.d. random innovations with mean zero and variance corresponding to the estimated value

reported in table 1.

I perform 3, 000 simulations using identical initial conditions for policymakers’ beliefs in

1960 (the ones reported in section 4), but different series of exogenous shocks. The main results

are summarized in figure 6. Figures 6a-d graph the empirical distribution of four objects:

the maximum level reached by the inflation rate between 1960 and 2002 (max(π)); the time

period in which inflation reaches its maximum level (t∗π); the maximum level reached by the

unemployment rate between 1960 and 2002 (max(u)); the difference (expressed in years) between

the time period in which unemployment peaks and the time period in which inflation peaks

(t∗u−t∗π). The scatter plots of figures 6e and 6f are meant to illustrate two bivariate relations: the
relation between peak time and the peak level of inflation; the relation between the peak level of

unemployment and inflation. Overall, figure 6 makes clear that the model reproduces remarkably

well the main characteristics of the Great Inflation. In particular, the model fully captures the

dimension, the duration of the high inflation episode and the fact that unemployment peaks

after inflation.

Showing that, on average, the simulated time paths exhibit a rapid disinflation is less

straightforward, because simply averaging the simulated time paths would not preserve the

typical shape. To solve this problem I compute the average path, but only after rescaling the

horizontal and vertical axis in every simulation, to make them peak at the same time and at the

same level.17 The result is plotted in figure 7, where the peak time of the average inflation path

is normalized to zero and the peak value to the peak level of actual inflation in 1981. Actual

inflation is also reported for comparison. The striking feature of figure 7 is that the average

of the simulated paths captures perfectly the so called Volcker disinflation, that many macro

models have difficulties in addressing.

Figure 8a plots a simulation of the behavior of inflation and unemployment, when the

standard deviation of the shocks to the Phillips curve and the aggregate demand are chosen as

small as possible and are fixed respectively to 0 and 0.005.18 This is clearly improper, since

the model is nonlinear and the size of the shocks might affect the speed of the learning process.

Nevertheless, if we keep this in mind, this simulation shows that the model can capture perfectly

17 In order to determine the peak time of inflation in a robust way, I compute a five years moving average for
every simulated path and select the point in time in which the resulting smooth series reaches the maximum.
18 Two observations are necessary at this point. First, the standard deviation of the shocks to the aggregate

demand cannot be set to zero because some random variation in the regressors of the Phillips curve is necessary for
a meaningful learning dynamics and the convergence to the self-confirming equilibrium. Second, the simulations
with low or zero variance shocks look all exactly the same except for the time period in which inflation (and, of
course, unemployment) peaks.
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well the low frequency behavior of inflation and unemployment, even with small exogenous

shocks. This exercise stresses further the role of initial beliefs, which play a more prominent

role than the exogenous shocks in the generation of these peculiar dynamics. This differs from

Sargent, Williams, and Zha (2004).

Figure 8a is also very interesting for the behavior of the simulated path of inflation in the

last part of the sample. In the 1990s, the “true” series of the natural rate of unemployment

exhibits a sharp decline (corresponding to the advent of the so called “New Economy”), which

is recognized only gradually by policymakers in the simulation. Nevertheless, since in the 1990s

policymakers have approximately learnt the true values of the long and short run slopes of the

Phillips curve, they are able to prevent inflation from falling to undesirably low levels. This

matches very well the actual behavior of inflation in the last decade.

To stress even more the importance of the misperception about the coefficients of the Phillips

curve in the 1960s and 1970s, figures 8b and 8c plot the results of counterfactual simulation

exercises. Here I use the same sequence of random shocks used to generate figure 8a, but I

change some of the values of the parameters of the model. In the simulation of figure 8b I

assume that policymakers know the exact value of the slope of the Phillips curve. However

they are uncertain about the natural rate and inflation persistence in the Phillips curve and

they have to estimate them. It is evident that the high inflation episode would have lasted less

long and that the rapid disinflation would have disappeared. In figure 8c instead, I assume that

policymakers have the correct estimate of the parameters of the Phillips curve, except for the

natural rate, which is estimated in the usual way. It is clear that, if this had been the case,

inflation would have increased much less than it did. Indeed, this graph does not exhibit any

sizable low frequency behavior.

In order to shed some light on the model’s implications for the future path of inflation, I

performed 1,000 simulations for the next 100 years. In these simulations over the period from

2003 to 2102, policymakers’ estimates of inflation persistence never reach the low levels of the

1960s, which means that normal supply and demand shocks do not seem to have a major effect

on policymakers’ estimates of the Phillips curve coefficients when enough data are available for

the estimation. As a consequence of this, in all these forward simulations, if and when inflation

goes up, it remains high only for a short period of time because, differently from the Great

Inflation, the propagation mechanism through learning is absent.

23



4.4 The fit of alternative explanations

As shown in the previous section, the learning model is able to reproduce remarkably well

the postwar behavior of inflation and unemployment in the United States. The purpose of

this section is to compare the fit of the baseline learning model to the fit of some alternative

explanations of the Great Inflation.

As I mentioned in the introduction, most of the alternative theories of the Great Inflation

adopt an exogenous shift in the preferences of policymakers to explain the sharp disinflation and

the low level of inflation since the early 1980s. On the other hand, the great advantage of the

approach taken in this paper is the fact that the time variation in the conduct of stabilization

policy is fully endogenized. To address this issue and assess the importance of the exogenous

and unexplainable channels of time variation in policy, I estimate a version of the learning model

where also the parameters of the loss function are allowed to vary over time. In particular, in

this subsection, I will assume the following form for the loss function of policymakers:

L = Ê
∞X
s=t

δs−t
h
(πt − π∗t )

2 + λt
¡
ut − ktû

N
t

¢2
+ φ (Vt − Vt−1)2

i
,

which differs from (6) because three of the parameters representing the preferences of policy-

makers (k, π∗ and λ) are allowed to change over time. Following many previous studies (for

example, Clarida, Gali, and Gertler 2000), I model the time variation in k, π∗ and λ in the

simplest possible way, i.e. allowing them to differ between the pre and post-Volcker period:

[π∗t , kt, λt] =
½
[π∗1, k1, λ1] for t < t̄

[π∗2, k2, λ2] for t ≥ t̄,

where t̄ is set to the fourth quarter of 1979.

