University of Santiago de Compostela. Faculty of Economics. Econometrics^{*} Working Paper Series Economic Development. nº 63

Causality Tests, Interdependence and Model Selection: Application to OECD countries 1960-97

By M.Carmen GUISAN, <u>eccgs@usc.es</u> University of Santiago de Compostela, Spain

Published 2003 www.usc.es/economet/eaa.htm

Abstract

This paper compares several methodologies for analysing unidirectional and bi-directional causality between Consumption and GDP in 25 OECD countries during the period 1960-95. For analysing unilateral causality a comparison is made between cointegration tests and joint regression on alternative explanatory variables, with 100% of correct results in the case of joint regression and lower percentages of success for cointegration approach. Bilateral causality is analysed comparing Granger's test, a modified version of Granger's test here suggested, TSLS, Hausman's causality test and other approaches. The main conclusion is that the modified version of Granger's test performs rather well and that Hausman's test is very often useful for reinforcing the conclusions of multiple equations models with contemporaneous interdependence. Regarding the bilateral relationship between Consumption and GDP we conclude that there is a moderate degree of contemporaneous relation, with a high degree of dependence of Private Consumption on GDP and a lower dependence in the case of the reverse relation, because GDP is more dependent on supply side conditions than on demand side. This result is relevant for economic policies in less developed countries where very often emphasis is made more in the reverse relations than in the main ones.

JEL classification: C5, C52, E2, O57

1.- Introduction

In previous studies, such as Guisan(2001a) and Guisan(2002), the analysis of cointegration relationship between real Private Consumption and GDP in 25 OECD countries was performed, with results that show a low degree of success of cointegration tests for distinguishing causal regressions from spurious ones, due to several limitations of that approach.

For comparing those results with the regression approach for analysing unidirectional causality, section 2 presents the results that we can get with the same data by means of a joint regression approach, where the explained variable is related with two alternative variables, being one of them a causal explanatory variable and the other a spurious one. In the 100% of the cases the conclusions show that the own GDP is the causal explanatory variable and that the spurious variables have not effect or very low effect, and thus the method is very adequate for distinguish between casual and spurious relations.

^{*} In colaboration with the Euro-American Association of Economic Development Studies

In section 3 we analyse bilateral direction of causality with Granger's non contemporaneous causality test and a modified version of contemporaneous causality for this test here presented, and in section 4 bilateral direction is analysed following the Cowles Commission approach of TSLS and reinforcing its results with Hausman's test of causality.

Finally in section 5 we present the main conclusions, which show that the type of bilateral direction of causality between Private Consumption and GDP may be in some cases of variable direction, following the approach of disequilibrium models analysed in Guisan(2001b), but that the main direction of causality is from GDP to Consumption.

GDP is usually the main explanatory variable for explaining Private Consumption, and so we can say that Consumption follows GDP. On the other side the growth of GDP depends on many other factors, mainly from the supply side, and Consumption is only one of the factors than contributes to the explanation of GDP by demand side. So there is a variable degree of contemporaneous interdependence among both variable, being the main direction of causality from GDP to Consumption.

2.- Unidirectional causality and regression analysis between Consumption and GDP

The empirical evidence shows that very often the analysis of regression, well in levels of by means of a mixed dynamic model, performs better than cointegration anaylisis for detecting unidirectional causality, so in the cases of the data used in Guisan(2002) for Private Consumption and Gdp in 25 OECD for the period 1960-95, we could find the following conclusions:

1) Linear correlation of C90i and GDP90i was higher than the linear correlation of C90i with GDP90j in all the cases but Luxembourg, with little difference between own correlation and foreign countries correlation.

2) In the regression of C90i as function of GDP90i and GDP90j the parameter of the own production resulted highly significant, both by LS and by GLS in cases of autocorrelation, while the parameter of foreign production resulted no significantly positive.

3) The null hypothesis for the foreign parameter usually was accepted. In 10 cases appeared a small and significant effect of foreign production with LS but this effect vanished in 7 out of the 10 regressions when the estimation by GLS was performed in order to have into account the autocorrelation.

4) In two cases, Norway with Iceland, and Norway with Canada, the estimated coefficient with own production was higher than with foreign production, although in both cases the statistic t was higher for the own estimated coefficient, in LS, but in both cases the foreign coefficient lost significance in the GLS estimation while the coeffecient of the own production was positive and highly significant in GLS having into account autocorrelation.

5) In one case, Switzerland with Sweden, both the estimated coefficient with foregin GDP and the t statistic resulted higher than the corresponding ones to own GDP, in the LS estimation. This anomalous result also disappeared with GLS estimation having into account

autocorrelation, and the coefficient of foreign GDP was not signicantly different from zero while the own coefficient was positive and highly significant.

6) The results where very similar with a mixed dynamic model, where C90i, explaining this variable as a function of its own lagged value and the first differences of GDP90i and GDP90j. The results where favourable to the important positive impact of own GDP and the generally null effect of foreign GDP.

