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Abstract

This paper provides an analysis of individual and social decision criteria for alternatives that are
composed of several attributes. We derive additive and multiplicative criteria for individual
decision-making with new axioms and apply these criteria to obtain new justifications of known
social choice rules with a bargaining interpretation, namely the generalized utilitarian and Nash
social choice functions. Unlike most axiomatizations of bargaining solutions, our approach is, to a
large extent, based on the multi-attribute structure of the underlying alternatives and the resulting
individual decision criteria instead of axioms that impose restrictions on the choice function
directly.  2000 Elsevier Science B.V. All rights reserved.

JEL classification: D81; D71; C78

1. Introduction

A standard cooperative bargaining solution as introduced by Nash (1950) assigns a
utility vector to each pair of a utility possibilities set and a disagreement point (the utility
vector resulting if the agents fail to reach an agreement) within a given domain. For
example, a typical domain of a bargaining solution consists of all pairs such that the
disagreement point is normalized to be the origin and the utility possibilities set is
convex and compact. Comprehensiveness of the feasible set frequently is required as
well. In this paper, we consider an informationally richer framework by allowing for the
possibility that the structure of the set of objects over which the bargaining process takes
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place may matter. In particular, we examine multi-attribute bargaining problems.
Multiple-issue bargaining — as it is often called — is also discussed in Kalai (1977) in
the context of interpreting his step-by-step negotiation axiom; see Kalai (1977, p. 1627)
for details. Furthermore, Ponsati and Watson (1997) provide an analysis of multiple-
issue bargaining in a cooperative framework. A typical example for a concrete multi-
attribute bargaining problem is a wage-employment bargaining model such as the one
developed by McDonald and Solow (1981). Multiple-issue bargaining in a non-
cooperative setting is discussed, for example, in Busch and Horstmann (1997) and in
Fershtman (1990).

To begin with, we provide new axiomatic derivations of additive and multiplicative
multi-attribute criteria for an individual decision maker. The preferences of a decision
maker over combinations of attributes are additive if they can be represented by a
cardinal utility function that can be written as the sum of the utilities of the individual
attributes. The multiplicative decision criterion is based on the product of the utilities
over attributes. Clearly, these types of preferences possess separability properties with
respect to the attributes under consideration. See Fishburn (1970) for a comprehensive
treatment of utility theory and decision criteria.

Specifically, we use a weak version of utility independence (see, for instance, Keeney
and Raiffa, 1976, and the references quoted there) together with an additivity axiom to
generate an additive representation of an agent’s preferences. Similarly, we show that
the multiplicative decision criterion is implied by an analogous utility independence
axiom and a condition regarding the existence and properties of worst possible attributes.
By employing these new axioms, the paper also makes a contribution to the theory of
decision-making in the presence of several attributes. A discussion of separable
structures in consumer and producer theory can be found in Blackorby et al. (1978).

Turning from individual to social decision-making, we first characterize efficiency in
both the additive and the multiplicative case. This efficiency criterion, which leads to the
standard weak Pareto optimality condition, together with some other assumptions, is
then used to derive social decision procedures with a bargaining interpretation. In the
additive case, weak Pareto optimality and an independence condition regarding the
restriction of choices to specific attributes lead to the generalized (not necessarily
symmetric) utilitarian social choice functions, provided a mild regularity condition is
satisfied. Analogously, in the multiplicative case, generalized Nash social choice
functions are obtained. The novel aspect of those axiomatic derivations of well-known
social choice functions is that much of the structure is imposed through the individual
preferences rather than through axioms that operate directly on the social choice function
itself. We therefore provide a decision-theoretic foundation of these commonly used
solutions.

