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Limit Consistent Solutions in Noncooperative Games1
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Communicated by G. Papavassilopoulos

Abstract. Strong and limit consistency in finite noncooperative games
are studied. A solution is called strongly consistent if it is both consistent
and conversely consistent (Ref. 1). We provide sufficient conditions on
one-person behavior such that a strongly consistent solution is non-
empty. We introduce limit consistency for normal form games and exten-
sive form games. Roughly, this means that the solution can be
approximated by strongly consistent solutions. We then show that the
perfect and proper equilibrium correspondences in normal form games,
as well as the weakly perfect and sequential equilibrium correspondences
for extensive form games, are limit consistent.
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1. Introduction

The concept of consistency has been widely applied in game theory.
Globally speaking, a game-theoretic solution is called consistent if it is invari-
ant in the reduced game for a subset of the players given that the other
players are kept at the solution outcome in the original game. Here, an
outcome may be a payoff vector (usually in a cooperative game) or a strategy
vector (usually in a noncooperative game). Obviously, this global definition
leaves much freedom for formalization, by varying the definition of the
reduced game. For many different solutions, reduced games have been pro-
posed with respect to which the solution is consistent.

1The authors are indebted to two anonymous referees whose suggestions improved the presenta-
tion of this paper.
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The paper by Peleg and Tijs (Ref. 1) was the first to apply the consist-
ency concept to noncooperative games. For a strategy profile in a normal
form game and a coalition, a natural reduced game arises by fixing the
players outside the coalition at their strategies as given in the profile. Obvi-
ously, a Nash equilibrium will induce a Nash equilibrium in the reduced
game. Conversely, if in every reduced game the induced strategy profile is
a Nash equilibrium, then the original profile must be a Nash equilibrium.
We express this by saying that the Nash equilibrium correspondence is con-
sistent as well as conversely consistent. For a survey on reduced noncooper-
ative games, consistency, and converse consistency, see Peleg and Tijs (Ref.
1). In the present paper, the combination of consistency and converse con-
sistency is termed strong consistency. Once a solution is strongly consistent,
it is completely determined by its behavior on one-person games. Hence,
the Nash equilibrium correspondence for normal form games is the unique
strongly consistent solution assigning the set of expected payoff maximizing
strategies to one-player games. This is the main result in Peleg and Tijs (Ref.
1). By varying the behavior of a solution on one-person games, other
strongly consistent solutions are obtained. Patrone et al. (Ref. 2) call these
solutions personalized Nash equilibria. Basically, by defining one-person
behavior and imposing strong consistency, a best response correspondence
is defined and extended to an equilibrium concept.

In this paper, we aim to contribute to the study of consistency in finite
noncooperative games in the following ways. First, we provide sufficient
conditions on one-person behavior such that a corresponding strongly con-
sistent solution is nonempty. Observe that the pure Nash equilibrium corre-
spondence cannot satisfy these conditions, because it is strongly consistent
but may be empty. In fact, Norde et al. (Ref. 3) have proved that there
exists no proper refinement of the Nash equilibrium correspondence that is
consistent and nonempty—let alone strongly consistent. This result applies
in particular to familiar refinements like perfect and proper Nash equilib-
rium, which are both nonempty and therefore cannot be consistent. Second,
as an approach to this problem, we introduce the concept of limit consist-
ency. A solution is limit consistent, roughly, if it can be approximated by
strongly consistent solutions. A limit consistent solution is generated by a
class of one-person solutions rather than by a unique one-person solution.
It will be shown that both the perfect and the proper equilibrium correspond-
ences are limit consistent. Third, we extend the concept of limit consistency
to solutions for games in extensive form. We show that the correspondences
of weakly perfect equilibrium and sequential equilibrium (Kreps and Wilson,
Ref. 4) are limit consistent.

The organization of the paper is as follows. In Section 2, we introduce
strong consistency for solutions in normal form games; in Section 3, among
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other things, we provide conditions for nonemptiness of strongly consistent
solutions. In Section 4, we introduce limit consistency and provide a neces-
sary and sufficient condition for nonemptiness of limit consistent solutions.
The perfect and proper equilibrium correspondences are proved to be limit
consistent in Section 5. In Section 6, extensive form games and the corre-
sponding extensions of strong and limit consistency are defined. Sections 7
and 8 give the mentioned results on weakly perfect and sequential equilibria,
respectively.