The estimates of the model with a break in the preferences of policymakers in addition to

learning are reported in the first column of table 4, together with the value of the log-likelihood

and the BIC.19 Notice that the parameter controlling the size of the inflationary bias (k) does

not change between the pre and post-Volcker periods. Instead, as expected, both the target for

inflation and the weight on the unemployment objective seem to decrease after 1979, although

the estimates are quite imprecise. In particular, the p-values for the tests with null hypothesis

of no change in π∗ and λ are respectively 0.5 and 0.34, implying a failure to reject the null of no

change in both cases. This is confirmed by the relatively small improvement in the log-likelihood

and the substantial deterioration of the BIC.
19 The marginal likelihood for this model is not computed, since a prior for the preference parameters of the

post-Volcker period cannot be obtained using a training sample prior (and, therefore, the results would not be
easily comparable to the last column of table 2).
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As a further check, I consider another alternative, which is a model without learning on the

parameters of the Phillips Curve (except for the natural rate of unemployment), but with shifts

in the policymakers’ preferences. The estimates of this model are reported in the second column

of table 4. Notice that in this case k is estimated to be zero, both in the pre and post-Volcker

periods. On the other hand, both π∗ and λ, seem to decrease in the second part of the sample.

The changes in the values of π∗ and λ before and after 1979 are even larger than in the previous

case, but they are also even less precisely estimated. In fact, the p-values for the tests with

null hypothesis of no change in π∗ and λ are respectively 0.52 and 0.5, implying again a failure

to reject the null of no change in both cases. The log-likelihood and the BIC improve over

the previous specification, but the BIC is still inferior with respect to the BIC of the baseline

learning model.

The overall impression is that the fit of the baseline model is superior to the alternatives

presented in this subsection. In other words, once policymakers are assumed to learn over time

about the structural relations of the economy, the time variation in the policy preferences seems

redundant.

5 Policymakers’ Learning and Forward Looking Agents

In the model of section 2 I used the Phillips curve (1) that can be rewritten as the backward

looking equation (5), which is similar to the one estimated by policymakers. In other words

I have assumed that policymakers have the correct model of the economy in hand, but are

uncertain about the value of the model’s parameters. This section tests the robustness of the

results to alternative popular assumptions about the price setting equation. In particular, here

I will concentrate on the case in which price setters are forward looking (for example, as in

Calvo 1983). This assumption generates a forward looking Phillips curve, in which today’s

prices and inflation depend on expectations of future prices and inflation. For symmetry and in

the spirit of the recent new-Keynesian literature, I will also assume that the aggregate demand

equation has potentially a forward looking component. To be concrete, in this subsection I will

replace the Phillips curve and the aggregate demand, (5) and (2), with the following forward

looking versions:

πt =
1

1 + d
πt−1 +

d

1 + d
Et−1πt+1 − θEt−1

¡
ut − uNt

¢
+ εt, (19)

ut − uNt = ρb
¡
ut−1 − uNt−1

¢
+ ρfEt−1

¡
ut+1 − uNt+1

¢
+ Vt−1 + ηt, (20)
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where d is the private sector’s discount factor. The first equation is a forward looking Phillips

curve and, similarly to Christiano, Eichenbaum, and Evans (2005), can be derived from the firms’

profits maximization problem. As in Calvo (1983), firms are assumed to be able to reoptimize

and set their prices with a certain probability in every period. If they do not reoptimize,

they are assumed to set their prices with an indexation mechanism to past inflation. This

simple indexation rule in the price setters behavior explains the backward looking component

in (19). As pointed out in many studies, this component helps to account for the high degree

of inflation persistence observed in the data (see, for instance, Fuhrer and Moore 1995, Gali

and Gertler 1999, Christiano, Eichenbaum, and Evans 2005). Observe that (19) is a vertical

Phillips curve in the long run, implying absence of long run trade-off between inflation and

unemployment.

The second equation is a forward looking aggregate demand equation. This expression can

be derived from the household maximization problem, allowing for external habit formation, as

in Smets and Wouters (2003), when ρb + ρf = 1 and ρb < 0.5. Habit formation explains the

backward looking component, which helps to account for the persistence observed in the data.

In my estimation and simulations I will relax the previous equality and inequality restrictions on

ρb and ρf because those restrictions seem to be at odds with the data. Observe that the value

of V is chosen by the policymakers in every period in the same way of section 2. In other words,

policymakers estimate the backward looking model given by (7) and (8) and fix V solving the

linear quadratic problem based on their current beliefs. Differently from the benchmark case,

policymakers not only are using estimated parameters instead of true ones, but they are also

using a model structure which is fundamentally different from the true model of the economy.

In order to solve the model and possibly estimate it, we need to make assumptions on the

private sector’s expectation formation process. As in Sargent (1999), I assume that the private

sector knows exactly the way policy is made. In other words, people know that policymakers

estimate (7) and (8) and fix V by solving the linear quadratic problem (6). However, there are

many possible assumptions for the way agents form their expectations on future policy. For

completeness, I analyze two alternative (and completely opposite) cases. As a starting point,

following most of the adaptive learning literature, I assume that the private sector thinks that

policymakers will not revise their estimates of (7) and (8) in the future and will continue to

implement policy based on their latest estimates of (7) and (8). For simplicity, I will denote

this behavior of the private sector as “partially rational”. As an alternative and complication

of the baseline hypothesis, I also analyze the case in which the private sector is “fully rational”
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and takes into account the fact that policymakers will revise their estimates of (7) and (8) on

the base of future data.

5.1 Partially Rational Private Agents

The solution of this first specification of the model is reasonably standard. In fact, under the

assumptions that the coefficients g(β̂) in (9) remain constant in the infinite future, equations

(19), (20), (9) and (3) form a linear rational expectations system of equations (RESE), which

can be solved using standard methods (like Sims 2001a). In reality the coefficients g(β̂) change,

therefore the RESE must be solved in every period of the sample to find the time varying data

generating process. Given a random sequence of exogenous, non-policy shocks, this method can

be used to construct simulated paths of the variables of interest. Given the actual data, this

method can be used to compute the likelihood and maximize it with respect to the model’s

parameters. I fix the private sector discount factor (d) to 0.99 and maximize the likelihood with

respect to seven parameters
£
θ; ρb; ρf ; k;φ;σ

2
ε;σ

2
η

¤
.

