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In this paper we present a Wald or distance test for testing the stabili-
ty of a linear dynamic model. Stability regquires that all latent roots

of the system simultaneously satisfy inequality restrictions. Unlike pre-
vious tests proposed in the literature cur procedure is capable of testing
the restrictions simultaneously. Therefore, the test asymptotically has
the correct size. The procedure can be applied in practice if stability
is not a requirement for identification of the dynamic model.

I. INTRODUCTION

Linear dynamic models axe widely used in applied econometrics. The con-
ditions for the stability of lineaxr dynamic models with constant coeffi-
cients have been derived in the literature. For continuous time linear
models, the requirement for stability is that the real part of the roots
of the characteristic equation is negative. To assure the stability of
discrete time dynamic systems, the roots of the characteristic eguation
must have modulus smaller than one. We refer the reader to e.g, Aokl
(1976) for a discussion of the stability conditions.

The stability condition is testable if it implies overidentifying restric-
tions on the parameters of the model. In many contributions to the time
series literature, the stability condition is part of the identification
requirements (see e.g. Hannan (1969, 1971) and Hatanaka (1975)). However,
Deistler (1976) gives conditions for the identification of dynamic models
which do not require stability. In particular he assumes that the initial
values of the process are zero. A similar result holds when we estimate a
dynamic model conditional on initial values. In these cases, the stabili-

ty condition becomes testable.

To check the stability of a linear system, it has been suggested in the
literature to compute the characteristic roots and to test whether the do-

minant root satisfies the stability condition. For instance, Theil and
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Boot (i962) derive the dominant root and its large sample variance for the
estimated characteristic equation of Klein's model I and test whether the
dominant root differs significantly from 1 in absolute value.

This procedure can lead to incorrect inference as the number of estimated
roots which are outside the stability region is stochastic. The stability
requirement implies inequality restrictions on all the characteristic roots.
These inequality restrictions have to be jointly tested. Therefore, a test
based on the dominant root only is not sufficient. As an alternative one
might consider testing each root separately and to control the overall le-
vel of significance by using the Bonferroni inequality (see e.g. Savin
(1980, 1983)). However, since the individual latent roots will be correla-
ted, the size of the test is not correct asymptotically. As the null hy-
pothesis of stability corresponds to inequality constraints, standard tests
based on quadratic forms of the estimated characteristic roots are not 7(?—
distributed in large samples. Under the null hypothesis, their asymptotic
distribution is a mixture of Q(z—distributions (see e.g. Gouriéroux et al.

(1980, 1982)).

In the main section of this paper, we present a Wald test which can be used
in a fairly straightforward way to test the stability of a linear dynamic
model. We show how the test can be implemented in applied work and we give
its asymptotic distribution under the null hypothesis. Our Wald test solves
the problems mentioned above. The concluding section comments on other re-
lated applications of the Wald test and on the relationship between the

Wald test and other test criteria.

II. A WALD TEST FOR THE STABILITY CONDITION

Consider the following first oxrder k dimensional dynamic system for x

= Db+ + £
X A(G)xt._1 e (2.1 a)
when t is a discrete time parameter, and for continuous time

x(t)

b +B(0)x(t) + e(t). (2.1 B)
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The elements of the k xk matrices A(8) and B(f) are functions of the vector
of parameters 6, b is a vector of intercepts and € is a disturbance term.
Notice that the system is written in reduced form. The elements of O cor-
respond to the underlying structural parameters. When the underlying
structural form is an n-th order system, it has to be converted into a
first order system to get (2.1). We assume that the stability condition

is testable.

For the discrete time model the stability requires the eigenvalues of A(8),

Ai’ to satisfy the restrictions
* .
AMA, <1, i=1, o, (2.2)

*
where Xi is the complex conjugate of Ai and p = k - r, with r being the
number of pairs of complex roots. The real part of the eigenvalues of B(6)
has to be negative to assure the stability of the continuous time model, ox

alternatively
* >
Ai+}\i<0, i=1, ..., p. (2.3)

In both cases, the set of inequality constraints can be straightforwardly

expressed as nonlinear functions of 8,
H. : h(B) > 0, (2.4)

where the dimension of h(f) equals p. Under the alternative hypothesis,

the eigenvalues are unrestricted, which we express as

H1 : h(0) # 0. . (2.5)

To introduce a Wald or distance test, we assume that 6 can be consistently

estimated by 8 such that the asymptotic distribution is given by

b - 2.6
THE - 8, x N, (2.6)

where 60 is the true value of 9 and Q can be consistently estimated by a,

T denotes the sample size. We transform the functions h(9) into a new
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parameter vector Y defined as

Y = Y h(B) and Y = o} h(d). (2.7)

The large sample covariance matrix of ? is given by
I = (d9h/38') § (dn'/90). (2.8)

The covariance matrix I can be consistently estimated by T evaluating ex-
pression (2.8) at § ana .