2. Strongly Consistent Solutions in Normal Form Games

2.1. Normal Form Games and Reduced Games. Let F = <N, M, v> be
a normal form game with player set N, where M=xiN Mi denotes the space
of pure strategy profiles and v = (vi)isN is a collection of payoff functions
Vi: M -> R. We assume that the pure strategy spaces Mi are all finite. In the
remainder of this article, we write <M, v> instead of <N, M, v> if there can
be no misunderstanding about the player set. Moreover, we write "game"
instead of "normal form game," if it is clear that we are talking about
normal form games.

A mixed strategy for player i is a probability distribution pi on the set
Mi of pure player i strategies. A combination p = (pi)iSN of mixed strategies
Pi is called a mixed strategy profile (MSP). If the MSP p is played, the
expected payoff for player i, is denoted by v i ( p ) .

An MSP p is called completely mixed if
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Here, A0(Mi) denotes the set of probability distributions on M, which put
strictly positive weight on every mieMi.

By Bi(p, F), we denote the set of player i's pure best responses against
the MSP p, i.e.,

Here, p\mi is the MSP which we obtain if the mixed strategy pi is replaced
by the pure strategy mi in p.

Definition 2.1. Let T=< M, v> be a game, p an MSP, and T a coalition
of players. By TT,P, we denote the reduced game <T, M', v'>, where M'=
xi6TMi and v'i(p') = vi(p',pN\T), for all ieTand all MSPp' = (p'i)i6T.

Here, PN \T denotes the restriction of the MSP p on the players in N \T.
Hence, TT,P is the game with player set T which we obtain if we assume that
players outside T play according to p.



In other words, $(F) is the set of MPSs such that, for every nonempty
coalition, the reduced profile is a solution profile of the reduced game.

For one-player games F, we define $>(F) := (p(T). The reason for this
definition is the fact that there are no coalitions 0 5 r T A N in one-player
games.

Definition 2.2. A solution <p is called consistent (CONS) if <p(T) c $(F)
for every F in <&.

This means that, for every solution profile in F and every nontrivial
subset of players, the reduced solution profile is a solution of the reduced
game.

Definition 2.3. A solution <p is called conversely consistent (COCONS)
if $(F) c p(F) for every F in ^ with at least two players.

This means that an MSP which has the property that, for every nontriv-
ial subset of players, the reduced profile is a solution profile of the reduced
game should be a solution profile itself.

Note that properties CONS and COCONS together are equivalent to
the property

3. Properties of Strongly Consistent Solutions

In Patrone et al. (Ref. 2), it is shown that every strongly consistent
solution is completely determined by its behavior on one-person games. In
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A family 0 of normal form games is called closed if, for every F in 0,
every nonempty coalition TcN, and every MSP p, the reduced game TT,P

is also in &.

2.2. Strongly Consistent Solutions. A solution on a family of normal
form games is a correspondence which assigns to every game in this family
a set of MSPs in this game. For a game F in this family, we call <p(F) the
set of solution profiles in this game.

Let 0 be a closed family of normal form games, and let <p be a solution
on 0, For a game F in S containing at least two players, we define

Definition 2.4. We call a solution strongly consistent if it satisfies
CONS and COCONS.



holds by definition. Now, assume that v(F') <= <p(T') for every game F with
strictly less than n players and consider a game T with n players. Choose
an arbitrary profilersv(F) and let
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fact, the behavior of a strongly consistent solution on the class of one-person
games induces an optimal response correspondence, which assigns to every
MSP p a set of MSPs which are optimal responses against p. Here, we use
the expression "optimal response" instead of "best response", since the
latter term is reserved to denote payoff-maximizing responses. Hence, best
responses are in our notation a special case of optimal responses. In the
following lemma, it is shown that the class of strongly consistent solutions
consists exactly of those solutions which assign to a game the set of MSPs
which are optimal responses against themselves.

Lemma 3.1. A solution <p is strongly consistent if and only if, for every
game F,

There is a close relationship between this lemma and a result in Patrone
et al. (Ref. 2), which states that a solution is a personalized Nash equilibrium
correspondence if and only if it satisfies personalized one-person rationality,
CONS, and COCONS. This relationship stems from the fact that the class
of personalized Nash equilibrium correspondences contains exactly those
solutions assigning to every game F the set of MSPs

where qi is an arbitrary but fixed solution on one-person games for
every i.

Proof of Lemma 3.1. (a) First, we show the implication from left to
right. Let (p be a strongly consistent solution. We define the solution iff by

for every game F and show that <p=y. Because <p is consistent, it follows
that

The other inclusion will be shown by induction on the number of players
in F. If F is a one-player game, the inclusion
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By definition, we have pTey/(TT,p). Using the induction assumption, it
follows that pTe<p(TT,p). Since this holds for every such T, the converse
consistency of <p implies that pe<p(T).