The log-likelihood and BIC for the forward looking model are reported in table 5. Although

the data seem to favor the backward looking specification, it is worth focusing on the estimates

of the forward looking model. The point estimates and the standard errors of the parameters

are reported in table 5.20 First notice that the point estimate of θ has the correct sign, but it is

very small. However this must be expected. The reason is that, if the private sector thinks that

the policy rule parameters will not change in the future, a higher θ would imply an immediate

enormous effect on inflation’s expectations and, consequently on inflation itself. We do not

observe this in the data. The second thing to notice is that the weight on the forward looking

component of the aggregate demand equation is estimated to be zero. The statistical evidence

for this result is very strong. In fact, when I reestimate the model imposing the restriction

ρf > 0.5, the log-likelihood drops dramatically. This makes equation (20) hard to reconcile

with the household optimization behavior and supports the skepticism shown, among others,

by Estrella and Fuhrer (2002) and Fuhrer and Rudebusch (2002).

As in the previous section, I fix the parameters to their estimated value and perform 3, 000

simulations of the pattern of inflation and unemployment by generating random sequences of

exogenous shocks. The second column of table 3 reports medians, lower and upper quartiles of

max(π), max(u), t∗π and t∗u − t∗π. The median peak level of inflation is even higher than for the

baseline model, unemployment seems to peak a bit later and there is more uncertainty related

20 As in the benchmark case, here I assumed that policymakers learn using a constant gain algorithm.
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to the peak time of inflation. However, overall, the summary statistics are in line with the

actual behavior of inflation and unemployment during the Great Inflation. The asymmetry of

the high inflation episodes generated by the forward looking model is demonstrated in figures

9a and 9b, which are constructed in the same way as figures 8a and 7.

Summarizing, the results obtained with the baseline model are very robust to the use of the

forward looking Phillips curve. We observe both inflation increasing and decreasing faster, as

well as unemployment peaking after inflation.

5.2 Fully Rational Private Agents

The solution of the model with the full rationality assumption is non-standard. The reason is

that the system given by (19), (20), (3), (9), (10), (11), (12) and (13) is a nonlinear RESE,

because the coefficients g(β̂) are nonlinear functions of the endogenous variables. To solve the

model I use numerical methods. In particular I apply the method that Fackler and Miranda

(2001) propose for a general nonlinear RESE. It consists in approximating unknown functions

(which, in our case, are the expectations Et−1πt+1 and Et−1ut+1) with projection techniques. In

other words, the response function is approximated by the function Φst−1, where Φ is a matrix

of coefficients and st−1 is a collection of basis functions of the state variables. The method

consists of replacing Et−1πt+1 and Et−1ut+1 with the approximations and finding the matrix of

coefficients Φ∗ that solve the RESE. The difficulty here is the high dimension of the problem

and of the state vector. The details of the solution method are given in appendix C.

The solution of the model can take hours, therefore estimation, though theoretically easy, is

not practical.21 For this reason I perform only a set of simulations, calibrating the model in the

following way: as before, d is fixed to 0.99; the parameters
£
ρb; ρf ; k;φ;σ

2
ε;σ

2
η

¤
are fixed to the

point estimates in the model’s specification of section 5.1; θ is fixed to 0.01, which is in the range

of the values that have been used by the literature. Notice that θ is fixed to be higher than

the point estimate in the previous specification. The reason is that, under this new assumption

on the expectation formation, the private sector recognizes that policy mistakes will be slowly

corrected in the future. Consequently, observing policy mistakes today does not cause a huge

effect on expected inflation and inflation itself.

I perform 3, 000 simulations and report medians, lower and upper quartiles of max(π),

max(u), t∗π and t∗u− t∗π in the last column of table 3. Observe that inflation and unemployment

continue to peak at high levels, which are comparable to what we observe in the data. However,

21 Since it would require several likelihood evaluation and, therefore, several model’s solutions for different
values of the parameters.
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on average, inflation peaks earlier and difference between the peak time of unemployment and

inflation is higher than in the simulations with the other models. This is confirmed by figure 9c

and 9d.

Generally, two points stand out from the analysis of table 3 and figures 9c and 9d: first,

the simulations of this model continue to exhibit the pronounced and prolonged hump-shape

behavior of inflation and unemployment; second, the typical simulated path of inflation peaks

earlier and does not show a disinflation as sharp as the one observed in the data and reproduced

by the baseline model and the forward looking model of section 5.1. However, this is not at

all surprising, since the private sector is assumed to be forward looking and to take fully into

account future policy changes. If the private sector knows the way policy is made, it will predict

that policy will become very active against inflation as soon as policymakers’ estimates of the

Phillips curve will be revised. Inflation expectations will be automatically adjusted to take this

into account. Consequently, inflation will reflect these adjustments in expected inflation.

This section suggests two conclusions. First, that even in the forward looking Phillips curve

case, introducing policymakers’ learning is important to explain the dimension and duration

of high inflation episodes. Second, that the assumption of fully rational agents, who form

their expectations taking into account the future evolution of policymakers’ beliefs about the

economy, is probably too strong and at odds with the data on the disinflation episode of 1981.

6 Stochastic Volatility and the Role of Non-Policy Shocks

In this section I extend the baseline framework to account for stochastic volatility. The fact

that exogenous shocks have exhibited high heteroskedasticity over the last forty years has been

highlighted in many studies (see, for instance, Cogley and Sargent 2003, Primiceri 2005, Sims

and Zha 2004, Stock and Watson 2002, Stock and Watson 2003). Furthermore, many authors

have argued that one of the main causes of the American inflation in the 1970s was exactly

a particularly bad sequence of exogenous, non-policy shocks (see, for instance, Blinder 1979).

On the other hand, this paper has so far provided an explanation of the high inflation episode

based on the policy behavior. Therefore, it seems natural to extend and reestimate the model

of section 2 allowing for heteroskedastic innovations. In this way, I leave it up to the data

to determine whether the channel of the policymakers’ behavior remains important once the

possibility of time varying variances is taken into account.

There is also another reason why it is potentially very important to take heteroskedasticity

into account. This is because, in a learning model, the size of the exogenous shocks affects
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the speed of the learning process. In very general terms, higher volatility of an equation’s

disturbances would slow down the learning process. On the other hand, higher volatility of the

regressors would speed up the learning process.

