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Abstract 

A price adjustment process for an exchange economy is given that converges generically 
to a Walrasian equilibrium. The assumptions made with respect to consumptions sets, 
preferences and initial endowments are standard. No restrictions are made with respect to 
the starting price system. The well-known fact that the number of Wairasian equilibria is 
generically odd follows as a special case of the main theorem. In the case of gross 
substitutability of demand functions convergence always takes place even without making 
differentiability assumptions. In this special case, the prices of commodities in excess 
demand (supply) are strictly increasing (decreasing), and t~erefore the qualitative behaviour 
of the process resembles the Walrasian tatonnement process. Moreover, on every market the 
absolute value of the total excess demand is monotonically decreasing. 

JEL classification: C62 D51 
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| .  lntroductlon 

Since Wairas (1874), economists have been interested in the problem of finding 
an adjustment process that generates, for a given economy and an arbitrarily 
specified starting price system, a path of price systems that converge to a price 
system at which the total excess demand is equal to zero. The classical Walrasian 
tatonnement process may fail to converge if some rather restrictive assumptions on 
the economy are not satisfied. Examples of economies where this process does not 
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converge are given in Scarf (1960). It is not difficult to construct other examples 
since, by the work of Sonnenschein (1973), Mantel (1974), and Debreu (1974), 
every continuous function that satisfies Walras' law and is defined for elements of 
the unit simplex with all components greater than or equal to some arbitrarily 
small positive ~mmber, is the total excess demand function of some pure exchange 
economy. Therefore it is interesting to look for adjustment processes that converge 
for every total excess demand function, i.e. convergence should hold universally, a 
requirement not met by the Walrasian tatonnement process. 

A universally convergent process to find a fixed point of a function has been 
presented in Kellog et al. (1976), and a universally convergent process to find a 
zero point of a total excess demand function is given in Smale (1976). In Varian 
(1977) it is shown that the boundary conditions on the total excess demand 
function used by Smale can be relaxed if the adjustment process is extended in a 
particular way outside the original domain. These processes converge, for a 
generic economy, to a Walrasian equilibrium price system for almost every 
starting price system belonging to the bour~dary of the domain. However, it seems 
likely that an actual adjustment process may start with an arbitrarily chosen price 
system in the interior of the domain. In Keenan (1981) it is shown that Smale's 
process is not globally convergent, i.e. there may exist an open set of starting price 
systems for which the process does not converge to some equilibrium. 

A globally and universally convergent process is presented in Kamiya (1990). 
Under rather weak conditions on the total excess demand function, among which 
the boundary condition that the excess demand of a commodity is positive if its 
price is zero, so that the excess demand function is also assumed to be defined on 
the boundary of the unit simplex, convergence is guaranteed for almost every 
starting price system in file interior of the unit simplex. It might be possible to 
weaken this boundary condition in a similar way as Varian (1977) did for Smale's 
process. However, from an economic point of view such a solution is not 
completely satisfactory since outside the original domain the adjustment process is 
artificially defined and, for example, does not depend on the excess demand at the 
price system reached, but instead on the excess demand at another price system. 

In this paper an alternative globally and universally convergent price adjust- 
ment process is considered, proposed in van der Laan and Talman (1987), which 
has a nice economic interpretation. Van der Laan and Talman (1987) claim that, 
under ce:'tain regularity assumptions on the total excess demand function, their 
process is globally and universally convergent. However, it is not clear how strong 
these regularity assumptions are. In this paper it will be sho~vn that indeed for 
every starting price system in the domain, their process converges generically in 
the initial endowments to a Walrasian equilibrium price system using only 
standard conditions on utility functions and consumption sets. Under these condi- 
tions the total excess demand function is only well defined on the interior of the 
unit simplex. It is not excluded that the excess demand of a commodity is not 
defined or becomes negative if its price goes to zero. 
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In Section 2 the price adjustment process is described and a definition of 
convergence of the process is given for which continuity, instead of differentiabil- 
ity, of  the total excess demand function is sufficient. Defining the process also for 
continuous total excess demand functions will be very useful in Section 4, where 
the special case of total excess demand functions that satisfy gross substitutability 
in the finite increment form is considered, the same case as the one for which 
Arrow et al. (1959) showed convergence of the Walrasian tatonnement process as 
formulated by Samuelson (1941). In this case it is sufficient to assume continuity 
of the total excess demand function in order to prove convergence of the process 
considered in this paper. 

The process is illustrated using the first example of Scarf (1960). For the 
economy given in this example, the price adjustment process converges for every 
starting price system in the unit simplex. In Section 2 we present the main result 
that holds for an arbitrary exchange economy that satisfies the standard assump- 
tions. Corollaries of this result are the generic convergence of the price adjustment 
process, and the well-known result (see Dierker, 1972) that generically the number 
of Walrasian equilibria is odd. In Section 3 the proof of the main result is given. In 
Section 4 the adjustment process is analyzed for the special case where a 
continuous total excess demand function satisfies the gross substitutability condi- 
tion. In this special case convergence not only holds generically, as in the results 
of Smale (1976) and Kamiya (1990), but also always occurs. In this case it can be 
shown that the prices of commodities in excess demand (supply) are strictly 
increasing (decreasing) during the adjustment process. Therefore the process has 
some features that are qualitatively the same as for the Wairasian tatonnement 
process. In the gross substitutability case it is also shown that if a market reaches 
an equilibrium situation during the process, ther~ it stays in equilibrium for the rest 
of the process. An even stronger result will be proved if on every market the 
absolute value of the total excess demand is monotonically decreasing. 

2. The price adjustment process 

In what follows, for k ~ 1~, I k denotes the set of integers {1 k}, I~ k , ' ® ' ~  + 

denotes the non-negative orthant of the k-dimensional Euclidean space I~ ~, and 
Rk++ denotes the set { x ~ l ~ k l ' d j ~ t k ,  Xj>0}.  Moreover, O k (1 k) denotes a 
k-dimensional vector of zeros (ones), and 0 k×t (1 kxt) denotes a k × l matrix of 
zeros (ones), for k, l ~ M. In this section the pric¢, adjustment process is described 

• i ,,, ) and a given starting price system for an exchange economy $" = ({X ~, u', co }~ t 
v. There are m consumers, indexed i = 1 . . . . .  m, and n + 1 commodities, indexed 
j = 1 . . . . .  n + 1. Each consumer is defined by a consumption set X ~, a utility 
function u~: X ~ I ~ ,  and a vector of initial endowments or. The vector 
(to t T . . . . .  o,~*)r will be denoted by to. The excess demand correspondence of this 
economy is given by a (possibly empty-valued) correspondence z : I~ "+ D ~ I~,,+ I 
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which associates with every price system p ~ IR "+ t the set z(p) of total excess 
demands compatible with the selection by every consumer of an optimal consump- 
tion bundle in his budget set. A vector p* is a Walrasian equilibrium price system 
if 0 " + r E  z(p* ). Sufficient conditions on consumption sets, initial endowments, 
and preferences can be given such that if p* ~ IR "+ ~ is a Walrasian equilibrium 
price system, then p * E  ,~++~"+~. Moreover, z is a function that is continuous, 

I~ ~+ ~ and . "tisfies Walras' law, p .  z (p )  = 0, homogeneous of degree zero on .~ + +,  
V p  E II~ "+ L .~+ + ,  see, for example, Hildenbrand and Ki rman (1988). Let  S" denote the 
relative interior of  the n-dimensional unit  simplex, so S" = { p ~ =~++11~"+ t i z.,i=,~..+ =l pj  _- 
1}. Let S" denote the closure of S". By the homogeneity of degree zero there is no 
loss of generality in normalizing the price systems such that they belong to S", 

From now on let z be a continuous function defined on S" that satisfies 
Walras' law. Moreover, let the starting price system v be an arbitrary element of 
S". The vector s E I~ "+n is called a feasible sign vector if, for every j e I,+ ~, 
sj E { - 1, 0 ,+  1}, for some k ~ I,+ i, sk = - 1, while for another k ~ I,+ l, s~ = 
+ 1. Let S a denote the set of feasible sign vectors in IR "+ ~. Given a sign vector 

s ~ S  ~' we define the sets l - ( s )  = { j ~  1,,+ ~ I sj = - 1}, l°(s) = { j E  I~+ t [ s] = 0}, 
and l + ( s ) =  { j~ l ,+  ~ I s j =  + 1}. Moreover, let k-(s), k°(s), and k+(s) denote 
the number of elements in the sets l - ( s ) ,  l°(s), and l+(s), respectively. Note 
that for a feasible sign vector s it holds that k°(s)< n -  1. ' fo describe the 
adjustment process, for every sign vector s ~,S~ the sets A(s), B(s), and C(s) of 
price systems are defined by 

A( s) = ( p E S " l V k ~ i , , +  Pk min p~ if sk 
O k j~l,~,l  Uj 

and p~ PJ / = m a x - -  if s k=  +1 , 
v k j e  I,,, i V i 1 

B ( s ) = { p ~ S " l V j E l , + . ,  z j (p)<_Oif  s j = - l ,  z j ( p ) = 0 i f s / = 0 ,  

and z~(p) > 0 i f  s j =  +1},  

C ( s ) = a ( s ) n B ( s ) .  

Hence when p E C(s), then sj = - I(sj = + 1) implies that there is excess supply 
(demand) on market j and the price of commodity j is relatively, i.e. with respect 
to the starting price vj, minimal (maximal), and sj = 0 implies that market j is in 
equilibrium. So the sign vector s E,.P' characterizes the state of every market. The 
set U ,~ s,,C(s) will be denoted by C. Clearly, there is a sign vector ~ E ~ '  such 
that for every j E / , , +  I ,  Zj(O) ~> 0 implies ~:j = + 1 and zj(v) < 0 implies ~j = - 1, 
where Walras' law guarantees that indeed ~ can be chosen in c,5°. Then it holds 
that v ~ B(~), obviously v E A(~), hence v ~ C(~), and therefore v E C. Let us 
consider a Walrasian equilibrium price system p" ~ S". Clearly there is a sign 
vector ,~E.,9 ~ such that for every k E l , + ~ ,  ~ = - 1  implies p~,/v k = 
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minsE i~+, P s / V j  and ~, = + 1 implies p ~ / v  k = maxs~ t,+, P s / V j  • Then p* E 
A(~), clearly p* E B(~), and therefore p* ~ C(~) c= C. Hence, the set C contains 
both the starting price system v and all Walrasian equilibrium price systems. 

A subset of a topological space X is connected if it is not the union of two 
non-empty, disjoint sets, which are open in the induced topology. The component 
of a point x in a topological space X is the union of all connected subsets of X 
containing x. It is not difficult to show that each component is connected and 
therefore the component of an element x is the largest connected subset of X 
contairfing x. Intuitively, a set is connected if it is of one piece. 

• i ,, ) be given with continuous Definition 2.1. Let an economy g' = ({X i, u', w }i~ 
total excess demand function z : S" ~ [~n+ ~, and let v ~ S" be a starting price 
system. Then the price adjustment process is given by the component of the set C 
that contains the starting price system v. 

Since in the definition of the price adjustment process under consideration no 
differentiability assumptions are used, we should also give a definition of conver- 
gence without using such assumptions. A subset T of I~ k is called an arc if it is 
homeomorphic to the unit interval [0,1]. A subset T of I~ k is called a loop if it is 
homeomorphic to the unit circle, i.e. the set { x ~  It~ 2 I(xl)  2 + (x2)  2 = 1}. 