We define the distance of Y from ¥ in the metric I as

- - -1 -
¥ -y =¢-n'2 &-v. (2.9)

Let ? be the minimum distance estimator satisfying the restrictions under
HO : Y > 0. The distance between the restricted estimator and unrestricted
estimator, ? (which is the minimum distance estimator undex Hl Y F 0), is

given by

p=inf |y -y =[¥-71. (2.10)
Y>>0

The statistic D in (2.10) defines the Wald or distance test for

H : h(eo) > 0 against H, : h(eo) # 0. Under H.  the large sample distri-~

0 1
bution of D in (2.10) is given by

0

P 2
sup Pr(D>c|E) = I Pr(X'(p-i) > ¢) wip,i,%), (2.11)

Y>0 i=0

where w(p,i,L) denotes the probability that precisely i of the p components
of Y are strictly positive. For more details and for the derivation, we
refer to Kodde and Palm (1986) and to Perlman {(1969) and the references
therein. Kodde and Palm (1986) give lower and upper bounds for the criti-
cal value level of the distance test which can often be used instead of
computing the weights w needed to get (2.11).

In order to implement the Wald test, we have to derive I, for which we need
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on/96'. Contributions to the literature on the asymptotic variance of la-
tent roots are Oberhofer and Kmenta (1973), Neudecker and van de Panne (1966)

and Schmidt (1974). The partial derivative of h with respect to 0' is given
by

9n/30"' = (3h/3 vec'A) (9 veca/d0') (2.12)

*
where the px 1 vector h has an typical element 1 - )\i)\i. For the continuous

time model, we have
9h/99' = (Bh/3 vec'B) (2 vecB/d9") (2.13)

. *
with the typical element of h being ~(Ai + Ai). The partial derivative of

h with respect to vec'A is given by

*
(1 - Aiki)/a vec'A = -2 Ai(qi ® wi) if Ai is real

(2.14)

* L3 *
- 1 — 1 Y i i
)\i(qi = wi) Xi((qi) = wi) if Ai is complex

* *
with qy and q; being the column eigenvectors associated with A, and Xi

i
* x
respectively and wi and wi the column latent vectors of Ai and Ai. For

(2.13), we have

*
(-, - X,)/9 vec'B = -2(q! = w,) if A, is real
i i i i i (2.15)

I

* *

-(q! - ! if A, is complex.

(q; = w,) g)" = w,) 1 P

The vectors qi, wi and their complex conjugates are associated with Ai and
*

Ai but now correspond to the matrix B. For the derivation, we refer the

reader to the appendix. The derivative of vec A or vec B with respect to e’

can be derived as soon as the structure of these matrices is given.

To compute the Wald statistic, the following steps have to be carried out :
1) Given the estimate 8, compute A (or B) by A(B) (or B(B)) and compute
- ok - —k
1 = A A, (ox =A,- A,).
i i i
2) Choose all real eigenvalues and one out of each pair of complex eigen-

values.
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3) Compute D in (2.10) with I being the covariance matrix of the eigen-
values that have been included in D. I is computed using the results
in (2.12) - (2.15).

4) The large sample distribution of D is given in (2.11). Reject the null
hypothesis if D exceeds the critical value ¢ in (2.11) or the upper

bound in Kodde and Palm (1986) for a given significance level.

IIT. CONCLUDING REMARKS

To conclude, we presented a procedure for testing the stability of a linear
dynamic model with discrete or continuocus time parameter. The procedure
can be implemented in a fairly straightforward way provided the stability
condition is testable and a consistent asymptotically normally distributed
estimate of the parameters in the model is available. The test can be
applied to models with unrestricted as well as restricted reduced form.

The latter case encompasses stability tests for rational expectations models
and induced dynamic optimal control models with a quadratic penalty function.
When asymptotically efficient parameters estimates are available, the Wald
test presented in section II is asymptotically equivalent to a likelihood
ratio (LR) test and a Kuhn-Tucker (¥XT) test, in which case the test crite-
ria satisfy the following inequalities : KT £ LR & D. Notice that as h(8)
is a nonlinear function of 6, only local properties of the test have been
derived, that is the distribution of the test statistic has been given for
values of 8 in a neighborhood of 60. The fact that Wald criteria are based
on an unrestricted estimate of 8 should ensure that in large sample under
the null hypothesis the test statistic W will indeed beg evaluated at a

value of 0 close to 80. This may not be the case for the criteria LR of KT,
Finally, we like to note that the testing procedure presented in section II
can be easily modified to test other inequality restrictions such as the
invertibility condition in moving average models (provided it is testable).
With respect to further extensions, it is worthwile to mention that
Farebrother (1986) obtains the inequality restrictions implied by the sta-
bility condition when the order of the characteristic equation does not
exceed 4 but without knowledge about the number of complex roots. To test
these restrictions, Farebrother (1986) proposes to use the distance test

discussed above.
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APPENDIX
In this appendix we derive the results presented in formulae (2.14) and

(2.15). Frirst we observe that
*® * *
(L= Aili)/ﬁ.vec'A=-Ai aAi/a vec'A - Aiaxi/a vec'A (a.1)
and
*
B(—Ai-Ai)/a vec'B = —aAi/B vec'B - BAI/B vec'B. (A.2)