In order to allow for heteroskedasticity, I make the assumption that the standard deviations

of the exogenous innovations of equations (5) and (2) follow a geometric random walk process:

log σε,t = log σε,t−1 + νε,t, (21)

log ση,t = log ση,t−1 + νη,t. (22)

This class of models is known as stochastic volatility models and constitutes an alternative to

ARCH and GARCH models. The crucial difference is that the variances generated by (21) and

(22) are unobservable components.

The estimation of the model augmented with stochastic volatility is considerably more in-

volved than the benchmark case. I adopt Markov chain Monte Carlo (MCMC) methods for the

posterior numerical evaluation of the parameters of interest. MCMC deals efficiently with the

nonlinearities of the model, allowing to draw from lower dimensional and standard distributions

as opposed to the high dimensional joint posterior of the whole parameters set. Appendix D

gives the details of the estimation algorithm.

The fourth column of table 1 reports the posterior median and the posterior standard de-

viations of the parameters of interest. They are similar to the benchmark case of the previous

section. Figure 10 plots the posterior median (and the 68 percent error band) of the time

varying standard deviations of the innovations to the Phillips curve and the aggregate demand

equation. Observe that the time path is consistent with the past literature (see, for instance,

Cogley and Sargent 2003, Primiceri 2005, Sims and Zha 2004, Stock and Watson 2002). The

variance of the innovations to the Phillips curve is low in the 1960s, high in the 1970s and early

1980s and low again since 1985 to the end of the sample. The variance of the demand shocks in

the aggregate demand equation follows approximately the same time pattern. Notice the sharp

decrease in the standard deviation of the shocks to the unemployment rate that occurred in the

early 1980s, a phenomenon which is known as the Great Moderation.

I evaluate the role of the exogenous shocks in the high inflation episode of the 1970s by

performing counterfactual simulation exercises. The methodology I adopt is straightforward. I

fix the model’s coefficients to the estimated posterior medians and reconstruct an estimate of

the sequence of exogenous shocks {εt}Tt=1 and {ηt}Tt=1. Starting from 1960:I, these shocks can

be used to simulate counterfactual data, constructed using different values of the parameters.

These new series can be interpreted as the realization of the data that would have been observed,
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had the parameters of the model been the ones used to generate the series. In this context,

the interesting experiment consists of replaying history assuming that the standard deviations

of the exogenous shocks were lower that the estimated standard deviations of the 1960s and

1970s. For comparison, figure 11a plots actual inflation and unemployment. Figure 11b plots the

counterfactual paths of inflation and unemployment when the time varying standard deviations

of supply and demand shocks are both replaced by their value in 1995, which is one of the

least volatile periods. It is clear that the differences from the actual behavior of inflation and

unemployment are minor, except, of course, for the reduced volatility. Figure 11c and 11d

plot the counterfactual paths of inflation and unemployment when the time varying standard

deviations of respectively supply and demand shocks are replaced by their value in 1995. Figure

11d shows that the worst scenario for inflation would have occurred in the case of reduced

volatility of the shocks to unemployment. The reason is that it would have slowed down the

updating process toward the self-confirming value for the beliefs about the slope of the Phillips

curve parameter. For the same reason, the best scenario would have been the one of figure 11c,

i.e. the case of reduced volatility of the supply shocks and the estimated historical volatility

of the demand shocks. Finally notice that, although the behavior of inflation differs across the

four plots, even in the most favorable scenario of figure 11c, inflation would still have peaked at

the high level of about 9 percent.

Overall, this section suggests two conclusions. First, allowing for heteroskedasticity of the

exogenous shocks does not undermine the results that the low frequency behavior of inflation

and unemployment is largely explained by the evolution of policymakers’ beliefs. Second, in

the context of this model, allowing for time varying variances does not generate important

differences in the speed of the policymakers’ learning process and the timing of the disinflation.

Instead, the dynamics seem to be mainly driven by the convergence process of policymakers’

beliefs to the self-confirming equilibrium, starting from the initial conditions. This finding also

facilitates the interpretation of figures 8a, 9a and 9c.

7 Why Did Inflation Rise?

In the previous sections I have argued that policymakers’ mistakes in the estimation of the

natural rate of unemployment can only explain why inflation started to increase in the early

1960s. Observe that mistakes in the estimation of the natural rate in real time are, to some

extent, unavoidable (see, for example, Orphanides and Van Norden 2001). This is because the

natural rate is intrinsically a time varying entity, due to a number of factors like demographics,
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changes in productivity growth or labor market conditions (for an overview, see Ball and Mankiw

2002).

On the other hand, the optimistic view about the natural rate is not enough to understand

why rational policymakers let inflation rise for more than fifteen years. In fact, I showed that

in the 1960s policymakers did not fight inflation strongly enough because they underestimated

the persistence of inflation in the Phillips curve. This induced the peculiar dynamics described

in section III.

Of course, a fundamental question is why policymakers started out with such downward

biased beliefs about the degree of inflation persistence in the Phillips curve (α(1)) in the 1960s?

The answer to this question is very simple and natural: because these beliefs were perfectly

consistent with the available data prior to 1960. Observe that this is true not only if we look at

data between 1948 and 1960 (like this paper does to calibrate initial beliefs), but also if we look

further back in the past. For example, Christiano and Fitzgerald (2003) provide unambiguous

evidence that all data between 1900 and 1960 appeared consistent with a stable long run trade-off

between inflation and unemployment. Similarly, Barsky (1987) uses data from 1890 to formally

show that strong inflation persistence emerged only around 1960. In other words, there was

basically no way for adaptive policymakers learning from the past to anticipate the high degree

of persistence of the last decades.

There are obviously many possible reasons why the properties of the inflation-unemployment

process might have changed so drastically in the postwar period. One conjecture is that the

different nature of the data is related to a change in monetary regimes like, for example, the

movement away from the Gold Standard and Bretton Woods (for an overview, see Bordo 1993).

This does not necessarily imply that inflation rose because policymakers abandoned the com-

mitment technology provided by fixed exchange rate regimes (like, for instance, in Bordo and

Kydland 1995). The interpretation provided in this paper is instead that inflation rose because

policymakers were simply slow to learn how to conduct policy under a new regime.