Definition 2.2. Let an economy $ ' =  ({X i, u i, wi}[,, i) be given with continuous 
total excess demand function z : S n ~ ~"+ ~ and let v ~ S n be a starting price 
system. If z(v)-~ 0 "+~ then the price adjustment process is convergent if the 
component of the set C that contains v is an arc having v and a Walrasian 
equilibrium price system p * of the economy ~¢' as its boundary points, whereas 
the arc does not contain at.other Walrasian equilibrium price system. 

In the next section it is proved that generically the price adjustment process is 
convergent. If the price adjustment process is convergent, then there exists a 
continuous function rr : [0, 1] ~ C which is one-to-one and satisfies that ~(0)  = v 
and I t ( l )  is a Walrasian equilibrium price system, so z(rr(1)) = 0 n÷ 1. Moreover, 
"n'([0, 1]) is the component of C that contains v. So there exists a unique, 
continuous path of price systems leading from the starting price system v to a 
Walrasian equilibrium price system. An element of the set [0, 1] could be 
considered to be a normalized time parameter. Although the arc It([0, I l) is 
uniquely determined, the function ~r is clearly not unique, and different functions 
correspond to differem speeds of adjustment. The adjustment process is therefore 
described by considering explicitly the path of price systems followed. In the case 
when an adjustment process is implicitly defined by a system of differential 
equations, this path corresponds to its trajectory. Note that it is only required that 
the arc contains some Walrasian equilibrium price system, which means that even 
if the starting price system is 'sufficiently close' to an equilibrium price system, 
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then the adjustment process may converge to another equilibrium. So m the 
terminology of Saari and Simon (1978) or Saafi (1985), Definition 2.2 corresponds 
to an effective or globally convergent mechanism, but not to a locally effective or 
locally convergent mechanism. 

The adjustment process can be followed numerically using the (2 "+1 - 2)-ray 
algorithm described in Doup et al. (1987). This algorithm generates a piecewise 
linear path of points that correspond to the adjustment process for a piecewise 
linear approximation of the total excess demand function. The information needed 
at some price system p reached by the algorithm is given by a finite number (at 
most n + 1) of price systems already generated by the algorithm, the excess 
demands at these price systems, and the starting price system v. This means that 
the amount of information needed is roughly the same as the amount indicated by 
Saari and Simon (1978). 

In the case of differentiability, the approach taken above is related to those of 
Kellog et al. (1976), Smale (1976, 1981), and Kamiya (1990). In Smale (1976) 
commodity n + l is considered to be a numeraire commodity and a process is 
defined which follows price systems in the set 

with v the initial values of the prices of the first n commodities. It is easily 
verified that taking h = 1 yields that p ~- v is an element of the set, and taking 
h = 0  yields that p" is an element of the set if ( p ' r ,  l) T is a Wairasian 
equilibrium price system. We define T"---{ p ~ IE = I(pj)2< 1}. In Kamiya 
(1990) an adjustment process is defined that generates prices in the set 

p e  T" 13,  e [0. I ] .  V k e  t,,. z, 

= A (  Pk - 

pW ( 

with o the initial values of the prices of the first n commodities. It is easily 
verified that A = 1 yields p = o as a u n t i e  soluti__on. By ce~sidering A = 0 it 

follows that p* is in the set if ( p r ~/1 - Y'.~= j pj~" )'r is an equilibrium price 

system. By m~Jng suitable differentiability, regularity, arid boundary conditions it 
can be shown that for the adjustment processes of Smale (1976) and Kamiya 
(1990) the components that contain the starting price system v of the sets defined 
above are arcs which can be described by continuously differentiable functions. 
Such a continuously differentiable arc can be described by a system of differential 
equations (see, for example, Garcia and Zangwill, 1981), which corresponds to the 
system of differential equations given in Smale (1976) and Kamiya (1990). 



P.J.-J. Herings /Journal of Mathematical Ecmwmics 27 (1997) 163-193 169 

The price adjustment proce~" considered in this paper has a nice economic 
interpretation and can be described as follows. First the sign of the excess demand 
is evaluated at the starting price system v. We consider the case where, for every 
j ~ 1,+ t, z j (v)~ O. In Section 3 this will be shown to be the generic case. The 
prices of commodities j ~ I,,+, with zj(v) < 0 will be decreased relatively, while 
the prices of commodities j EI,+~ with z:(~,)> 0 will be increased relatively. 
We define the sign vector s o ~ S  a by F zj(v) > 0, and s ° = - 1 if 
z~(o) < 0. So the process starts by leaving v along the ray A(s °) of price systems. 
The ratio of prices of commodities in excess demand is kept constant among those 
in excess d e m ~ d ,  and similarly for the ratio of prices of commodities in excess 
supply. Prices are adjusted in this way until one of the markets, say market k, 
attains an equilibrium situation. Let us assume that there is a single market which 
attains an equilibrium. This will be shown to be the generic case. Then the process 
continues by keeping market k in equilibrium, while the price Pk is increased 
(decreased) relatively in the case when there was a negative (positive) excess 
demand on market k before attaining equilibrium. Other prices are kept relatively 
minimal in the case of excess supply and relatively maximal in the case of excess 
demand. Hence a path in C(s  l) is followed, where s~ = 0 and sJ = s ° ,  V j  E 1, + t 
\{k}.  It is shown in this section that for every s ~ S  a the set C(s) is compact and 
in Section 4 that generically it is a finite collection of arcs and loops. Two 
situations now can occur at the other end-point of the path in C(s  1). Either another 
market, say market k', attains an equilibrium situation. In this case prices are 
adjusted in such a way that markets k and k' are kept in equilibrium, while the 
price in market k' is increased (decreased) relatively in the case when there was a 
negative (positive) excess demand on market k' before attaining equilibrium. 
Again, other prices are kept either relatively minimal or relatively maximal. Hence 

"= V j ~ I . +  2 = 0 a n d  sf = s t, a path of price systems in C(s 2) is followed, where s k, 
\{k'}. Or the price on market k becomes relatively minimal or maximal. In this 
case market k is no longer kept in equilibrium but is allowed to become in excess 
supply or excess demand, while Pk is kept relatively minimal or relatively 
maximal, respectively. So then a path of prices in C(s 2) is followed, where 

- !  or + l  and = V j  
The general case is as follows. Suppose the process follows a path of prices in 

C(s t) for some I E ~. Then at the end-point either market k e l - ( s  t) U l+(s t) 
attains an equilibrium situation, in which case a path of price systems in C(s t+ =) 
is followed, where s~* i = 0 and s~+ i = s~, V j  ~ I.+ i \ { k } ,  or the price of some 
commodity k e l°(st) becomes relatively minimal (maximal) in which case a path 
of prices in C(s t+ i) is followed, where s~ +' = - i (s~+' = + 1) and sJ+' = sJ. 
V i e  1.. , \ { k } .  It wi l l  be shown that if,.. =,,-ocess described above generically 
converges to a Walrasian equilibrium price system. 

In the Walrasian tatonnement process, as formulated in Samuelson (1941), i.e. 
p(0) = v and dp( t ) /d t  = z(p(t)), it is possible that after some time the adjust- 
ment process reaches a price system which is such that the price of a commodity is 
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higher than the starting price, while there is an excess supply on the market of this 
commodity. Similarly, it can happen that the Wairasian tatonnement process 
reaches a price system at which there is excess demand in the market of a 
commodity, while the price of this commodity is lower than the starting price of 
this commodity. This is a remarkable phenomenon since initially the Walrasian 
tatonnement process changes prices in such a way that the prices of commodities 
in excess supply are lowere,J and the prices of commodities in excess demand are 
raised with respect to the starting price system. Any price system on the path 
generated by the adjustment process in this paper has the natural property that the 
price of a commodity in excess demand is higher thar~ the corresponding starting 
price, while the price of a commodity in excess supply is lower than the 
corresponding starting price. More details concerning the economic interpretation 
of the price adjustment process can be found in van der Laan and Talman (1987) 
and van den Elzen (1993). 

The price adjustment process can be illustrated using the first example in Scarf 
(1960) concerning an exchange economy with three commodities. For this exam- 
ple it is well known that the Walrasian tatonnement process is unstable for every 
starting price system except for the unique Walrasian equilibrium price system. In 
Scarf's ey~ample, initial endowments to ~ and utility functions u ~ are specified for 
three consumers, yielding a total excess demand function of the economy, z: 
S 2 ~ I~ 3, which is defined by 

--P2 + P3 , Vp E S 2 
ZI(P) = Pt +P2 Pl +P3 

- P 3  Pl 
z~( p)  = + - - ,  Vp  ~ S 2, 

P2 + P3 P ~ + P2 

z 3 ( P ) = - - - P t  + P2 , V p E S  2. 
P~ + P3 P2 + P3 

• I T The unique Walrasian equilibrium price system is given by p = (½, ~, T) • It is 
easily verified that zl(p) = 0 iff P2 ~-P3, z2(P ) =  0 iff Pl =P3, and z3(p) = 0 
i f f  P l --- P2. Let us consider the starting price system v = ( i. 2 ., )T. In Fig. 1 18' 18'  18 

the sets A(s) and B(s) are drawn for every s ~,.9 ~. In Fig. 2 the set C is depicted. 
In Scarf's example there i:~ an excess demand in the markets of the first two 
commodities at v = ( i t, s, ,s2, ~)r.  The process therefore starts by following a path 
in C((  + 1 , +  1 , -  i )T) ,  h a v i n g  v as a boundary point. So the prices of the first two 
commodities are relatively increased. At p = ( ~ 2 2 )1" the market of the first 15' i 5 '  15 

commodity attains an equilibrium situation. So this market is kept in equilibrium, 
the relative price of the second commodity is kept maximal, and the relative price 
of the third commodity minimal, so a path in C((0, + 1 , -  1) T) is followed. At 

,, 5 s )1' the price of the first commodity becomes relatively minimal and P=(21" 21, 2! 

equal to the relative price of commodity 3. Hence the process continues by 
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(i) (;) 

. : , 

k \ 

(!) (i) 
Fig. I. The sets A( s) and B( s), s ~ S ~, in the first example of Scarf (1960). 

following a path in C ( ( -  1,+ 1 , -  I)T), where the prices of commodities 1 and 3 
are relatively decreased and the price of commodity 2 is relatively increased. The 

1~ ~7)T markel market of commodity 1 is no longer in equilibrium. At p = ( ~ ,  27, 
3 attains an equilibrium situation and so a path in C ( ( -  1, + 1, 0) v) is followed, 
At p* = (½, ~-, ½)v the process reaches a Wairasian equilibrium price system. 
Clearly the price adjustment process is convergent in the sense of Definition 2.2. It 
can be shown that in Scarf's example the price adjustment process converges for 
every starting price system v ~ S'. 

To show that convergence is a g~ aerie property of the adjustment process, the 
following standard assumptions on consumption sets and preferences have to be 

made. 

[[~n+ I 
Assuntption 1. For every i ~ 1,, the consumption set X ~ is equal to .... ~. +. 