Formulae (A.l) and (A.2) depend on the sensitivity of a latent root with
respect to a real matrix. Let C be a square real matrix and Y the latent
root under consideration, where w {(dimension 1xk) and g (dimension kx 1)

are the corresponding latent row and latent column vectors. We.have

Cqg = Mg, wC = Uw and wg = 1. (A.3)
Therefore in differentials

{dc)q + C(dg) - H(dg) = (dW)q. (A.4)
Premultiplying (A.4) with w and using (A.3) gives w(dC)g = du, so that

ou/0 vec'C = (q' m w). (A.5)

Result (A.5) can directly be applied to (A.1) and (A.2) if we substitute
* * *

the triples (Ai, q; wi) and (Ai, a4 wi) fgr (H, g, w). The results in

(2.13) and (2.14) emerge when we use Ai = Ai if Ai is real. Furthermore

it is easy to check that the expressions in (2.14) and (2.15) are real

K *
since qi and wi are the complex conjugates of respectively qi and W
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Computing Wald criteria for nested hypotheses
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We present a numerically convenient procedure for computing Wald criteria
for nested hypotheses. Similar to Szroeter's (1983) generalized Wald
test, the suggested procedure does not require explicit derivation of the
restrictions implied by the null hypothesis and hence its use might elimi-
nate an intricate step in testing linear and nonlinear hypotheses.

We show that the traditional Wald test, Szroeter's (1983) generalized Wald
test and our procedure are asymptotically equivalent under Hg. A class of
nonlinear transformations of the restrictions for which the Wald statistic
is asymptotically invariant is discussed. Finally, we illustrate the use

of our procedure for testing the common factor restrictions in a dynamic
regression model.

1. INTRODUCTION

The Wald test (see Wald (1943)) is a very useful tool in empirical econo-
metrics. For computational convenience, a Wald test will be preferred to
a likelihood ratio test or a score test, when estimates of the
unrestricted parameters can be easily obtained. For instance, this is
frequently the case when a fairly general model is taken as the maintained
hypothesis throughout the modeling process. Also, a Wald test can be used
when consistent but not fully efficient parameter estimates are available

whose asymptotic distribution is known (see e.g. Stroud (1971)).

In this paper, we present a procedure for the computation of the Wald cri-
teria when testing nested hypotheses. The suggested procedure does not
require explicit derivation of the restrictions impiied by the null

hypothesis and hence its use might eliminate an intricate step in testing
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Tinear and nonlinear nested hypotheses. We show that the traditional wWaid
test, which can be computed if the restrictions are expressed in explicit
form, Szroeter's (1983) generalized Wald method and our procedure asymp-
totically yield the same value for the statistic under the null hypothe-
sis. For the three statistics, we discuss a general class of nonlinear
transformations of the restrictions, which yield the same value for the

Wald statistic in large samples.

The plan of the paper is as follows. In section 2, we present our prace-
dure for testing nested hypotheses. For the ease of reference, we briefly
describe Szroeter's (1983) generalized Wald test and we introduce some
basic notation. The asymptotic equivalence of the three statistics is
established in section 3. Then, a class of nonlinear transformations of
the restrictions for which the Wald statistic is invariant, is discussed.
In section 4, we consider the implications of a lack of global iden-
tification of the model under the null hypothesis for our procedure and
the generalized Wald method. Section 5 contains an example which
11lustrates how the Wald statistic can be computed in a fairly straight-
forward way for common factor restrictions in a dynamic regression model.

Finally, in section 6 we briefly present some conclusions.

2. WALD CRITERIA FOR NESTED HYPOTHESES

Let us assume that we have a model defined in terms of n parameters forming
a vector 6, and that 8 is some consistent asymptotically normally distri-
buted estimate of 8y such that y T(é - 6g), with T being the sample size

and 8p being the true value of @, has a covariance matrix g which can be

consistently estimated by ﬁe. A nested null hypothesis Hp implies a set

of constraints on 6
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(2.1)

which form a vector of r independent, continuously differentiable func-

tions. Under the alternative hypothesis, the equality in (2.1) does not
hold true.

The Wald statistic for testing the set of restrictions is

W=Th(8)" 6;1 h(8), (2.2)
where
fin = (Dgh) Qg (Dgh)', (2.3)

with Dgh denoting the first derivative matrix of h with respect to 6'
which we evaluate at 8. In the sequel, we denote the first and second
partial derivatives of y with respect to a vector x' by Dyy, with y being

a scalar or a vector, and by Dixy respectively, when y is a scalar.

On the null hypothesis that all the constraints (2.1) are satisfied, W is
x2-distributed in large samples with r degrees of freedom, provided that
plim ﬁh is nonsingular and that Dgh is a continuous function of 8 at the

true parameter value 6g.