8 Concluding Remarks

This paper presents a simple model of inflation-unemployment dynamics when policymakers

have imperfect information. The source of imperfect information is the fact that policymakers

do not know the exact model of the economy. Therefore, they update their beliefs about the

model’s unknowns in every period and implement optimal policy, conditional on their current

beliefs.
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The model’s self-confirming equilibrium is characterized by low inflation. Nevertheless,

the model can generate prolonged and asymmetric episodes of high inflation, which closely

resemble the run-up of US inflation in the 1960s and 1970s and the sharp disinflation in the early

1980s. In particular, these episodes occur when policymakers simultaneously underestimate

both the natural rate of unemployment and the persistence of inflation in the Phillips curve.

Starting from this situation of overoptimistic beliefs, the model endogenously generates periods

in which policy is overpessimistic. During these periods policy mistakenly perceives the inflation-

unemployment trade-off as too costly. I show that it is not optimal to create a recession to stop

inflation, either if beliefs are overoptimistic or if they are overpessimistic. This is why the policy

action against inflation is delayed until the moment in which the perceived trade-off improves.

When this happens, inflation is already very high. Therefore, the policy action against inflation

is strong and decisive.

Unlike most of the existing literature, the model matches many recognized stylized facts of

the American Great Inflation of the 1960s, 1970s and 1980s. I also formally estimate the model

by likelihood methods and find that it fits the behavior of US inflation and unemployment

remarkably well.

Given the empirical support, the model can be used to evaluate the possibility that episodes

similar to the Great Inflation could happen again in the future. In this respect, the conclusion

of the paper is more optimistic than alternative theories. In this model, in fact, high inflation

episodes do not occur as the consequence of the mismeasurement of the natural rate of unem-

ployment only (Orphanides 2000) or as a result of policymakers’ lack of commitment to low

inflation (for example, Sargent 1999). High inflation is the consequence of the unlikely combi-

nation of two factors. As mentioned above, one of these two factors is the mismeasurement of

the natural rate, which, to some extent, is unavoidable. However, the serious underestimation

of the persistence of inflation in the Phillips curve seems to be much more uncommon and

appears more related to special circumstances, such as structural breaks in the true model of

the economy.
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A Self-confirming equilibrium

Appendix A formally defines a self-confirming equilibrium and derives the self-confirming equi-

librium of the model of section 2, in the case of constant gain learning. Let yπt , y
u
t , x

π
t , x

u
t ,

β̂
π
and β̂

u
be the same objects defined in section 2.3. I follow Sargent (1999) in defining a

self-confirming equilibrium in this framework:

Definition 1 A self-confirming equilibrium is a set of policymakers’ beliefs about the models’

parameters β̂ ≡ [β̂π, β̂u, ûN ], a fixed optimal policy rule g(β̂) and an associated stationary sto-
chastic process for the vector

£
πt, ut, Vt, u

N
t

¤
such that: (a) ûN , β̂

π
and β̂

u
satisfy

E
£
ut − ûN

¤
= 0 (23)

E
h
xit

³
yit − xi0t β̂

i
´i

= 0, i = {π, u} (24)

where the expectations are taken with respect to the probability distribution generated by (5),

(2), (3) and (9); (b) the vector
£
πt, ut, Vt, u

N
t

¤
is generated by the stationary stochastic process

implied by (5), (2), (3) and (9).

It is straightforward to verify that the set of beliefs ûN = u∗, β̂
π
= [0;α1;α2; θ1; θ2] and

β̂
u
= [0; ρ1; ρ2] satisfy (23) and (24) and therefore represents a self-confirming equilibrium, in

the case of σ2τ = 0. When σ2τ > 0, finding the self-confirming equilibrium is more involved and

requires a numerical solution of the system of equations given by (23) and (24). The procedure

works as follows: any given fixed value of ûN , β̂
π
and β̂

u
implies a linear stochastic process

for
£
πt, ut, Vt, u

N
t

¤
via equations (5), (2), (3) and (9). The linear process can be rewritten as a

first order system of the form zt = C + Azt−1 + Bνt. Thus E(zt) = (I − A)−1C and V ar(zt)

can be found by solving the Lyapunov equation V ar(zt) = AV ar(zt)A
0 + BV ar(νt)B

0. The

elements of E(zt) and V ar(zt) can be used to compute E
£
ut − ûN

¤
and E

h
xit(y

i
t − xi0t β̂

i
)
i
, for

i = {π, u}, which, in general, will not be equal to zero. A simple equation solver can be used to
solve for the set of beliefs ûN , β̂

π
and β̂

u
, which satisfy (23) and (24). Of course the solution

will depend on the value of the true parameters of the model. As an illustrative example I

consider the case in which the true parameters of the model are the point estimates of the

baseline specification, presented in the first column of table 1. The self-confirming equilibrium

in this case corresponds to ûN = 6, β̂
π
= [0.0394; 0.7203; 0.2623;−0.8409; 0.7637] and β̂

u
=

[0; 1.5703;−0.6269]. Furthermore, the eigenvalues of the Jacobian of the expressions contained
in (23) and (24), evaluated at the self-confirming equilibrium, have negative real parts. This

guarantees the stability of the equilibrium.
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As V ar
¡
uNt
¢
increases the mistakes associated with the estimation of the current level of

the natural rate of unemployment will bias toward zero the estimate the slope of the Phillips

curve and of the persistence of unemployment deviations from the natural rate in the aggregate

demand equation. This leads to self-confirming equilibria whose distance from the true values

of the parameters is increasing in V ar
¡
uNt
¢
. Finally, when V ar

¡
uNt
¢
is large with respect to

σ2ε and σ2η, the model does not admit a self confirming equilibrium anymore. Figure 12 plots

the Euclidean distance between the true parameters ([0;α1;α2; θ1; θ2; 0; ρ1; ρ2;u
∗]) and the set

of beliefs about these parameters corresponding to the self-confirming equilibria. These self-

confirming equilibria are computed for different values of V ar
¡
uNt
¢ ≥ 0. This graph confirms

the intuition that the distance between equilibrium beliefs and true parameters increases with

V ar
¡
uNt
¢
. The line is truncated at the value 4.63, because for V ar

¡
uNt
¢
larger than this value a

self confirming equilibrium cannot be found. All the found self-confirming equilibria are stable.

B State space form for model’s estimation

Appendix B gives the details of the state space form representation of the model for the esti-

mation with the Kalman filter.

