
^asuring Credit Spread Risk
Incorporating the tails.

Rachel Campbell and Ronald Huisman

RACHEL CAMPBELL is an assistant

professor of finance. Faculty of

Economics and Business Admin-

istration, Maastricht Uiiiversity,

Maastricht, The Netherlands.

r.campbell@bernn.unimaas.nl

RONALD HUISMAN is an asso-

ciate professor of finance at the
Rotterdam School of Manage-
ment, and a partner at FinEdge
Intemational Group in
The Netherlands.
r.huisman@fbk.enr.nl

C
redit risk management has become an increas-
ingly important area of financial risk man-
agement, as evidenced by the enormous surge
in credit derivatives. The recent global finan-

cial crisis, the need for credit protection, and the poten-
tial to enhance loan-hased credit portfolio yields and the
returns on bank capital all have spurred demand for
credit derivatives.

A survey by the British Bankers' Association esti-
mated the global credit derivatives market in 1999 to be
$586 billion. By 2000, the market had grown to around
$893 billion. As of year-end 2001, the market was esti-
mated to have mushroomed to an incredible $1.2 trillion.
Forecasts for 2002 estimated a market of over $1.5 trillion.

Accurate assessment of credit risk depends on meth-
ods to accurately measure and control potential or expected
losses resulting from default. This includes estimation of the
credit exposure, the probability of default, and the fraction
of market value recoverable at default. Credit spreads, the
difference between the risky bond and a risk-free alterna-
tive, should therefore reflect the amount of credit risk faced.

Credit spreads change over time for reasons such as
varying market conditions, changes in the credit ratings
of issuers, or changes in expectations regarding the recov-
ery rate. Traditional quantitative credit risk models assume
that expected changes in spreads are normally distributed,
but empirical evidence shows that they are more likely
to be skewed and fat-tailed. This makes the expected loss
distribution for credit portfolios highly skewed and
severely fat-tailed.
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Subrahmanyam, Eom, and Uno [1998] show this for
Japanese yen swap spreads, and Phoa [1999] provides evi-
dence using Australian dollar swap spread data. Both suid-
ies argue that incorporating the apparent fat tails is crucial
in order to correctly measure credit risk.

Phoa applies extreme value theory' (EVT) to param-
eterize fat-tailed Frechet, Weibull, and Gumbel distribu-
tions to measure the maximum expected daily widening
in swap spreads on the Australian dollar, but the method
he uses to assess the amount of tail fatness {the tail index)
is known to be biased. He deals with this fact by show-
ing results for two different tail index estimates.

Recent developments in EVT have led to the devel-
opment of an unbiased tail index estimator that has proven
to work successfully in measuring the tail index, and
therefore is also able to capture the additional downside
risk in value at risk estimates for stocks and exchange rates.'
We apply this technique to model the tails of the distri-
bution of expected changes in swap spread.

Using data on U.S., U.K., German, and Japanese ten-
year swap and government bond rates, we provide evi-
dence of apparent tail fatness in the empirical distributions
of the changes. We also show that the approach outper-
forms the normal distribution in measuring the risk pre-
sented by large widenings or tightenings of credit spreads.

CREDIT SPREADS

The expected credit loss (ECL) is measured by the
drop in value due to the possibility of default, X, over a
time interval t, and can be expressed simply as the prob-
abihty of default multiplied by the proportion of the
position not recovered:

ECL={\~f)(Ut)P, (1)

where/is a fraction representing the recovery rate, and P
is the price of a risk-free bond at time (.

The credit spread for a given maturity may be writ-
ten in terms of yields, y, as in Equation (2), where X is again
the probability of default over the same period as the
maturity of the risky bond, P*, and the risk-free bonds:

probabilities can be inferred from the term structures of
risky and risk-free bonds, in a similar manner to Jarrow
and Turnbull [1995].^

The term structure of credit spreads (and shocks to
credit spreads) is indeed non-trivial. From the credit
spread, we can determine much of the risk involved in
credit risk. Indeed, it is this factor that is the crucial ele-
ment in credit risk management. For example, for the next
period's estimate of the expected credit loss we can sub-
stitute the credit spread for the markets expectation of
default and recovery.