Assumption 2. For every i ~ I,, the utility function u;: X ~ ~ I~ is strictly increas- 
ing, strictly quasi-concave, three times continuously differentiable, the indifference 
surfaces of u ~ have non-zero Gaussian curvature at every x ~ E X ~, and the closure 
of the indifference surfaces ir~ 1~ ~+ ~ is a subset of n~n+ 

If the economy 8' satisfies Assumptions 1 and 2, and for every consumer i ~ 1,, it 
holds that co ~ ~ X i, then the total excess demand function z : S" ~ I~ "+ ~ is twice 
continuously differentiable on S". Let m consumption sets and utility functions, 
({X i, ui}~"__ ~), and a starting price system, v ~ S", be given. We denote O = 
I l l  'k ~X;, We define the set of regular initial endowments, denoted by ~ * ,  as the 
set of ;nitial endowments o~ ~ ~ for which the components of the set C for the 
economy g ' =  ({X i, u ~, ~"}~ I) with starting price system v are given by: (1) a 
unique arc containing v and one Walrasian equilibrium price system which are 
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° "  i) 

(i) 
Fig. The set C in the first example of Scarf(1960). 

boundary points of the arc; (2) a finite number of arcs containing two Walrasian 
equilibrium price systems both being boundary points; and (3) a finite number of 
loops containing no Walrasian equilibrium price systems. 

Theorem 2.3. Let ({X i, ui}~= n) that satisfy Assumptions 1 and 2 be given, and let 
v ~ S" be a starting price system. Then the set of  non-regular initial endowments 
O \  O* has a closure in 0 with Lebesgue measure zero. 

Theorem 2.3 will be proved in Section 3. In fact, the proof of Theorem 2.3 yields 
that the path of the prices followed by the price adjustment process is a 
one-dimensional piecewise twice continuously differentiable manifold, i.e. a one- 
dimensional continuous manifold which is a finite union of twice continuously 
differentiable manifolds, some possibly of lower dimensions. Moreover, the other 
components of the set C are either loops or arcs, both being one-dimensional 
piecewise twice continuously differentiable manifolds. Since co ~ ,O * implies that 
the price adjustment process converges, Theorem 2.3 immediately implies the next 
result. 

Corollary 2.4. Let ({X ~, i ,, u }~= n) that satisfy Assumptions 1 and 2 be given, and 
let v ~ S" be a starting price system. Then the price adjustment process for the 

• i m economy ~" = ({X i, u', co }if i) with starting price system v converges, except for 
a set of  initial endowments in 0 having a closure in 0 with I =besgue measure 
zero. 

Since every Wairasian equilibrium price system is an etch:era of c, Theorem 2.3 
confirms the well-known result of Dierker (1972) that generically there is an odd 
number of Wairasian equilibria in ~ economy. 
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Corollary 2.5. Let ({X ~, ui)~ ,) that satisfy Assumptions 1 and 2 be given. Then 
the number of Walrasian equilibria of the economy g ' =  ({X i, u ~, toi}7'= ,) is a 
finite, odd number, except for a set of initial endowments in /2 having a closure 
in /2 with Lebesgue measure zero. 

Let ({ X ~, u~}~= ,) and a starting price system v ~ S" be given. For every to E / 2  
we define the set P( to)  as the component of the set C containing v; we define for 
every s E S  a the set Q~(to) as the set C(s); and we define tiie ~ t  Q(to) as the set 

• ~ " ) with starting price system v. In this way C for the economy 8" = ({X i, u', to }i= ! 
we obtain the price adjustment process correspondence P :/22 --* S" and a corre- 
spondence Q : /2  --* S". Note that the price adjustment correspondence P and the 
correspondence Q are non-empty valued since for every to ~ / 2  the starting price 
system v is contained in P( to)  c: Q(to). To make clear the dependence of the total 
excess demand on the initial endowments, some additional notation is needed. Let 
6"(p,  w ~) denote the demand of consumer i E I m at price system p ~ II~"+..++ t and 

n~"+ I x / 2  ~ I~"+' is wealth w i g  I~++. The total excess demand function ~ ' .~++ 
defined by ~'(p, to) = E~'= ;6i(p,  p" toi) _ Ei~=.toi, ~ ( p ,  to) ~ R n+++ ~X/2, For a 
non-empty compact set T c  I~ ~ we define the function d r : I~ ~ ~ R by d r ( f )  =- 
min{ II t' - t II = I t ~ T}, Vt' ~ ~ .  It is not dif f icult  to show that dr  is a cont inuous  
function. For two non-empty compact subsets T t and T 2 of  I~ ~, we define 
e(T ~, T 2) = min{ II t '  - t 2 II ~ I t '  ~ T ' ,  t 2 ~ T2}. If T t and T 2 are disjoint, then 
obviously e(T ~, T ~) > O. 

Theorem 2.6. Let ({ X i ui}~=tm ) that satisfy Assumptions I and 2 be given, and let 
v ~ S" be a starting price system. Then the correspondences P and Q are 
compact-valued and upper semi-continuous. 

Proof. First the correspondence Q is shown to be upper semi-continuous and 
compact-valued. Let (toq)qE ~ be a sequence in /2 converging to ~ ~ / 2  and let 
(Pq)qE~ be a sequence in S" such that pq~Q(toq) .  It will be shown that 
( p q ) q ~  has a subscquence that converges to a point /3 E Q(~) .  Since S" is 
compact, (pq)qE~ has a subsequence ( P q ' ) r a ~  that converges to a point/3 ~ S". 
Moreover, since the set of sign vectors ,9' is finite the subsequence can be taken 
such that ::ls~._W, VrEI%I, and pq '~Qs ( toq ' ) .  Clearly, if j ~ l + ( s ) ,  then 
P f  > VJ" Note that Vr  ~ I%1, if j ~ l - ( s ) ,  then ~j( p ' ( ,  t o¢ ' )<  0, if j E l°(s),  then 

r • r~ ~'j( p q ,  to o ) =  0, an~, if j ~ / + ( s ) ,  then (i( Pq', tea') > O. Consequently, it holds 
for every r ~ N that 

I I ~ ( p  , t o ¢ ) l k  = m a x  max - ~ ' j ( p  , to" ') ,  J~t+(,O " p , to" j~l-(s) 
m O)iq, } m sup, ~ ~ II ~ i - - ,  I1~ 

_~max supll ~.,toiq'll'~, minjml+(s)vj • 
~ r ~ 1  i-- 1 
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Note that the right-hand side of the inequality above is finite. Suppose ,~ ~ ~n \ S". 
Then Assumptions 1 and 2 imply that II ~(pq', toq')ll= goes to infinity if 
p q ' - ' - ~ S n \ S n  and c o q ' ~ / 2 ,  and a contradiction is obtained. Using 
pq" ~ f f  ~ S", t o q ' ~  ~ ~ / 2 ,  and the continuity of s r, it follows that ~ ~ Q~(~). 
So Q is upper semi-continuous and compact-valued. 

Now let (toq)q~ be a sequence in /2 converging to ~ / 2  and let (pq)q~ 
be a sequence in S" such that pq ~ P(toq). It will be shown that (Pq)qer~ has a 
subsequence that converges to a point ~ E P(~) .  Without loss of generality it can 
be assumed that, using the previous paragraph, pq-'~p with p E/Q(~). Since 
P ( ~ )  is the largest connected subset of Q(~)  that contains v, the closure of a 
connected set is connected, and since Q(~)  is compact, it follows that P ( ~ )  is 
compact. 

Exercise 4c of section 5.1 in Munkres (1975, p. 235) states that for a compact 
Hausdorff space X and an element x ~ X the component of X that contains x is 
equal to the intersection of all sets that 'contain x which are both open and closed 
in X. Suppose ~ ~ P(~) .  Using the result mentioned above and the compactness 
of P ( ~ )  it follows that there exist compact disjoint sets T ~ and T 2 such that 
v ~ T  I, ~ T  2, and T I U T  2 = Q ( ~ ) .  Hence there exists ~ > 0  such that 
e(T ~, T 2) > e. By the upper semi-continuity of the correspondence Q there exists 
an NEI~I such that Vq>N, Vp~P(toq), do(~)(p)< ~ .  We consider some 
q> N such that II Pq-Pli~ < ½~. We define U t ={p~P(toq)ldr,(P)< ½~} 
and U 2 -- {p ~ P(o~q)l drz(p) < ½¢}. By the continuity of d r, and dr~ the sets 
U t and U 2 are open in P(toq). Clearly, U t and U 2 are disjoint, U~U U ~= 
P(~oq), and U ~ and U ~ are non-empty since v ~  U ~ and pq~ U 2. So P(to q) is 
not connected, which is a contradiction. CQ.E.D. 

The correspondences P and Q are compact-valued and upper-semicontinuous, 
and the image set S" is totally bounded when given the Euclidean metric, i.e. for 
every ~ > 0, S" c: ~ n + I . .  + + can be covered by a finite number of sets of diameter less 
than 4. Therefore it follows immediately, in the same way as in Dierker (1974, p. 
85), that the correspondences P and Q are continuous on a residual subset o f / 2 ,  
i.e. on a countable intersection of sets open and dense in /2. Therefore, from an 
economic point of view, Theorem 2.6 is interesting since it means that the 
adjustment t~rocess itself is in some sense stable against perturbations in the initial 
endowments. The upper semi-continuity and the compact-valuedness of Q will be 
used in the proof of Theorem 2.3. 

3. Generic convergence o f  the process 

In this section consumption sets and utility functions ({X ~, u'},"~ ~) that satisfy 
Assumptions 1 and 2, and a starting price system v ~ S", are given. Then for every 
s~.3~' and to e l '2  the sets B(s), C(s), and C for the economy 8"= 
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({X i, u i, toq~= i) with starting price system v can be deriwd. To make clear the 
dependence on the initial endowments, the notal~on is changed in this section to 
Bo,(s), Co(s), and C o, respectively. 

For some r >_ 1 a subset M of R * is called a C r /-dimensional manifold with 
generalized boundary (MGB), if for every .~ e M ~ere  exists a local C r coordi- 
nate system of B k around .~, i.e. a C r diffeomorplaism ~p: U ~ V, where U is an 
open subset of I~ k containing .~ and V is open in I~ k, and some b(.~) >_ 0 such that 
tp ( .~)=0  ~ and q~(U N M )  equals {(Yl . . . . .  Y~-i, Yk-t+! . . . . .  Yk-t+l+bC~) . . . . .  
yk) r ~ V I Yl = . . . .  yk_t =-" O, Y~-t+ l >-- 0 . . . . .  Yk-t+b(~) > 0}. If, for every ele- 
ment .~ of an MGB M, b(~:) < 1, then M is called a manifold with boundary and 
it is easily shown that the set of elements ~ for which b ( $ ) =  I is an ( l -  1)- 
dimensional manifold, called the boundary of M. Let J l and J 2 be .two finite 
index sets and let g j, V j  ~ J i, and h j, Yj  e J 2 be C r functions defined on some 
open subset X of R k. We define 

M[ g, h] = {x~- X I gj( x) = O, Vj  EJ I, ]'/j(x) >' O, Vj  e J2}. 

For x e X  we define J ° ( x ) f { j e J 2  Ihj(x)=0}. If for every T e e M [ g ,  hi it 
holds that {Ogj(.~), '¢j  e J i, Oh~(.~), V j e  J 0( .~)} is a set of independent vectors, 
then M[g ,  h] is called a C" regular constraint set (RCS). In Jongen et al. (1983, 
lemma 3.1.2, example 3.1.3) it is shown that every C" RCS is a ( k -  I J ~ I)- 
dimensional C r MGB with, for every .~e M[g,  h], b(.~) = I J ° ( ~ ) [ .  

Let some sign vector s e S a be given. Without loss of generality it can oe 
assumed that l ° ( s )  = l~ot~ ~, l - ( s )  = I~o~.,.)+~-t~)\l~ocm and l+(s )  = 1.+~ \ 
l~,,ts)+~-t, o. Let some j - ~  l - ( s )  and j + ~  l+(s)  be given. The price system p is 
an element of the set C,,,(s) if and only if the element (p ,  to)eR"+~XO+,. 
satisfies 

p, ,o) = 0. 