The canonical state space form is given by:

yt = AZt +BXt +Ret, (25)

Xt = C +GXt−1 +Qst, (26) et

st

 ∼ i.i.d. N(0, I). (27)

In our case, yt = [πt;ut]
0; Zt = [πt−1;πt−2;ut−1;ut−2;Vt−1]0; Xt =

£
uNt ;u

N
t−1;uNt−2

¤0;
A =

 α1 α2 −θ1 −θ2 0

0 0 ρ1 ρ2 1

; B =

 0 θ1 θ2

1 −ρ1 ρ2

; C =

(1− γ)u∗

0

0

; G =


γ 0 0

1 0 0

0 1 0

;

R =

 σε 0

0 ση

; Q =


στ 0 0

0 0 0

0 0 0

.
The standard Kalman filter recursion formulas can be found in Hamilton (1994). To start the

recursion it is necessary to specify E (X0|Ω0) and V ar (X0|Ω0), where Ω0 represents the infor-
mation set available at time 0. Following a common practice, I set E (X0|Ω0) and V ar (X0|Ω0)
to the unconditional values implied by the transition equation. In particular, this results in
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E (X0|Ω0) = [6; 6; 6]0, which corresponds approximately to the estimate of the natural rate of

unemployment of Staiger, Stock, and Watson (2001) in 1960 (which is the initial date of our

sample).

C The solution method for the forward looking model

Appendix C illustrates in more detail the method used to solve the forward looking model with

fully rational agents. As mentioned in section 5.2, the model is hard to solve because it is a

nonlinear system of rational expectation equations. The source of nonlinearity is the learning

behavior of policymakers. I will rely on numerical methods. The adopted solution method is

based on Fackler and Miranda (2001). A similar method is in Fernandez-Villaverde and Rubio

(2002).

Consider the system of rational expectation equations given by (19) and (20). To simplify

the analysis and only for the purposes of this section I will assume that uNt is a deterministic

function, known by the private sector, but, as usual, unknown by policymakers. I will set uNt

to be equal to the smoothed estimate of uNt obtained in the estimation of the forward looking

model with partially rational agents (section 5.1). Thus, let ũt ≡ ut − uNt . Equations (19) and

(20), the only ones involving expectations, can be rearranged and rewritten in the following

compact form:

yt = AEt−1yt+1 +BXt−1 + vt, (28)

where yt ≡ [πt, ũt]
0 is the vector of observed endogenous variables; Xt−1 ≡ [πt−1, ũt−1, Vt−1]

is the vector of observed predetermined variables; vt ≡ [εt, ηt]
0 is the vector of unobservable

shocks; A and B are matrices of coefficients, omitted for brevity. (28) is linear, but the complete

system, given by (28), (9), (10), (11), (12) and (13) is nonlinear. The solution of the model

is the unknown response function Et−1yt+1 = Ψ(Ωt−1), where Ωt represents the information

available at time t and Ψ(·) satisfies

Ψ(Ωt−1) = AEt−1Ψ(Ωt) +BEt−1Xt.

When the model is nonlinear in general there is not a closed form expression for Ψ(·) and it must
be approximated numerically by projection methods. The basic idea of Fackler and Miranda

(2001) is approximating Ψ(Ωt) with a linear combination of basis functions of the state variables.

This is given by Φst, where st is an m× 1 vector of basis functions and Φ is a 2×m matrix of

coefficients. In the numerical procedure, also the expectation operator must be approximated
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using quadrature methods. Therefore, the expectation of a generic function f (·) of the model’s
source of randomness, vt, is approximated by a discrete version of the integral, given by

Ef(vt) ≈
kX

j=1

ωjf
³
vjt

´
.

For a given value of the innovations vjt ,

yjt = AΦst−1 +BXt−1 + vjt

and

yjt+1 = AΦsjt +BXt + vt+1,

where the superscript j for s indicates that the value of s at time t depends on the realization of

the shocks at time t. Now we can compute Et−1yt+1 = Et−1Etyt+1 ≈
kP

j=1
ωj

³
AΦsjt +BXt

´
≡

zt−1. Let S ≡ [s1,t−1, ..., sn,t−1] be a collection of n ≥ m values of st−1 and Z ≡ [z1,t−1, ..., zn,t−1]
the collection of the corresponding n values of zt−1. The solution consists in the Φ∗ which solves

Φ∗S = Z, or Φ∗SS0 = ZS0 in the case in which n > m. It can be done using standard equation

solvers.

In this application, to approximate the integrals and expectation operators, I use a Gauss-

Hermite quadrature with 3 nodes (see Judd 1998). As mentioned above, the dimension of the

state vector is high. Thus, the use of tensor product bases or complete polynomial bases is

unfeasible for any polynomial degree bigger or equal to 2. For this reason I chose the following

ad hoc collection of 21 basis functions of the states, which turned out to work well:

st =
h
1;πt; ũt;πt−1; ũt−1;Vt; ĉπ,t; α̂1,t; α̂2,t; θ̂1,t; θ̂2,t; ĉu,t; ρ̂1,t; ρ̂2,t; û

N
t ;

π2t ; ũ
2
t ; α̂1,tπt; α̂2,tπt−1; θ̂1,t

¡
ut − ûNt

¢
; θ̂1,t

¡
ut−1 − ûNt−1

¢i
.

Notice that the choice of st includes all linear terms in the state variables of the problem and

some potentially relevant second order terms. The dimension of st is so large that the choice of

S based on standard grid methods is unfeasible, even specifying only two values for any state

variable. To solve this problem I chose a collection of n = 86 st’s, corresponding to the actual

values of st observed in the data, every 2 quarters, from 1959:IV to 2002:IV. The results are

only marginally affected by a different choice of values for S, like for example the observed data,

every 2 quarters, 1960:I to 2002:III.
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D The MCMC algorithm for the stochastic volatility model

Appendix D illustrates the details of the MCMC algorithm used in section 6 for the estimation

of the model with stochastic volatility. The parameters of interest are the coefficients Ψ1 ≡
[α1; θ1; θ2; ρ1; ρ2], Ψ2 ≡ [k;φ], Ψ3 ≡

h
σ2νε ;σ

2
νη

i
and the unobservable states uN ≡ ©

uNt
ªT
t=1
,

σε ≡ {σε,t}Tt=1 and ση ≡ {ση,t}Tt=1. The estimation consists of the simulation of the posterior of
the parameters of interest, conditional on the observed data. MCMC allows to simulate lower

dimensional conditional posteriors instead of the high dimensional unconditional one.