(b) The implication from right to left is obvious. D

Intuitively, the lemma says that a solution is strongly consistent if and
only if it assigns to every game the set of strategy profiles in which every
strategy is an optimal response. Therefore, the behavior of a strongly consist-
ent solution is similar to that of the Nash equilibrium correspondence. This
is a reason why strongly consistent solutions are called personalized Nash
equilibria in Patrone et al. (Ref. 2).

The observations above enable us to construct a mechanism which
produces strongly consistent solutions. The mechanism works in the follow-
ing way.

First, choose a one-person solution ^1 which assigns to every one-person
game a set of mixed strategies.

Definition 3.1. For every game F, the optimal response correspondence
induced by the one-person solution <p1 is the function / assigning to every
player i and every MSP p the set <p1(F{i},p).

Finally, define the solution (p to be the solution which assigns to every
normal form game the set of MSPs in which every mixed strategy is an
optimal response (w.r.t. <p1) against the strategies of the other players. For-
mally, we obtain the following definition.

Definition 3.2. The solution (p given by

is called the strongly consistent solution generated by the one-person solu-
tion p1.

The Nash equilibrium correspondence, for example, is a strongly con-
sistent solution generated by the one-person solution which assigns to every
one-person game the set of payoff maximizers. A proof for this result can
be found in Peleg and Tijs (Ref. 1).

In general, the solution <p generated by the mechanism described above
may be empty in some games, even when the one-person solution <p1 is
always nonempty. To illustrate this fact, consider the one-person solution
(p1 which assigns to every one-person game the set of pure strategies with
maximal payoff. Obviously, the solution generated by <p1 assigns to every



game the set of pure Nash equilibria. However, it is well known that pure
Nash equilibria do not always exist.

In the following theorem, we describe a sufficient condition to generate
a nonempty, strongly consistent solution. By nonempty, we mean that the
solution assigns to every game a nonempty set of MSPs. In order to state
the theorem, we need the definition of upper hemicontinuity of a one-person
solution.

Definition 3.3. A one-person solution <p1 is called upper hemicontinu-
ous if, for every one-person game r = <Mi, vi>, every sequence
Fk = <Mi, vi> of games converging to F, and every sequence pk of MSPs
converging to p with pk6^1(rk), we have pep1(r).

In the proof of the theorem, we also need another kind of upper hemi-
continuity, namely the upper hemicontinuity of optimal response
correspondences.

Definition 3.4. The optimal response correspondence induced by <p1 is
upper hemicontinuous if, for every sequence pk of MSPs converging to p
and every sequence qite<p1(r{i}.pk) converging to qi for all i, it holds that
qieq>1(T(i},p) for all i.

In words, if a sequence of strategies consists of optimal responses
against a sequence of MSPs, then the limit strategy is an optimal response
against the limit MSP.

Observe that both types of upper hemicontinuity are based on the usual
closed-graph definition of upper hemicontinuity of a correspondence. A one-
person solution, however, is regarded as a correspondence on a class of
games, whereas the optimal response correspondence varies with the strategy
profiles within the same game.

Theorem 3.1. Let tp be a strongly consistent solution generated by the
one-person solution <p1. If <p1 is upper hemicontinuous and assigns to every
one-person game a nonempty, convex, and compact set of strategies, then
(p is nonempty.

Proof. Let F = <M, v> be a normal form game. First, we show that
the optimal response correspondence in F induced by <p1 is upper-hemicon-
tinuous. Let pk be a sequence of MSPs converging to p and qi6pl(r{i},pk)
a sequence of optimal responses converging to qi. For every k, define the
game Fi,k by Fi,k := r{i},pk. Obviously, the sequence Fi,k converges to F{i},p.
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By the upper hemicontinuity of <p1, we know that qie(p1(r{i},p), which implies
that the optimal response correspondence is upper hemicontinuous.

Since, by assumption, the optimal response correspondence assigns to
every MSP p a nonempty, convex, and compact set of MSPs, we can apply
Kakutani's theorem to ensure the existence of a fixed point of the optimal
response correspondence in the game T. Since the solutions in (p(T) are
exactly those fixed points, the nonemptiness of tp is established. D

Example 3.1. Let <p1 be the one-person solution assigning to every one-
person game r = <Mi, vi> the set of MSPs p with v i ( p ) minimal. Since it
can be checked easily that <p1 satisfies all the conditions in the theorem above,
it follows that the strongly consistent solution generated by (p1 is nonempty.

