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Abstract

The nucleolus of a cooperative game can be described with the aid of the leximin ordering but
also on the basis of two other orderings. In this note the relation between these orderings is studied
in a more general framework. The results are applied to the nucleolus corresponding to so-called
normal excess functions. Also the Kohlberg criterion is extended to this more general case.
 1998 Elsevier Science B.V. All rights reserved.
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1. Introduction

The nucleolus of a cooperative game with transferable utility, introduced in Schmeid-
ler (1969), lexicographically minimizes the nonincreasingly ordered excesses of the
coalitions over the imputation set of the game. More generally, let M be a finite set of

Magents (e.g. coalitions) and let P # R be some set of feasible vectors (e.g. the excess
vectors corresponding to a collection of payoff vectors in a game, see Section 3 below).
Consider the ordering K (d from ‘desirable’) defined byd

uB (a)u 5 uB (b)u for all t . t9t taK b :. there is a t9 [ R with Hd uB (a)u , uB (b)t9 t9

or uB (a)u 5 uB (b) for all t [ Rt t

for all a, b[P, where B ( ):5h j[M:a $tj denotes the set of agents for which thet a j

corresponding coordinates in a are at least t, and uB (a)u denotes the cardinality of thist

set. It is straightforward to verify that
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aK b ⇔ a*K b* ,d lexmin

where a* arises from a by rearranging the coordinates in nonincreasing order and
K denotes lexicographical minimization; that is, a*K b* if, and only if,lexmin lexmin

* * * *a ,b for the smallest j with a ±b . Thus, the nucleolus may alternatively be definedj j j j

using K . This ordering has the advantage that it is closer in formulation to the twod

orderings to be defined next. For a comprehensive survey on the merits of the nucleolus
and related solutions see Maschler (1992).

In Justmann (1977), Justman considers the ordering

aK b : ⇔ a 5 b, or there is a j [ M such that:J

a , b and for all i [ M:a . b implies a # a .j j i i i j

He shows that under certain conditions an iterative process based on this ordering
converges to the nucleolus, when applied to a game. Also Osborne and Rubinstein
propose an alternative ordering in their definition of the nucleolus (see Osborne and
Rubinstein, 1994). This is the following ordering:

aK : ⇔ a 5 b, or there is a j [ M such that:OR

a , b and for all i [ M:a . b implies a # b .j j i i i j

The advantage of both these orderings over the desirability relation K or the lexmind

ordering K is that they admit a more transparent interpretation in terms oflexmin

objections and counterobjections (cf. Osborne and Rubinstein, 1994, p. 286). To see this,
first realize that in agreement with their interpretation as excesses, coordinates should be
seen as disutilities; so lower coordinates are better. Concerning the ordering K one canJ

imagine some agent i objecting against some proposal a by referring to the alternative b;
then agent j may counterobject by stating, not only that a is better for him, j, than b, but
also that a is in fact better for agent i than for agent j himself; thus, by insisting on a
agent j actually accepts that he will end up less satisfied than agent i. Observe that such
an interpretation assumes that coordinates of different agents can be meaningfully
compared. The relation K can be given an interpretation in the same spirit, with theOR

difference that this time agent j, in counterobjecting against b, refers to the fact that b is
worse for him than a is for agent i.

The first objective of this note is to clarify the relations between the three orderings
defined above. This is done in Section 2. In Section 3 the result is applied to so called
normal excess vectors in cooperative games with transferable utility, which leads to a
generalization of existing results. A corresponding generalization of the Kohlberg
criterion involving balanced collections completes the paper.