PjOj+I 

PjVj+ I 

n + l  

E p j - -  l = 0 ,  
jff i l  

-sr j (  p ,  to) > O, 

Vjel°(s), 
- p j +  ~vj = O, V j  e 1~,,~,~+ ~-c.,-~ \ lv ,~ . , ,  

- p j +  Wj = O, Vje l , \ l , o~ ,~+ , - t ,~ ,  

v j e t - ( s ) ,  

 j(p. > 0, 

p j v j - -  pj-vj > 0, 

pj+vj - pjvj+> O, 

pj+vj- - pj-vj+ > O. 

V j ~ l + ( s ) ,  i f k ° ( s ) < n - 2 ,  

v j e t ° ( s ) .  

Vj  E / ° ( s ) ,  

( l)  

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(s) 

(9) 
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Note that if k - ( s ) =  1, then no constraints are specified in (2). The same holds 
with respect to (3) if k+(s)~- 1. Since k - ( s )  and k+(s) are both greater than or 
equal to one, there are all together n equations in (1)-(4). If k°(s )> n -  2, or 
equivalently k°(s)= n - 1, then k - ( s )  = k+(s) = I. In this case the inequality in 
(6) follows by Walras' law from inequality (5) and therefore inequality (6) is not 
specified in this case. It will be shown in what follows that for a given generic 
to ~ / 2 ,  (1)-(9) constitute a one-dimensional C 2 RCS. 

To show Theorem 2.3 it is useful to define for every s ~,_9" and to ~ / 2  a set 
Do(s) as follows: 

(p s°l = ~ if j ,f ~l - (s ) ,  (,~,(p, to) = O i f  j~l°(s) ,  

and p~ = pf if j , /  ~ l + (  s ) [ .  
v i v /  / 

Clearly, C o ( s ) c  D~,(s). The difference between these two sets is that no inequal- 
ity constraints are taken into account in the specification of D,~(s). In Lemma 3.1 
we ~how that except for a set of initial endowments of  Lebesgue measure zero, the 
set Do(s) is a C 2 one-dimensional manifold. Hence it consists of a number of 
disjoint sets that are diffeomorphic to either a unit circle or an open unit interval. 

~"+lX  ~--* [~" is defined such that ~,~(p, to) is the left-hand The function ~s :-- + + 
side of  (1)-(4). We define ~.~.,~ • R~.++I ~ ~ "  by ~, ,o(P) -- ~,.(P, to), Vp ~ ~"+ i 

. ,  . ~ + +  • 

Note that Do,(s)= ~ ( { 0 " } ) .  

Lemma 3.1. Let ({X i, u'~"h~ t) that satisfy Assumptions I and 2 be given, and let 
v E S" be a starting price, system. Moreover. let a sign vector s ~ 5 9 be given. 
Then ~b~..~ 7~ {0"} and D~,(s) is a C 2 one-dimensional manifold, except for a set of 
initial endowments to e ~ with Lebesgue measure zero. 

Proof. The matrix of partial derivatives of  ~'s evaluated at a point (,5, ~)  that 
satisfies ~bs(,5, & ) =  0" is denoted by M and is given in Table 1. Moreover, in 
Table 1 two submatrices, M I and M 2, of M are defined. We will show that the 
matrix M has rank n. First it is proved that for every i ~ l m ,  0,.,,~'(,5, tS) has rank 
n. Note that ,5T0,~,~'(,5, i S ) = 0  "+IT and 0o,,~(,5, tS )=  0o, i8~(,5, p.~o')`sT--I  "+~ 
where I "+~ denotes the (n + l ) × ( n  + 1) identity matrix. For j ~ l , +  t let e j 
denote rite (n + l)-dimensional unit vector with e j =  1. Then 0~,,~'(`5. ~X`5/e  j -  
,sjef)=,sye / - , 5 / e  ~, Vj, f Eln+ ~, and so the rank of 0,,~,~'(,5, &) is equal to n. 
We consider the ficst k°(s)  rows of 0o,,sr(,5, tS). These rows have to be indepen- 
dent. Suppose not, then k° (s )< n -  1 implies the existence of  y ~ R "+~ such 
that Y,--Y,+I = 0  and yl~oi~(,5, ~ )=0  "+~T. Since ,5i)~,,~.(,5, t S ) f 0 , + f f ,  this 
implies that the rank of 0,o,~'( p, tS) is less than or equal to n -  1, which is a 
contradiction. 
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Table I 
The matrix M 

M =  

~A',o.>(p. ~) 
O(~-(s)-  I)x~°(s) i M ;  0 (~- (s ) -  I )xk+(s)  

I 

O(~+(s) - i )x  (~%s)+ k-Is)) M ~ 

in+ I r 

a~, ~',(p. ,~) 

o ( k - ( s ) -  I )x  re(n+ I) 

o(k+(s) - I )×m(n+  l) 

omgn + I)~ 

n + 1 m(n + I)  

It°Is) 

~-(s)-  l 

k + I s ) -  1 

I 

M l =  

Ok°(s)+ 2 -- Ok°(s)+ I 

0 Ok°Is)+ 3 

o k - I s ) -  3 T 

0k-1$) -  2 T 

-- Ok°(s)+ 2 

Uko(s)+ k- I s ) -  I 

Ok - i s ) -  2 r 

0t~- LO- 3 r 

- -  Otd)(s~+ k- ls)~ 2 0 

Ok°(s)÷k-(s) - -VkOis) .k - i s  ) - I  

k - I s ) -  I 

M 2 =  

k - I s )  

Uk°(s)+k-(s )+2 --  Uk°(s)+ k - ( s ) +  I o k + I s ) -  2T 

0 Oko(s)+k-(s)+ 3 -- Ukoi;)+k-(s)+ 2 0 k+(s ) - ' f f  

0 k+ts)- 3T 0 n -- V._ I 0 

O k + ( s ) -  2T On+ I -- Vtl 

k+(s) - 1 

/~+ Is) 

Now let y E I~ n be such t h a t  y T M  = 0 tn '+  tg , ,+  i) r.  By the previous paragraph 
y'rd~,,~b.~(/3, (5) = 0 "+ IT implies Ys = 0, Vj  ~ lk,,(~ ). Suppose y,  ~ O. Without loss of 
generality it can be assumed that y,, <0 .  If k ° ( s ) ~  I or if k - I s ) =  1, then a 
contradiction is obtained with y"~,,$,(/~, & ) =  0. If k ° ( s ) = 0  and k - ( s ) ~  2, 
then y, < 0 and yT3v,~.,(/3, & ) =  0 implies yj > 0. It is easily seen that y j >  0 and 
yT0t,,,~,(/3, & ) = 0  implies Yj.l  > 0, Vj~lk - t .~ )_  2. Hence Yk-t.~)-~ > 0, which 
implies that yr~,k_,.,$.,(,5, ~ )  < 0, a contradiction. Consequently, y,, = O. 

The independence of the rows of M I and M 2 yields yko(.,)+ t -"- . . . .  Y,-~ = 
0. So M has rank n and consequently $, is transverse to the origin: qJ~ • {0"}. By 
the transversality theorem (see, for example, theorem 1.2.2 of Mas-Coleli, 1985) 
and since qs~ is a twice continuously differentiable function, it follows that the 
complement of the set {to ~ / 2  1 qJ,.~, ~ {0"}} has Lebesgue measure zero. Since 
$.~.~, maps from a manifold with dimension n + 1 into a manifold with dimension 
n and ~/~,.,~ is a twice continuously differentiable function. ~.,.~, ~; {0"} implies that 
~bTT.~({0"}) and hence Do(s)  is a C 2 one-dimensional manifold. [=]Q.E.D. 

For some given s ~ , .~  and a~ E / 2  we consider the set of price systems p in 
D,,,(s) that satisfy ~'k(P, a ~ ) = 0  for some k ~ l - ( s ) U l + ( s ) .  Hence one of the 
inequalities in (5) or (6) i~ satisfied with equality. If for ~" defined by Yk = 0 and 
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~i = s./, V j E  I,+ ~\{k}, it holds that ~'~,.9", then these price systems are in the 
intersection of die sets Do(s) and Do(~). If we consider the system of equations 
that defines C0,(1"), then it follows that one of the inequalities in (7) or (8) is 
s.adstied with equality. For every t o - O ,  s ~ , 9 ' ,  and k ~ l - ( s ) U l + ( s ) ,  we 
define the set Do(s, k) as follows: 

Do,(s,k)  

= [ p ~ S "  1~ P/ if j , f  ~ l - ( s ) ,  ~ ( p ,  t o ) = O i f  j ~ l ° ( s ) t d { k } ,  
vj v i 

and !~ = v/ if J ' f  ~ l+ ( s) }" 

In Lemma 3.2 we show that except for a set of initial endowments of Lebesgue 
measure zero the set Do,(s, k) is a zero-dimensional manifold and hence a discrete 
set of points. Given a sign vector s ~ S a the commodities can be relabeiled such 
that l°(s)  = Iko<s), l - (  s) = l~,,t,)+k-t~)\ l~o~s ), and l+( s) = I,+ i \ lko(s)+k-(s). It is 
easily verified that the price system p is an element of the set Do(s, k) if and 
only if the element ( p, to) ~ ~ % t ×  .O satisfies Eqs. (1)-(4), and 

to) =0.  (10) 

Now a function qt~.~ • I~"+i×++/2 ~ I~ "÷ t is defined such that 4ts.~( p, to) is the 
left-hand side of (1)-(4) and (10). We define ~k~,i.o" [~"+ t ~  R"+ t by q~, ~ o(P) 

+ +  , ,  , 

= ~k.,..~( P, to), V p  ~ I~ "+ + + "  

Lemma 3.2. Let ({ X ~, u},= i '  " ) that satisfy Assumptions ! and 2 be given, and let 
v E S" be a starting price system. Moreover, let a sign vector s E S ~' and a 
commodity k ~ l -  ( s) t3 l+ ( s) be given. Then q~.k.o ~ { 0"+ i} and D,,,( s, k) is" a 
zero-dimensional manifoM, except for a set of initial endowments to ~ £2 with 
Lebesgue measure zero. 

Proof. The matrix of partial derivatives of ~ .k  evaluated at a point (/~, iS) that 
satisfies ~.,.,(/~, tS) = 0 "+ t is denoted by M. It is shown that the matrix ,~ has 
rank n + l. Let y ~  I~ "+l satisfy yVl~= 0 tin÷ tx"+~)T. As in the proof of Lemma 
3.1, it can be shown that the rows 1 . . . . .  k°(s) ,  k of 0,,,, ~'( /5, tS) are independent 
for every i~l,~, since k° ( s )<n  - I and k ~ l ° ( s ) .  So yTOo,~.k( ~, t S ) = 0  "+IT 

implies Yt . . . .  = Yk°t ~ = Y,+ i = 0. The proof that Y~"c,~+ t . . . . .  y, = 0 is 
now identical to the corresponding part of the proof of Lemma 3.1. Hence At has 
rank n + l and qJ,.~ • {0 "+ ~}. By the transversality theorem it follows that the 
complement of the set {to ~ ,Q [ 6,~.k.o ~ { 0''+ I}} has Lebesgue measure zero. 
Since ~,.k.o maps from a manifold with dimension n + l into a manifold with 
dimension n + l  and ~.,.k.o is a twice continuously differentiable function, 
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$~.i.,, ~ {0 "+ ~} implies that ~b,~t.,o({O "+ t}) and hence Do,(s, k) is a zero-dimen- 
sional manifold. [] Q.E.D. 