In comparison with the high degree of uncertainly and wrong conclusions of cointegration analysis for the analysis of causality between Consumption and GDP that we have shown in Guisan(2002), we can conclude that the supposed superiority of cointegration in comparison with regression should be questioned, and that the approach followed in this section with joint regression of the explained variable on the two rivals candidates to explanatory variables, usually functions adequately, both in levels or in the context of a mixed dynamic models.

Mixed dynamic models, on the other hand, perform usually better than first differences models, because it the latter is a particular case of the former for the case when the coefficient of the lagged variable is exactly equal to one.

In real world it happens very often that the coefficient of the lagged endogenous variable is statistically different of one, and in those cases mixed dynamic model usually is a better choice than the specification in first differences.

Graph 1 shows the high degree of linear correlation between Private Consumption by inhabitant, CHT, and GDP by inhabitant, PHT, in the group of 25 OECD countries during the period 1961-95.

3

When we compare the evolution of both variables in each country we find small differences in the estimation of the parameter corresponding to production by inhabitant, PH. This difference is partly due to the different share of saving in family income but mainly it is due to the differences in public policies related with public consumption.

So in countries where there is a high degree of public expenditure on individual consumption of goods and services of Health and/or Education, there is usually a lower level of private consumption on those groups in comparison with countries of similar level of GDP by inhabitant, as we can see in Guisan and Arranz(2001).

Graph 2 present the evolution, in real terms at 1990 prices and exchange rates of Private Consumption by inhabitant, CH, total individual Consumption by inhabitant, ZH, including both private and public, and GDP by inhabitant, PH, in OECD countries.

Graph 2. Private Consumption, Individual Consumption and GDPH.. (thousands of dollars by inhabitant at 1990 prices and exchange rates)

It is really impressive to see the important increase in these three variables in OECD countries during the period 1961-95. The high level of production by inhabitant and consumption by inhabitant reached by this countries is not only due to increases in productivity by worker by mainly to the moderation in fertility rates, because the rate of growth of total GDP in OECD countries was not higher than world average, and many less developed countries have experienced similar, or even higher, rates of growth of production.

The main difference between the majority of OECD countries and world average has been the moderation in demographic growth, as we can deduced from the international comparisons made by Maddison(2001) and Guisan, Aguayo and Exposito(2001).

From those studies we can conclude that during the 20th century the average yearly rate of exponential growth of real GDP in Western Europe was 2.40%, while in the USA and Canada was 3.14% and world average was 2.97%. So the higher rates of growth of real GDP by inhabitant of these countries in comparison with world average, approximately 1.93% both in Western Europe, the USA and Canada, while world average was 1.56%, are due to the lower rates of demographic growth in the majority of OECD countries, with an exponential rate of yearly growth of population of 0.47% in Western Europe and 1.25% in the USA and Canada, both clearly below the world average of 1.40%.

Although we are not analysing here the main factors that influence the evolution of GDP by inhabitant, it is interesting to stand out this important feature of the process of economic development in OECD countries because it is usually ignored in the economic literature. A more detailed analysis of empirical results of time series macroeconometric models of supply and demanda, cross country models and international comparisons is presented in Guisan and Frias(2003).

3. Bilateral relationship with Granger's causality test and a modified version of Granger's test.

Here the estimations are performed with data expressed in purchasing power parities of 1990, PPPs, and per capita terms, and so we analyse the relation of Private Consumption by inhabitant en Gdp by inhabitant, with both variables measured in thousands of dollars at 1990 prices and PPPs.

The individual evolution of ChiPP for each country is presented in the graphs of the Annex, where we can see that although all the countries experienced important increases in this variable there are many differences among them.

1)Individual regressions with Granger's test of causality

We use the command CAUSE of Micro-TSP version 7.2 of QMS:

CAUSE(2) Chipp Phipp

For i = at, au, ax, b ca, d e, fi f, gr, ho, ic ,ir it j, l, m, no nz, pt se, si tu uk u

This approach tests the joint nullity of the parameters, corresponding to lags of X in relation (1) and to lags of Y in relation (2), in the following VAR model:

(1) LS Y C Y(-1) Y(-2) X(-1) X(-2)

(2) LS X C Y(-1) Y(-2) X(-1) X(-2)

Results: The hypothesis Phi causes Chi, Chi=f(Phi), could be accepted only in 10 out of 25 countries. The reverse hypothesis Chi causes Phi, Phi=f(Chi), could be accepted only in 8 out of 25 countries. The consideration of different numbers of lags did not get to better results.

2) Individual regressions with a modified version of Granger's test

A first modification to Granger test, maintaining this author's approach of non contemporaneous relations is the following

(3) LS Chipp Chipp(-2) Phipp(-1) C

(4) LS Phipp Phipp(-2) Chipp(-1) C

Result: The causal relation Chi=f(Phi) is accepted in 23 countries, being the exceptions among 25 countries only Luxembour and Switzerland. The causal relation Phi=f(Chi) was accepted in 14 countries.