1.1. Notation

# denotes set inclusion, , denotes strict set inclusion.

2. Comparison of K , K , and KJ d OR

MLet P #R , as in the Introduction. The following lemma is immediate from the
definitions.
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Lemma 1. Let a, b[P. Then:

(i) aK b ⇒ aK bJ OR

(ii) aK b, a ± b ⇒ not bK a, not bK a .J J OR

As to the relation with K we have the following result.d

Theorem 1. Let a, b[P. Then: aK b⇒aK ⇒aK b.J d OR

Proof. Assume aK b. If a5b then uB (a)u5uB (b)u for all t[R, so aK b.J t t J

Now assume a±b, and let j[M as in the definition of aK b. Define t9:5maxhb :b ±J k k

a j. Take t$t9 and suppose that b ,t#a for some i[M. Then a #a ,b #t9, ak i i i j j

contradiction. This shows that B (a)#B (b) and hence uB (a)u#uB (b)u for all t#t9.t t t t

For t5t9 this inequality is strict: for k[M with b 5t9, a .b would implyk k k

b ,a #a ,b contradicting the definition of t9, hence a ,b 5t9. For t.t9 thek k j j k k

inequality is in fact an equality, which can be seen as follows. Suppose, to the contrary,
that there is an i[M with i[B (b)\B (a). Then b $t.a , so b #t9,t by definition of t9,t t i i i

a contradiction.
It follows that also in this case aK b.d

Next, assume aK b. If a5b then a± b. Now assume a±b. Let t9 be such thatd OR

B (a)5B (b) for all t.t9, and B (a)±B (b).t t t9 t9

Suppose B (b),B (a), then obviously bK a. Together with aK b this implies uB (a)u5t9 t9 d d t

uB (b)u for all t, and in particular for t5t9, a contradiction. It follows that B (b)\B (a)±t t9 t9

[.
So, take j[B (b)\B (a). Then b .a . For i with a .b one must have a #t9 sincet9 t9 j j i i i

otherwise i[B (a)5B (b) for t5a , and thus, b #a , a contradiction. Therefore, a #t#t t i i i i

b , hence aK b. hj OR

Remark. In the proof of Theorem 1 the following has in fact been shown as well.

B (a) 5 B (b) for all t . t9t taK b ⇒ there is a t9 [ R with HJ B (a) , B (b)t9 t9

or a 5 b ,

and

B (a) 5 B (b) for all t . t9t taK b ⇐ there is a t9 [ R with HOR B (b) /B (a) ± [t9 t9

or a 5 b ,

It can be shown that the implication in the K -case is strict, and in the K -case it is anj OR

equivalence.
In general – that is, without specific conditions on the feasible set P – the

implications in Theorem 1 cannot be reversed. For instance, let M5h1, 2j, a5(2, 0), and
b5(1, 2). Then neither aK b nor bK a; aK b but not bK a; and aK b as well asJ J d d OR

bK a.OR

Under the following condition the reversal of the implications in Theorem 1, at least
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Mfor maximal elements of the three relations, will hold. Call a set P #⁄ R weakly convex
if for all a, b[P and every e .0 there is a c[P with (Euclidean) distance to a smaller
than e and with for all i[M:

a . b ⇒ a . c . bi i i i i

a , b ⇒ a , c , bi i i i i

a 5 b ⇒ a 5 c 5 b (1)i i i i i

Thus, the condition of weak convexity of a set means that between any two points of the
set there exists another point of the set as close to one of the two points as desired.

Obviously, convex sets are weakly convex. Further, one easily shows that a closed set
is weakly convex whenever for each a,b[P there exists a c[P with property (1).

MTheorem 2. Let P #R be weakly convex, and let K, K9 be any of the three orderings
K , K , K . Let a[P. If aKb for all b[P, then aK9b for all b[P.J d OR

Proof. In view of Theorem 1 it is sufficient to prove the implication for K5K andO R

K95K . So let aK b for all b[P. If a5b then by definition aK b. Now supposeJ OR J

a±b, then in particular a$b. Choose a point c satisfying (1) and so close to a that
c ,a for all i, j[M with a .a . Because aK c there is a coordinate j with a ,cj i i j OR j j

and a .c ⇒a #c for all i[M. By (1), a ,b . Take any i[M with a .b . Then, byi i i j j j i i

(1), a .c , hence a #c . By the choice of c this implies a #a . It follows that a Kb. hi i i j i j j

Theorem 2 applies in particular to a convex set P (the usual case for the nucleolus of
a cooperative game). Convex sets are connected but, clearly, connectedness of P is not a
necessary condition for the conclusion of the theorem to hold. It is also not a sufficient
condition, as the next example shows.