A solution which assigns to every game a subset of the set of Nash
equilibria is called a Nash equilibrium refinement. The following result,
which has been proved in Norde et al. (Ref. 3), shows that it is impossible
to find a nonempty, consistent Nash equilibrium refinement other than the
Nash equilibrium correspondence itself.

Theorem 3.2. Let <p be a nonempty Nash equilibrium refinement satis-
fying CONS. Then, (p is equal to the Nash equilibrium correspondence.

This theorem implies, in particular, that there does not exist a non-
empty, strongly consistent solution which is a strict refinement of the Nash
equilibrium correspondence. This is an important reason to introduce a new
mechanism in the next section, which enables us to generate so-called limit
consistent solutions. In particular, Nash equilibrium refinements such as
perfect equilibria, proper equilibria, weakly perfect and sequential equilibria
can be generated by this mechanism.

4. Limit Consistent Solutions

In this section, we concentrate on solutions which need not be strongly
consistent, but have the property that every solution point can be approxima-
ted by a sequence of solution points of strongly consistent solutions. We
call such solutions limit consistent.

For a formal definition of limit consistent solutions, we need the notion
of a so-called one-person solution function.

Definition 4.1. A one-person solution function is a function <S>1 which
assigns to every e>0 a one-person solution q1 =<I>1(e).
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Intuitively, the number e can be interpreted as a perturbation factor,
and the one-person solution <J1(e) can be seen as a perturbed one-person
solution.

For every e>0, the unique strongly consistent solution generated by
the one-person solution <J>1(e) is denoted by <J>(e). The function <X> is called
a solution function.

Definition 4.2. A solution (p is called limit consistent if there is a one-
person solution function <&1 such that

(p(T) = {p| there is a sequence ek>0 converging to 0 and a sequence

pk>*(ek)(F) converging to p}.

In this case, we say that the limit consistent solution is generated by the
one-person solution function O1.

Every one-person solution function <$1 induces a solution function O
given by
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for every game F and every e > 0.

Theorem 4.1. The following two statements are equivalent:

Here, cl(*(e)(F)) denotes the closure of the set 0>(e)(F).

Proof. We only show the implication from (i) to (ii); the other implica-
tion can be shown in a similar way.

Let (p be a limit consistent solution generated by <E>1, and let F be a
game. We prove the coincidence of both sets in (ii) by the double inclusion
argument.

(a) We show that p ( r )cn«>0 cl(Q(e)(r)).Let p6<p(r),and let e>0
be given. By definition of limit consistency, there is a sequence e* > 0 con-
verging to 0 and a sequence pke^>(ek)(T) converging to p. Obviously,

(i) o is a limit consistent solution generated by the one-person solu-
tion function o1;

(ii) p(T) = Ue>o cl(0>(6)(T)) for every game F.
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which implies that pecl(O(e)(r)). Since this holds for every g>0, it follows
that

(b) We show that fUe>0cl(<D(e)(r))c:<p(r). Let

Then,

so for every k there is a sequence (pk . l ) i e Ne<t>(1/K)(T), with p = liml_>oo Pk,i.
By definition, there is a number e(k, l)e(0,1/k] for every k,l with
pk,l e<S>(e(k, l))(r). For every k, choose an integer l(A:) with | |p-pk , l ( k ) | | <, 1/
k. By construction, we obtain

Becausepk,l(k) converges top and ek,l(k) converges to 0 as k -> oo, we conclude
that pep(r).                                                                                          D

We say that a solution is closed if it assigns to every game a closed set
of MSPs.

From Theorem 4.1, it follows that a limit consistent solution assigns to
every game T the set D«>0cl(O(e)(r)), which is obviously closed. Hence,
we obtain the following corollary.

Corollary 4.1. Every limit consistent solution is closed.

It turns out that nonemptiness of limit consistent solutions can be char-
acterized by nonemptiness of the corresponding solution functions <1>.

Theorem 4.2. Let <p be a limit consistent solution generated by_the
one-person solution function *1. Then, <p is nonempty if and only if O(e)
is nonempty for every e>0.

Proof. First, we prove the implication from left to right. Let 9 be a
nonempty limit consistent solution generated by <J>1 and F an arbitrary game.
By Theorem 4.1, we know that
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which implies that

This is only possible when

Now, consider the direction from right to left. Let the solution $(e)
be nonempty for every e > 0, and let T be a game. Then, the set cl(<D(e)(r))
is compact for every e>0. Since, by construction,

it follows by Theorem 4.1 that

This theorem and the definition of O(e)(F) imply a characterization
of the class of nonempty limit consistent solutions in terms of the solutions
0(6).