When the restrictions are given in the form (2.1), the Wald statistic is
easily computed. Derivation of the restrictions in the form (2.1),
however, can be tedious and intricate. We propose a method that simpli-
fies explicit formulation of the restrictions and we show how h(é) and Dgh
can be determined by implicitly using the restrictions. In empirical
work, the restrictions implied by Hg are usually given in the "mixed" form

(see e.g. Gouriéroux and Monfort (1987)) of
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£(8,8) = 0, (2.4)

where B is a vector of m parameters of the restricted model, f is a con-
tinuously differentiable mapping from an m+n dimensional space into an m+r
dimensional one. Under Hp» 8p satisfies the implicit restrictions (2.4)
and it does so for a unique value Bp of B (in the interior of the para-
meter space for B). The matrices Dgf and Dgf are assumed to have rank m
and m+r respectively (m+r < n).

From the system in (2.4), we now choose m equations, fi(B8,8) = 0, such
that B can be solved explicitly as a function of 8, that is B = B(B).
When tocally no solution exists to fl(B,é) = 0, our result still holds
true asymptotically if 8 converges in probability to 6p, because we assume
that f(B,6p) = O has a solution. This solution is substituted in the r

remaining relations that we denote by f2(B,8) = 0 to give
h(B) = f2(B(8),8) = 0. (2.5)

Next, we obtain an expression for the partial derivatives. For the sake
of simplicity, we define the following matrices Dgf = F, Dgf = Q, Dgfy =
Fi,» Defi = Q4, 1 = 1,2, where the arguments B and 6 have been deleted.
When we evaluate these matrices at 8 and B(é), we use the notation ?, 6,

?1 and ﬁi respectively. Assuming that fy has been chosen such that Fy is
continuous and nonsinguiar at (Bg,B8p), we have as a result from the impli-
cit function theorem (see e.g. Rudin (1976)) that the solution of (2.5) is

continuous and differentiable in 8 with first derivative given by

DgB(8) = —FilQl. (2.6)

If the matrix F; is nonsingular at (Bg,8p), there exists only one solution

to f1(8,8) = 0 in some neighborhood of (Bg,8p).
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Applying the chain-rule of differentiation to (2.5) and using expression

(2.6), the partial derivatives of h become

Deh = —F2F11Q1 + Qz = HQ’ (2'7a)
with H = [-FzFil I3+ As a result of the implicit function theorem, Dgh

is continuous in 8 at B8g.
When we evaluate (2.7a) at a consistent estimate of 8, we get (see e.g.

Billingsley (1968}) under Hg
Dgh = HQ + op(1), (2.7b)

with H and Q being evaluated at (Bp,8p) and "op" denoting the order of
probability. Formulae (2.5) and (2.7) are suited for various kinds of
nested hypotheses. However, quite often the set of restrictions (2.4) has
the special form, f(B) -~ 8 = 0, so that expression (2.7a) can be
simplified. For instance, the constraints implied by the common factor
structure (e.g. Sargan (1977),(1980a)), the poilynomial distributed lags
(e.g. Almon (1965) and Sargan (1980b)) and the rational expectations
restrictions on the reduced form of a simultaneous equation model (e.g.
Hoffman and Schmidt (1981)) are of this special form. For this form of

the implicit relations, ¢ = -Iy, so that we obtain
h(8) = f2(B) - 82 and Dgh = -H, (2.8)

with 82 being the appropriate subvector of 6.

A procedure for computing Wald tests for different kinds of nested
hypotheses consists in (1) choosing a set of m equations f1, solving them
for B for a given § and substituting  in f2 to obtain h(8) = f2(8(6),6),
(2) computing the matrices Fy and Qy, 1 = 1,2, to obtain 59h in (2.7b),

and (3) calculating the value of W in (2.2). In the incidental case where
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Dgh in (2.7a) does not have full rank r, a consistent estimate of the
generalized inverse of Qn in (2.3) has to be substituted into (2.2).
The approach yields a convenient procedure to compute Wald criteria.
It also accommodates sequential testing when fz s successively
extended, given the choice of fj and the parametrization 6, B.

The generalized Wald test proposed by Szroeter (1983) for the set of
restrictions (2.4) can be obtained as follows. Given 5, a consistent

estimator B is found by minimizing
f(8,8)'S f(8,8) (2.9)

with respect to B, where S is a postitive semi-definite symmetric matrix
such that F'SF has rank r. The requirement that rank F'SF = r {5 a
generalization of Szroeter (1983) since he chooses a matrix S with rank
m+r. Notice that the estimate which minimizes (2.9) is the asymptotic
least squares estimate (see Gouriéroux et al. (1985) and Kodde, Palm and
Pfann (1987)). Applying the implicit function theorem to the first order

conditions for a minimum, F‘Sf(B,é) = 0, we get
B - Bo = PQ(d- 8g) + op(T-¥), (2.10)

With P = -(F'S F)-1 F'S. The mean value theorem applied for f at the true

parameters yields

o~ A

f(8,8) = [1 + FPIQ(8 - 8p),
= [1+ FPIQ(B - 8g) + op(T¥), (2.11)
where a tiide "~" denotes evaluation at a suitable point between

(8(8),8)and (89,80)-
The generalized Wald test is now given by

Wg = T £(B,8)'0-7(8,8), (2.12)
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where Q denotes the matrix Q = (14FP)Q 19 Q' (I+FP)' evaluated at (B(é),é).
As a result of the continuity of the derivatives of f and of Slutsky's

theorem, Q is op(1), and (2.12) can be expressed as
Wg = T £(B,8)'2 f(8,8) + op(1). (2.13)

Some comments on the implementation of Szroeter's (1983) procedure are in
order.