2. Multi-attribute preferences

Let N denote the set of positive integers, and let R (R ) be the set of all (positive)11
nreal numbers. For n [ N, R is the n-fold Cartesian product of R. Let M 5 h1, . . . , mj be

a set of m [ N attributes. The sets A , . . . , A are the corresponding non-empty spaces1 m



W. Bossert, H. Peters / Mathematical Social Sciences 40 (2000) 327 –339 329

of these attributes. Let A 5 3 A . For a [ A and M9 7 M, let a be the subvectorj[M j 2M 9

of a that contains the components in M\M9 only. If M9 is a singleton h jj, we use the
9simpler notation a instead of a . Analogously, for A9 7 A and M9 7 M, A 52j 2h j j 2M 9

9 9ha ua [ A9j, and if M9 is a singleton h jj, we write A instead of A .2M 9 2j 2h j j

We assume there is a decision maker who has a cardinal utility function u: A → R. We
0 0also assume that there is a fixed m-tuple a [ A with u(a) $ u(a ) for all a [ A. That is,

0a is a worst alternative in A.
9Let j [ M. By fixing the m 2 1 attributes in M\h jj at some given levels a [ A , the2j 2j

utility function u induces a utility function u : A → R on the attribute space A . Thej j j

property of utility independence (see Keeney and Raiffa, 1976, in particular Chaps. 5
and 6) requires that this induced utility function is independent of the specific levels of
the other attributes — as is already suggested by its notation. To define this property

9 9formally, let 5± A9 7 A, and let j [ M. A is utility independent of A if for everyj 2j

9 9 9 9a [ A there exist functions f : A → R and g : A → R such that2j 2j j 2j j 2j 11

9u(a) 5 f (a ) 1 g (a )u(a , a ), for all a [ A9 (1)j 2j j 2j j 2j

Clearly, utility independence is a separability property. (1) means that, on the restricted
domain A9, values of attribute j can be assessed without knowledge of specific values of
the remaining attributes. See Keeney and Raiffa (1976) for a detailed discussion of this
and related separability assumptions in this framework.

3. Additive decision criteria

In this section, we show that a specific utility independence requirement and a weak
additivity assumption imply that u must be additive.

0Restricted a utility independence requires that we can find a chain of m 2 1 attributes
such that, for each attribute j in this chain, A is utility independent of all otherj

0attributes, where this independence can be restricted to attribute values of a for allk

attributes k that appear before j in the chain. For simplicity of exposition, we formulate
this condition for the chain consisting of the first m 2 1 attributes and leave the obvious
generalization to the reader.

0Restricted a utility independence:

• A is utility independent of A ;1 21
0• A is utility independent of ha j3A ;2 1 2h1,2j

• :
0 0 0• A is utility independent of ha j 3 ha j 3 ? ? ? 3 ha j 3 A .m21 1 2 m22 m

This independence axiom is considerably weaker than Keeney and Raiffa’s (1976)
mutual utility independence because, for each j [ M\h1, mj, all attributes k , j in the

0chain can be fixed at a . Moreover, only m 2 1 rather than all m attributes are requiredk

to satisfy an independence condition.
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The second axiom is a weakening of additive independence (see Keeney and Raiffa,
1976). Again, we state this condition for a chain involving the first m 2 1 attributes only
in order to simplify notation.

Restricted additive independence:

09 99 9 99 9• For all a [ A , there exist a , a [ A such that u(a , a ) 1 u(a , a ) 5 u(a ,21 21 1 1 1 1 21 1 21 1
0 0 099 9 99a ) 1 u(a , a ) and u(a , a ) ± u(a , a );21 1 21 1 21 1 21

09 99 9• and, for all a [ A , there exist a , a [ A such that u(a , a , a ) 12h1,2j 2h1,2j 2 2 2 1 2 2h1,2j
0 0 0 0 099 9 99 9 99u(a , a ) 5 u(a , a ) 1 u(a , a , a ) and u(a , a ) ± u(a , a );2 22 2 22 1 2 2h1,2j 2 22 2 22

• :
0 09 99 9• and, for all a [ A , there exist a , a [ A such that u(a , . . . , a , a ,m m m21 m21 m21 1 m22 m21

0 0 0 099 9 99 9a ) 1 u(a , a ) 5 u(a , a ) 1 u(a , . . . , a , a , a ) and u(a ,m m21 2(m21) m21 2(m21) 1 m22 m21 m m21
0 099a ) ± u(a , a ).2(m21) m21 2(m21)

0Analogously to restricted a utility independence, the requirements imposed by restricted
additive independence become successively weaker as we progress along the chain of
attributes. Restricted additive independence is analogous in spirit to Keeney and Raiffa’s
(1976) additive independence (formulated for two attributes only). Additive indepen-

