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VaR-x: Fat tails in financial risk management

Ronald Huisman, Kees G. Koedijk, and Rachel A. J. Pownall

To ensure a competent regulatory framework with respect to value-at-risk (VaR) for
establishing a bank’s capital adequacy requirements, as promoted by the Basle
Committee on Banking Supervision, the parametric approach for estimating VaR needs
to incorporate the fat tails apparent in the return distributions of financial assets. This
paper provides a simple method to obtain accurate parametric measures by including
a specific measure VaR for the tail fatness of an asset’s return distribution: VaR-x.
Evidence is provided for the accuracy of these VaR-x estimates by comparing different
parametric VaR estimators for bi-weekly returns on US stocks and bonds.

1. INTRODUCTION

The quest for reliable risk management techniques has grown in response to
higher volatility and instability on global financial markets, compounded by the
enormous growth in trading activity and international exposure. One need only
think of the losses made from recent currency and stock market crashes, as well
as those resulting from the perilous positions taken, for example, by Barings,
Daiwa, Orange County, and Metallgesellschaft. Value-at-risk (VaR) is one such
risk management technique developed to improve the management of downside
risk. It aims to summarize risk, by estimating the worst expected loss over a
chosen time horizon within a given confidence interval. The methodology.
behind value-at-risk is therefore based on the probabilities associated with large
negative returns and hence highlights how financial institutions have had to
become more concerned with managing this downside risk. Only through the
use of such risk management methods can the exposure towards large negative
movements in financial markets be controlled and reduced. However, their
benefit rests primarily on the accuracy of the value-at-risk estimates.

The VaR estimate is found from the probability distribution of the expected
retdrns. This implies that one needs to make assumptions concerning the actual
form of the expected return distribution. This can be done by assuming that the
distribution of the expected returns equals the empirical distribution based on
past observations or by assuming that the returns are drawn from a specific
statistical distribution. The exact form of these analytical distributions is
determined by various parameters, estimated using past data, and which have
more recently also allowed for the use of conditioning methodologies, such as
generalized autoregressive conditionally heteroskedastic (GARCH) processes.

A parametric approach has been the preferred method, since it enables simple
conversion to take place (between quantiles and time horizons), and is hence
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more pragmatic under the framework of the Basle Committee. It also enables
conditionality in the data to be easily incorporated into the VaR estimate,
making forecasts of VaR more appropriate. The crucial assumption therefore
for an.accurate estimation of the VaR is that the distribution in the left tail,
reflecting the negative returns, is well represented by the specified distribution.
Any discrepancy between the parametric distribution and the empirical dis-
tribution can result in large errors in the estimation of VaR.

For simplicity and convenience, asset returns are often assumed to be
normally or lognormally distributed. However, the return distributions on many
assets have been shown to exhibit fatter tails than the normal distribution." This
means that the assumption of normality results in an underestimation of the
VaR on moving further into the tails. It is the exact nature of this extra mass in
the tails of the distribution which is crucial when trying to capture the VaR of
an asset. Other fatter-tailed distributions such as Pareto and sum-stable
distributions have in the past proved difficult to implement. The normal
distribution has therefore been retained as the most convenient proxy for an
asset’s actual distribution. However, the fatter the tails of the asset return
distribution under consideration, the larger the discrepancy with the normal
distribution, and the larger the errors made in VaR estimation. These errors
become magnified for the million-dollar positions that mutual funds, for
example, typically hold.

There is thus a need for simple methodologies to estimate VaR which capture
the tail fatness apparent in return distributions. In this paper, we present such a
simple technique. We show that VaR-x estimates, VaR estimates obtained from
assuming the Student ¢-distribution as a fit to the empirical distribution, are
better able to capture the extra risk involved for distributions exhibiting a higher
probability of large negative returns. Since we are looking at downside risk, we
are interested in the negative returns associated with the left tail of the
distribution. The tail parameter of the Student z-distribution, reflected by its
number of degrees of freedom, is set equal to the tail index for the left tail, and is
a direct measure of the amount of fatness in the tail of the return’s distribution.
This method offers many advantages over the normal distribution. First, fat tails
are captured. Second, focusing only on the left tail means that we do not need to
assume distributions are symmetric. The tail fatness may vary between the two
tails of the return distribution and hence allows for the possibility for skewness
in the distribution. This provides us with a simple and more accurate estimator
than would otherwise be obtained from assuming normality.