This modified version gives better results than the original version of Granger's test because it avoids the high degree of multicollinearity corresponding to that test, and besides that it does not make redundant the information of the lagged explanatory variable in each equation. In this modified version the lagged value of the explained variable correspond to a delay higher than the lagged value of the explanatory variable.

3) Pooled estimation by LS with modified version of Granger's test

With a sample of 25 OECD countries during the period 1962-97 the results of the pool estimation by LS lead to accept the bilateral relation between Chi=f(Phi) and Phi=f(Phi), as it can be seen in the following results of equations (3) and (4).

Table 1. Estimation	n of relation (.	3) with a poo	l of 900 ob	servations		
Dependent Variable: CH?PP						
Method: Pooled Least	Squares					
Sample(adjusted): 196	52 1997					
Included observations	: 36 after adjus	sting endpoint	s			
Number of cross-secti	ons used: 25					
Total panel (balanced)) observations:	900				
Variable	Coefficient	Std. Error	t-Statistic	Prob.		
С	0.270471	0.028459	9.503885	0.0000		
CH?PP(-2)	0.889787	0.015373	57.87975	0.0000		
PH?PP(-1)	0.068288	0.008749	7.804894	0.0000		
R-squared	0.987327	Mean depen	dent var	7.303589		
Adjusted R-squared	0.987298	S.D. dependent var 2.688606				
S.E. of regression	0.303009	Sum squared resid 82.35731				
Log likelihood	-200.9473	F-statistic 34940.9		34940.99		
Durbin-Watson stat	0.709188	Prob(F-statis	stic)	0.000000		

Table 2. Estimation of relation (4) with a pool of 900 observations Dependent Variable: PH?PP Method: Pooled Least Squares Sample(adjusted): 1962 1997 Included observations: 36 after adjusting endpoints Number of cross-sections used: 25 Total panel (balanced) observations: 900

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	0.350105	0.048302	7.248224	0.0000
PH?PP(-2)	0.977932	0.015208	64.30486	0.0000
CH?PP(-1)	0.065368	0.026303	2.485220	0.0131
R-squared	0.988564	Mean depen	dent var	12.23753
Adjusted R-squared	0.988539	S.D. dependent var		4.713977
S.E. of regression	0.504669	Sum squared resid		228.4575
Log likelihood	-660.0746	F-statistic		38770.07
Durbin-Watson stat	0.668382	Prob(F-statis	stic)	0.000000

The results where similar under several approached, fixed effects modelts, correction of heteroskedasticity by White's estimations of standard deviations, and other shown in the Annex. The presence of autocorrelation makes also interesting the estimation by GLS.

In a future revision of the paper we will present another estimations of the modified version of Granger's test of causality, and as a provisional conclusion we think that the test has advantages on the original version, because the lags of the explanatory variable are more recent than those of the explained variable and thus the explanatory variable is not redundant.

4.- Bilateral contemporaneous relationship: TSLS and Hausman's test of causality

For the moment the Hausman's test of causality was applied to the USA and Mexico, with acceptance of interdependence in both cases, and in a forthcoming revision of this paper the results for the another 23 countries will be reported. Tables 3 to 6 present the results of TSLS estimation and Hausman's causality test for the USA, while tables 7 to 12 present the results for Mexico.

Table 3				
Dependent Variable	: PHUPP			
Method: Two-Stage	Least Squares			
Sample(adjusted): 1	961 1997			
Included observation	ns: 37 after adjus	sting endpoint	s	
Instrument list: CHU	JPP(-1) PHUPP	(-1)		
Variable	Coefficient	Std. Error	t-Statistic	Prob.
PHUPP(-1)	0.986857	0.006684	147.6462	0.0000

M.C. Guisan. Causality Tests, Interdependence and Model Selection. www.usc.es/economet

D(CHUPP)	2.328931	0.485225	4.799690	0.0000
R-squared	0.996142	Mean dependent var		18.59539
Adjusted R-squared	0.996032	S.D. dependent var		3.338300
S.E. of regression	0.210280	Sum squared resid		1.547616
Durbin-Watson stat	1.700638	_	_	=

Table 4 Dependent Variable: CHUPP Method: Two-Stage Least Squares Sample(adjusted): 1961 1997 Included observations: 37 after adjusting endpoints Instrument list: CHUPP(-1) PHUPP(-1)

Variable	Coefficient	Std. Error	t-Statistic	Prob.
CHUPP(-1)	1.008740	0.002711	372.1281	0.0000
D(PHUPP)	0.420130	0.088301	4.814903	0.0000
R-squared	0.998854	Mean dependent var		11.99393
Adjusted R-squared	0.998821	S.D. depend	ent var	2.658072
S.E. of regression	0.091264	Sum squared	d resid	0.291518
Durbin-Watson stat	1.675525			