9 99 9 99dence requires that there exist some attribute values a , a [ A and a , a [ A such1 1 1 2 2 2

9 9 99 99 9 99 99 9 9 9 9 99 9that u(a , a ) 1 u(a , a ) 5 u(a , a ) 1 u(a , a ) and u(a , a ) ± u(a , a ,) and u(a ,1 2 1 2 1 2 1 2 1 2 1 2 1

9 99 9a ) ± u(a , a ). Our version of the additive independence condition, in contrast, requires2 1 2

the existence of specific attribute values for several values of the other attributes, and the
0worst attribute combination a must be involved. This is the case because we combine

0the axiom with a rather weak form of utility independence — namely restricted a utility
independence — whereas Keeney and Raiffa (1976) employ the much stronger mutual
utility independence. Furthermore, note that restricted additive independence only
requires two of the utility values involved to be distinct, but additive independence
demands two inequalities of that kind.

The following theorem derives the additive decision criterion from the above axioms.
That is, we show that, if combined, the two conditions generate a strong separability
property — namely additive separability. See, for example, Blackorby et al. (1978) for a
thorough discussion of various separability properties. Note that, in order to reformulate
the axioms for general chains in this theorem, the same chains have to be used in both

0 0axioms. Recall that a is a worst alternative, i.e. u(a) $ u(a ) for all a [ A.

0Theorem 1. Let u satisfy restricted a utility independence and restricted additive
0independence. Assume u is normalized so that u(a ) 5 0. Then u(a) 5 o u(a , a ) for0 j[M j 2j

all a [ A.

Proof. Because A is utility independent of A , there exist functions f and g such1 21 1 1

that:

0u(a) 5 f (a ) 1 g (a )u(a , a ), for all a [ A (2)1 21 1 21 1 21
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0 0 09where we chose a 5 a in (1). Letting a 5 a in (2), we obtain f (a ) 5 u(a , a )21 21 1 1 1 21 1 21
0for all a [ A because u(a ) 5 0. Therefore:

0 0u(a) 5 u(a , a ) 1 g (a )u(a , a ), for all a [ A (3)1 21 1 21 1 21

Because, by restricted additive independence, there exists a [ A such that u(a ,1 1 1
0 0 0 0a ) ± 0, we can choose a 5 a in (3) and use u(a ) 5 0 to obtain g (a ) 5 1.21 21 21 1 21

Using restricted additive independence and (3), it follows that, for all a [ A ,21 21

9 99there exist a , a [ A such that:1 1 1

0 0 0 0 09 99 9 99g (a )[u(a , a ) 2 u(a , a )] 5 g (a ) [u(a , a ) 2 u(a , a )]1 21 1 21 1 21 1 21 1 21 1 21

0 09 99Because, by restricted additive independence, u(a , a ) ± u(a , a ), this implies:1 21 1 21
0g (a ) 5 g (a ) 5 1 for all a [ A. Therefore:1 21 1 21

0 0u(a) 5 u(a , a ) 1 u(a , a ), for all a [ A (4)1 21 1 21

0Because A is utility independent of ha j 3 A , there exist functions f and g2 1 2h1,2j 2 2
09such that, with a 5 a in (1):2 2

0 0 0 0u(a , a ) 5 f (a , a ) 1 g (a , a )u(a , a ), for all a [ A (5)1 21 2 1 2h1,2j 2 1 2h1,2j 2 22

0 0 0 0 0Letting a 5 a in (5) and using u(a ) 5 0, we obtain f (a , a ) 5 u(a , a , a )2 2 2 1 2h1,2j 1 2 2h1,2j

for all a [ A. Therefore:
0 0 0 0 0u(a , a ) 5 u(a , a , a ) 1 g (a , a )u(a , a ), for all a [ A (6)1 21 1 2 2h1,2j 2 1 2h1,2j 2 22

0By restricted additive independence, there exists a [ A such that u(a , a ) ± 0.2 2 2 22
0 0Therefore, letting a 5 a in (6) implies g (a ) 5 1.2h1,2j 2h1,2j 2 22

9By restricted additive independence and (6), for all a [ A , there exist a ,2h1,2j 2h1,2j 2