One attempt to capture the extra probability mass in the tails has been to
estimate a GARCH process. The unconditional distribution of a GARCH
process does reveal fatter tails; however, it has been shown that the distribution
of conditional residuals is still not normal (see Bollerslev 1987). This results in
the VaR still being underestimated at high quantiles for fat-tailed assets. The

! See among others Fama and Roll (1968), Rogalski and Vinso (1978), Boothe and Glassman
(1987), Taylor (1986), Jansen and de Vries (1991), Loretan and Phillips (1994), and Huisman ez al.
(1997, 1998).
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appealing feature, however, of incorporating conditional volatility is that it
allows for a changing distribution over time. Implementing this into a VaR
framework means that the VaR estimates are made conditional. This is done in
J. P. Morgan’s RiskMetrics, for example, and VaR-x can easily be adjusted to
capture conditional volatility.?

The plan of the paper is as follows. VaR and VaR-x are introduced in the
following section. The data used and the results are presented in Sections 3
and 4, respectively. Conclusions are then drawn in the final section.

2. VALUE-AT-RISK METHODOLOGY

Exposure to downside risk can be summarized in a single number by an estimate
of the VaR. This is formally defined by Jorion (1996) as “‘the worst expected loss
over a target horizon within a given confidence level.” Following Jorion, we
define W, as the initial investment and R as the expected return over the target
horizon. W* is defined as the lowest portfolio value at the given confidence level
c. that is, the value of the portfolio should not fall below W* with probability c.
VaR is defined as the dollar loss relative to the expected mean value of the
portfolio

VaR = E(W) — W*. (1)
Defining R* as the expected return associated with the portfolio value W*,
W* = Wy(l + R"), 2)
gives us the VaR measured as the dollar loss relative to the mean,
VaR = — W (R" — ), (3)

where s is the expected return on the portfolio for the target horizon. The crux
of being able to provide an accurate VaR estimate is in estimating the cutoff
return R*. In this paper, we focus on the cutoff return estimated using historical
data, and thereby assume that these are representative for the expected return
measure.

The statistical methods developed to best estimate these cutoff returns can be
divici‘éd into two types: parametric and nonparametric. The most obvious
nonparametric approach uses the historical distribution itself to compute an
empirical estimate of the VaR directly. In the parametric case, one tries to fit the
historical distribution by a statistical distribution whose characteristic para-
meters are derived from the historical data. We shall therefore briefly review the
standard ways to estimate VaR before presenting the methodology behind
VaR-x. The crucial difference between VaR and VaR-x is that the latter

2 See Koedijk and Pownall (1998) for an implementation of a conditional VaR-x approach and
comparison of results with RiskMetrics using data on Asian emerging markets.
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incorporates the tail fatness apparent in financial returns into the VaR estimate,
thereby improving the quality of the estimates in a simple and efficient way.

2.1 Methods to Estimate the Cutoff Return and VaR
The cutoff return is defined as the worst possible realization R* for a confidence
level ¢, and is found from the following integral for the distribution of expected
returns f(r):

e

l—c= J f(r)dr. 4)

—00
2.1.1 Empirical VaR Empirical VaR involves determining the point R* from a
histogram of the empirical distribution based on historical returns. R* is that
point below which are the fraction 1 — ¢ of the returns. This number is then
plugged into (3) to get the empirical VaR estimate.

The empirical VaR measure has some serious disadvantages to both financial
institutions and regulators. In order to obtain accurate estimates a large data
sample of the empirical distribution is required. The VaR estimate is therefore
subject to the frequency and length of the data sample. A further drawback is
the inability to allow for conditionality of the parameters over time. To
overcome these flaws, a parametric approach, such as the normal approach, is
often adopted. Since the distribution is approximated by a parametric distribu-
tion, parameters can be allowed to change over time. Estimation risk on the VaR
estimate itself is also reduced, particularly for higher quantiles.’> Furthermore,
the parametric approach has the advantage of not being dependent on the
chosen quantile, facilitating the ease with which comparisons between the VaR
estimates across various institutions can be made. Parametric conversion,
however, will only hold in practice if the parametric approach accurately reflects
the distribution at all quantiles in the tail. Indeed, it has been the case that
institutions have notoriously chosen confidence levels and time horizons to suit
them. The choice of parametric distribution is therefore crucial.