For some sign vector s ~ 5  '~ with k°(s)  _ n - 2 and some w E g~ we consider 
the set of price systems p ~D,o(s)  that satisfies zk~(P) = zk ' (P)  = 0 for some 
k I, k 2 ~ l - ( s )  U l+(s),  with k I 4= k 2. This set is denoted by D~,(s, k ~, k2). The 
next lemma shows that the set D~,(s, k ~, k 2) is empty, except for a set of initial 
endowments of Lebesgue measure zero. Note that the condition k° (s )  _< n - 2 is 
crucial, since for a sign vector s with k° (s )  = n -  1 a corresponding set 
Do(s, k ~, k 2) is equal to the set of Walrasian equilibrium price systems in A(s) of 

• i m ) .  the economy $' = ({ X ~, u', co },= 
The price system p is an element of the set D~,(s, k ~, k ~) if and only if the 

element (p ,  o~) ~ [~+~ × ~ satisfies Eqs. (1)-(4)  and 

,o) = o, ( l l )  

~k"(P, o~) = 0. (12) 

The function ~.k,.~: " ~ . + t  × g2 ~ ~,,+2 is defined such that $.~.~,.~,(p, ~o) is the 
left-hand side of (1)-(4), (l  l), and (12). The function ~0 , , . ~ , , + ~ , + 2  is s,k , k ' , ¢ o  ~ + +  

defined by ~.~, ~.,o(p) = ~s.~,'.~:(P, ~),  Vp ~ ~++L 

Lemma 3.3. Let ({Xi, im u }i= I) that satisfy Assumptions 1 and 2 be given. 
Moreover, let a sign vector s ~ ,9  ~ that satisfies k ° ( s ) <  n -  2, two different 
commodities k ~, k 2 ~ l - (  s) to l+( s), and a starting price system v ~ S" be given. 
Then qJ~.k,.~: ,o T~ {0 "+2} and D,,(s, k 1, k 2) is empty, except for  a set o f  initial 
endowments o~ E g2 with Lebesgue measure zero. 

Proof. We note that k ° ( s ) A n - 2  and k ~, k 2 ~ l ° ( s )  imply that the rows 
l . . . . .  k°(s),  k ~. and k 2 of a,~,~'(/5, is) are independent for every i ~ I,,,. Similar 
to the proof of Lemma 3.1 and Lemma 3.2 it can be shown that ~,.~,.k2 • {0 ""2} 
and therefore the complement of the set {to e~ ~f,~ [ q/,.k,.~.~.,, ~ {0 "+ 2}} has Lebesgue 
measure zero. Since ~'.,.k'.k'.o, maps from an (n + l)-dimensional manifold into an 
(n + 2)-dimensional manifold, $.,.k'.kL,, ~ {0"+ 2} implies that ~bT.kl, k2.o,({0"+:}) 
and hence Do,(s, k ~, k 2) is an empty set by the definition of transversality. 

[]Q.E.D. 

It holds that v e Co(s) for a unique s ~ d :  if and only if ~'j(v, to) 4= 0 for every 
j ~  I,+ I. Therefore it is shown in Lemma 3.4 that, except for a set of initial 
endowments of Lebesgue measure zero, all components of the excess demand at 
price system v are unequal to zero. It is sufficient to show that the set of initial 
endowments for which the excess demand of one of the commodities is equal to 
zero at v has Lebesgue measure zero. Hence for given j E 1,,+1 we define the 
function qJj:{v} × g 2 ~ l ~  by ~ ( v ,  w ) =  ~'flv, w), Voo~ g2. We define qJj.o,:{v} -+ 
I~ by g%,(v )=  q,j(v, ~o). 
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Lemma 3.4. Let (~ X~, i ,, u }iffi ~) that satisfy Assumptions 1 and 2 be given, and let 
v ~ S" be a starting price system. Then for every j ~ I,+ ~, ~bj.~ 7~ {0} and 
~j(v, to )~  0, except for a set of initial endowments to ~ 12 with Lebesgue 
measure zero. 

Proof. Clearly it holds that ~b/• {0}. So the complement of the set { to ~ /21  ~j,~ 
{0}} has Lebesgue measure zero. Since ~'~.,o maps from a zero-dimensional 
manifold into a one-dimensional manifold, ~j., ,(v)~ {0} implies that q~2({0}) is 
an empty set by the definition of transversality. [] Q.E.D. 

All the preliminary work has now been done to provide a proof of Theorem 
2.3. The proof consists of three parts. In the first part it is shown that for almost 
every t o e / 2  the set C~(s) is a compact C 2 one-dimensional manifold with a 
boundary for every s E S  a. In the second part the sets C~(s) are linked and it is 
shown that for almost every to ~ / 2  the set Co, consists of a finite number of arcs 
and loops. There is a unique arc that has the starting price system o and a unique 
Walrasian equilibrium price system as boundary points. The other arcs have two 
Walrasian equilibrium price systems as boundary points. In part three of the proof 
it is shown that the closure of the set of initial endowments for which the result of 
the second part does not hold has Lebesgue measure zero. 

Proof of Theorem 2.3. Let to E O be given which satisfies, for every j E / , +  j, 
i/,j.,o • {0}, for every s ~ ,  ~/l~,,, ~ {0"}, Vk ~ l - ( s )  U l+(s),  qS.k,,o ~ { 0"+ i}, and 
for every s~C~ with k ° ( s ) ~ n - 2 ,  V k ~ , k 2 ~ l - ( s ) U l + ( s )  with k l ~ k  2, 
~.k,.~:.,, ?~ {0"+ a} • By Lemmas 3.1, 3.2, 3.3, and 3.4, almost every element of 1"2 
satisfies this finite number of requirements. 

Part 1. Co,(s) is a compact C 2 one-dimensional manifold with boundary 
Vs E,5 °. It is shown that when the left-hand sides of Eqs. (1)-(9) are considered 
as functions of p from the open set u,+..++ i into I~ they yield a one-dimensional C 2 
RCS. Let ~ e S  a be given and let ff ~ C~,(.~). 

If ~ = v, then since for every j e  I,+ ~, tkj.,~ • {0}, it holds that I°(~) = ¢ and 
the inequalities (5) and (6) are not binding. Hence j 0 (~ )  consists of a unique 
element corresponding with Eq. (9). It is easily verified that the derivatives with 
respect to p of (2)-(4) and (9) at ~ constitute an independent set of vectors. 

We consider the case with ~ ~ o. Then (9) holds with inequality. Suppose that 
two (or more) equations in (5)-(8) hold with equality. Since ff ~ v, (7) and (8) 
cannot be binding for the same commodity in I°(~) and therefore the two 
equations that hold with equality correspond to different commodities k I, k2~  
1,+ I. We define ~'by ~'j = ~j, V j ~ l , + t \ { k  1, k 2} arid for i e i  2, ~'k,= - 1  if k; 
corresponds to an equation in (5) or (7), and ~'~, = +1 if k" corresponds to an 
equation in (6) or (8). If, for some i ~ / s ,  k ~ corresponds to (7) or (8), or if 
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k°(3) < n - 2, then k°(~) < n - 2. Moreover, ~ ~ Do,(~', k I, k2), which is a 
contradiction since ~z.k,.k2 O, • {0"+2}. So k°(~) = n - 1 and k I, k 2 correspond to 
two different equations in (5) and (6), again leading to a contradiction, since there 
is only one equation specified in (5) and (6) in this case. Consequently at most one 
of the inequalities in (5)-(9)  is satisfied with equality. 

If none of  the inequalities in (5)-(9) is satisfied with equality, then it follows 
that the derivatives with respect to p of Eqs. (1)-(4) at ~ constitute a set of 
independent vectors since ~,~.o, ~ {0"}. Moreover, b (~)  = 0. If one of  the inequali- 
ties in (5)-(9)  is satisfied with equality, then, since the case ~ # v is considered, 
one of  the inequalities in (5)-(8)  is satisfied with equality, say the one correspond- 
ing to commodity k ~ I, + l- We define ~" by ~'j = 3j, Vj  ~ I, + i \ { k}, s'k =-" - 1 if k 
corresponds to (5) or (7), and s'k = + 1 if k corresponds to (6) or (8). Then 
~.k ~ { 0"+ i} ;mplies that the derivatives with respect to p of the binding 
inequality and (1)-(4) at ~ constitute a set of independent vectors. Moreover, 

II~n+ ! and (1)-(9) are C 2 b(~)  =-- 1. Since (1)-(4) form n functions defined on .~.+ 
functions, a one-dimensional C 2 RCS is obtained. Since 'q~ E Co,(3), b (~)  < 1, it 
follows that Co,(~) is a one-dimensional C 2 manifold with boundary, where the 
boundary is given by the set of points ~ ~ Co,(s) with b (~)  = 1, a zero-dimen- 
sional manifold. 

The compactness of Co,(3) follows immediately from the proof of  Theorem 2.6. 
Consequently, Co,(3) is a compact C 2 one-dimensional manifold with boundary 
and therefore a finite union of  disjoint sets, being diffeomorphic to either the unit 
circle or the closed unit interval [0, i]. We denote these sets by C,t,(3) . . . . .  C~ ~)(7). 
Note that for every j ~ li(~, ~ ~ C,~(~) is a point of  the boundary of C~(~) if and 
only if b ( ~ ) =  1. 

Part 2. C,, is a finite union of arcs and loops for ahnost every ~o E ~.  Let 
pO E Co, be given. So for some s o e~.~ and for some jo ~ t,,,%, pOE C/~"(s°). 

jt~ 0 . . . .  
Either Ci~ ( s )  is a com[~onent of C,o, being diffeomorphic to the unit circle and 
has no boundary, or C~(s °) is a subset of Co,, being diffeomorphic to the unit 
interval and having two boundary points, p t and p-~. We consider p~. Either 
p~ = v, or exactly one of the inequalities in (5)-(8)  is binding. Four cases have to 
be considered. 

21. If p~ = v, then since for every j ~  In+ ~, ~bj.,o $ {0}, ~ s ~SaK{s  °} with 
Co,(s). 

2.2. If k°(s °) = n - 1 and the inequality in (5) is binding, then by Walras' law 
p~ is a Walrasian equilibrium price system. Suppose for some s ~ S a \ { s ° } ,  
p~ ~ C,,,(s)o Using pt # v it follows that i°(s °) ~ l°(s) and that ( l - ( s  °) tj l - (  s)) 
N (l+(s °) tJ l+(s)) = ~. Let ~ be the sign vector defined by ~, = 0, Vj  ~ l ° ( s ° )  
n / ° ( s ) ,  3 j=  - l ,  V j e l - ( s ° ) O l - ( s ) ,  3j= +l ,  V j~ l+(s°3Ul+(s ) .  Let k ~ 
and k ~ be two different elements of 1-(3)  U I+(~). Then, since k°(~) < n - 2 
and p~ e DO,(.L k ~, k2), a contradiction with q~.k, ~, • {0 n+2} iS obtained. Conse- 
quently, ~ s ~ S a \ { s  °} such that p~ e Co,(s). 