99a [ A such that:2 1

0 0 0 0 0 09 99 9 99g (a , a )[u(a , a ) 2 u(a , a )] 5 g (a )[u(a , a ) 2 u(a , a )]2 1 2h1,2j 2 22 2 22 2 22 2 22 2 22

0 0 09 99By restricted additive independence, u(a , a ) ± u(a , a ) and, hence, g (a ,2 22 2 22 2 1
0a ) 5 g (a ) 5 1 for all a [ A. Therefore:2h1,2j 2 22

0 0 0 0u(a , a ) 5 u(a , a , a ) 1 u(a , a ), for all a [ A (7)1 21 1 2 2h1,2j 2 22

Using (7) in (4), we obtain:

0 0 0 0u(a) 5 u(a , a , a ) 1 u(a , a ) 1 u(a , a ), for all a [ A1 2 2h1,2j 2 22 1 21

Repeated application of this argument for the attributes 3, . . . , m 2 1 yields:

0 0 0u(a) 5 u(a , a ) 1 ? ? ? 1 u(a , a ) 1 u(a , a ) for all a [ A. hm 2m 2 22 1 21

An immediate consequence of Theorem 1 is that u can be written as:

u(a) 5O u (a ), for all a [ A (8)j j
j[M
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where for every j [ M, u : A → R is an induced utility function as introduced in Sectionj j

2.

4. Multiplicative decision criteria

Keeney and Raiffa (1976) prove that if each attribute space A is utility independentj

of A , then the cardinal utility function u can be written as a multilinear function —2j

see Keeney and Raiffa (1976, Chaps. 5 and 6) for details. In this section, we derive the
special case of a multiplicative decision criterion with a weaker utility independence

0axiom and an assumption which requires the a to lead to a worst alternative even whenj
0combined with some values of a other than a .2j 2j

0To exclude degenerate cases, we assume that there is an a* [ A with a* ± a for allj j
0 0¯j [ M and u(a*) . u(a ). For j [ M, define A [ha [ A ua ± a for all2h1, . . . , j j 2h1, . . . , j j k k

k 5 j 1 1, . . . , mj. The utility independence condition is parallel to the one in the
0 ¯previous section, where a is replaced with a*, and A by A .2h1, . . . , j j 2h1, . . . , j j

Restricted a* utility independence:

¯• A is utility independent of A ;1 21
¯• A is utility independent of ha*j 3 A ;2 1 2h1,2j

• :
¯• A is utility independent of ha*j 3 ha*j 3 ? ? ? 3 ha* j 3 A .m21 1 2 m22 2h1, . . . ,m21j

0The following axiom requires a to lead to a worst alternative when combined withj

certain values of a .2j

Restricted zero independence:

0u(a9) $ u(a , a ), for all a, a9 [ A (9)1 21

0u(a9) $ u(a*, a , a ), for all a, a9 [ A (10)1 2 2h1,2j

:

0u(a9) $ u(a*, . . . , a* , a , a ), for all a, a9 [ A (11)1 m22 m21 m

0Restricted zero independence implies that a is a worst-possible value for attribute one1
0 0in an absolute sense: a leads to a worst alternative not only combined with a but1 21

combined with any value of a . The remaining restrictions imposed by the axiom are21

weaker because they apply only to some but not to all values of the remaining attributes.
Requiring restricted zero independence is close to but weaker than imposing the

so-called zero condition on attributes 1, . . . , m 2 1, as is done in Miyamoto et al.
0(1998). The zero condition holds for attribute j if the level a for attribute j makes thej

decision maker indifferent between all combinations of the other attributes.
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The above two axioms lead to the multiplicative decision criterion described in the
following theorem.