2.1.2 Normal VaR The simplest parametric approach is to assume that the
expected returns are normally distributed with the mean and variance estimated
using past data on returns. VaR estimates are then obtained by equating f(r) in
(4) to the p.d.f. of the normal distribution. The simplicity of this method also
explains its popularity. However, to obtain accurate VaR estimates for higher
confidence levels, say more that 95%, the parametric distribution should
correctly approximate the distribution in the tails. Since it is commonly known
that the distributions of returns on financial assets often exhibit fatter tails than
the normal distribution, one could expect a large discrepancy to exist between
the tails of the normal distribution and the tails of the actual distribution. Such
a discrepancy could lead to serious errors in VaR estimates. These estimates
could thus be improved upon by incorporating tail fatness; one such technique
that incorporates the fat tails is VaR-x, proposed in the following section.

3 See Jorion (1996) and Kupiec (1995) for a greater insight into the recognition of the estimation
error in VaR estimates.
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2.1.3 VaR-x The evidence that distributions of returns on financial assets have
fatter tails than indicated by the normal distribution has meant that the normal
approach underestimates the true value-at-risk at high quantiles. It therefore
becomes apparent that in order to capture the full risk from fat-tailed assets a
parametric distribution that is fatter in the tails should be used. The Student -
distribution, which also nests the normal distribution, is one obvious choice to
model f(r) in (4), but its parametrization has proved tedious and inconsistent in
the past.*

The Student s-distribution exhibits fatter tails than the normal distribution.
The amount of tail fatness is reflected in the number of degrees of freedom. In
order to capture tail fatness correctly, one should correctly specify the exact
number of degrees of freedom to be used. This has proved to be difficult for
exchange rate returns (see Boothe and Glassman 1987, Huisman et al. 1998),
but recent advances in extreme value theory makes the issue less complex.

Extreme value theory looks specifically at the distribution of the returns in
the tails. Since VaR focuses predominantly on this area in the tail, extreme
value theory can bring some valuable insight into improving VaR estimation
(see Danielson and de Vries 1997). The tail fatness that a tail of a distribution
exhibits is reflected by the tail index. It measures the speed with which the tail
under consideration approaches zero. The fatter the tail, the slower the speed,
and the lower the tail index given. A nice feature of the tail index is that it
equals the number of moments that exist for a distribution. For example, a tail
index estimate equal to 2 reveals that both the first and second moments exist,
i.e. the mean and the variance, but that higher moments are infinite. All
moments exist for the normal distribution, so that its tail index equals infinity
by definition. Here also lies the link with the Student t-distribution. The
number of its degrees of freedom reflects the number of existing moments, and
the tail index can thus be used to set the number of degrees of freedom.’

To obtain tail index estimates, we use the estimator presented by Huisman ez
al. (1997). Unlike other tail index estimators, the estimator of Huisman ez al. 1S
shown to produce almost unbiased estimates in relatively small samples. This
provides us with a superior estimator than previously used, and, as we shall see
below, allows us to obtain robust tail index estimates from a yearly sample of
daily data. Danielson and de Vries (1997) also use extreme value theory to
obtain VaR estimates, but their approach has the drawback that an extremely
large sample of data is required.®

pecifying k as the number of tail observations, and ordering their absolute
values as an increasing function of size, we obtain the tail estimator proposed by
Hill (1975). This is denoted below by y and is the inverse of the tail index a. Let

4 Alternative distributions to capture the tail fatness are, for example, the Pareto and sum-stable
distributions or a mixture of two normal distributions.

5 Huisman et al. (1998) use this method to fit the unconditional distribution of exchange rate
returns.

® Danielson and de Vries (1997) typically require about 100,000 observations, obtained from high-
frequency data.
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x; be the ith increasing order-statistic, i.e. x; > Xi-1, based on the absolute values
of the observations. The Hill estimator then reads:

1 k
yik) =7 D nx, . —Inx, . (5)
j=1

Following the methodology of Huisman et al. (1997), we can use a modified
version of the Hill estimator (1997) to correct for the bias in small samples. The
bias of the Hill estimator stems from the fact that the bias is a function of the
sample size. A bias corrected tail index is therefore obtained by observing the
bias of the Hill estimator as the number of tail observations increases up until «,
where « is equal to half of the sample size:

y(k) = By + Bk +ek) (k=1,...,0). (6)

The optimal estimate for the tail index is the intercept fy. The « estimate is just
the inverse of this estimate, and it is this estimate of the tail index that we shall
use in order to parametrize the Student r-distribution.