Table 5				
Dependent Variable:	CHUPP			
Method: Least Square	S			
Sample(adjusted): 196	52 1997			
Included observations	: 36 after adjus	sting endpoint	S	
Variable	Coefficient	Std. Error	t-Statistic	Prob.
CHUPP(-1)	1.005270	0.001454	691.1818	0.0000
D(PHUPP)	0.289440	0.053849	5.374994	0.0000
D(PHUPPF)	0.266861	0.061433	4.343969	0.0001
R-squared	0.999248	Mean depen	dent var	12.11943
Adjusted R-squared	0.999203	S.D. depend	ent var	2.582220
S.E. of regression	0.072910	Akaike info	criterion	-2.319538
Sum squared resid	0.175422	Schwarz crit	terion	-2.187578
Log likelihood	44.75169	Durbin-Wat	son stat	1.071881

Table 6
Dependent Variable: PHUPP
Method: Least Squares
Sample(adjusted): 1962 1997
Included observations: 36 after adjusting endpoints

Variable	Coefficient	Std. Error	t-Statistic	Prob.
PHUPP(-1)	0.995096	0.001724	577.0895	0.0000
D(CHUPP)	0.688933	0.193453	3.561242	0.0011
D(CHUPPF)	1.017030	0.166877	6.094490	0.0000
R-squared	0.998737	Mean dependent var		18.76594

M.C. Guisan. Causality Tests, Interdependence and Model Selection. www.usc.es/economet

Adjusted R-squared	0.998660	S.D. dependent var	3.218030
S.E. of regression	0.117780	Akaike info criterion	-1.360340
Sum squared resid	0.457781	Schwarz criterion	-1.228380
Log likelihood		Durbin-Watson stat	

Table 7 Dependent Variable: CHMPP Method: Two-Stage Least Squares Sample(adjusted): 1961 1997 Included observations: 37 after adjusting endpoints Instrument list: PHMPP(-1) CHMPP(-1)

Variable	Coefficient	Std. Error	t-Statistic	Prob.
CHMPP(-1)	0.994886	0.003414	291.4003	0.0000
D(PHMPP)	0.775867	0.127368	6.091520	0.0000
R-squared	0.993642	Mean dependent var		3.593790
Adjusted R-squared	0.993460	S.D. dependent var		0.594324
S.E. of regression	0.048064	Sum squared	d resid	0.080854
Durbin-Watson stat	1.241978			=

Table 8
Dependent Variable: PHMPP
Method: Two-Stage Least Squares
Sample(adjusted): 1961 1997
Included observations: 37 after adjusting endpoints
Instrument list: PHMPP(-1) CHMPP(-1)

Variable	Coefficient	Std. Error	t-Statistic	Prob.
PHMPP(-1)	1.005167	0.002421	415.1042	0.0000
D(CHMPP)	1.202590	0.196453	6.121506	0.0000
R-squared	0.996207	Mean dependent var		5.140972
Adjusted R-squared	0.996099	S.D. dependent var		0.977275
S.E. of regression	0.061038	Sum squared	d resid	0.130397
Durbin-Watson stat	1.263467			

Table 9
Dependent Variable: CHMPP
Method: Least Squares
Sample(adjusted): 1962 1997
Included observations: 36 after adjusting endpoints

Variable	Coefficient	Std. Error	t-Statistic	Prob.
CHMPP(-1)	0.995340	0.001995	498.8021	0.0000
D(PHMPP)	0.365891	0.102532	3.568555	0.0011
D(PHMPPF)	0.396998	0.100779	3.939297	0.0004
R-squared	0.995186	Mean dependent var		3.627193

M.C. Guisan. Causality Tests, Interdependence and Model Selection. www.usc.es/economet

Adjusted R-squared	0.994894	S.D. dependent var	0.566437
S.E. of regression	0.040474	Akaike info criterion	-3.496656
Sum squared resid	0.054059	Schwarz criterion	-3.364696
Log likelihood	65.93981	Durbin-Watson stat	0.601180

Table 10 Dependent Variable: CHMPP Method: Least Squares Sample(adjusted): 1963 1997 Included observations: 35 after adjusting endpoints Convergence achieved after 14 iterations

Variable	Coefficient	Std. Error	t-Statistic	Prob.
CHMPP(-1)	0.993001	0.005378	184.6573	0.0000
D(PHMPP)	0.383846	0.057168	6.714370	0.0000
D(PHMPPF)	0.394337	0.056646	6.961432	0.0000
AR(1)	0.737112	0.147299	5.004188	0.0000
R-squared	0.997098	Mean dependent var		3.662183
Adjusted R-squared	0.996817	S.D. dependent var		0.533777
S.E. of regression	0.030115	Akaike info criterion		-4.060406
Sum squared resid	0.028113	Schwarz criterion		-3.882652
Log likelihood	75.05710	Durbin-Watson stat		1.558899
Inverted AR Roots	.74			