Corollary 4.2. Let <p be a limit consistent solution generated by the
one-person solution function O1. Then, (p is nonempty if and only if, for
every e>0, there is a 5e(0, e] with <D(5) nonempty.

Example 4.1. Consider the one-person solution function $1 which
assigns to every e>0 and every one-person game r=<Mi, vi> the set

The strongly consistent solution O(e) generated by 4>1(e) is nonempty if
eeQ. Hence, in view of the corollary above, the limit consistent solution <p
generated by $1 is nonempty despite the fact that <b(e) is empty for all e^R.

5. Perfect and Proper Equilibria

One of the possible ways to define perfect equilibria is by saying that
a perfect equilibrium can be approximated by a sequence of so called e-
perfect strategy profiles.

Definition 5.1. (a) Let e > 0 and T a normal form game. An MSP p
is called e-perfect if p is completely mixed and vi(p\mi) < vi(p\m'i) implies
pi(mi)<.€.
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(b) An MSP p is a perfect equilibrium if there is a sequence ek of
positive numbers converging to 0 and a sequence pk of ek-perfect profiles
converging to p.

Theorem 5.1. The perfect equilibrium correspondence is a limit con-
sistent solution generated by the one-person solution function $1 given by

for every e>0 and every one-person game F = <Mi, vi>.

The proof of this result is straightforward.

Definition 5.2. (a) An MSP p is called an e-proper profile if p is com-
pletely mixed and Vi(p\mi)<vi(p\m'i) implies Pv(mi)<epi(m'i).

(b) An MSP p is called a proper equilibrium if there is a sequence ek

converging to 0 and a sequence pk of ek-proper profiles converging to p.

Similarly to perfect equilibria, we can show that the proper equilibrium
correspondence is limit consistent.

Theorem 5.2. The proper equilibrium correspondence is a limit consist-
ent solution generated by the one-person solution function O1 given by

for every e > 0 and every one-person game F = <Mi, vi>.

6. Strongly and Omit Consistent Solutions in Extensive Form Games

6.1. Extensive Form Games. An extensive form structure is a quintet
y = <.K, P, H, A, r> characterized by (i) to (v) below.

(i) K is a rooted tree with root x0. The set of terminal nodes is denoted
by Z, and the set of nonterminal nodes except x0 is denoted by X. The
unique sequence of nodes and edges connecting the root x0 and a terminal
node z is called the path from x0 to z. For an xeXv {x0}, E(x) is the set
of edges leaving the node x.

(ii) P: X -»{0,1,2,...,«}, and P(x) is the player that controls the
node x. If P(x)=0, then the node x represents a situation where a chance
move occurs. Such nodes will be called chance nodes.

(ii) H is an n-tuple ( H 1 , H 2 , . . . , Hn), where H, is a partition of the
set P-1(i) into information sets (or agents) such that, for every information
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set h, the following conditions are satisfied:

(a) every path from x0 to (an element of) Z intersects h at most once;
(b) |E(x)| = |E(y) | , for all x, yeh.

We also use the letter H for the set (J/i Hi of all information sets.
(iv) For every information set h, A(h) is a partition of the set of edges

\JXehE(x) leaving the information set h into actions such that

for any action aeA(h) and xeh. We will assume that

(v) T is a function which defines at every chance node a strictly positive
probability distribution on the set of edges which leave the chance node.
These edges represent the different chance moves.

An extensive form game is a pair <y, u>, where Sf is an extensive form
structure and u is an n-tuple (u1, u2,..., un), where ui: Z -»R. The function
u, is the payoff function for player i.

We assume that the extensive form games considered have perfect recall,
which means that two paths leading to the same player i information set
contain the same player i actions.

A behavior strategy for player i is a function ai which assigns to every
player i information set h a mixed strategy for agent h. This means that

A vector a = (<Ti)ieN consisting of behavior strategies is called a behavior
strategy profile (BSP). Note that a BSP assigns to every information set h
a mixed strategy <rh for agent h. Therefore, we can write a BSP a also in
the form <r = (<rh)heH.

A belief system is a function /? which assigns to every information set
h a probability distribution on the nodes in this information set. Formally,

Intuitively, a belief system /J reflects at every information set the subjective
probabilities assigned by the corresponding player to the nodes in this infor-
mation set.

A combination (a, ft) of a BSP and a belief system is called an
assessment.