The procedure for obtaining the VaR-x estimates is therefore as follows. First,
the tail index referred to by « is estimated using the Huisman ef al. estimator for
the left tail of the empirical return distribution. The focus on the left tail directly
reflects the downside risk. Furthermore, the mean w1 and the variance o2 of the
return distribution are estimated. In the second step, the tail index estimate « is
then used to equate the number of degrees of freedom in the Student f-
distribution. Read the value S* off the standard Student - distribution with «
degrees of freedom using appropriate tables provided in standard textbooks (see
e.g. Bain and Engelhardt 1987) or statistical software. This value then needs to
be converted, since the standard Student r-distribution with o degrees of
freedom has a preset mean equal to zero and a variance equal to a/(a — 2).
The value S* is then transformed into the real cutoff return R* — —gS* + u,
where 6 is a scale factor given by

o

" v

The value R* then equals the cutoff return needed to calculate the VaR-x
measure for the confidence level ¢. Plugging the expression for R* into (3), we
obtain the VaR-x estimate for the VaR relative to the mean W as

VaR-x = W, 6S*. 8)

In the following sections, we shall apply all the above techniques to calculate the
VaR for $100 million investments in both US stocks and bonds.
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3. DATA

We use data from US stock and bond indices from January 1980 until August
1998, using bi-weekly returns to provide results that can easily be set against the
10-day regulatory framework adopted by the Basle Committee. The use of two
different assets exhibiting different tail index alphas enables us to gauge the
effect on the value-at-risk estimates from a variation in tail fatness. We use data
on the S&P 500 Composite Return Index for the US and the 10-Year Data-
stream Benchmark US Government Bond Return Index, both obtained from
Datastream. The bi-weekly data excludes the crash of October 1987, so that we
can estimate the value-at-risk consistent with normal market conditions.
Summary statistics are presented using lognormal returns for the sample of
stock and bond returns in Table 1.

Over the period, stocks have had an average return of 17.33% per annum,
nearly twice the 10.25% return on government bonds. The volatility was
however much lower for US government bonds, with the variance around a
third of that prevailing on the S&P 500. Both assets appear to exhibit significant
skewness as well as excess kurtosis. According to the kurtosis statistic, the extra
probability mass in the tail areas of the stock returns appears to be high, and,
since the distributions appear skewed, the two tails may differ dramatically. For
the VaR-x estimates, we hence take any skewness in the tails into account by
taking the tail index estimator of the left tail only. The effect on the VaR
depends on the exact structure of the distribution of negative returns.

The degree of fat-tailedness is estimated in terms of «, calculated using the
estimator developed by Huisman e al. (1997). From the gamma estimates of the

TABLE 1. Summary statistics for stocks and government bond returns. This table
contains the statistics on the S&P 500 Composite Return Index and the 10-Year
Datastream US Benchmark Government Bond Index for the period January 1980 until
August 1998 using 486 bi-weekly total returns. The alpha estimate is calculated using a
modified version of the Hill estimator for the tail indexes and is presented for the left

tail.
S&P 500 Composite US 10-Year Government
Return Index Bond Return Index
Anstial Mean % 17.329 10.247
Max Return 0.153 0.089
Min Return —0.183 —0.061
Annual St Deviation 0.146 0.086
Annual VaRiance 0.021 0.007
Skewness —0.641 0.503
Kurtosis 9.399 5.163
Gamma Left Tail 0.233 0.143
Standard Error 0.050 0.030
Alpha Left Tail 4.285 7.009
Observations 118 121
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left tail (standard errors given below), the alpha estimates are 4.29 and 7.01 for
the stock and bond returns respectively. For normally distributed returns the
alpha estimate tends to infinity, so we can see that both distributions exhibit a
fatter left tail than the normal. Owing to this leptokurtosis, the frequency of
large negative returns is greater than that reflected by the normal distribution;
hence the greater the downside risk, the fatter the tails, with the equity returns
exhibiting more downside risk than the bonds.