When S = [Q Qg Q']-, the asymptotic covariance matrix of £(8,8) in

(2.11) is

[Q g Q' - F{F'(Q g Q')~1F}~1F'7, (2.14)

and S is a g-inverse of this covariance matrix evaluated at (é,é), so that

the generalized Wald test (2.12) becomes
Wg = T £(8,8)'[Q g 0'7-1(8,8) = T £(8.B)'S £(§,8). (2.15)

Wg is Szroeter's objective function (2.9) evaluated at the minimum for B
and multiplied by T. Expression (2.15) gives an alternative way of com-
puting Wald criteria. Notice, however, that Q may depend on B so that a
consistent estimate of B is required for obtaining S in (2.15).

To summarize the practical implications, Szroeter's procedure requires
computing the global minimum of (2.9), whereas our procedure requires
obtaining the solutions of fl(s,é) = 0 and checking whether they satisfy
fz(B,é) = 0. Of course our procedure stops as soon as Hp is not rejected
for a given solution. Notice that solving fl(B,é) = 0 corresponds to

minimizing (2.9) for diagonal S with a one on the diagonal when the

corresponding equation of f is included in fy and zero otherwise.



176

3. ASYMPTOTIC EQUIVALENCE RELATIONSHIPS

In this section, we investigate whether the value of the Wald statistic is
affected by choosing alternative formulations for the constraints. We
give a general class of nonlinear transformations of the restrictions for
which the value of the traditional and generalized Wald statistics is
asymptotically invariant under Hg. Furthermore, we consider the influence
of the choice of f; and fp on the Wald test. Finally, we show that our
procedure is asymptotically equivalent with the traditional and the

generalized Wald tests.

3.1 TRANSFORMING THE RESTRICTIONS

Consider the case where the set of restrictions h(8) = 0 is such that Qp
is nonsingutar. As can be seen from (2.2) and {(2.3), an alternative for-
mulation of the restrictions say g(8) = 0, for which there exists a non-
singular matrix A such that Dgg = ADgh will asymptotically yield the same
value for the Wald statistic, both under Hy and under a sequence of local
alternative hypotheses. This result, which we call the equivalence con-
dition of the partial derivatives, directly follows from the lemma of
Holly and Monfort (1985), that we give in appendix I. That the identity
for the Wald statistic usually does not hold true when there exists no
matrix A that transforms Dgh into Dgg can be seen by showing that the plim

of the difference between the two Wald statistics is nonzero.

Given the set of restrictions h(8) = 0, we consider a transformation
g(h(0),6), with g(h{8),8) = 0 if and only if h(8) = 0, g having continuous
first and second derivatives, Dyg(y,6) being nonsingular and Dgg(y,8)
being zero at (0,8p). Then, h and g yield the same value for W in large

samples. This result follows from the equivalence condition of the par-



177

tial derivatives. The matrices of partial derivatives of h and g with

respect to 8 are given by

Dgh(8) and Dyg(y,8)Dgy + Dgg(y,8). (3.1)
But on Hp, as a result of Slutsky's theorem, we have

p1im Dgg(y,6) = p1im Dgg(0,8) = Dga(0,80) = O, (3.2)

where 8 is a consistent estimate of 6 and y = h(é). The second term of
the derivative of g with respect to 8 in (3.1) vanishes in large samples
and we obtain the asymptotic invariance of the Wald statistic with respect

to transformations of the type g(h(6),0).

Next, we consider some equivalence properties of the generalized Wald
test. First, Szroeter (1983) shows that the asymptotic local power of his
test does not depend on the particular choice of S. The asymptotic effi-
ciency of B, however, depends on S. 1In fact S = [6 ﬁg 6']'1 maximizes the
asymptotic efficiency of E, which then is an optimal asymptotic least
squares estimate.

Second, we consider general transformations of f(8,8) = 0 which take the

farm g(f(B,0),8,8), with
9(f(B,6),8,8) =0 (3.3)

if and only if f(B,8) = 0. Furthermore, g has continuous first and second
derivatives, Dyg(y,B,e) is nonsingular, Dgg(y,B,8) = 0 and Dgg(y,B,0) = 0
at (0,Bg,60). Again, we will show that in large sampies f and g yield the
same value for the generalized Wald test. Without loss of generality, we
only consider the case where the optimal weighting matrix S is chosen.
When g 1s evaluated at the optimal asymptotic least squares estimator

8(5), the matrix of partial derivatives of g with respect to 8 is given by
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But on Hg, as a result of Slutsky's theorem and similar to the analysis in
(3.2), the second and third term of (3.4) converge to zero, when evaluated
at a consistent estimate 8. In addition, the difference between DgB based
on f and g respectively, vanishes in large samples (see also Gouriéroux et
al. (1985)).