6.2. Reduced Extensive Form Games, Strongly and Limit Consistent
Solutions. Let F be an extensive form game, Tc N a subset of players, and
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<T a BSP. Then, the reduced game TT,a is the extensive form game which
we obtain by splitting every information set h controlled by a player outside
T into a collection of chance nodes at which the moves of nature are given
by the probability distribution ah. If an action is played with probability
zero in crh, then the corresponding edges are deleted in the game tree. In
this way, we assure that the probability distributions of the moves of nature
are strictly positive. The remaining players in the reduced game are the
players in T.

A solution for extensive form games is a correspondence which assigns
to every extensive form game a set of BSPs.

An assessment solution for extensive form games is a correspondence
which assigns to every extensive form game a set of assessments.

Let <p be a solution. For a game F in <3, we define

where oT is the restriction of <r on the information sets controlled by players
in T.

If (p is an assessment solution, we define

where (oT, ffT) is the restriction of (a, ft) on the information sets controlled
by players in T.

In the obvious way, we define consistency (CONS) and converse consist-
ency (COCONS) for solutions and assessment solutions. Again, we call a
solution (or assessment solution) strongly consistent, if it is both consistent
and conversely consistent.

The definition of limit consistent solutions (assessment solutions) for
extensive form games is given in the obvious way.

7. Weakly Perfect Equilibria

Definition 7.1. A BSP a is called a weakly perfect equilibrium in an
extensive form game F = <y, u> if there is a sequence of games Fk = <y, uk>
converging to F and a sequence of completely mixed BSPs a* converging
to a such that aiBh(o

k, Fk), for some k, implies <rh,(a) = 0, for all aeA(h)
and heH,. Here, j8h((T

k, Fk) denotes the set of pure best responses (actions)
of agent h against «rk in Fk.

This definition of weakly perfect equilibria can be found in Kreps and
Wilson (Ref. 4). It can be seen easily that every perfect equilibrium of the
agent normal form of F is weakly perfect by choosing Fk equal to F.
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In the following theorem, we show that the weakly perfect equilibrium
concept is limit consistent. In order to prove this result, we need two more
definitions.

For two extensive form games F = <y, u> and T' = (£, u') with the
same extensive form structure, we define the distance d(T, F') by

Definition 7.2. In an extensive form game F, the BSP a is called an e-
perfect equilibrium if a is completely mixed and U i(a\a)<U i(a \b) implies
ffh(a) < e, for every he HI and all a, beA(h).

Here, U, denotes the expected payoff.

Theorem 7.1. The weakly perfect equilibrium correspondence is a limit
consistent solution generated by the one-person solution function O1 given
by

for every e > 0 and every one-person game F.

Proof. Let <p be the weakly perfect equilibrium correspondence, and
let <D(e) be the strongly consistent solution generated by O1(e). First, we
show that <D(e) is equal to the solution *P(e) given by

for every game F. To this purpose, we first prove that

Let o-sTCeXF), which means that there is a game F' with d(T, F') < € such
that a is e-perfect in F. For every i, we have that

and <Ti is e-perfect in r'{i},°. So, by definition,

which implies that Cefl(e)(F).
Next, we show that 0>(e)(r)c:¥(e)(r). Let <re<D(e)(F), so

Hence, for every i, we can find a game F* with d(T{i} ,a, F*)<e such that
ai is e-perfect in F*. Let u*(z) be the payoffs in F* at the terminal nodes
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z. We define the game F' = <^, u'> (with the same extensive form structure
as T) by

Then, by construction, d(F, P') < e and cr is e-perfect in P' which implies
that creT(e)(F). This leads to the conclusion that

Let y/ be the limit consistent solution generated by O1. We show that
<P=V-

First, we prove (p(T) <= y/(F) for every game F. Let r=(£f, u) be an
extensive form game, and let cre<p(F). So, cr is a weakly perfect equilibrium
in F supported by some sequences !k = (&, uk> and crk. For every k, we
define the number ek by

If Bh(ak, rk) = A(h), we define ek:= 1/k.
By definition of ek, crk is ek-perfect in Tk for every k and crk converges

to cr. It remains to show that ek converges to 0. Let a be an action such
that a$Bh(c', P') for some l. Since crk and Fk are supporting sequences for
the weakly perfect equilibrium cr, we have ch(a) = 0. So,

which implies that ek converges to 0.
For every k, we choose a number l(k) such that el(k)<,l/k and

d(T, Yl(k))<,1/k. Then, by construction, crl(k) is (1/k)-perfect in Fl(A) and
d(T, T l ( k ) )<,1/k, which implies that