Theorem 2. Let u satisfy restricted a* utility independence and restricted zero
0independence. Assume that u is normalized so that u(a ) 5 0 and u(a*) 5 1. Then:

*u(a) 5P u(a , a ) for all a [ A.j 2j
j[M

Proof. By (9–11) we must have:

0u(a , a ) 5 0, for all a [ A (12)1 21

0u(a*, a , a ) 5 0, for all a [ A (13)1 2 2h1,2j

:

0u(a*, . . . , a* , a , a ) 5 0, for all a [ A (14)1 m22 m21 m

¯ 9Because A is utility independent of A , choosing a 5 a* in (1) implies that1 21 21 21

there exist functions f and g such that:1 1

u(a) 5 f (a ) 1 g (a )u(a , a* ), for all a [ A (15)1 21 1 21 1 21

0Letting a 5 a in (15), (12) implies f (a ) 5 0 for all a [ A.1 1 1 21

Now let a 5 a* in (15). Noting that f (a ) 5 0 and u(a*) 5 1, it follows that1 1 1 21

g (a ) 5 u(a*, a ) for all a [ A. Therefore:1 21 1 21

u(a) 5 u(a*, a )u(a , a* ), for all a [ A (16)1 21 1 21

¯Because A is utility independent of ha*j 3 A , there exist functions f and g2 1 2h1,2j 2 2

such that:

u(a*, a ) 5 f (a*, a ) 1 g (a*, a )u(a , a* ), for all a [ A (17)1 21 2 1 2h1,2j 2 1 2h1,2j 2 22

09[choose a 5 a* in (1)]. Letting a 5 a in (17) and using (13), we obtain f (a*,22 22 2 2 2 1

a ) 5 0 for all a [ A. Now let a 5 a* in (17) to obtain g (a*, a ) 5 u(a*, a*,2h1,2j 2 2 2 1 2h1,2j 1 2

a ) for all a [ A. Hence:2h1,2j

u(a*, a ) 5 u(a*, a*, a )u(a , a*), for all a [ A (18)1 21 1 2 2h1,2j 2 2

Using (18) in (16), we obtain:

* * * *u(a) 5 u(a , a , a )u(a , a )u(a , a ), for all a [ A1 2 2h1,2j 2 22 1 21

Repeated application of this argument for the attributes 3, . . . , m 2 1 yields:

* * *u(a) 5 u(a , a ) . . . u(a , a )u(a , a ) for all a [ A. hm 2m 2 22 1 21

Again, it follows that there exist induced cardinal utility functions u : A → R for allj j

j [ M such that:
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u(a) 5P u (a ), for all a [ A (19)j j
j[M

To conclude this section we note that the conditions in Theorem 2 are sufficient but
not necessary for a multiplicative representation. For example, take m 5 2, A 5 A 51 2

h1/2, 1j, and u(a , a ) 5 a a . In this case, (9) is not satisfied.1 2 1 2

5. Efficiency

Consider now a situation where we have n [ N decision makers concerned with the
multi-attribute alternatives in A. Let N 5 h1, . . . , nj denote the set of decision makers.

iWe use u : A → R to denote the cardinal utility function of individual i [ N. The induced
iutility functions (as in Theorems 1 and 2) on A are denoted by u : A → R for all j [ Mj j j

0i i 0and all i [ N. For each agent i [ N, a and a* are the alternatives corresponding to a
and a* in the single-agent case. Note that these alternatives may be agent-specific.

We make the assumption that the set of utility vectors corresponding to outcomes in
1 n nA, i.e. the set h(u (a), . . . , u (a)) [ R ua [ Aj, is a convex set. In this framework, it is of

interest to identify those outcomes that are efficient in the sense that it is impossible to
ˆmake everyone in N better off. Formally, an outcome a [ A is efficient if and only if, for

i iˆall a [ A, there exists i [ N such that u (a ) $ u (a). Hence, efficiency here corresponds
to the concept of weak Pareto optimality — see Section 6.

The set of efficient outcomes can be characterized in the additive and multiplicative
cases discussed in the previous sections. If all agents’ preferences have an additive

n nrepresentation, we obtain the following result. Let D denote the unit simplex in R .

i 0iTheorem 3. Let each u satisfy restricted a utility independence and restricted additive
i 0i ˆindependence, and assume u (a ) 5 0 for every i [ N. Then an outcome a [ A is

1 n n ˆefficient if and only if there exists t 5 (t , . . . , t ) [ D such that a maximizes oi[N
i i i iˆt u (a) on A and, for all j [ M, a maximizes o t u (a ) on A .j i[N j j j

Proof. Because the set of utility vectors generated by the outcomes in A is convex,
n i iˆ ˆa [ A is efficient if and only if there exists t [ D such that a maximizes o t u (a) oni[N