Therefore,
[Dyg(y,B,8)1-10gg(F(B,6),8,8) = [1 + FPIQ + op(1), (3.5)

and the lemma by Helly and Monfort (1985) establishes the asymptotic
invariance of the generalized Wald test for transformations of the type

mentioned above.

3.2 THE CHOICE OF f3

Next, we analyze the consequences of the partition of f into fy and fp
for the value of the Wald statistic. Without loss of generality, we only
consider two alternative choices for fy and fp. We partition the system
of constraints into four subsets, which consist of k, m-k, k and r-k rela-

tions respectively

f1(8,8) = 0, 1 =1,...4. (3.6)

To simplify the notation, we delete the arguments B and 8 and we denote

*

* *
the subset of restrictions f1 and fJ by f1+j

and its partial derivatives

with respect to B and 8 by Fi+j and Qj4j respectively.

. * *
As our chojce of f1 = 0, we use the sets f1+2 = 0 and f2+3 = 0 respective-

1y to derive a solution for B. Using the result in (2.7a), the partial
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derivatives can be written as

-1
Dghy = [-F344 Fyn Qre2 + Q344] (3.7)
and
-1
Dghz = [-F14q Fplq Q243 + Q144], (3.8)

where the subscript i = 1,2 indicates the choice of fq.

The value of the Wald statistic will asymptotically not be affected by the
choice of f1, if there exists a nonsingular matrix A such that the partial
derivatives in (3.7) and (3.8) satisfy the equivalence condition, Dghy =

ADgh1. A nonsingular matrix that gives the desired result is

O r-k
A = [-F1+4Bz ]» 3.9
rXxr Tr-k (3-9)

where Og . 15 a zero-matrix of order k x (r-k) and By consists of the

Jast k columns of the matrix
[By B2l = [Fp431°1. (3.10)

After premultiplication of (3.7) by (3.9), we get an expression that fis
jdentical with (3.8) (the details of the derivation are given in appendix
I1). The choice of a subset of restrictions fj does not affect the value
of the Wald statistic, provided fy is such that its solution 8 converges

to B and the matrix of partial derivatives is continuous at the true para-
meter values. Similar to our analysis in section 3.1, we can also show
that transformations of the implicit functions asymptotically have no

effect on the value of the Wald test in this case.
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3.3 EQUIVALENCE OF THE TRADITIONAL AND THE GENERALIZED WALD TESTS

We show that the traditional Wald test and the generalized Wald test yield

the same value in large samples. From (2.7), we obtain that

h(8) = HQ(E - Bp) + op(TH). (3.11)
The traditional Wald test and our procedure (2.2) can then be written as
W= T(8 - 89)'Q'H'[HORGQ'H' 1-1HQ(B - Bg) + op(1). (3.12)
Since HF = 0, from (2.11) one obtains that

Hf(é,é) = HQ(é - 8g) + Op(T'%) -
= h(d) + op(T-%), (3.13)

which establishes, using Holly and Monfort's lemma (see appendix I), the
asymptotic equivalence of the generalized Wald test, the traditional Wald
test and our approach, as H has full rank so that rank(H) = rank(HOQH').
When f(B,8) = 0 is linear in B and @, the three criteria are also equiva-

lent in finite samples.

4, MULTIPLE SOLUTIONS FOR B UNDER Hp

We consider the case where f(B,8) = 0, can have multiple solutions for
B.

First, the subset fi(B,8) = O we choose, possibly has multiple solutions.
However, not every solution of f1(B,8) = 0 will also satisfy the remaining
imp1icit relations. As the sample size T increases, the Wald statistic
tends to infinity for those solutions for which f2(8,8) # 0.

Second, the complete system f(B,8) = 0 can admit several solutions for B.

We assume that the set of restrictions can be expressed in the form f(B)-0
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= 0 and that each solution for B is locally identified. Under these
assumptions, the various forms of the Wald test asymptotically yield the
same result for each solution B.

The traditional Wald test (2.2) is used to test the restrictions h(8) ='0.
These restrictions are expressed in terms of the parameters © only, which
are uniquely identified. Therefore, this statistic is not affected by the
presence of multiple solutions for the implicit parameters B. For an

example, we refer to section 5,

To test f(B)-8 = 0, the generalized Wald statistic equals

Wg = m;n T(F(B)-8) 51 (£(8)-8). (4.1)

Let B* denote the value of B which minimizes expression (4.1) and let o*

be given by 8% = f(8*). Then we get
Wg = T(e*-é)'nél(e*-é). (4.2)

*

Now with multiple solutions to f(B) = 6", we obtain the same value of Wg
for each solution.