Example 1. Let M5h1, 2j, let

M M
P 5 h(x, 1) [ R :0 # x # 1j < h(1, x) [ R :0 # x # 1j

and let a5(0, 1). Then it is straightforward to verify that aK b for all b[P, but notOR

(e.g.) aK (1, 0). Observe that the set P is connected, but clearly does not satisfy (1).J

The proof of Theorem 2 uses the assumption that c may be chosen sufficiently close
to a. The following example shows that this assumption cannot be dropped.

Example 2. Let M5h1, 2j, and

M
P 5 h(0, 1)j < h(x, 1 2 x /2) [ R : 1 , x # 2j ,

and further, let a5(0,1). Again, it is straightforward to verify that aK b for all b, butOR

not (e.g.) aK (2, 0). P satisfies the property that for each a, b there exists a c[P withJ
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property (1), but for a5(0, 1) we cannot choose c arbitrarily close to a. Observe that P

is not closed.

3. Normal excess functions and the nucleolus

A (cooperative) game (with transferable utility) is a pair (N, v), or briefly v, where
NN:5h1,...,nj is the set of players and the characteristic function v:2 →R assigns to each

Ncoalition S[2 the worth v(S), with the convention that v([)50. Feasible allocations
Nare vectors in a given set F(v)#⁄ R , to be interpreted as possible payoff vectors for the

players in the game v. One way to evaluate feasible payoff vectors is to consider excess
or complaint functions e 5 (e ) , where the excess e (v,x) measures theNS S[2 •h[j S

dissatisfaction of coalition S in case the allocation x[F(v) is chosen as the outcome of
the game v. (The best known example is e (v, x): 5 v(S) 2 o x for every coalition S.)S i[S i

Thus, for a given collection of excess functions, any feasible allocation x gives rise to a
Mcorresponding vector of excesses e(x)5e(v, x)5(e (v, x)) in R , where the indicesS S±[

in M correspond to the nonempty coalitions.
For a given collection of excess functions e the nucleolus of a game v with feasible

allocation set F(v) consists of those feasible allocations of which the corresponding
excess vectors are most desirable:

n(v, F(v), e) 5 hx [ F(v): e(x)K e( y) for all y [ F(v)j .d

Most nucleoli considered in the literature (Schmeidler, 1969; Kohlberg, 1971; Grotte,
1971; Sobolev, 1975; Owen, 1977; Wallmeier, 1980, 1983; Potters and Tijs, 1992) are
defined with respect to excess functions that share the following property. A collection
of excess functions e is called normal if for every game v with feasible allocation set
F(v) every e is continuous on F(v) and satisfies:S

e (x) , e ( y)⇔x(S) . y(S) for all x, y [ F(v) ,S S

where x(S): 5 o x . Thus, normality implies that the excess functions depend only oni[S i

the sums of the individual coordinates.
It is not hard to prove that if F(v) is convex and e is a normal collection of excess

functions, then the image e(F(v)) is a weakly convex set. This observation implies the
following immediate corollary of Theorem 2.

Theorem 3. Let v be a game and let F(v) be a convex set. Let e be a normal collection
of excess functions. Then

n(v, F(v),e) 5 hx [ F(v): e(x)K e( y) for all y [ F(v)jJ

5 hx [ F(v): e(x)K e( y) for all y [ F(v)jOR

The rest of this section and of the paper deals with the Kohlberg criterion. As is well
known, the nucleolus can be characterized in terms of so called balanced collections of
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coalitions (Kohlberg, 1971). This Kohlberg criterion will be extended now to normal
excess functions.

NA collection C#2 \h[j of coalitions is balanced if it is empty or there exist positive
ˆweights l .0, S[C, such that for each player i[N the sum o l equals 1.S S łi,S[C S

In the following lemma balancedness is characterized in terms of sidepayments (a
Ny[R is a side-payment if y±0 and y(N)50). The lemma states that a non-empty

collection of coalitions is balanced if and only if it cannot perform a reallocation,
beneficial for at least one coalition in the given collection without hurting others (see
also Zumsteg (1995) for an application in the context of the computation of the
nucleolus).

NLemma 2. A non-empty collection C#2 of coalitions is balanced if and only if for
Neach side-payment y[R either y(S)50 for all S[C, or there are two coalitions

S,T [C with y(S).0 and y(T ),0.