Multiplying by the credit exposure (average price is
at the 50% confidence level), we get an estimate for the
expected credit loss similar to that given in Equation (1).
but now in terms of the credit spread:

(3)

If an estimate of the unexpected credit loss (UCL)
is required, we multiply the price of the risk-free asset by
the worst credit exposure at a chosen confidence inter-
val, c. For risky debt, the credit exposure is the principal,
so P'^ simplifies to the asset s value at risk for a given con-
fidence level. For products hke derivatives, it is only when
the derivative contract is in the money that potential
credit risk arises, so we also need to multiply by the prob-
ability of being in the money at time r, denoted by prob-
ability m:

UCL = m{y* - y)/

The credit spread therefore represents the probabil-
ity of default multiplied by the proportion not recovered.
Indeed, using Equation (2), the term structure of default

(4)

This approach to estimating unexpected credit loss
does not take into account the risk associated with changes
in the extent of the credit spread, credit spread risk, or
changes in the probability of default and the recovery rate.
Unless this is incorporated into the worst case credit at
risk (CaR) estimate, it is vital that scenario analysis be used
to track the sensitivity of the CaR measure to either
credit spread risk or changes in default and recovery rates.
Changes in the credit spread (credit spread risk) are there-
fore the risk involved with changes in the extent of the
credit spread. This can have imphcations for worst case
scenario analysis of credit risk for fixed-income products,
as well as for pricing credit derivative products when the
credit spread is a determining factor for the value of the
derivative.
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E X H I B I T 1
Summary Statistics—^January 1990-December 1999

Credit Spread

Observations

Average Daily Shift

Standard Deviation

Skewness

Kurtosis

U.S.

2610

-5.747E-06

0.076

-0.052

7.224

U.K.

2610

-2.797E-04

0.088

0.015

9.352

Germany

2610

1.226E-04

0.062

-0.042

7.353

Japan

2610

-1.782E-04

0.069

-0.344

28.723

HISTORICAL CREDIT SPREAD
TIGHTENINGS AND WIDENINGS

We provide empirical evidence ofthe probability dis-
tribution of credit spread changes, so that one can more
accurately determine worst case scenario analysis for credit
risk management, and the pricing and hedging of deriva-
tives products on credit spreads.

To estimate the distribution of shifts in credit spreads
for a variety of countries, we employ daily data for the
U.S., the U.K., Germany, and Japan from Datastream over
the period January 1990 through December 1999. The
credit spread prices the additional risk over a base asset
such as the Treasury bill rate. We therefore use ten-year
government bond yields for each country as the base asset.

The swap rate is commonly taken as a proxy for the
AA credit rate, since the swap market is significantly
deeper and more liquid than the corporate bond market.-̂
The two other factors that also tend to affect the move-
ment of swap spreads are interest rates and liquidity, but
the literature generally takes the swap rate for analysis of
credit spread risk. We also use the ten-year Datastream
swap rate, which is a value-weighted index of the mid-
dle yield on U.S. swaps. The svrap spread (credit spread)
is the swap rate less the yield on the current ten-year gov-
ernment bond.

As a word of caution, it may not always be appro-
priate to use the Treasury yield as the risk-firee rate as Trea-
suries are more liquid and repo at lower rates. It might
therefore be more appropriate to use a swap rate as the
risk-free rate. A ftirther limitation is that in using a con-
stant rating series we are not able to reflect spread shifts
that result from rating migrations.

The summary statistics for the daily shifts in credit
spreads are given in Exhibit 1. We can see that the aver-
age daily shift is extremely small with standard deviations
ranging from 6.2% for Germany, to 8.8%. for the UK. The
distribution of credit spread shifts in Japan is highly skewed.
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and all country credit markets exhibit significant excess
kurtosis.

Deviations from normality will result in a higher than
stipulated probabihty of large movements in credit spreads
under the assumption of normally distributed returns.
The assumption of Gaussian innovations generates a lower
probability of extreme movements, so the assumption of
normality is likely to underestimate the credit spread risk
of either large tightenings or widenings in credit spreads.
The degree of misspecification is of course vital for accu-
rate estimation in risk management for both credit risk
and worst case scenario analysis.

The histogram of shifts in swap spreads is given for
the U.S. in Exhibit 2 against the probabilities assuming
normality. We do indeed observe a grcater-than-normal
probability of extreme movements in credit spreads, exem-
plifying the small but looming potential for increases in
default risk to have severe implications on the size of
credit spread risk.

The prevalence of skewed distributions could also
result in an alternative probability for large downward
rather than upward shifts in the swap spread, so we look
at both tails ofthe distribution of shifts in swap spreads.
A simple approach to modeling the additional tail fatness
in distributions is to parameterize the Student-t distribu-
tion with degrees of freedom in accordance with the tail
estimation as described below. This approach follows the
VaR-x approach of Huisman. Koedijk, and Pownall
[1998], but instead of value at risk estimation, we focus
on quantile estimates. These quantile estimates can then
be directly incorporated into scenario analysis for credit
at risk analysis, or indirectly for pricing far out-of-the-
money credit risk derivatives.