A.
i i nˆSuppose a [ A maximizes o t u (a) on A for some t [ D . By (8):i[N

i iu (a) 5O u (a ), for all i [ N, for all a [ Aj j
j[M

Because:

i i i imax O t O u (a ) 5O max O t u (a ) (20)j j j jH JH J
i[N j[M j[M i[N

i iâ maximizes o t u (a ) for all j [ Mj i[N j j
i iˆConversely, suppose a maximizes o t u (a ) for all j [ M. Using (20), it followsj i[N j j

i iˆthat a maximizes o t u (a) on A. hi[N
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In the multiplicative case, we obtain an analogous result. As in Theorem 2, we now
0i iassume the existence of appropriate a and a* for each i [ N.

i iTheorem 4. Let each u satisfy restricted a* utility independence and restricted zero
i 0i i iindependence, and assume u (a ) 5 0 and u (a* ) 5 1 for each i [ N. Then an outcome

1 n nˆ ˆa [ A is efficient if and only if there exists t 5 (t , . . . , t ) [ D such that a maximizes
i ii t i tˆP u (a) on A and, for all j [ M, a maximizes P u (a ) on A .i[N j i[N j j j

Proof. Again, the convexity of the set of utility vectors generated by the outcomes in A
nˆ ˆimplies that an outcome a [ A is efficient if and only if there exists t [ D such that a

ii t 0maximizes P u (a) on A, where we use the convention 0 [1.i[N ii t nˆSuppose a maximizes P u (a) on A for some t [ D . By (19):i[N

i iu (a) 5 P u (a ), for all i [ N, for all a [ Aj j
j [M

ˆand, therefore, a maximizes:
ii tP P u (a )j j

i[N j [M

kk tˆon A. Suppose first that there exists k [ N such that u (a ) 5 0, in which case P i[Nii t k k ˆu (a) 5 0. Note that this can occur only if t . 0 and u (a ) 5 0. By assumption,
i iu (a* ) 5 1 . 0 for all i [ N. By restricted zero independence and the assumption that

the set of utility vectors generated is a convex set, there must be an a* [ A such that
ii i t ˆu (a*) . 0 for all i [ N and thus P u (a*) . 0, contradicting the observation that ai[Ni ii t i tˆmaximizes P u (a) . Therefore, this case cannot occur, and we must have u (a ) . 0i[N

for all i [ N. Hence:
i ii t i tmax P P u (a ) 5P max P u (a ) (21)H JH j j J j j

i[N j[M j[M i[N

ii tˆand, as in Theorem 3, it follows immediately that a maximizes P u (a ) on A forj i[N j j j

all j [ M.
ii t i iˆNow suppose a maximizes P u (a ) on A for all j [ M. Because u (a* ) . 0 forj i[N j j j

i i*all i [ N, u (a ) . 0 for all i [ N and for all j [ M. As before there are a* [ A withj j j jii i tu (a* ) . 0 for all i [ N and for all j [ M and, thus, P u (a* ) . 0 for all j [ M.j j i[N j ji ii t i tˆ ˆTherefore, in order for a to maximize P u (a ) , it must be the case that u (a ) . 0j i[N j j j j ii tˆfor all i [ N and for all j [ M. By (21), it follows that a maximizes P u (a) oni[N

A. h

6. Multi-attribute bargaining problems

The results of the previous sections can be illustrated by applying the additive and
multiplicative criteria to specific group decision problems. For example, consider the
problem of selecting outcomes from a feasible set of alternatives on the basis of the
agents’ preferences. Suppose the space of alternatives A is given, and we want to make a
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selection from A for all profiles of individual utility functions within a given class.
Because A is fixed throughout this section, we simplify notation by suppressing the
dependence of the functions considered here on A. A profile of cardinal utility functions

1 nis denoted by U 5 (u , . . . , u ). The utility possibilities set generated by the profile U is
given by:

n i ihx [ R u'a [ A such that x 5 u (a), for all i [ Nj

Accordingly, the induced utility possibilities set for attribute j [ M is:

n i ihx [ R u'a [ A such that x 5 u (a ), for all i [ Njj j j j

1 nLet 8 be a set of admissible profiles U 5 (u , . . . , u ) of cardinal utility functions. Let
A2 be the set of all non-empty subsets of A. A social choice function is a mapping c:

A i i8 → 2 such that, for all U [ 8 and for all a, a9 [ c(U ), u (a) 5 u (a9) for all i [ N.
That is, we make the assumption commonly used in cooperative models of bargaining
that there is a unique utility vector associated with the selected outcomes. Interpreted as

1 01 n 0na bargaining problem, the disagreement point is given by (u (a ), . . . , u (a )) 5
0i(0, . . . , 0); recall that a denotes the worst alternative for agent i [ N. A bargaining

solution is a special case of a social choice function, where the only relevant features are
the utility possibilities set and the disagreement point of a problem. Since this additional
restriction is not necessary for the purposes of this section, we will use the more general
choice function c as defined above.

A jThe social choice function c induces a choice function c : 8 → 2 for each attributej

j [ M. Specifically, for all j [ M and all U [ 8, c (U ) 5 ha [ A ua [ c(U )j. Note thatj j j

we do not explicitly require that the same utility vector results for all chosen outcomes
in the image of the induced choice functions — this property follows as a consequence
of our choice independence axiom defined below.

Using the results of the previous sections, we can derive generalized utilitarian and
generalized Nash social choice functions in this framework. In addition to the axioms on
individual preferences leading to the additive and multiplicative representations derived
above, we impose some restrictions on the choice function c.

First, we require c to be weakly Pareto optimal in the sense that it selects efficient
outcomes only. Let E(U ) denote the set of efficient outcomes A for the profile U [ 8.

Weak Pareto optimality: For all U [ 8, c(U ) 7 E(U ).

Furthermore, we impose an independence condition regarding the choice of the
individual attributes.

i iˆ ˆChoice independence: For all j [ M, for all U, U [ 8, if u 5 u for all i [ N, thenj j
i i ˆˆ ˆu (a ) 5 u (a ) for all a [ c (U ) and for all a [ c (U ).j j j j j j j j

Choice independence requires that the selection of each attribute is independent of the
values of the remaining attributes and, thus, is another separability condition. Note that
choice independence implies that, for a given profile, all attribute values selected by the
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corresponding induced social choice function lead to the same utility vector (to see this,
ˆset U 5 U in the definition of choice independence).

Finally, we impose a regularity condition.

¯Regularity: There exist U [ 8 and h, k [ M such that h ± k and, for all j [ hh, kj, there
exists a unique tangent hyperplane to the induced utility possibilities set for attribute j at

1 n ¯¯ ¯ ¯ ¯ ¯the point (u (a ), . . . , u (a )), where a [ c (U ).j j j j j j

Regularity only requires the existence of some profile such that the tangent hyperplane to
two induced utility possibilities at the utility vectors induced by the choice function is
unique. Note that any bargaining solution defined on a standard domain satisfies a
regularity condition of that type.

nWe call c a generalized utilitarian social choice function if there exists t [ D such
i ithat, for all U [ 8, c(U ) is a subset of the set of maximizers of o t u (a) on A.i[N

nAnalogously, c is a generalized Nash social choice function if there exists t [ D such
ii tthat, for all U [ 8, c(U ) is a subset of the set of maximizers of P u (a) on A.i[N

Theorem 5. Let 8 be the set of all profiles U such that the utility possibilities set
0iassociated with U is compact and convex and, for each i [ N, there exists a [ A such

i i 0i i 0ithat u (a) $ u (a ) 5 0 for all a [ A, and u satisfies restricted a utility independence
and restricted additive independence. Let c be a social choice function satisfying weak
Pareto optimality, choice independence, and regularity. Then c is a generalized
utilitarian social choice function.