Instead of this lemma a slightly different version will be formulated and proved, using
NFarkas’ Lemma. Let 7 be a collection of coalitions. A collection C#2 \h[j is called

7-balanced if there is a subset 79 of 7 such that C<79 is balanced. So, the standard
notion of balancedness is incorporated in this definition by taking 7 equal to the empty
set. Further, observe that each collection is hhij: i[Nj-balanced.

N NLemma 3. Let T #2 \h[j. A non-empty collection C#⁄ 2 \h[j of coalitions is 7-
Nbalanced if and only if for each side-payment y[R with y(S)$0 for all S[C<7 there

is no coalition S[C with y(S).0.

S S N SProof. Let e denote the indicator vector of coalition S, i.e. e [R and e 51 if i[S,i
Se 50 if i[⁄ S.i

N N SProof of ‘if’: The inequalities y?e $0, y?2e $0, y?e $0, for S[C<7, imply
S Sy?2e $0, for S[C; according to Farkas’ Lemma this implies that for each S[C, 2e

has to be a nonnegative weighted sum of the indicator vectors in C<7, and the vectors
N Ne and 2e . Therefore,

S S N S N S T
2 e 5 l e 2 m e 1 O l e , S [ C ,N N T

T [C<7

S Swith all weights nonnegative. Observe that l ,m for each S[C and, thus, there existN N
S Snonnegative weights g , T [C<7, with g .0, such thatT S

N S Te 5 O g e .T
T [C<7

SNow define the nonnegative weights l 5 (o g ) /(uCu), T [C<7. Define 79:5T S[C T

hT [7: l .0j. Observe that l .0 for every T [C. Then the collection C<79 isT T

balanced, as follows from
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S TO O g eS[C T [C<7 TN T T]]]]]]e 5 5 O l e 5 O l e .T TuCu T [C<7 T [C<7 9

Hence, C is 7-balanced.

Proof of ‘only if’: Let C<79 be balanced for a subset 79 of 7, and let y be a
side-payment with y(S)$0 for all S[C<7. Then, with l .0 for S[C<79 such thatS

N Se 5o l e ,S[C<7 9 S

N S0 5 y ? e 5 y ? O l e 5 O l y(S) .S SS D
S[C<7 9 S[C<7 9

This is only possible if y(S)50 for all S[C<79. h

The following theorem gives a characterization of the nucleolus in terms of balanced
collections for a specific case of normal excess functions. It is an extension of a result in
Potters and Tijs (1992).

N NTheorem 4. Let 7#2 , let v be a game with F(v)5hx[R : x(S)$v(S) for all S[7,
x(N)5v(N). Let e be a normal collection of excess functions, and let x[F(v). Then the
following two assertions are equivalent:

1. for each t[R there is a subset 79 of hS[7: x(S)5v(S)j such that B (e(v, x))<79 ist

balanced;
2. x belongs to the nucleolus.

Proof. In this proof the notation B (x) is used instead of B (e(v, x)).t t

Proof of ‘(i)⇒(ii)’: Let z[F(v), z±x be arbitrary. Take t9 such that B (x)5B (z) for allt t

9t.t9, and B (x)±B (z). Such a t9 exists because otherwise x(S)5z(S) for all coalitions,t t 9

implying x5z.

Claim: x(S)#z(S) for all S with e (x)$t9.To prove this claim, let S be a coalition withS

s:5e (x)$t9. Consider the following three cases:S

• s.t9: Then S[B (x)5B (z) and S[⁄ B (x)5B (z) for all t.s, implying s5e (z).s s t t S

• s5t9 and S[B (z): If e (z)5t.s then S[B (x) implying s$t.s. Therefore, s5t 9 S t

e (z).S

• s5t9 and S[⁄ B (z): Obviously, e (z),s.t 9 S

Hence, in all cases, e (x)$e (z) or, equivalently, x(S)$z(S). This proves the Claim.S S

Define y5z2x, then y(S)$0 for all S[B (x). Obviously, y(S)$0 for all S[7 witht 9

x(S)5v(S). By Lemma 3 it follows that y(S)50 for all S[B (x). Hence, x(S)5z(S), andt 9