TAIL INDEX ESTIMATION

Recent developments in the application of extreme
value theory to risk management enable us to provide a
good estimate ofthe tail index ofthe distribution of daily
movements in credit spreads. Tail index estimation is
specification ofthe degree to which the tail of a distri-
bution exhibits tail fatness; it was first introduced by Hill
[1975]. The tail index measures how quickly the distri-
bution's tail approaches zero; the fatter the tail, the slower
the speed, and the lower the tail index given.

The tail index has the attractive feature that it is equal
to the number of nioments ofthe distribution, and thus
can be used to parameterize the Student-t distribution—
hence the link to the fatter-tailed Student-t distribution,
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E X H I B I T 2
Histogram of Daily Spread Shifts—January 1990-December 1999
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which nests the normal distribution as a limiting case. We
use a modified version of the Hill estimator, developed
by Huisman et al. [2001] to estimate the tail index, mod-
ified to account for the bias in the Hill estimator. Speci-
fying k as the number of tail observations, and ordering
their absolute values as an increasing function of size, we
obtain the tail estimator proposed by Hill.

This is denoted by y and is the inverse of a:

(5)

As Phoa [1999] points out, in practical applications
ofthe Hill estimator there is an uncomfortable trade-off
between variance and bias. This occurs through the use
of fewer observations as we move farther out into the tails
of the distribution, so that although the estimate is less
biased (reflects more fully the tail ofthe distribution) the
variance ofthe estimate increases. The bias ofthe Hill esti-
mator is therefore a function ofthe sample size used for
the estimate, shown in Exhibit 3 for U.S. swap spread data.̂

Following the methodology of Huisman et al. [20011,
we can use a modified version ofthe Hill estimator to cor-
rect for the bias in smaU samples. A bias-corrected tail index
is therefore obtained by observing the bias ofthe Hill esti-
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mator as the number of tail observations increases up to
K, where K is equal to half of the sample size:

(6)

The optimal estimate for the tail index is the inter-
cept j3|,. And the a estimate is just the inverse of this esti-
mate. This is the estimate of the tail index that we use to
parameterize the Student-t distribution. Recent applica-
tions of this approach to estimating market risk have been
shown to work well for a variety of financial time series.̂

We estimate the tail estimates using the Huisman et
al. [2001] alpha estimator for the four countries. The
estimates ior both tails are given in Exhibit 4. As all the
series exhibit excess kurtosis, it is not surprising that the
alpha estimates used to parameterize the Student-t dis-
tribution generate much fatter-tailed distributions than
under normality. We also observe that the alpha estimate
for the left tail alone for all the series is sUghtly smaller than
the estimate using both tails and the right tail ofthe dis-
tribution only. This provides evidence of a greater prob-
ability attached to credit spread tightenings than to credit
spread widenings. This may result from the fact that sharp
rises in Treasury yields occur more frequently than sharp
drops (see Phoa [1999]).

SUMMER 2003



E X H I B I T 3
Tail Index Estimator

E X H I B I T 4
Alpha Estimates

Alpha
Kappa
Alpha
Kappa
Alpha
Kappa

(Both)

(Left)

(Right)

U.S.
3.848
1305

3.957
603

4.506
701

U.K.
3.423
1305

3.035
618

3.835
686

Germany
3.550
1305

2.803
732

4.230
572

Japan
2.939
1305

2.735
582

3.561
723

We therefore analyze the quantile estimates for the
downward and upward shifts in credit spreads separately,
using the tail index estimator for the respective tail. In
Exhibit 5 we plot the quantile estimates using the two
approaches for quantiles ranging from 7.5% to 92.5% in
the right and left tails ofthe distributions.

In more extreme cases, the assumption of normal-
ity severely underestimates the size ofthe potential shift
in the credit spread shift. Indeed this is the case for all the
series that we analyze. The results for the quantile esti-
mates for potential daily tightening and widenings are
given in Exhibits 6 and 7.

The probability of credit spread tightenings has his-
torically been sUghtly greater than for similar-sized upward
movements, but all the results provide evidence of severe
uiiderestiniation of the potential changes in large move-
ments of credit spreads. Indeed, the fatter-tailed Student-
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t distribution parameterized by the alpha tail index estimator
provides basis point movements for monthly, yearly, five-,
and ten-year events much more in line with those we have
observed in recent years. It would therefore appear to be
much more prudent to use these higher estimates in risk
management techniques and derivatives pricing and hedg-
ing strategies incorporating credit spread risk.