¯Proof. Let U [ 8 and h, k [ M be as in the definition of the regularity axiom. By weak
n ¯Pareto optimality and the definition of c, there exists t [ D such that a is a maximizer

i i i i¯¯ ¯ ¯ ¯of o t u (a) on A for all a [ c(U ). By Theorem 3, a maximizes o t u (a ) on Ai[N j i[N j j j

for all j [ M. Regularity implies that, for j [ hh, kj, t is the only vector of coefficients for
¯which a maximizes this weighted sum on A .j j

i i i iˆ ˆ ¯ ˆLet U [ 8 be arbitrary. Let the profile U be such that u 5 u and u 5 u for allh h j j
ˆˆ ˆi [ N and for all j [ M\hhj. Let a [ c(U ). By weak Pareto optimality, a maximizes oi[N

i i n i iˆ ˆ ˆˆ ˆ ˆt u (a) on A for some t [ D . Theorem 3 implies that a maximizes o t u (a ) on Aj i[N j j j
i i ˆˆ ˆ ˆ ¯for all j [ M. Choice independence implies that u (a ) 5 u (a ). By regularity, t 5 t.h h h h

i i i i˜ ˜ ¯ ˆNow let the profile U be such that u 5 u and u 5 u for all i [ N and for allk k j j
i i˜ ˜˜ ˜ ˜j [ M\hkj. Let a [ c(U ). By weak Pareto optimality, a maximizes o t u (a) on A fori[N

n i i˜ ˜˜ ˜some t [ D . Again, Theorem 3 implies that a maximizes o t u (a ) on A for allj i[N j j j
i i ˜˜ ˜ ˜ ¯j [ M. Choice independence implies that u (a ) 5 u (a ). By regularity, t 5 t.k k k k

i i ˆLet a [ c(U ). By choice independence, for all i [ N, u (a ) 5 u (a ) for all j [ M\hhjj j j j
i i i i˜and u (a ) 5 u (a ). This implies that a maximizes o t u (a ) on A for all j [ Mh h h h j i[N j j j

and, using the argument in the proof of Theorem 3, it follows that a maximizes oi[N
i it u (a) on A. h

Analogously, the generalized Nash social choice functions are implied in the
multiplicative case. Because the proof of this result is parallel to the proof of the
previous theorem, it is omitted.
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Theorem 6. Let 8 be the set of all profiles U such that the utility possibilities set
0i iassociated with U is compact and convex and, for each i [ N, there exist a , a* [ A

i i 0i i i i isuch that u (a) $ u (a ) 5 0 for all a [ A and u (a* ) 5 1, and u satisfies restricted a*
utility independence and restricted zero independence. Let c be a social choice function
satisfying weak Pareto optimality, choice independence, and regularity. Then c is a
generalized Nash social choice function.

An interesting feature of Theorems 5 and 6 is that the resulting social choice functions
are such that the attributes can be separated in a bargaining process: it is sufficient to
consider each attribute independently of the remaining ones. This considerably facilitates
the application of the procedure to actual bargaining situations.

As an illustration, suppose the allocation of m goods in an n-agent economy is to be
determined by means of a bargaining process. If the individual preferences satisfy the
appropriate independence axioms, the results of this section can be used to justify the
use of a generalized utilitarian solution or a generalized Nash solution. By adding a
symmetry or anonymity condition, the utilitarian solution and the Nash solution are
obtained. See also Kalai (1977) and Ponsati and Watson (1997) for examples and
discussions of multiple-issue bargaining situations.

7. Concluding remarks

The results of this paper provide a decision-theoretic foundation for specific social
choice procedures. In particular, multi-attribute decision criteria are employed. An
assumption underlying our approach is that individual utility functions are of the same
structure. One possibility for extending our work would be to examine situations where
individual agents may have different types of utility functions over multi-attribute
alternatives.

All our results have been formulated and derived for the case of cardinal utility. To a
large extent they can almost without modification be stated and derived for the
framework of decision making under risk, where lotteries are included and utility is of
the von Neumann–Morgenstern type (von Neumann and Morgenstern, 1947). In
bargaining this is a quite standard framework and, indeed, it would imply the convexity
assumption made in Sections 5 and 6. Theorems 4 and 6 on the multiplicative case,
however, would have to be modified, e.g. by requiring that efficient outcomes are always
riskless.

Finally, we note that the results for the multiplicative case (the even-numbered
theorems) are derived independently of the results for additive structures (the odd-
numbered theorems). In contrast, Trockel (1998) derives the Nash bargaining solution by
means of an exponential transformation from an additive setup. In order to employ an
analogous procedure for the results obtained here, it would be required to formulate the
axioms for the multiplicative case by using a structure that exactly parallels that of the
additive model.
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