Table 11

Dependent Variable: PHMPP Method: Least Squares Sample(adjusted): 1962 1997 Included observations: 36 after adjusting endpoints

mended observations: 50 after adjusting endpoints						
Coefficient	Std. Error	t-Statistic	Prob.			
1.004540	0.001770	567.4472	0.0000			
0.642882	0.170176	3.777753	0.0006			
0.629233	0.176047	3.574232	0.0011			
0.996937	Mean depen	dent var	5.194176			
0.996751	S.D. depend	ent var	0.935215			
0.053307	Akaike info	criterion	-2.945848			
0.093774	Schwarz crit	terion	-2.813888			
56.02526	Durbin-Wat	son stat	0.677102			
	Coefficient 1.004540 0.642882 0.629233 0.996937 0.996751 0.053307 0.093774 56.02526	Coefficient Std. Error 1.004540 0.001770 0.642882 0.170176 0.629233 0.176047 0.996937 Mean depen 0.095751 S.D. depend 0.093774 Schwarz critt 56.02526 Durbin-Wat	Coefficient Std. Error t-Statistic 1.004540 0.001770 567.4472 0.642882 0.170176 3.777753 0.629233 0.176047 3.574232 0.996937 Mean dependent var 0.996751 S.D. dependent var 0.053307 Akaike info criterion 0.093774 Schwarz criterion 56.02526 Durbin-Watson stat			

Table 12

Dependent Variable: PHMPP Method: Least Squares Sample(adjusted): 1963 1997 Included observations: 35 after adjusting endpoints Convergence achieved after 17 iterations

Convergence demeved after 17 iterations				
Variable	Coefficient	Std. Error	t-Statistic	Prob.
PHMPP(-1)	1.005242	0.004514	222.6965	0.0000
D(CHMPP)	0.658632	0.104009	6.332433	0.0000
D(CHMPPF)	0.669636	0.109025	6.142041	0.0000
AR(1)	0.711572	0.152533	4.665037	0.0001

M.C. Guisan. Causality Tests, Interdependence and Model Selection. www.usc.es/economet

P squared	0 008047	Maan dependent var	5 2/10238
ix-squarea	0.7700+7	Weath dependent var	J.27/250
Adjusted R-squared	0.997858	S.D. dependent var	0.887690
S.E. of regression	0.041080	Akaike info criterion	-3.439392
Sum squared resid	0.052314	Schwarz criterion	-3.261638
Log likelihood	64.18935	Durbin-Watson stat	1.554701

Following Nakamura and Nakamura(1980), the significant values of the parameters corresponding to the reduced form estimations of the endogenous variables (indicated with the letter F of fitted at the end of their names), in the LS estimation of the structural equations is equivalent to accept Hausman's causality. According to their analysis it is enough to get one of the coefficients significant, together with significance of both coefficients in TSLS estimation for evidence in favour of simultaneity and interdependence. In this cases the results confirm significant of all the relevant coefficients, both in the TSLS estimation and in the Hausman's test, and so we can conclude that there is evidence in favour of contemporaneous bilateral relation.

Besides the methods here utilized there are another interesting specification tests between different theories and functional forms, as those used in Cancelo, Guisan and Frias, which usually lead to interesting conclusions and which we will applied also to the relationship between real Consumption and GDP in future studies.

5.- Conclusions

Some of the main conclusions from this paper are the following:

1) An adequate regression approach has more success for distinguishing causal relations from spurious ones than cointegration approach, so the emphasis on cointegration should be, in my opinion, diminished and the interest on other more realistic approaches should be fostered. In 100% of cases the adequate regression approaches got a good result while in the case of cointegration tests the results where too much inconclusive with false results in more than 50% of the cases in many options.

2) Granger's test of causality present many problems of multicollinearity and redundant variables, because the effect of lagged values of explanatory variables with the same delay than the lagged values of the explained variables make the latter redundant in many cases. The causal relation between Consumption by inhabitant and Gross Domestic Product by inhabitant could only be accepted in 10 out of 25 OECD countries.

3) Granger's test have interest, in spite of those unfortunate results, if we consider a modified version where the lagged values of explanatory variables have less delay than the lagged value of the explained variable. The results were much better with this approach, being accepted the causal relation between Consumption by inhabitant and Gross Domestic Product by inhabitant in 23 out of 25 OECD countries.

4) Although the modified version of Granger's test seems to have very good results, the question is that contemporaneous relation also hold in macroeconomics, and the experience of TSLS and Hausman's performed with these data and with another macroeconomic relations seems to give very goods results. In this paper we have presented those estimations and tests for the USA and Mexico showing evidence of bilateral contemporaneous relations in both countries between Consumption and GDP.

5) We would like to insist upon the empirical evidence that exists in favour of the relation between Consumption and GDP, with usually is very strong, and the the reverse relation, between GDP in Consumption usually is important but not so strong.

ANNEX.