Notice that the model can be rewritten like in (25), (26) and (27), with the difference that

now the elements of R are time varying and follow the processes (21) and (22). The algorithm

works in 5 steps.

D.1 Step 1: drawing uN

Conditional on σε, ση, Ψ1 and Ψ2, the observation equation (25) is linear and has Gaussian

innovations with known variance. Therefore, the vector uN can be drawn using standard simu-

lation smoothers, like, for instance, Carter and Kohn (1994). Details of this procedure can be

also found in Kim and Nelson (1999b).

D.2 Step 2: drawing σε and ση

Consider now the system of equations

yt −AZt −BXt = y∗t = Rtet (29)

where, taking uN , Ψ1 and Ψ2 as given, y∗t is observable. This is a system of nonlinear measure-

ment equations, but can be easily converted in a linear one, by squaring and taking logarithms

of every element of (29), which leads to the following approximating state space form:

y∗∗t = 2ht + e∗∗t (30)

ht = ht−1 + ωt. (31)

y∗∗it = log[(y∗it)2 + c̄]; c̄ is an offset constant (set to 0.001); e∗∗it = log(e2it); ht = log(diag(Rt)).

Observe that the e∗∗’s and the ω’s are not correlated. The system in this form has a linear,

but non-Gaussian state space form, because the innovations in the measurement equations are

distributed as a logχ2(1). In order to further transform the system in a Gaussian one, a mixture

of normals approximation of the log χ2 distribution is used, as described in Kim, Shephard,
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and Chib (1998). Observe that the variance covariance matrix of the e’s is the identity matrix.

This implies that the variance covariance matrix of the e∗∗’s is also diagonal, allowing to use the

same (independent) mixture of normals approximation for any element of e∗∗. Kim, Shephard

and Chib (1998) select a mixture of 7 normal densities with component probabilities qi, means

mi, and variances v2i , i = 1, ..., 7. The constants {qi,mi, v
2
i } are chosen to match a number

of moments of the logχ2(1) distribution. The constants {qi,mi, v
2
i } can be found in Kim,

Shephard, and Chib (1998).

For the innovation to the variable yjt, define as sTj = [sj1, ..., sjT ]
0 the vector of indicator

variables selecting at every point in time which member of the mixture of normal approximation

has to be used. Conditional on uN , Ψ and sT (which denotes the collection of sTj ), the system

has an approximate linear and Gaussian state space form. Again, exactly like in the previous

step of the sampler, this procedure allows to draw every ht using a simulation smoother.

Conditional on the data and the new series of ht’s, it is possible to sample the new sTj vectors,

to be used in the next iteration. This is easily done (separately for every j) by sampling from

the discrete densities defined by

Pr(sjt = i | y∗∗jt , hjt) ∝ qifN(y
∗∗
jt | 2hjt +mi, v

2
i ), i = 1, ..., 7.

Further details can be found in Kim, Shephard, and Chib (1998) or Primiceri (2005).

D.3 Step 3: drawing Ψ1

Conditional on Ψ2, σε, ση and uN , the objects Zt, Xt and Rt are observable. Therefore, the

elements of Ψ1 (which correspond to the elements of A and B) can be easily drawn from the

posterior of the coefficients of a regression with known variance. This posterior is normally

distributed with mean equal to the OLS coefficients and variance equal to the variance of the

OLS coefficients.

D.4 Step 4: drawing Ψ2

Ψ2 enters the model non-linearly. Therefore, in order to draw from the conditional posterior

of Ψ2, I use a Metropolis step, nested in the Gibbs sampler. The procedure works as follows:

I draw a candidate value Ψ∗2 from a proposal distribution ϕ
¡
Ψ∗2|Ψi−1

2

¢
, where Ψi−1

2 is the pre-

vious draw of the chain. At this point I compute the value of the posterior associated to the

draw, p
³
Ψ∗2|Ψ1, σε, ση, uN , {yt}Tt=1

´
, which, under flat prior, is proportional to the value of the
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likelihood. The new draw is accepted with probability

a = min

(
p (Ψ∗2) /ϕ (Ψ∗2)

p
¡
Ψi−1
2

¢
/ϕ
¡
Ψi−1
2

¢ , 1) .
If the proposal value is rejected, the next element of the chain is set to be Ψi−1

2 . In order to

satisfy the constraints φ ≥ 0 and m, 0 ≤ k ≤ 1, I chose the proposal distribution to be normal
in f(Ψ∗2), where f (a, b) =

h
log(a), log

³
b
1−b
´i
. The mean is chosen to be f(Ψi−1

2 ), while I fix

the variance to a diagonal matrix with elements 0.001 and 0.005 on the main diagonal.

D.5 Step 5: drawing Ψ3

Conditional on σε, ση, each element ofΨ3 has an inverse-Gamma posterior distribution, indepen-

dent of the other element. Conditional on σε, ση, it is easy to draw from these inverse-Gamma

posteriors because the innovations are observable.22

22 See Gelman, Carlin, Stern, and Rubin (1995) for a description of the sampling procedure from an inverse-
Gamma or inverse-Wishart distributions.
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Coefficients CG OLS DLS SV

α1
0.707

(0.074)

0.711

(0.074)

0.707

(0.073)

0.663

(0.076)

θ1
−1.053
(0.292)

−1.021
(0.290)

−1.057
(0.291)

−.718
(0.244)

θ2
0.928

(0.289)

0.903

(0.287)

0.943

(0.289)

0.63

(0.241)

ρ1
1.661

(0.057)

1.756

(0.065)

1.640

(0.056)

1.376

(0.083)

ρ2
−0.737
(0.057)

−0.779
(0.060)

−0.719
(0.056)

−0.449
(0.082)

σ2ε
1.033

(0.113)

1.041

(0.113)

1.033

(0.109)
−

σ2η
0.036

(0.006)

0.036

(0.006)

0.035

(0.006)
−

φ
2131

(1570)

475.5

(273.9)

1902

(1119)

2763

(2375)

k
0.872

(0.026)

0.960

(0.014)

0.809

(0.032)

0.869

(0.026)

Table 1: Maximum likelihood estimates of the model’s parameters. CG: model with constant gain learning;

DLS: model with discounted least squares learning; OLS: model with ordinary least squares learning; SV: model

with stochastic volatility. Standard errors in parentheses.
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Models log-Likelihood BIC log-Marginal Likelihood

CG −250.16 −273.30 −273.66
OLS −252.02 −275.16 −268.22
DLS −248.99 −272.13 −263.68
VAR(2) −242.74 −276.17 −278.70
VAR(3) −234.52 −278.22 −279.79
VAR(4) −229.90 −283.89 −279.98

Table 2: Measures of fit of different models. CG: model with constant gain learning; DLS: model with discounted

least squares learning; OLS: model with ordinary least squares learning; VAR: vector autoregressions with 2, 3

of 4 lags.