2.3. If k°(s °) =- n - 1 and an inequality in (7) or (8) is binding corresponding 
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' =s  °, vjE1.+ \{k}, with some commodi ty  k ~ l ° ( s ) ,  then we define s ~ by sj i 
s2 = - 1 if an inequality in (7) is binding, and s2 = + 1 if an inequality in (8) is 

j t  1 "1 binding. Clearly pt is a boundary point o f  C~(s ) for some j E lj(s, ). Moreover,  
s E S a \ { s  °, s l} such that p t ~  Co(s ) since otherwise again a contradiction is 

obtained as before. 
2.4. If  k°(s °) < n - 2, then it can be shown in a s imnar way as in Case 2.3 that 

there is a unique s t ~ S  a such that pt is a boundary point of  C i ' ¢ ~ )  for some 
t O X  ~,-w 

j l  e lj(s, ). C j ' (~l '~ 
'][he set ,o- ~ ) obtained in Cases 2.3 and 2.4 has two boundary points, p l and, 

say, p2. Using the same arguments as above,  either p2 = v or p2 is a Walrasian 
j2 2 equilibrium price system or p 2 ~  C~(s ) for some unique s 2 ~ S ~ ' \ { s  ~} and 

j2 ~ L _2,. Reoeatin~ these areuments a number  of  sets C O = CJ°(s°) ,  C t = C~i'(st), 
C 2-- "C~'4(s2)',... isobtainec~such that each set is a component  of  Co(s) f o r s o m e  
s E.,9'  being diffeomorphic to the unit interval, C j n C J+ t is a common  boundary 
point and C j ~ C j+ t. Therefore,  after a finite number  of  k steps either a set C k is 
obtained having v or a Walrasian equil ibrium price system as a boundary point 
while C O . . . . .  C k are all different, or C -i = C t for some j ~  I~1, j <  k, and 
C O . . . . .  C k- t are all different. 

In the second case it will be shown that j = 0. Then it is easily verified that 
C° t3  . . .  U C k- t is a component  of  C o containing pO, being homeomorphic  to 
the unit circle. Suppose j > 1, then C j A C k- ~ is a boundary point o f  either C j -  
or C J'+t. Clearly j + l < k - ! .  Suppose j + l = k - l ,  then C j+t  has one 
boundary point in common with C j and the other  boundary point in common with 
C j+ 2 = C k = C ~. The sets C ~- t C ~, and C ~+t are different and share a common 
boundary point, which gives a contradiction. Consequently j + 1 < k -  i. The 
three sets C ~-t ,  C j, and C ~- ~ are different and the three sets C i, C j+ t, and C k- t 
are different, while the three sets in one of  these two collections of  sets have a 
common boundary point, which gives a contradiction. 

_ jo .  O" I In the first case, we consider the other boundary point of  C~ ( s ), denoted p -  . 
Again, a number of  sets C n, C -  t , . . .  is obtained such that after a finite number of  
k' steps, either a set C -k' is obtained having v or a Walrasian equilibrium price 
system as a boundary point, the sets C -k', . . . .  C ~ are all different, and it is easily 
shown that the set U ~ t _ ~ ,  ' .... ~}C j is the component  of  Co, that contains p0 
which is homeomorphic  to the unit interval, or there is j > - k '  such that 
C - ~ ' =  C ./, ~v~uk ,he sets C -~'+~ . . . . .  C ~ are all different. Sup~;9:,e j =  k, then 
since C ~ has v or a Walrasian equilibrium price system as the boundary point it 
holds that C -~'+ t = C ~- t which gives a contradiction unless - k' + 1 = k - !. In 
the final case C ~- t has one boundary point in common with C ~- ~ = C -~' = C ~ 
and the other boundary point in common with C ~. This implies that C ~- ~ and C ~ 
have v or the same Walrasian equilibrium price system as a boundary point, which 
is a contradiction. Consequently,  j < k. Clearly - k' + ! <_ j - I. Let us suppose 
that - k' + I = j - 1, then the three different sets C -~'+ t, C ~, and C j+ t have a 
common boundary point, which gives a contradiction. Consequently,  - k '  + 1 < j 
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- 1 .  Hence C-k'+~N C j is a boundary point of either C ;-~ or C j+~ and 
therefore either C -k'+l, C j -  ~, and C j are three different sets with a common 
boundary point, or C -k'+ t C j, and C j+ 1 are three different sets with a common 
boundary point, which gives a contradiction. 

Consequently, C,,, has a finite number of components, being either arcs or 
loops. The boundary of Co, is given by the collection consisting of the starting 
price system v and the Walrasian equilibrium price systems. Therefore the 
component that contains v is an arc with a Walrasian equilibrium price system as 
the other boundary point. If there exists another Walrasian equilibrium price 
system, say p*,  then the component that contains p" is an arc having p* and a 
third Walrasian equilibrium price system as boundary points. 

Part 3. The closure of 12\ 12 * in 12 has Lebesgue measure zero. It has already 
been shown that 12\12 * has Lebesgue measure zero. If a ~  12 \12" ,  then by 
Parts 1 and 2 of t,~e proof there exists p E S n such that (p ,  aJ) belongs to the set 
~, defined by 

E = {( P, oJ) ~ S" × 12 I::ls ~ S  a such that p ~ Co, ( s )  

and rank 0~s., o ( p )  < n - 1, or 

::Is ~S~', 

= . k ~ l - ( s )  UI+(s)  such that p~C,~(s ) ,  ~'k(P, w) = 0 ,  

and rank 0~.k.,~(P) < n, or 

3s ~ S  ~, k° ( s )  <_ n - 2, -qk ~ , 

k 2 ~ l - ( s )  U l+(s ) ,  k I ~- k 2 such that p ~  C~(s) 

and ~'k'( P, co) = ~',:( p, to) ~- 0, or 

pffiv and 3j~l , ,+t  such that ~'j(p, ~ )  =0}.  

It is easily shown that ,~ is closed relative to S" × 12 since ,~ cart be ebtained by 
finite unions and intersections of sets being closed in S"× ~2, owing to the 
continuity of the functions b r, dqs s, and O~bs. k and the continuity in p of 
minj~t . . , .pJv ~ and maxj~t~+.pJv j. We define the projection ~ r : , ~ 1 2  by 
7r(p, a~)= ~, V(p, ¢o)E Z. Then 12\12" c w(,~) and w(Z)  is a subset of a 
measure zero set by Lemmas 3.1, 3.2, 3.3, and 3.4. It will be shown that 1r(~) is 
closed in 12. Since the image by a continuous proper mapping of a closed set is 
closed, it is sufficient to show that ~" is proper. Let T be a compact subset o f /2 .  
It has to be shown that w-~(T) is compact. Clearly 7r-~(T) is a closed set in 
and therefore it is closed in S~× O. Moreover, it is a subset of the set 
{(p, to) ~ S" × T I P ~ Q(w)}, which is compact by the compact-valuedness and 
upper semi-continuity of Q (Theorem 2.6). Consequently, ~r-~(T) is compact. 
I:IQ.E.D. 
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4. The gross substitution case 

In this section a starting price system v ~ S n and a total excess demand 
. t i ~ +  I ~ [ ~ n +  I function z.o~+ + are given, with z satisfying the following assumptions. 

. !i~,+ 1 ~ i ~ +  t is continuous. Assumption 3. The function z . . - +  + 

Assumption 4. For every A ~ I~++, Vp ~ ~"+~++, z(Ap) = z(p). 

Assumption 5. For every p ~ II~+ i .~++, p" z (p)=O.  

Assumption 6. The function z is bounded from below, and if ( p r ) r~  ~ is a 
sequence in .~++11~+ ~ converging to an element p ~ I~+ + 1\{On+ i} with p~ = ') for 

V ' n +  I some k ~ In+ ~, then ,.,y= ! I z~( p~)l goes to infinity. 

Assumption 7 (gross substitutability, finite increment form). If /5,  ~ ~ I~+% I are 
such that for some k ¢ I,,+ I , / ~  < ~ ,  and Vj  ¢ I,,+ t \{k},/5~ = ~j. then Vj ~ 1,+ i 
\{k), z (P) < 

Owing to the homogeneity of degree zero (Assumption 4) it is possible to 
normalize the set of prices to the set S" on which the adjustment process is 
defined. For ,5, ~ S "  we define the sets Jm~(/5, ~ ) = { k ~ l , , + l  I~k/~k = 
max ,E ~,+, Pj/P~} and J m i a (  p, p)  = {k ~ 1,+ I I ~ / /3~ = minis  : .  pj/pj}. Clearly, 
Jm;n(/~,/5) ~: t~ and Jmax(/~, P) #: i3. Moreover, if ,5 ~,5, then' k ~ J,,,.~(p, p) 
implies ~/ /3~ > I, and k ~ J , , , ( p ,  ~) implies ~ / / ~  < 1. The following lemma 
will appear to be very useful. 

Lemma 4.1. Let a total excess demand function z that satisfies Assumptions 4 and 
7 and ~, ~ ~ S ~ with ~ ,~ ~ be given. Then k ~ Jm~(P, P) implies zk(~) > zk(~) 
and k ~ Jmi,(/~, P) implies zk( ~) < zk( /5). 

Proof. Let k ~Jmax(P, P) and define /3 ~ I ~  ! by /3  = (ffk//~k)/5. By Assump- 
tion 4, z(/))  = Z(/~). Clearly, /3k=~k, Vj=-ln+l,/3j>/5~, and 3 j ~ l n +  I,/3i>/sj. 
Given/3,  we decrease the prices for commodities j ~ In+ i \{k}  until ~ is reached. 
Using Assumption 7 repeatedly yields zk(/5)< z~(/3)= zk(P). The case with 
k ~ Jmin(P, P) can he treated similarly. [] Q.E.D. 

Using [.emma 4.1 it is trivial to show that in the gross substitution case a 
Walrasian equilibrium, if it exists, is unique. 

We define for every A ~ (0, 1 ] the set S,~ by S,(' = { p e~ S n I mini s in., pj/vj  = 
A}. Clearly, S~' = {v}. In the case n = 2 and A ~ (0, 1) the set S] consists of the 
sides of a triangle. For arbitrary n E ~ it holds that for A I, A2~ (0, 1], with 
A ~ ~ A 2, the sets S~, and St, are disjoint, and that IJ ~ t0 .  ~IS,~ = S". The first step 
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in proving that under Assumptions 3-7 the price adjustment process converges is 
to show that if the adjustment process has reached the set S] and did not find a 
Walrasian equilibrium price system, then the adjustment process intersects the set 
S~_ ~ for every ~ small enough. 

Lemma 4.2. Let a total excess demand function z that satisfies Assumptions 3-5 
and 7 be given, and let v E S" be a starting price system. If  for some A E (0, 1 ] 
and for some sEd,  ca, ~ E C ( s ) ~ S ~  and z ( ~ ) * 0  "+~, then =iY~d~', 3~>0,  
such that V~$~[0, ~], C ( ~ ) ~ S 2 _ n ~ .  I f  V j E l + ( s ) ,  z i ( ~ ) > 0 ,  and V j E  
l - ( s ) ,  zi(~) <0 ,  then ~ can be taken equal to s. 

Proof. Let .~ be such that Sj = + 1 it" zj(p) > 0, Sj = 0 if zj(p) = O, and $j = - 1 
if z:(7) < 0. Note that ~ = s if the requirements in the last part of Lemma 4.2 are 
satisfied. Since z ( ~ ) * 0  "÷~, i.t holds by Walras' law that . ~ S  a. Clearly, 

E C(5) N S,~. If, for every j ~ I, + ~, zj(~) ~ 0, then Lemma 4.2 is clearly true 
by the continuity of z. So we consider the case where 1°(.~) #= O. For 8 ~ [0, A) 
we define the set 

E(~,  5, 8 ) =  { p E S " l V k ~ l - ( ~ ) ,  p~/~k= l - ~ /A ,  VkEl°(~), 

1 - -  $/A  < Pk/Pk < maxjG t.+, Pj/Pi, Vk ~ 1 + ( YO, 

P,/Pk ~= maxis  ,,+, Pi/Pi}" 

It is easily verified that E(~,  5, 8) is a compact subset of A(.~)N S~_ ,. By 
continuity of the total excess demand function z there exists • ~ (0, A) such that 
i f0  < $ < ~, then for every p $ E( ~, .~, 8), zi(p) > 0 if j ~ I+(~) and zfl p) < 0 
if j E 1-(.~). For ~ = 0, Lemma 4.2 is obviously true. We consider an arbitrary 
~E (0, e], and consider p* E arg minps e(p ~ a)(maxj~ io(nl z~(p) I). 