Since *F(1/k) = <D(1/k) and crl(k) converges to a, it follows that ere v(F).
Finally, we show that y(T)c<p(T). Let cre^(r), which means that

there is a sequence ek of positive numbers converging to 0 and a sequence
crkeO(€k)(r) converging to a. Since <I>(ek) = *P(ek), it follows that, for every
k, there is a game rk with d(T, Tk) <, ek and crk is ek-perfect in Pk Since the
collection of information sets and the set of actions at each information set
is finite, we may assume w.l.o.g. that Bh(ak, Tk) is constant over k for each
information set h. Now, let a$Bh(ak, Ik) for some k. Then, by assumption,
aeBh(crk, Fk) for all k. Since crk is ek-perfect in rk,

which implies that crh(a) = 0. Using the fact that Tk converges to F, we may
conclude that cr is a weakly perfect equilibrium in F, so crep(F).
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Hence, the solutions (p and y are equal, implying that <p is the limit
consistent solution generated by O1.

8. Sequential Equilibria

An assessment (cr, /3) is called sequentially rational if, at every informa-
tion set, the corresponding player maximizes his expected payoff given his
beliefs at this information set and given the strategies at the other informa-
tion sets. Mathematically, this means that, for every player i and heHi,

for all aeA(h). Here, f/ i(cr|x) denotes the expected payoff for player i if
the game would start in the node x and the players would play according
to <T. The expression U i ( t r |a | x) is defined in a similar way.

For the sake of convenience, we write U i ( a , P | h ) instead of
Txehbh(x)Ui(a|x).

By Bh(a, /J, F), we denote the set of actions at h which maximize the
expected payoff of the player controlling h with respect to the beliefs /?.
Formally,

An assessment (cr, ft) is called Bayesian consistent if, at every information
set which is reached with strictly positive probability, the beliefs are derived
according to Bayes' rule. So, for every h with P>a(h)>0, it must hold that

for every xeh. Here, Pff(x) and P<T(h) denote the probabilities that the node
x and the information set h are reached, respectively, if a is played.

The assessment (cr, /?) is called consistent if there is a sequence (crk, fk)
of Bayesian consistent assessments such that crk is completely mixed and
(CTk, /Jk) converges to (cr, ft). Obviously, every consistent assessment is Bay-
esian consistent.

Definition 8.1. An assessment (a, /?) is called a sequential equilibrium
if it is sequentially rational and consistent.

Theorem 8.1. (See Kreps and Wilson (Ref. 4).) In an extensive form
game, a BSP cr can be extended to a sequential equilibrium if and only if cr
is a weakly perfect equilibrium.



Definition 8.2. We call an assessment (a, /J) e-perfect if a is com-
pletely mixed, (cr, /?) is Bayesian consistent, and crh(a) <, € whenever
atBfaB.r).

Obviously, for every e-perfect assessment (a, ft), it holds that CT is an
e-perfect BSP, as defined in the previous section.

In the following theorem, we show that every sequential equilibrium
can be approximated by a sequence of e-perfect assessments of perturbed
games.

Theorem 8.2. Let F = (y, u> be an extensive form game, and let (a, /?)
be a sequential equilibrium in F. Then, there is a sequence ek of positive
numbers converging to 0, a sequence Tk= {£f, uk> of games converging to
F, and a sequence (crk, /?k) of ek-perfect assessments in Tk converging to
(o-,0).

Proof. Let (a, ft) be a sequential equilibrium in the game F with
supporting sequence (crk, /?k). W.l.o.g. we may assume that Bk(ak, /?k, F) is
constant over k for every h.

The proof consists of two steps. In the first step, we construct a game
Fk for every k such that Bh(a, ft, F) c^(crk, /?k, Ik) . In the second step, we
prove that (crk, /?k) is an ek-perfect assessment in Fk for some ek, ek converges
to 0, and Fk converges to F.

Step 1. Let k be fixed. We define a function f which transforms F into
a new game f(F). The transformation works as follows.

Let H* be the collection of information sets h for which Bh((r, j8, F) is
not a subset of Bh(ok, /?k, F). For every i and every terminal node z, we
define the payoif u* (z) in the following way.