4. VALUE-AT-RISK ESTIMATES

Value-at-risk by definition should be highly sensitive to the degree to which the
distribution is fat tailed: the fatter tailed the distribution, the higher the value-at-
risk for a given confidence level. As we have seen, stocks have more downside
risk than bonds, represented by a lower alpha estimate for the left tail index, and
thus have a higher than normal probability of extreme returns. Thus, for higher
confidence levels, we would expect an empirical VaR estimate to be larger than
that predicted from using the parametric approach assuming normality. The
higher the confidence level, and thus the quantile chosen for the VaR estimate,
the greater the effect of extreme values in the asset’s return distribution. This has
the important implication that the existence of a fat-tailed return distribution
implies that at high confidence levels the parametric-normal VaR underestimates
the exposure to market risk, with the difference likely to become larger for
higher confidence levels chosen and fatter tails.

To see by how much the estimates for value-at-risk are affected by the
evidence that stocks have a lower alpha tail index estimate than the bonds, we
compute the VaR estimates using the various approaches discussed in Section 2.
In Table 2 the value-at-risk is estimated for a $100 million investment in the two
assets, using both the parametric-normal approach (equally weighted moving
average method for calculating volatility) and the empirical approach.

We can see how the VaR estimates increase, the higher the confidence level
taken. The structure of the difference between the empirical and the parametric-
normal VaR estimates is indeed what would be expected for a fat-tailed
distribution. For the S&P 500 Composite Return Index, we see that for low
probability levels the distribution exhibits a so-called thin waist, since the
parametric-normal VaR is larger than the empirical VaR. Moving further into
the tails, the VaR estimate assuming normality becomes smaller than the
empirical VaR. This means that at low probability levels the parametric-normal
VaR overestimates the VaR and then, as we move to higher probability levels,
the parametric-normal approach underestimates the VaR.

The magnitude of the error from using the normality assumption is a
reflection of the amount of tail fatness, which of course is much more significant
for the stock price index. The extent of the discrepancy from using the
assumption of normality for the S&P 500 and the Government Bond Index is
depicted in Figure 1.
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TABLE 2. Comparison of value-at-risk estimates. The value-at-risk estimates have been
calculated for the two asset classes using the empirical approach (historical data) and
both parametric approaches. The normal VaR estimates assume normally distributed
returns, whereas the VaR-x estimates assume a fatter-tailed distribution denoted by
the Student t-distribution, and use the alpha estimates for the left tail as given in
Table 1. The relative VaR estimates, expressed in millions of dollars, have been
calculated for a position of $100 million in the particular asset, and for a range of
confidence levels.

S&P 500 Composite US 10 Year Government Bond
Return Index Return Index

Confidence Empirical Normal  Student-r Empirical ~Normal  Student ¢

level VaR VaR VaR-x VaR VaR VaR-x
(left tail) ($100m) ($100m.) ($100m) ($100m) ($100m) ($100m)

95 4.3288 4.7176 4.3563 2.5347 2.7505 2.6812
95.5 4.6174 4.8626 4.5463 2.5986 2.8350 2.7819
96 4.7584 5.0211 4.7613 2.6912 2.9274 2.8942
96.5 49716 5.1967 5.0086 2.7648 3.0298 3.0212
97 5.3585 5.3943 5.2993 2.9283 3.1450 3.1678
97.5 5.7897 5.6214 5.6512 3.0463 3.2774 3.3414
98 5.9831 5.8903 6.0950 3.1674 3.4342 3.5546
98.5 6.3505 6.2240 6.6909 3.2729 3.6287 3.8315
99 7.5190 6.6722 7.5825 3.5503 3.8900 4.2273

1.0

0.8 | — — S&P 500 Composite Return Index

~— 10-Year Datastream Benchmark US Government Bond Index

Difference

0.6 NI ERNEEEEEEEEEEEEEEEEE NN NN E NN R RN e

99 98 97 96 95 94 93 92.1

Confidence level

FIGURE 1. Value-at-risk estimates. The graph depicts how much the parametric-

normal VaR estimates differ from the empirical VaR estimates for the two assets over a

range of confidence levels. The parametric-normal approach assumes normally

distributed returns and the empirical approach uses the observed frequency

distribution. The difference is the error generated by using the assumption of

normally distributed returns and is estimated for a $100 million position in the
particular asset.
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FIGURE 2. VaR-x for the S&P 500 Composite Return Index. The graph depicts how the
VaR-x estimates, using the Student-t distribution, compare to the parametric-normal
VaR estimates and the empirical VaR estimates for the S&P 500 over a range of
confidence levels. The VaR-x uses the modified Hill estimator for the tail index as the
parameter in the Student-t distribution, the parametric-normal approach assumes
normally distributed returns and the empirical approach uses the observed frequency
distribution. The difference is given in million dollars for a position of $100 million in
the particular asset.