Suppose maxjE ~o,~ [ z~(p" )[ > 0. We de~:ine the sets 1 ° = {k ~ I°(~) I z~(p* ) 
" - "  "*  " 0 _  0 - * ~ o * 

= - m a x , ~  o,~l z~(p )[} and l + - { k E l  (s)l  z~(p ) - m a x i ~ z  (.~)l zi(p )l}. 
" I ' - 0  " * - -  " * 

Suppose k ¢ l _  and p ~ / p l  = l - 6 / A .  By Lemma 4.1 and since p 
E( ~, ~, 6), this implies 0 = zt(P) < zt( P* ), a contradiction since k E l °. Hence, 
k ~ I ° implies p~*/~ > I - /$ /A.  Similarly, it can be shown that k ~ I ° implies 
p ~ / ~  < maxis  ~.., p i ing .  Next, three possible cases will be considered, each 
leading to a contradiction with the supposition that maxis~o(~)[zflp*)l >0 .  
Therefore max .s ~°-r ] z.( p* )l = 0, and this result, together with the choice of s, 
implies p* E/~(~)~ IVloreover, p* EE(~ ,  ~, $ ) c A ( ~ ) N S 2 _ , ,  and therefore p* 

n 

Case !. I f  I °4  = ~ and 1 ° =  ~, then, for t~ > 0, we define p" by p~ = p~*, 
V k  U = ( ]  - a)p;, e/o, 

pr  = l + p;  ' w r ( 
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Since k ~ l  °_ implies P ~ / f ~ k > l - 8 / A ,  a can be chosen small enough 
to guarantee that p ~ E ( ~ ,  3, 6), I zk(P")l < maxjeto(~)lzj(P*)}, V k ~ l ° ( s )  
\ I  °, and zk (p '~ )<0 ,  VkEl°_ .  By Lemma 4.1 it now holds that 
maxj~oc~ I z / (p") l  < maxj~ot~)l z j (p*) l ,  which contradicts the definition of 
p*. 

Case 2. If I °= I~ and 1° ~ fJ, then we define the, possibly empty, set 
K = {k ~ 1°(3)1 p ~ / ~  = max~ ~+, p / / ~ } .  Moreover, for ot > 0, we define p'~ 
by p~=p[, ,  V k e l - ( ~ ) L J ( I ° ( ~ ) \ ( l U U K ) ) ,  p ~ = ( l  +ot)p~*, V k ~ l  °, 

p~. = 1 -  y,Tet÷l~)urp ~ p~, V k ~  (3) UK. 

Since k ~ l ° implies p~/~ t  < max~e ~,+, p ] / ~ ,  a can be chosen small enough 
to guarantee that pa ~ E(ff, 3, ~), I z~(p~')l < max~e/o(~) I z~(p* )1, Yk ~ I°(~) 
\l°+, and z~(p'~)>O, V k ~ l  °. By Lemma 4.1 and the construction of p'~, 
maxy~ to(~)[z~(p~)l < maxje  to(~)lzy(p* )1, which contradicts the definition of 
p*. 

Case 3. If I ° #, ~ and 1+ ° :~ ~, then, for a > 0, we define p"  by p~' = p~*, 
V k ~ l . + ~ \ ( l ° U l ° ) ,  p~=(l-o~)p~*,  V k ~ l  °, 

p: = l + p/ p; ,  I ° 

Clearly, a can be chosen small enough to guarantee that p ~ E ( ~ ,  3, 8) and 
I z~(p~')l < maxie r,(~ I z~(p" )1, Yk ~ 1°(~)\(1°U l°+), z~(p ~) < 0, 'Ok ~ I °, 
and z~(p '~) > O, Vk ~ l°+. By Lemma 4.1, a contradiction is obtained as before. 
I:]Q.E.D. 

The next step is to show that if ~' and 3 in S ~' are such that k°(~ ") = k°(3) and 
`5 e~ C(i"), then there is no ~ ~ C(~)\C(~). This is the result of Lemma 4.4. So, if 
during the price adjustment process the region A(~') is reached, and therefore 
k°(~') markets are in equilibrium, then every price system ,5 ever generated by the 
process with k°(~ ') markets in equilibrium satisfies ff ~ A(~'). Moreover, it is 
shown in Lemma 4.4 that if two price systems /~ and ~ are reached by the 
adjustment process with the same number of markets in equilibrium and with the 
minimal price ratio (with respect to the starting price system v) of ,5 greater than 
that of ~, then `5, ff ~ C(s) for a uniquely determined sign vector s. Moreover, 
l -(s)=Jmi,(  ~, ~) and l+(s)=Jma~(~, ~). So the prices of commodities in 
excess supply (demand) have been decreased (increased) maximally. To show 
Lemma 4.4, the technical Lemma 4.3 has to be shown first. 

Lemma 4.3. Let a starting price system v E S n be given. Moreover, let ~, 3 ~ S a 
with ~ ~ 3, k°(~) = k°(3),/5 ~ A(~), a n d r e A ( 3 ) ,  with `5 ~ ~ be given. Then 

].,~( `5, ~) n ( t - ( ~ ' )  u t ° ( ~ ) ) n ( t ° ( 3 )  u t+(~)) ~t~ 
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or 

Jmin(P, P) n(l°($') u l+(~) ) r l ( l - ($ )  ul°($))q=O. 
Proof. Suppose, on the contrary, that 

]~a~( ~, ~) CF(~) UI-(~) 
and 

]m,,( ~, ~) ct-(~) u~+(~). 
It will be shown that if (13) and (14) hold, then 

~m.~( ~, ~) nt+(~) =0 
Ira,,( .~, ~) nt+(~) =¢ 

(13~ 

(14) 

or ]m~.(~, ~) nt+(~) =~,  (15) 
or ]m~,(~, ~) nz-(~) =~,  (16) 

o r  Jmin( P, P) f'~ t - ( $ ' )  =¢,  (17) 
or dmin(/~, P) O1+(~) =O. (18) ]m.~( ~, ~) n t - (~)  =0  

From (14)-(16) it fo!Mws that Jma,~(/~, ~ ) n l + ( D =  0, and from (14), (17), and 
(18) it follows that Jma~(P, ff)nl-(~)=--O. Together with (13) this yields 
Jma~( ,5, ~) = O, which is a contradiction, and this proves the lemma. It remains to 
be shown that (13) and (14) imply (15)-(18). Let ji ~Jmax(/~, ~) and j2~  
L,~.(t~, ~). 

Suppose jJ ~ I+(D. If j2 ~ 1+(~), then 1 > ffj,//~2 = (~j:/vj2Xvj2/pj2) 
( - p ~ , / v j ) ( v j / ~ , ) = ~ / / ~  > 1, which is a contradiction. Hence (15) is true. If 
j2~i - (~ ' ) ,  then for every k ~ l - ( D  it holds that ~ / / ~ _ < f f / / / ~ ,  so k ~  
Jmi,(.b, ~), and by (14), k~l- ( 'g) .  For every k~ l+(~)  it holds that ~ / / ~  >_ 
~ , / /~ , ,  so k ~Jm,~(P, P)o and by (13), k ~ 1+(~'). Consequently, 1+(.~) c 1+(.~') 
and l - ( ~ ) c l - ( g ) .  Since ~'~:~ and k°(Y) = k°(~), a contradiction is obtained. 
Hence (16) is true. 

Suppose j '  ~1-(~).  If j2 ~1-(~'), then 1 > ~j://~j~ >~j, /pj ,  > 1, which is a 
contradiction. Hence (17) is true. If j~ ~ I+(~), then for every k ~ I+(~') it holds 
that ~ / / ~ . ~ / / ~ ,  so k~Jmin(~, ~), and by (14), k ~ l + ( D .  For every 
k ~ l - ( ~ )  it holds that ~ , / /~  :> ~j,/,~,, so k~Jm,~(~, ~), and by (13), k ~ l - ( ~ ) .  
Since ~ * ~  and k°(D=k°(~) ,  a contradiction is obtained. So (18) is true. 
mQ.E.D. 

Lemma 4.4. Let a total excess demand function Z that satisfies Assumptions 4 and 
7, a starting price system v ~ S n, and sign vectors "g, ~ ~ S  a with k°( D = k°( ~) be 
given. I f  C(~) ~ 9J, then C(])\C('~) = fJ. Moreover, if there are price systems 

E C('g) and ~ ~ C(~) with minj~ t.., ~j/vj > minj~ i.÷, ~j/vj,  then ~ ~- 5, 
Jmi,°(/~, ~ ) =  l-('g), and Jma~(p, ~)= l+(g). 

Proof. Suppose, on the contrary, that there exist ,5 ~ C(Y) and ff ~ C(~)\C(~).  
Clearly, ~'* .~. Moreover, ~ ~ A(~') and ~ ~ A(~) and therefore by Lemma 4.3 



188 PJ.-J. Herings / Journal of Mathematical Economics 27 (1997) 163-193 

there exists a k ~ Jma~( P, P) N ( I -  (D U I°(~)) O (l°(~) U l + (~)) or there exists 
a k ~ Jmin( P, P) A (1o(~) U 1+(i")) O (1- (.~) U 1o(~)). In the first case, by Lemma 
4.1 zk(,5) > zk(P). However, z,(/~) < 0 and zk(p) > 0, which is a contradiction. 
In the second case, by Lemma 4.1 zk(/~)< zk(P)- However, zk(/~)_> 0 and 
zk(P) < O, which is a contradiction. This proves the first part of Lemma 4.4. 

If ,5 E C(~) and ff ~ C(~), then by the first part of the lemma it holds that 
C(~') = C(~). If j ~  1-(~), then ~ j / ~ = ( ~ j / v j ) ( v ~ / ~ j )  < (~ j / v jXv j /~ j )=  1 and 
therefore Jma~(P, P) c 1°(~) U I+(~). Suppose j ~ Jma~(P, P) n I°(~). Then by 
Lemma 4.1 and since p, ~ ~ C(~), 0 = zj( P) > zj( ~) = O, which is a contradic- 
tion. Consequently, Jmax(P, P )Cl+(~)" If j,  f ~ l + ( ~ ) ,  then Pj/Py=Pl/PI" 
Hence Jm~(P, P) = l+(s)  and Jmi~(P, P) C I-(~)  U I0(~). Suppose j 
Jmin(P, P ) A I°(~)" Then 0 = z./(/3)< zj(~) = 0, which is a contradiction. It fol- 
lows that Jmi~(P, ~ ) = I - ( ~ ) .  In a similar way it can be shown that Jmi~(P, P) = 
I-(~') and Jmax(/~, ~)=1+(~) ,  hence I - ( Y ) = I - ( ~ ) ,  I+(Y)=I+(~), and there- 
fore i"= ~. I=IQ.E.D. 

The next step in proving the convergence of the price adjustment process is to 
show that the adjustment process intersects each set S~ at most once. First it is 
shown that, given s ~,5", the intersection of C(s) and S,~ contains at most one 
element. 