Graph A1. Evolution of Chipp of Austria, Australia, Germany, Belgium, Canada, Denmark, Spain, Finland and France (thousands of dollars by inhabitant at 1990 prices and PPPs)

Graph A2. Evolution of Chipp of Greece, Netherlands, Iceland, Irland, Italy, Japan, Mexico, Luxembourg, and Norway (thousands of dollars by inhabitant at 1990 prices and PPPs)

Graph A3. Evolution of Chipp of New Zealand, Portugal, Sweden, Switzerland, Turkey, United Kingdom and the USA (thousands of dollars by inhabitant at 1990 prices and PPPs)

Pooled estimated relations of the modified version of Granger's causality test.

Table 13

Dependent Variable: CH?PP
Method: Pooled Least Squares
Sample(adjusted): 1962 1997
Included observations: 36 after adjusting endpoints
Number of cross-sections used: 25
Total panel (balanced) observations: 900

Variable	Coefficient	Std. Error	t-Statistic	Prob.
CH?PP(-2)	0.920960	0.015748	58.47988	0.0000
PH?PP(-1)	0.069844	0.009173	7.614456	0.0000
R-squared	0.986051	Mean dependent var		7.303589
Adjusted R-squared	0.986035	S.D. dependent var		2.688606
S.E. of regression	0.317721	Sum squared resid		90.65032
Log likelihood	-244.1213	F-statistic		63477.57
Durbin-Watson stat	0.665242	Prob(F-statis	stic)	0.000000

Table 14 Dependent Variable: CH?PP Method: Pooled Least Squares Date: 01/30/03 Time: 10:19 Sample(adjusted): 1962 1997 Included observations: 36 after adjusting endpoints Number of cross-sections used: 25 Total panel (balanced) observations: 900

Variable	Coefficient	Std. Error	t-Statistic	Prob.
CH?PP(-2)	0.714859	0.021244	33.64953	0.0000
PH?PP(-1)	0.155649	0.012489	12.46286	0.0000
Fixed Effects				
R-squared	0.990092	Mean depen	dent var	7.303589
Adjusted R-squared	0.989797	S.D. dependent var		2.688606
S.E. of regression	0.271577	Sum squared	d resid	64.38748
Log likelihood	-90.18068	F-statistic		3355.282
Durbin-Watson stat	0.761272	Prob(F-statis	stic)	0.000000

AT= 0.364789, AU=0.498824, AX=0.303098, B=0.654451, CA=0.335282, D=0.179278, E=0.476515, FI=0.166583,

F=0.498172, GR=0.569698, HO=0.486537, IC=0.622286, IR= 0.476733, IT=0.458443, J=0.594219, L=0.791435,

M=0.303924, NO=0.216283, NZ=0.451540, PT=0.489272, SE=0.130644, SI=0.450500, TU=0.290215, UK=0.455530,

U=0.942951

Table 15 Dependent Variable: CH?PP Method: Pooled Least Squares

Date: 01/30/03 Time: 10:21 Sample(adjusted): 1962 1997 Included observations: 36 after adjusting endpoints Number of cross-sections used: 25 Total panel (balanced) observations: 900 White Heteroskedasticity-Consistent Standard Errors & Covariance					
Variable	Coefficient	Std. Error	t-Statistic	Prob.	
С	0.270471	0.027621	9.792165	0.0000	
CH?PP(-2)	0.889787	0.018831	47.25074	0.0000	
PH?PP(-1)	0.068288	0.010049	6.795607	0.0000	
R-squared	0.987327	Mean depen	dent var	7.303589	
Adjusted R-squared	0.987298	S.D. dependent var 2.68860			
S.E. of regression	0.303009	Sum squared resid 82.35			
Log likelihood	-200.9473	F-statistic		34940.99	
Durbin-Watson stat	0.709188	Prob(F-statis	stic)	0.000000	

Table 16 Dependent Variable: CH?PP Method: Pooled Least Squares Sample(adjusted): 1962 1997 Included observations: 36 after adjusting endpoints Number of cross-sections used: 25 Total panel (balanced) observations: 900 White Heteroskedasticity-Consistent Standard Errors & Covariance

Coefficient	Std. Error	t-Statistic	Prob.
0.714859	0.027925	25.59911	0.0000
0.155649	0.016196	9.610630	0.0000
0.990092	Mean depen	dent var	7.303589
0.989797	S.D. depend	ent var	2.688606
0.271577	Sum squared	d resid	64.38748
-90.18068	F-statistic		3355.282
0.761272	Prob(F-statis	stic)	0.000000
$\begin{array}{c} 0.36\\ 0.49\\ 0.30\\ 0.65\\ 0.33\\ 0.17\\ 0.47\\ 0.16\\ 0.49\\ 0.56\\ 0.48\end{array}$	4789 IC—C 9824 IR—C 93098 IT—C 5282 L—C 9278 M—C 9278 M—C 9278 NO—C 9515 NO—C 96515 NO—C 96583 NZ—C 98172 PT—C 9698 SE—C 9698 SE—C 10—C UK—C U—C	0.62228 0.47673 0.45844 0.59421 0.79143 0.30392 0.21628 0.45154 0.48927 0.13064 0.45050 0.29021 0.45553 0.94295	6 3 9 5 4 3 0 2 4 0 5 0 1
	Coefficient 0.714859 0.155649 0.990092 0.989797 0.271577 -90.18068 0.761272 0.36 0.49 0.30 0.65 0.33 0.17 0.47 0.48	Coefficient Std. Error 0.714859 0.027925 0.155649 0.016196 0.990092 Mean depend 0.271577 Sum squared -90.18068 F-statistic 0.761272 Prob(F-statistic 0.364789 IC—C 0.498824 IR—C 0.303098 IT—C 0.35282 L—C 0.179278 M—C 0.476515 NO—C 0.498172 PT—C 0.569698 SE—C 0.486537 SI—C UK—C UK—C	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Graph A4. Residuals of Chipp= f(Chipp(-2), Phipp(-1) c) with dummies for fixed effects