As predicted, the difference is larger for stocks, whose return distribution
exhibits a fatter tail (a lower alpha estimate), and becomes much larger for
confidence intervals above the 96% level. In the example, the assumption of
normality means that the VaR is underestimated above the 96% level, and
greatly underestimated at the 99% level. We therefore conclude that the
assumption of normality appears inappropriate for estimating VaR at high
quantiles for a distribution with an alpha estimate of around 4.

In Table 2, we indeed see that taking a $100 million position in the S&P 500
Composite Return Index generates a relative VaR estimate at the 95%
probability level of $4.72 million, using the parametric assumption of normality,
compared with the $4.33 million using the empirical distribution. The average
bi-weekly return is $0.67 million, and the value-at-risk is stated relative to this
mean. This means that, assuming normally distributed returns, 95% of the time
we would not expect to achieve a bi-weekly loss of more than $4.72 million.
However, at the 99% confidence interval, the VaR becomes $6.67 and $7.52
million respectively. The large discrepancy of over $0.75 million between the two
approaches shows just how important it is to find as accurate a measure as
possible for the VaR. Indeed, since the 99% level is the level required by the
Basle Committee, it becomes apparent just how inappropriate the assumption of
normality in the tails is.
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The VaR-x estimates, which incorporate the fat tails, are also given in Table 2.
The « estimates from Table 1 are used to parametrize the Student ¢-distribution.
For the S&P 500 Composite Return Index, the VaR-x estimates provides a much
more accurate estimate when compared with the empirical distribution for the
whole range of quantiles than the parametric-normal VaR. This is illustrated in
Figure 2, where all three estimates for a range of confidence levels are plotted.

For the US Government Bond Index, the difference between the two
parametric approaches is much less (see Figure 3), indicating that an alpha
estimate of around 7 already gives similar results to those under normality.

This approach therefore provides us with an estimator that more accurately
reflects the VaR estimates for the whole range of confidence levels, and is thus a
more accurate estimate for assessing the downside risk as measured by value-at-
risk. We have seen that the estimator performs well for a range of quantiles up to
and including the 99% level, and therefore allows for simple parametric
conversion to be adhered to. Indeed, time aggregation for various holding
periods is merely a simple extension to the framework, so that the estimates
provided can easily be converted for different quantiles and time horizons, as
required by the regulatory bodies.

To see how forecasts of the two approaches perform over time, we carry out
the following out-of-sample test. We have estimated the rolling 10-day absolute
VaR forecasts at the 99% level for the S&P 500 Composite Return Index, using

5
— Empirical VaR
—— Normal VaR
— VaR-x

41

VaR
3
i 2 [EEREER RN RN NRERENEEE RN RN RN NN NN NN RN NN NN NN NN EENE NN
99 98 97 96 95 94 93 92.1

Confidence level

FIGURE 3. VaR-x for the 10-Year US Government Bond Index The graph depicts how
the VaR-x estimates, using the Student-t distribution, compare to the parametric-
normal VaR estimates and the empirical VaR estimates for the US Government Bond
Index over a range of confidence levels. The VaR-x uses the modified Hill estimator for
the tail index as the parameter in the Student-t distribution, the parametric-normal
approach assumes normally distributed returns and the empirical approach uses the
observed frequency distribution. The difference is given in million dollars for a position
of $100 million in the particular asset.
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both the parametric-normal and VaR-x methods. These forecasts, using daily
returns, are plotted in Figure 4 against the actual rolling bi-weekly returns, of
which some-appear to look like multiple returns.

From Table 3, we can see that the parametric-normal approach provides VaR
forecasts within a 99% confidence interval which are exceeded 1.99% of the
time. Since a 99% confidence level requires the actual returns to exceed it only
1% of the time, the VaR-x forecasts have performed much better, with the
forecast exceeded only 0.94% of the time. The consistently greater VaR-x
forecasts provide evidence of the stability of o, and hence the VaR-x estimates.
The VaR-x method using data on the government bonds showed a slight
improvement, yielding 1.15% compared with 1.47% for the parametric-normal
approach.