9therefore e (x)5e (z) for all S[B (x), implying B (x)#B (z). Because B (x)±B (z)S S t 9 t 9 t 9 t 9 t

there is a coalition T with e (z)5t9.e (x). Also, e (x).e (z) implies e (x)#t95e (z).T T S S S T

So e(x)K e(z). By Theorem 3, x belongs to the nucleolus.OR
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Proof of ‘(ii)⇒(i)’: Let x[F(v) and suppose there is a t[R such that B (x)<79 is nott

balanced for each subset 7 9 of hS[T : x(S)5v(S)j. According to Lemma 3 there is a
side-payment y and coalition S9[B (x) such that y(S9).0 and y(S)$0 for each coalitiont

in B (x)<hS[7: x(S)5v(S)j. Obviously, y may be chosen to have Euclidean length oft

1. Choose d .0 such that B (x)5B (x). This is possible since by taking the largestt t 2 d

excess t9 of a coalition outside B (x) one has t9,t, and any 0,d ,t2t9 can be taken.t

By continuity of the excess functions there is an e .0 so that for each z[P within
Euclidean distance from x one has e (z)$t2d for S[B (x), and e (z),t2d forS t S

S[⁄ B (x), i.e., B (z)5B (x).t t 2 d t 2 d

For z:5x1ey it holds that z(S)$x(S) for all S[B (z), with strict inequality fort 2 d

S5S9. This implies e (z)#e (x) for all S[B (z) and e (z),e (x). In particular,S S t 2 d S 9 S 9

e (z).e (x) implies S[⁄ B (z), so e (z),t2d#e (z). Consequently, e(z)K e(x) whichS S t 2 d S S 9 J

yields, by Lemma 1, that e(x)K e(z) does not hold. By Theorem 3, x is not in theOR

nucleolus. h

References

Grotte, J.H., 1971. Observation on the Nucleolus and the Central Game. International Journal of Game Theory
1, 173–177.

Justmann, M., 1977. Iterative processes with ‘nucleolar’ restrictions. International Journal of Game Theory 6,
189–212.

Kohlberg, E., 1971. On the Nucleolus of a characteristic function game. SIAM Journal of Applied
Mathematics 20, 62–66.

Maschler, M., 1992. The Bargaining Set, Kernel, and Nucleolus. In: Aumann, R.J., Hart, S. (Eds.), Handbook
of Game Theory, vol. 1, North-Holland, Amsterdam, pp. 591–667.

Osborne, M.J., Rubinstein, A., 1994. A Course in Game Theory, The MIT Press, Cambridge MA.
Owen, G., 1977. A generalization of the Kohlberg Criterion. International Journal of Game Theory 6,

249–255.
Potters, J.A.M., Tijs, S.H., 1992. The Nucleolus of matrix games and other Nucleoli. Mathematics of

Operations Research 17, 164–174.
Schmeidler, D., 1969. The Nucleolus of a characteristic function Game. SIAM Journal of Applied Mathematics

17, 1163–1170.
Sobolev, A.I., 1975. The characterization of optimality principles in cooperative games by functional

equations. In: Vorobjev, N.N. (Ed.), Matematischeskie Metody v Socialnix Naukax, Proceedings of the
Seminar, issue 6, pp. 94–151. Institute of Physics and Mathematics, Academy of Sciences of the Lithuanian
SSR, Vilnius (in Russian, English summary).

Wallmeier, E., 1980. Der f-Nucleolus als Losungskonzepte fur n-Personenspiele in Funktionsform, Working
Paper WO1, Institut fur Mathematische Statistik der Universitat Munster.

Wallmeier, E., 1983. Der f-Nucleolus und ein dynamisches Verhandlungsmodell als Losungskonzepte fur
Kooperative n-Personenspiele, Dissertation Reprint, Skripten zur Mathematischen Statistik 5, Westfalische
Wilhelms-Universitat Munster.

Zumsteg, S.M., 1995. Non-Cooperative Aspects of Cooperative Game Theory and Related Computational
Problems, Ph.D. Thesis, Eidgenossischen Technischen Hochschule Zurich.