In section 3.3, we have shown that the asymptotic equivalence of the three
Wald criteria hinges upon the fact that HF = 0. In the presence of
multiple solutions, this condition is satisfied too. To show this
directly, we use h(8) = 0 and f(8) = 8. By differentiating h(8) with

respect to B and applying the chain rule, we find
0 = Dgh(®) = Dgh(8)Dgf(B) = HF, (4.3)

which yields the desired result. The three statistics are asymptotically

equivalent in case of multiple solutions for B.
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It is interesting to note that the Lagrange multiplier test, the 1ikeli-
hood ratio test and the Wald test also asymptotically yield the same value
under Hg in case maximum 1ikelihood estimates of 8 are used, even if B in

f(B)-6 = 0 is not globally identified.

The practical implication of the existence of multiple solutions for
f1(B,0) = 0 is that one can only reject Hy if for each solution of f1 the
Wald statistic is significantly different from zero. In other words, once
we have a solution B to fl(B,é) = 0 for which the test is not significant,

we conclude that the null hypothesis is not rejected.

Therefore, one will preferably choose fy such that its solutions can be
easily obtained. For example, if there are at least m linear restrictions
in f, one may want to select f; as a linear system in B (one has to make
sure that it has a unique solution). The occurrence of multiple solutions
will be illustrated by an example of common factor restrictions in section

5.

5. AN EXAMPLE : COMMON FACTOR RESTRICTIONS

Common factor restrictions, which are widely used in regression models
with autocorrelated disturbances can easily be tested using the methods
presented in section 2. The main reason for which we discuss the common
factor approach here is to show how multipie solutions for the subset of
nonlinear restrictions f; arise and how alternative formulations for the
restrictions imply the same asymptotic values for the Wald statistic under

Ho.

Sargan (1980a) presents a method for testing common factor restrictions in

a dynamic single equation model. His method is based on a condition on
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the determinant of a given matrix. Sargan (1977) generalizes the method
to vector dynamic models. Mizon and Hendry (1980) give an application of

Sargan's (1980a) method. A single regression equation with common factors

can be written as

k
o(L)a(Liyg = E - 6(L) ¥4 (L)xjg + e, (5.1)

1=1

where yt 1s the endogenous variable, et is a white noise error term with
zero mean and constant varfance ¢2 and independent of the exogenous
variable xit', for all t and t' and 4 = 1,...,k. The polynomials ¢(L),
a(L) and v5(L), 1 = 1,...,k, have degree p, ro and ry respectively. The
roots of ¢(L)a(L) 1ie outside the unit circle. The model (5.1) arises as

a special case of the dynamic regression model

k
Bp(L)yy = 151 Bi(L)xit + €¢, (5.2)

when Bg(L) = ¢(L)a(L) and 84(L) = ¢(L)y5(L), § = 1,...,k. The number of

k

of parameters in (5.1) and (5.2) ism=p + X

ri +kandn = (1+k
(2o T (1+k)p

k
+ 1§0 r{ + k respectively, so that the common factor structure in (5.1)

leads to pk restrictions on the parameters of (5.2). The restrictions are
of the form f(B)-8 = 0 and the computation of the Wald test is straight-

forward in this case.

For a given choice of fy, there might exist two or more solutions, not all
of them yielding the same asymptotic value for the Wald statistic under
Hp. However, all solutions to f yield the same value of W asymptotically.
A simple example given by Mizon and Hendry (1980) is iiluminating in this

respect. They consider a special case of models (5.1) and (5.2) written
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as

yt = ($+0)yt-1 - daye-2 + Yoxt + (V1-6Yp)Xt-1 - ViXt-2 + €t
withk =p =rg=ry =1, ¢(L) = 1-¢L, a(L) = I-aL,

Yi(L) = Yo + YiL, and yt = B1yt-1 + 82yt-2 + 63Xt + B4Xxt.1 + Bpxt.p +
€t.

When Hp is true, we have the following set of implicit relations between B

= (¢9G!Y0sY1)I and 8 = (61,---,85)l

fi(B,8) =0: ¢ + a - 67 = 0
-4 - 8 = 0
Yo - 63 = 0
Yy -¢Yp - 64 = O
f2(8,8) = 0 : -¢y1 - 65 = 0 . (5.3)

When ef + 482 > 0, f; = 0 has two real solutions. However, if Hg is true,

only one of these solutions also satisfies f; = 0, except when there
extsts a functional relationship on B, namely Yga = -Yi, in which case
both solutions satisfy fo = 0 and the model has two common factors. The
requirement that (1—91L-82L2) = 0 and (1-al)(1-¢L) = O have their roots
outside the unit circie does not resolve the problem of multiple solu-
tions. For instance, for 8' = (.5,.2,1,5,1), the characteristic roots of
the unrestricted model and the restricted model 1ie 1inside the unit

circle, whereas (5.3) still has two solutions.

The Wald statistic can be computed for both solutions using the formulae

in (2.8). The partial derivatives are then given by
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Yib + Yool Y1 + Yob
’ ) "¢2: 'q)s _1) (5‘4)
a-¢ a-¢

DBh:(

Computation of the Wald test when (2.8) is evaluated in a solution of fy =
0 that also satisfies fo = 0 asymptotically yields the value of the test
statistic that ought to be used in testing. The value of the Wald sta-
tistic for the second solution of f; = 0 will tend to infinity as piim
h(é) = constant # 0 and plim ﬁh is a constant matrix.