Table 17

Dependent Variable: PH?PP Method: Pooled Least Squares Sample(adjusted): 1962 1997 Included observations: 36 after adjusting endpoints Number of cross-sections used: 25 Total panel (balanced) observations: 900				
Variable	Coefficient	Std. Error	t-Statistic	Prob.
PH?PP(-2)	0.882452	0.023285	37.89810	0.0000
CH?PP(-1)	0.194468	0.039847	4.880371	0.0000
Fixed Effects				
R-squared	0.990171	Mean dependent var		12.23753
Adjusted R-squared	0.989878	S.D. dependent var		4.713977
S.E. of regression	0.474270	Sum squared resid		196.3654
Log likelihood	-591.9568	F-statistic		3382.366
Durbin-Watson stat	0.716832	Prob(F-statistic) 0.000		

ATC	0.713260
AUC	0.518577
AXC	0.661852
BC	0.497279
CAC	0.650619
DC	0.796803
EC	0.411562
FIC	0.714358
FC	0.578479
GRC	0.216323
HOC	0.556269
ICC	0.576719
IRC	0.596296
ITC	0.646894
JC	0.836649
LC	0.920928
MC	0.056574
NOC	0.965993
NZC	0.190126
PTC	0.333095
SEC	0.627151
SIC	0.466072
TUC	0.074754
UKC	0.480681
UC	0.485208

Table 18 Dependent Variable: PH?PP Method: Pooled Least Squares Sample(adjusted): 1962 1997

Vhite Heteroskedasticity-Consistent Standard Errors & Covariance					
Coefficient	Std.	Error	t-Statistic	Prob.	
0.882452	0.03	2777	26.92330	0.0000	
0.194468	0.05	3342	3.645652	0.0003	
0.990171	Mear	n depend	ent var	12.23753	
0.989878	S.D.	depende	nt var	4.713977	
0.474270	Sum	squared	resid	196.3654	
-591.9568	F-sta	tistic		3382.366	
0.716832	Prob	F-statist	ic)	0.000000	
$\begin{array}{c} 0.71\\ 0.51\\ 0.66\\ 0.49\\ 0.65\\ 0.79\\ 0.41\\ 0.71\\ 0.55\\ 0.21\\ 0.55\\ 0.55\end{array}$	13260 18577 51852 97279 50619 96803 11562 14358 78479 16323 56269 76719	IRC ITC JC MC NOC NZC PTC SEC SIC TUC UKC	0.596 0.646 0.920 0.056 0.965 0.190 0.333 0.627 0.466 0.074 0.480	296 894 649 928 574 993 126 095 151 072 754 681 208	
	0 observations city-Consisten Coefficient 0.882452 0.194468 0.990171 0.989878 0.474270 -591.9568 0.716832 0.7 0.5 0.66 0.4 0.65 0.7 0.5 0.65 0.7 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	0.00000000000000000000000000000000000	Observations: 900 city-Consistent Standard Error Coefficient Std. Error 0.882452 0.032777 0.194468 0.053342 0.990171 Mean depend 0.989878 S.D. depende: 0.474270 Sum squared -591.9568 F-statistic 0.716832 Prob(F-statist 0.716832 Prob(F-statist 0.661852 JC 0.6601852 JC 0.650619 MC 0.796803 NOC 0.714358 PTC 0.578479 SEC 0.57669 TUC 0.576719 UKC	Observations: 900city-Consistent Standard Errors & CovartCoefficientStd. Errort-Statistic 0.882452 0.032777 26.92330 0.194468 0.053342 3.645652 0.990171 Mean dependent var 0.989878 S.D. dependent var 0.474270 Sum squared resid -591.9568 F-statistic 0.716832 Prob(F-statistic) 0.716832 Prob(F-statistic) 0.661852 JC 0.8366 0.497279 LC 0.9209 0.650619 MC 0.0565 0.796803 NOC 0.9659 0.411562 NZC 0.1900 0.714358 PTC 0.3339 0.578479 SEC 0.6277 0.216323 SIC 0.44660 0.556269 TUC 0.48600 0.576719 UKC 0.48600 $0C$ 0.485500	