These results clearly show that the VaR-x method provides a more accurate
estimate for the value-at-risk than the parametric-normal approach, illustrating
the importance of including the tail fatness into the VaR estimate. Indeed, we
see that by including a parameter for the distribution’s fat-tailedness the
estimate assesses the downside risk much more adequately than the assumption
of normally distributed returns in the tails. The structure of the VaR-x
parametric approach compared to that of the normal provides us with the
phenomena of a larger value-at-risk as we move further into the tails. Indeed,
as the normal distribution is nested in the Student z-distribution, as the alpha
estimates become larger (less fat tailed), the VaR estimates will converge. This
therefore provides us with a consistent parametric approach to modeling the

0.10

0.05 —

sty J

~0.05 W’Iwi
gt

Returns

|
| — Bi-weekly returns |
010 — Normal VaR
— VaR-x
015 I 1 ] I 1 1 1

Jan3,95 Jul3,95 Jan3,96 Jul3,96 Jan3,97 Jul3,97 Jan3,98 Jul3,98

FIGURE 4. Rolling VaR-x and parametric-normal VaR estimates The graph shows how
the forecasts of the VaR-x estimates, using the Student-t distribution, compare to
forecasts from using the parametric-normal VaR approach for the S&P 500 Composite
Return Index. We have used rolling observations of daily data, over the period January
1994 until August 1998 using 1216 rolling bi-weekly total returns, to provide forecasts
of the value-at-risk at the 99% confidence level. The forecasts are based on yearly
samples of daily data, and the alpha estimate is calculated for the left tail using a
modified version of the Hill estimator.
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TABLE 3. Exceedance statistics for rolling bi-weekly returns. This table contains the

statistics on the S&P 500 Composite Return Index and the 10-Year Datastream US

Benchmark Government Bond Index for the period January 1994 until August 1998

using 1216 rolling bi-weekly total returns. The forecasts are based on yearly samples of

daily data (252 observations), and the alpha estimate is calculated for the left tail using
a modified version of the Hill estimator.

Exceedance of VaR
at 99% confidence level

Theoretical Normal VaR VaR-x

Number of Exceedances
S&P 500 Composite

Return Index: 9.64 19 9
US 10-Year Government Bond

Return Index: 9.64 14 11
Percentage of Exceedances
S&P 500 Composite

Return Index: 1.00% 1.990% 0.942%
US 10 Year Government Bond

Return Index: 1.00% 1.466% 1.152%

additional downside risk associated with fat-tailed assets, which can easily be
extended to allow for further conditionality in the data (see Koedijk and
Pownall 1998).

5. CONCLUSIONS

It is widely known that the distributions of financial asset returns exhibit fatter

tails than the normal distribution. This implies that the downside risk of a

portfolio containing fat-tailed assets, as measured by value-at-risk, is under-
estimated when VaR is estimated with the assumption of normally distributed
returns. Furthermore, this suggests that parametric conversion for different
confidence levels as adhered to by the regulatory framework of the Basle
Committee will provide inaccurate estimates of the VaR. It is no wonder that
it has been necessary to ‘ad hoc-ly’ multiply the VaR by 3 to provide a larger,
more representative, number for the Basle capital requirements. It would be
prefgrable to have a more accurate measure reflecting the true risk from extreme
returns, and the avoidance, or reduction at least, of the Basle multiplication
factor. In this paper we present such a measure: VaR-x.

This methodology provides us with a simple approach to finding an accurate
estimator for the VaR. The tail fatness apparent in financial returns is
incorporated more accurately into the VaR-x estimator by using the Student
t-distribution as a proxy for the distribution of future returns. We show that for
both US stocks and bonds the VaR-x estimates reflect the true downside risk
apparent in financial returns much better than those from the standard VaR
estimators. The approach is easily extended to include further time-varying
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parameters, and hence the implications for risk management seem tremendous.
Certainly the move towards building portfolios which exploit these departures
from normality (see Bekaert es al. 1998) will only serve to underline the vital
importance of including an additional measure for the downside risk into the
risk management techniques of the future.
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