CONCLUSIONS

Estimation of credit spread risk is important not
only for pricing and hedging credit derivatives but also for
accurate risk management. Small but looming possibili-
ties of default, however, make the expected return dis-
tribution for financial products subject to credit risk
non-normal. To correctly assess the true probability of
large movements in credit widenings and tightenings, we
apply techniques developed to incorporate additional
downside risk resulting from non-normalities in manag-
ing market risk to data on swaps and swap spreads.

The downside of our results is that for unexpected
events the assumption of normality grossly underesti-
mates credit spread risk in many countries' credit markets.
Estimation of swap and credit spread risk for such events
is dramatically improved when the severity of the addi-
tional downside risk is measured and incorporated into
current estimation techniques. These results are crucial not
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E X H I B I T 5
Quantile Estimates Using Alternative Parametric Distributions
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only for improving credit risk management but also for
pricing out-of-the-money credit derivatives.

ENDNOTES

'See Huisman et al. [2001], Pownall and Koedijk [1999],
and Huisman, Koedijk, and Pownall [1998].

-Jarrow and TumbulJ 11995] provide a consistent method-
ology for pricing and hedging derivative securities involving
credit risk, assuming no arbitrage and complete markets.

^While a confidence level (commonly 95%) is taken for
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the distribution of the underlying asset, it is not commonly
assumed for the distribution of shifts in the credit spread. It is
a simple exercise to incorporate this direcdy into the estimate
using a bivariate distribution. i.

We could have used the Datastream value-weighted
index ofthe middle yield on U.S. corporate bonds index, for
example, which includes all maturities and invesmient-grade
credit ratings, but the corporate bond market is still much less
liquid, with only weekly data available for the same sample
period.

••A similar pattern emerges for all the series studied.
Ŝee Huisman, Koedijk, and Pownall [1998] for an appli-
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E X H I B I T 6
Credit Spread Tightenings—Quantile Estimates

Monthly Event 4.76%
U.S.
U.K.
Germany

Japan

Yearly Event 0.397%

U.S.
U.K.
Germany
Japan

S-Yearly Event 0.079%
U.S.
U.K.

Germany
Japan

10-Yearly Event 0.040%

U.S.
U.K.
Germany

Japan

20-YeBrly Event 0.019%

U.S.
U.K.
Germany

Japan

Empiricai
-12.0
-13.0
-9.0

•9.0

Empirical
-29.6
-35.0
'24.7
-31.9

Empirical
-37.0
-57.4
-32.5
-62.9

Empirical
'53.4
'58.9
-35.9
-69.7

Empirical
-
-
-

-

Normal
-12.7
•14.7
-10.4

-11.5
Normal
-20.2
-23.4

-16.5
-18.3

Normal
-24.1
-27.8
-19.7
-21.8

Normai
-25.6
-29.5
-20.9
-23.1

Normal
-27.0
-31.2
-22.1
-24.4

Student-t (at)
-11.7
-12.3

-8.3
-9.0
Student-t (au)
-26.6
-32.2

-22.8
-25.1

Student-t (a )̂
-41.4
-55.8
-41.1 -.
-46.0

Student-t (a J
-49.7
-70.4
-52.7

-59.4

Student-t ( a j
-59.5
-88.7
-67.7
-76.7

E X H I B I T 7

Credit Spread Widenings—Quantile Estimates

Monthly Event 4.76%

U.S.
U.K.
Germany

Japan

Yearly Event 0.397%

U.S.
U.K.
Gemiany
Japan

5-Yearly Event 0.079%

U.S.
U.K.
Germany

Japan

Empiricai
12.9
14.0

10.0
10.0

Empiricai
26.3
33.5

23.6
26.3

Empiricai
29.9
43.7
29.9
38.4

Normai
12.7
14.7

10.4

11.5

Normai
20.2
23.4

16.5
18.3

Normai
24.1
27.9

19.6
21.8

Student-t {»„)
12.0
13.5
9.7
10.3
Student-t (a^)
25.8
31.0
21.3
24.6

Student-t (an)
38.5
48.7

32.5
39.8

10-Yearly Event 0.040%
U.S.
U.K.
Germany
Japan

20-Yearly Event 0.019%
U.S.
U.K.

Germany
Japan

Empirical
31.9
52.2
31.0
40.4

Empirical
-
-
-

-

Normal
25.6
29.6
20.9

23.2

Normal
27,0
31.2
22.0
24.4

Student-t (an)
45.4
58.8
38.7
48.7

Student-t(an)
53.3
70.7

45.8
59.2

cation to U.S. stocks and bonds, and Pownall and Koedijk
[1999] for Asian stock markets, as well as Campbell, Eicholtz,
and Huisnian [2003] for the U.S. and Dutch real estate markets.
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