Included observations: 36 after adjusting endpoints Number of cross-sections used: 25 Total panel (balanced) observations: 900 White Heteroskedasticity-Consistent Standard Errors & Covariance				
Variable	Coefficient	Std. Error	t-Statistic	Pro
PH?PP(-2)	0.882452	0.032777	26.92330	0.00

Table 19 Dependent Variable: CH?PP Method: Pooled Least Squares Sample: 1960 1997 Included observations: 38 Number of cross-sections used: 25 Total panel (balanced) observations: 925 Convergence achieved after 5 iterations

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	36.66680	163.9594	0.223633	0.8231
PH?PP	0.429040	0.014588	29.41102	0.0000
AR(1)	0.998905	0.005156	193.7384	0.0000
R-squared	0.997455	Mean dependent var		7.219623
Adjusted R-squared	0.997449	S.D. dependent var		2.710532
S.E. of regression	0.136891	Sum squared resid		17.27762
Log likelihood	528.4085	F-statistic		180672.2
Durbin-Watson stat	1.718040	Prob(F-statis	stic)	0.000000

Table 20 Dependent Variable: CH?PP

Method: Pooled Leas Sample: 1960 1997 Included observations Number of cross-sect Total panel (balanced Convergence achieve White Heteroskedasti	t Squares s: 38 ions used: 25 l) observations: d after 5 iterations: city-Consistent	925 ons t Standard Err	ors & Covar	iance
Variable	Coefficient	Std. Error	t-Statistic	Prob.
PH?PP	0.422190	0.029242	14.43788	0.0000
AR(1)	0.967663	0.008743	110.6823	0.0000
Fixed Effects				
ATC	3.053116			
AUC	3.804686			
AXC	3.227753			
BC	4.456249			
CAC	3.128095			
DC	1.828795			
EC	3.197968			
FIC	1.765875			
FC	3.850023			
GRC	3.923081			
HOC	3.887266			
ICC	4.634091			
IRC	1.600679			
ITC	4.000311			
JC	4.053200			
LC	4.561874			
МС	1.779524			
NOC	1.157379			
NZC	3.022763			
PTC	3.072097			
SEC	1.361884			
SIC	4.312579			
TUC	1.622407			
UKC	4.021677			
UC	7.353286			
R-squared	0.997610	Mean dependent var 7 21		7.219623
Adjusted R-squared	0.997541	S.D. depend	ent var	2.710532
S.E. of regression	0.134404	Sum squared	d resid	16.22194
Log likelihood	557.5677	F-statistic		14419.23
Durbin-Watson stat	1.769355	Prob(F-statis	stic)	0.000000

Bibliography

Cancelo, M.T., Guisan, M.C. and Frias, I.(2001). Supply and Demand on Manufacturing Output in OECD Countries: Econometric Models and Specification Tests. *Applied Econometrics and Economic Development*. 2001, Vol. 1-2, pp. 7-42.¹

Guisan, M.C. (2001a). "Causality and Dynamic Relations in Applied Econometrics". *Applied Econometrics and Economic Development*. 2001-vol. 1. pp. 5-15.¹

Guisan, M.C.(2001 b). Relaciones causales y modelos dinámicos. Chapter 2 of the book *"Crecimiento económico en los países de la OCDE 1. Modelos de crecimiento y empleo en Irlanda, Francia, España, Alemania, USA y Japón"*. Estudios Económicos nº 4. Asociación Hispalink-Galicia. Distribuye Mundi-Prensa. Madrid.¹

Guisan, M.C. and Arranz, M.(2001). Consumption Expenditure on Health and Education: Econometric Models and Evolution of OECD countries in 1970-96. Working paper of the series *Economic Development*, n.50, edited by Euro-American Association of Economic Development Studies, free downloadable.¹

Guisan, M.C. (2002). Causalidad y cointegración en modelos econométricos: Análisis econometríco de la relación entre le Consumo y el PIB en los países de la OCDE. Working paper of the series *Economic Development*, n.61, edited by Euro-American Association of Economic Development Studies, free downloadable.¹

Guisan, M.C. and Frias, I.(2003), eds. *Econometric Models and International Development: Evolution of Agriculture, Industry, Trade, Transport and other Services in OECD and non-OECD countries.*. Forthcoming.¹

Granger, C.W.J.(1969). Investigating Causal Relations by Econometric Models and Cross-spectral Methods. *Econometrica*, Vol. 37, pp. 424-438.

Hausman, J.A.(1978). Specification tests in Econometrics. Econometrica Vol. 46.

Maddison, A.(2001). "The World Economy. A Millennial Perspective". Development Centre Studies. OECD.

Nakamura, A. and Nakamura, M.(1981). On the Relationships among Several Specification Error Tests Presented by Durbin, Wu and Hausman. *Econometrica*, Vol. 49, n.6, pp.1583-88.

OECD(2000) and previous issues. National Accounts of OECD countries. OECD, Paris.

¹ Information about these publications on <u>www.usc.es/economet/eaa.htm</u>