If z does not follow any information set in H*, we define
a*(z):=ui(z). Otherwise, there is exactly one player i information set h in
H* which precedes z and is not followed by any other player i information
set in H*. Since Bh(a,p,T) is not a subset of Bh(crv, £k, F), the set
Bh(a, ft, F)\/?h,(crk, /?k, F) is not empty. Let b be an arbitrary but fixed
action in Bh,(crk, /?k, F). Since Bh(ak, /?k, F) is constant over k, we can choose
b independently of k. For every aeBh(a, ft, F)\jBh(crk, Bk, F), we define
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where Z(a) denotes the set of terminal nodes which follow the action a.
For all other terminal nodes z which follow the information set h, we

define u* (z) := ui(Z).
In this way, we obtain the game <^, u*>, which we call f(F).
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By construction of the payoffs u*, Bh(a,p,Y) is a subset of
Bh(CTk, /?k, f(F)) for all player i information sets h in H* which are not
followed by any other player i information sets in H*.

If such a player i information set h in H* is followed by another player
i information set h'$H*,by perfect recall there is a unique action at h which
leads to h'. By definition of the payoffs u*, the set Bh'(ak, Bk, F) does not
change when we go from the game F to the game f(F).

Combining the two observations above leads to the conclusion that the
set H* becomes strictly smaller when we go from F to f(F) (if H* is not
empty at F, of course). So, by subsequently applying the transformation f,
the set H* becomes empty after finitely many times.

We define F* to be the game which we obtain by subsequently applying
f until H* is empty. Since H* is empty, it holds that Bh(a, B, F) is a subset
of Bh(ok, /3k, rk)for all h.

Step 2. For every k, we define the number ek by

By construction, (crk, Bk) is ek-perfect in Fk.
In order to show that ek converges to 0, choose an action a with

a$Bh(ffk, Bk, Fk) for some k. Since Bh(a, B, T)cBh(ak, Bk, Fk), it follows
that a$ph(a, B, F). Since (a, ft) is sequentially rational, crh(a) = 0. Hence,
<rk(a) converges to 0, which implies that e* converges to 0.

It remains to show that Fk converges to F. Let k be fixed for the
moment. In the step from F to f(F), the player i payoff of a terminal node
z only changes if z follows a player i action a such that aeBh(a, ft, F), but
a$Bh((Tk, pk, F). If the payoff changes, the new payoff u* (z) is given by

where beBh(ak, ftk, F). Since we assumed that BA(CTk, /?k, F) remains con-
stant over k, it follows that beB h (a ,B,T) . However, this implies that
Ui(0\b,B\h) = Uk(a\a,B\h). Using the fact that (erk,/fk) converges to
(a, B), it follows that

So, the difference |u* (z) - ui(z)| tends to zero when k tends to infinity. Since
the game Fk is obtained from F by applying the function f at most |H|
times, it follows that Fk converges to F.

This completes the proof. D
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Theorem 8.3. The sequential equilibrium correspondence is a limit
consistent assessment solution generated by the one-person solution function
3>1 given by

for every one-person game F and every e > 0.

Proof. Let <p be the sequential equilibrium correspondence, and let y
be the limit consistent solution generated by < X 1 . Furthermore, we denote
by <X>(e) the strongly consistent solution generated by <J>1(e). Similarly to
the proof of Theorem 7.1, it can be shown that

for every game F.
Now, we show that (p-y.
First, we prove <jt>(F)c: (F) for every game F.
Let (cr, /?)ep(F) for a game F, which means that (a, ft) is a sequential

equilibrium in F. By Theorem 8.2, there is a sequence ek converging to 0, a
sequence Fk converging to F, and a sequence (crk, /?k) of ek-perfect
assessments in Fk converging to (cr, ft). For every k, there is an l(k) such
that d(T, Fl(k))<,1/k and el(k)< 1/k. But then, obviously,

Since (a1(k) ftl(k)) converges to (a, ft), it follows that (cr, p)e\t/(T).
Finally, we show ^(F)cp(F).
Let (cr, P)e\i/(T), so there is a sequence ek converging to 0 and a

sequence (crk, /Jk)e<I>(ek)(r) converging to (cr, ft). So, for every k, there is
a game Fk with d(T, Fk) <, ek such that (crk, /?k) is ck-perfect in Fk. We show
that (cr, /?) is a sequential equilibrium.

The consistency of (cr, ft) follows from the fact that (crk, fik) is a
sequence of completely mixed, Bayesian assessments converging to (cr, /?).

It remains to show that (cr, ft) is sequentially rational. To this purpose,
consider an information set h and an action aeA(h) such that a$Bh(a, ft, F).
Since we may assume that Bh(crk, /?k, Fk) remains constant over k, it follows
that

Using the fact that (crk, ftk) is ek-perfect in Fk, it holds that

implying that <Th(a) = 0. It follows that (cr, ft) is sequentially rational. D
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