In small samples, we may not be able to discriminate between these values,

but in large samples we can.

Mizon and Hendry (1980) derive the restrictions on 6 implied by (5.3)
explicitiy. They find

8185 - 8204

B + ¢04 + 9203 = 0 and ¢ =
5 + $64 + 9403 ¢ 5,5 + 65

(5.5)
If the implicit relations (5.3) are substituted in (5.5), it is obvious
that the restriction on © implied by (5.5) must be valid under Hg.
However, the formulation of the restriction in (5.5) is not unique. After
some transformation of (5.3), we also find
» 0203 - 85

6 + ¢824 + 9463 =0 and ¢ = ————— 5.6

5 + $84 + 9403 ¢ 5165 + 9 (5.6)
as a restriction. According to Sargan (1980a), common factor restric-
tions emerge from conditions on the rank of a certain matrix y. For the

problem at hand,
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~1 81 B2 0

rank () = rank 03 04 85 0 =3
0 -1 81 B2
0 83 84 g

gives the restriction as can be verified by substituting (5.3).

The rank condition yields the determinantal condition
eg + 2878365 + 810405 + 959395 + egeg - ezeﬁ - 91070364 = 0, (5.7)

which is equivalent to the relationship obtained from (5.5) or (5.6) after
eliminating ¢. This result shows the equivalence between the Mizon-Hendry
approach and the Sargan procedure. The equivalence with our procedure and
the generalized Wald test can be shown along the lines of section 3.3 as
(5.7) is equivalent to f(B(é),é) = 0 and for (5.3), Dgh = -H which is or-
thogonal to F.

If Yi + aygp = 0, the matrix ¢ has rank 2 when Hp is true. Sequential
testing for the presence of two common factor polynomials can be performed
atong the lines proposed by Sargan (1980a) by first testing for rank (¢) =
3 and subsequently for rank (¢) = 2. Alternatively, in our method we

could extend f in (5.3) by adding the restriction v; + ayg = 0.

6. SOME CONCLUDING REMARKS

In this paper, we presented a general procedure for computing Wald cri-
teria to test lirear and nonlinear nested hypotheses. The procedure can
also be applied when the restrictions are in implicit form, as is often
the case in econometric modeling. Along with Szroeter's (1983) genera-

11zed Wald test, the proposed procedure avoids expressing the restrictions
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in explicit form, which can be intricate and time consuming.

We gave a class of nonlinear transformations of the restrictions to be
tested, for which the various Wald criteria are asymptotically invariant.
We discussed the properties of the proposed procedure. In particuiar, we
showed the asymptotic equivalence between the proposed procedure, the tra-
ditional Wald test and the generalized Wald test. The problem of multiple
solutions to a set of nonlinear constraints on the parameters under Hp has
been discussed. Some of the problems which may arise when testing nonli-
near constraints have been fllustrated using a dynamic regression model
with common factor restrictions. Finally, as mentioned in section 2, addi-
tional applications include the test of overidentifying restrictions and
the rational expectations constraints in a simultaneous equations model
and polynomial distributed lags.

Also, B can be efficiently estimated by asymptotic nonlinear least squares
applied to the "asymptotic" model f(B,8) = 0 provided a consistent esti-

mate of 8 is available.

APPENDIX 1

For the ease of reference, we give lemma 2 obtained by Holly and Monfort

(1985).

Lerma : Let V be a p-dimensional random vector such that variance (V) =R
is of rank r (< p) and EV = u € R(R), the range of Q.

Let Z = AV where A is a non-random matrix. Then, 7' (AQA' )T = V'Q7Y with
probability one (for any choice of the generalized inverse (ARA')" and )
1f, and only if, rank(AQA') = rank(Q).

For the proof, see Holly and Monfort (1985).
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APPENDIX I1

In this appendix, we show that

A[‘F3+4F11201+2 + Q3441 = ['F1+4F513Q2+3 + 014415 (A.1)
where A is defined in (3.9) and By is given in (3.10) and the formulae are

evaluated at (B,8).
The matrix multiplication in the Y.h.s. of {A.1) gives

0 * 0
x . Okmq -l k.n
(FpBafa + (] FrigQiup + DFypBals + 0 gx] (A.2)

From the definition (3.10) we have the following identity
BoF® = Iy - ByFY,
2 3 m 1 2
which we substitute into the first term of (A.2) to yield, after some

algebraic transformations,

Iy Ok m-k
o -F144B1 (Om-k Im-x) +
4 142
A Q142 - FleaB2Q3 4 | ©° . (A.3)
F4Fiip o
Expression (A.3) is equivalent to
*
Q1 i Ok n
- F144B1(Omek n + Q%) - F1448203 4 . (A.4)
Op—k n Qy

Ustng (3.10) 1n (A.4), we Tind the desired result - Fifply Qpyp +
Q2+3 + Q144-
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