Parameters CG FL1 FL2

max(π)
11.95

[10.52; 13.44]

14.71

[12.87; 16.45]

13.90

[12.60; 15.27]

max(u)
10.60

[9.31; 12.25]

11.16

[9.04; 13.42]

10.16

[8.89; 11.86]

t∗π
1975:III

[1971; 1981]

1975:II

[1970:I; 1985:I]

1968

[1966; 1975:II]

t∗u − t∗π
2:III

[2; 6:I]

4:II

[2:II; 8:I]

6:I

[4:I; 9:III]

Table 3: Summary statistics of the simulations (medians, lower and upper quartiles). CG: baseline model, with

constant gain learning; FL1: forward looking model with partially rational agents; FL2: forward looking model

with fully rational agents (t∗π and t∗u stand for the time periods in which inflation and unemployment peak).
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Coefficients SP SP (no learning)

α1
0.709

(0.073)

0.718

(0.074)

θ1
−1.035
(0.295)

−1.102
(0.285)

θ2
0.910

(0.291)

1.013

(0.278)

ρ1
1.635

(0.062)

1.568

(0.066)

ρ2
−0.724
(0.055)

−0.699
(0.062)

σ2ε
1.037

(0.111)

1.039

(0.114)

σ2η
0.034

(0.006)

0.030

(0.006)

φ
950.6

(583.4)

2764

(16871)

k1
1.000

(0.000)

0.001

(0.001)

k2
1.000

(0.007)

0.000

(0.054)

π∗1
4.182

(0.739)

3.598

(2.020)

π∗2
3.535

(0.345)

2.297

(1.138)

λ1
0.847

(0.566)

1.706

(2.205)

λ2
0.420

(0.270)

0.324

(1.109)

log-Likelihood −245.99 −241.94
BIC −281.98 −277.94

Table 4: Maximum likelihood estimates of the model’s parameters. SP: model with constant gain learning and

shift in the parameters representing the policy preferences; SP (no learning): model with shift in the parameters

representing the policy preferences and without learning on the persistence of inflation and the slope of the

Phillips curve. Standard errors in parentheses. See section 4.4 for details.
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θ ρb ρf σ2ε σ2η φ k log-lh BIC

−0.00095 0.936 0.0000 1.18 0.0833 1972 0.880 −307.53 −325.52
(0.00081) (0.0237) (0.0025) (0.1739) (0.0152) (1396) (0.034)

Table 5: Maximum likelihood estimates, log-likelihood and BIC for the forward looking model with partially

rational agents. Standard errors in parentheses.
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Figure 1: US inflation and unemployment.
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Figure 2: Strength of the policy reaction to inflation as a function of (a) estimated persistence

of inflation in the Phillips curve and (b) estimated slope of the Phillips curve.

51



1960 1965 1970 1975 1980 1985 1990 1995 2000
2

3

4

5

6

7

8
(a)

1960 1965 1970 1975 1980 1985 1990 1995 2000
0

0.2

0.4

0.6

0.8

1

(b)

1960 1965 1970 1975 1980 1985 1990 1995 2000

−0.25

−0.2

−0.15

−0.1

−0.05

0
(c)

Figure 3: Evolution of policymakers’ beliefs about: (a) the natural rate of unemployment; (b)

the persistence of inflation in the Phillips curve; (c) the slope of the Phillips curve.
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Figure 4: Smoothed estimates of the natural rate of unemployment.
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Figure 5: Models’ policy variable and real rate of interest (rescaled).
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Figure 6: Simulation results for the benchmark model. Empirical distribution of: (a) max(π),

(b) t∗π, (c) max(u) and (d) t∗u − t∗π. Scatter plot of the relation between (e) t∗π and max(π) and

(f) max(π) and max(u). (max(π) and t∗π stand respectively for the peak level and the peak time

of inflation, while max(u) and t∗u stand for the peak level and the peak time of unemployment).
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Figure 7: Actual data and average of the simulated inflation paths around the peak time (time

expressed in quarters on the horizontal axis).
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Figure 8: Simulation of the inflation and unemployment behavior under a scenario of low

volatility of the exogenous disturbances. (a) Simulation for the baseline constant gain learning

model; (b) counterfactual simulation under the assumption that policymakers know the slope of

the Phillips curve; (c) counterfactual simulation under the assumption that policymakers know

all the parameters of the Phillips curve except for the natural rate of unemployment.
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Figure 9: Simulation of inflation and unemployment under a scenario of low volatility of the

exogenous disturbances in (a) the partially rational agents model of section 5.1 and (c) the fully

rational agents model of section 5.2. Average of all simulated inflation paths around the peak

under realistic volatility of the exogenous disturbances in (b) the partially rational agents model

and (d) the fully rational agents model.
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Figure 10: Posterior median and 68% error bands for the time varying standard deviations of

(a) shocks to the Phillips curve and (b) shocks to the aggregate demand.
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Figure 11: (a) Actual data for inflation and unemployment and counterfactual simulations when

(b) the standard deviations of the shocks to the Phillips curve and the aggregate demand are

fixed to their 1995 value; (c) only the standard deviation of the shocks to the Phillips curve is

fixed to its 1995 value; (d) only the standard deviation of the shocks to the aggrgate demand is

fixed to its 1995 value.
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Figure 12: Euclidean norm of the distance between the true value of the coefficients and the

value of policymakers beliefs in a self-confirming equilibrium (as a function of the variance of

the non-inflationary rate of unemployment).

60