Lemma 4.5. Let a total excess demand function z that satisfies Assumptions 4 and 
7 be given, and let v ~ S ~ be a z:arting price system. Then for every A ~ (0, 1] 
and for every s ~ S :  the set C(s) O S~ contains at most one element. 

Proof. Suppose /~, ~ E C ( s ) A S ~  with 15" ~. Then V j ~ j - ( s ) ,  ~ j l~ j= AvJAvj  
= I. So p ~ff  implies that there exists a jl ~J,,,.~(d, P)O (i°(s)O l+(s)) and 
there exists a j 2 ~  Jmin(P, P ) n ( l ° ( s )  u i+(s)). By Lemma 4.1, z / ( /3)>  zj,(ff) 
and zt~(p)<zt2(~). So j l ,  j2qzlO(s) If j l ,  j2~.i+(s) ,  then 1 <'~j,/~i, = 
~i2//3~ < i,  which is a contradiction. Consequently, C(s)N S~ contains at most 
one element. 12 Q.E.D, 

After these preliminary lemmas it is possible to show the convergence of the 
price adjustment process. First, it will be shown that the price adjustment process 
intersects each set S,~ at most once for every A ~ (0, 1]. Secondly, the continuity 
of the price adjustment process will be shown. 

Theorem 4.6. Let a total excess demand function z that satisfies Assumptions 3-7 
be given and let v ~ S" be a starting price system. If v is not a Walrasian 
equilibrium price system, then the set C is an arc" that contains v and a Wairasian 
equilibrium price system as boundary points. 

Proof. We define the (possibly empty valued) correspondence H :  (0, 1 ] ~ S" by 
H(A)=  CNS~.  First it is shown that there exists a A* ~(0,  l] such that H is a 
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function on a compact set [ A*, 1] and is empty valued on the set (0, A* ). In a 
similar way as in the proof of  Theorem 2.6 it can be shown that for every s ~ S a 
the set C(s) is compact and therefore that the set C = LI s~ ~C(s)  is compact. We 
define A* =mint ,  e c(minj ~ In+, pj/vj). Obviously it holds that H(A) = ~ if 
A < A*. Moreover, by Lemma 4.2, H(A*)  is a Walrasian equilibrium price 
system. By the compactness of  C, Lemma 4.2, the uniqueness of  the Walrasian 
equilibrium price system, aald since v ~ H ( l ) ,  it follows that H(A) :~ ~, VA 

l]. 
Now let some A ~ [ a* ,  1 ] be given and suppose /5 ~ C(~'), ff ~ C(.~), /5 ~ ~, 

and /5,/5 ~ S~. By Lemmas 4.4 and 4.5, k°(~) ~ k°(~). We assume without loss 
of generality that k°(~ ") < k°(~). Since C(~) is compact there is a price system p~ 
such that pl ~ arg minp~ cte)(minje t~+, pj /v j ) :  By Lemma 4.2 it follows that for 
some k E I - ( ~ ) u l + ( ~ ) ,  zk(p I) = 0. Hence p ' ~  C(s~), where s I is defined by 
s~ = 0, and sJ = ~j, '¢j ~ I~+ l \{k}.  Since k°(~ ') < k° (D < n - 1 and by Walrus' 
law, k can be chosen such that s ~ ~ S  a. Repeating this argument a finite number 
of times, a price system /3 ~ C(.~) is found, where ~ S  a, k°(~) = k°(~), and for 
some k ~ I°(~)  it holds that /3k/Vk = minj~t .+,  /3j/vj or /3~/vk = 
maxj~ t.+, /3j/v~. Suppose that minj~ i,,~, /3j/v~ = minj~ ~.+, ~j/v~, then /5, ~ 
5,~ implies minjet .+,  /3Jvj = mince ~.., ~;/v~. Using Lemma 4.5 yields that the 
minimizing argument equals ,5 in every step, and hence /3 =/5. By Lemma 4.5, 
p ~  C(~), and since p ~  C(.~) a contradiction with Lemma 4.4 is obtained. 
Consequently, minj~l.+, /3j/vj < minj~t~+~ ~;/vj. By Lemma 4.4, ~ = g, 
Jmi~(P, /3)= I-(.~), and Jm~(P,  /3)= l+(g)" We consider the case where /3~/v~ 
=minj~:,+~ pj/llj. Let k'~Jmin(ff , /3) .  Since /3~/v~=minjet~+, /3y/vj and 

Jm~,(P, p ) = l - ( g ) = l - ( D ,  it holds that /3~/~/3~,//7,~,.  So k~Jm~,(~,/3), 
which contradicts k ~  !°(~). Similarly a contradiction is obtained if /3~/v~ = 
max~e t,+, /3~/v~. This shows that for A ~ [A ' ,  1], //(a) is single-~alued. 

Either A" = 1 and C = {v}, or A* < 1. In the latter case we define the function 
~'" [0, 1] ~ C by {rr(t)} = H((A* - l ) t  + 1), Vt  ~ [0, 1]. The function ~ is one- 
to-one and onto. It remains to be shown that 7r is continuous. The continuity of 
11"-' then follows immediately using the compactness of [0, 1]. Let (t ' ) ,~ ~ be a 
sequence in [0 1] with limit i. We consider the sequence (~r(t'))~ ~ ~. If rr is not 
continuous, then by the compactness of C there is no loss of  generality in 
assuming that ~ r ( f )  converges to a limit ff ~ C and ~ ~ ~r(~). Since ~ r ( f )  
S[^._ ~,,+ ~ it holds that minj~ ~+, ~ / v j  = lim~... ~ min~  ~n~, ¢rj(t~)/vY = (A* - 
I)t + 1. Hence {p, ~(t)} c: C t~ S~._  ~)i+ i = {~r(i,)}, which is a contradiction. 
EIQ.E.D. 

In the gross substitution case the adjustment process has very interesting 
economic properties as will be made clear in the three final theorems. In Theorem 
4.7 it is shown that during the adjustment process the number of markets in 
equilibrium is increasing. More precisely, if a market attains an equilibrium 
situation, it remains in equilibrium during the rest of the adjustment process. In 
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Theorem 4.8 this result is even strengthened and it is shown that on every market 
the absolute value of the excess demand is monotonically decreasing. In Theorem 
4.9 it is shown that during the entire process, prices of commodities in excess 
demand are strictly increasing, while prices of commodities in excess supply are 
strictly decreasing. Theorem 4.9 makes clear that the prices on markets out of 
equilibrium are adjusted in a way that is qualitatively the same as Walrasian 
tatormement, while Theorem 4.7 states an important difference: markets in equilib- 
rium remain in equilibrium. Let p* be the unique Wairasian equilibrium for an 
economy with a demand function that satisfies gross substitutability. We define 
A* = minj~,+~ p~/vy and define the function ~ :[0, l] --* S" by {Tr(t)} = CN 
S[a._ ~)~+ ~. In the proof of Theorem 4.7 we show that 7r is a homeomorphism 
between C and [0, 1] if A* < 1. Moreover, r r (0)=  v and rr(1) = p ' .  If A" = 1, 
then this function is still well defined and is a constant function, assigning to every 
t ~ [0, 1] the Walrasian equilibrium price system v. 

Theorem 4.7. Let a total excess demand function z that satisfies Assumptions 3-7 
be given and let v ~ S" be a starting price system. We take t ~, t ~ ~ [0, 1], with 
t i < t 2. I f  s ~, s 2 ~ S  a are such that rr(t ~) ~ C(s ~) and zr(t ~) ~ C(s ~) and if 
A" ~ 1, then 1-( s~) ~ i - (  s~), 1°( s~) C l°(s2), and l+( s~) ~ l+( s~). 

Proof. Let p l =  rr(t l) and p2= ,rr(t2). Note that min~t,,+ ' p~/v:> 
min~et,.,  P2/v ,  since A" ~ 1. Suppose k ~ ( l ° ( s l ) \ i ° ( s 2 ) )  U ( i - ( J ) \  
/ - ( s t ) )  U(l~(s~) \ I+(s l ) ) .  If k°(sl) = k°(s2), then by Lemma 4.4 it holds that 
s t = s 2. which contradicts the choice of k. If k°(s ~) > k°(s2), then by the same 
arguments as in the proof of Theorem 4.6, starting with C(s2), there exists an 

~.Y-' and a ~ ~ C(g), such that k°(~) = k°(sl), n l i n~ l . , ,  [~/v~_< 
• ~l ¢ A A A 

nunj~ t , . ,  pj/v~, 3k I (s), pk , /ok , -  m m j c ~ . ,  p J v j  or pC~Ok,- 
maxj~ i,., ~ / v  Since m i n e  i ~ / v  < min ~ ,  p ! / v ,  it holds by Lemma 

J J" . 3 ~° , ÷ l  J J J . , + l  J d 
^ I ~ - A I ^ + A 4.4 that s I =  s, Jmin(P , P)= ! (s), and Jmax(P , P)= I (s). We consider the 

case where p~,/v k, = minj~ i,., /3J/VJ" Let f ~ J,,in(p I, /3). Since p t ~  C(g)and 
I ^ - ^ ^ I kt  Jmin( P , P) = ! (s), P~'/Pk' < ^ I , - I ^ p [ / p ) .  S o  k ~ :  J m i n (  p , p ) ,  which contradicts 

l°(g). Similarly, a contradiction is obtained if ~k,/Vk, = maxje t.+, ~Jvj.  
If k°(s ~) < k°(s2), then again the construction of the proof of Theorem 4.6 can 

be used, starting with C(s~). There exists an .~ ~ S "  and a /3 ~ C(g) such that 
k°(g) = k°(s2), mins~ t,+, ~s/vs -< mini~ ~.+, p~/v;. ~k' ~ 10(g), ~,/v~, = 
mini%,(.+, p;/v~ or p~,/v~,~,, maxL~ ,.., /3j/vj. Moreover, I - ( s ' )  31 - (g ) ,  l°(s ') 
c l ° ( s ) ,  and l+(s ~) ~l+(s) .  If mmy~ t.., pJvy ~ min~  t.., pj2/v~, then, using 
Lemma 4.4, g = s 2, which contradicts the existence of k. So we consider the case 

^ z = p~/v i. Now /3=p  2 since CNS(~. ~)t'.+~ where min i~ t,.., P~ vi mini ~ t.+, 
^ I contains a unique clement. If j ~  l - (g) ,  then pJpj  < I. Hence Jm~(p ~,/3) C 

"~  I ^ t°(~) U l+(s). If j e J.,~( p'. ~) ~ l°(g), then,, by, Lemma 4.1, z~ p ) > z~(p) ~ O, 
therefore j ~  l+(s~), and hence. ,-~-,-~B/°! < p / /p ) ,  with j ~ l+(s). Since l+(s)C 
/ + ( s  t )  i t  " " ~ " follows that p~/p~ = p[/p~, if j, f ~ l+(g). Consequently, l+(g) c 
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Jma,(p ~, /3). It follows in a similar way that l -(~)~Jmin(P ~, /3). Consider k as 
defined in the beginning of the proof. If k ~ I - (  s ~ ) \ l - ( s l ) ,  then z~(/3) _< 0 since 
/3=p2 .  Let j ~ l - ( g )  then j ~ l - ( s ~ ) ,  and using k ~ l - ( s  2) and /3 = p 2  it holds 
that ~ / p ~  </3~/p~. Consequently, k ~Jm;a(p ~, /3). By Lemma 4.1 it holds that 
0 < z~(p~) < z~(/3) < 0, which is a contradiction. The case where k ~ l+ ( s  ~ ) \  
1+( s ~) yields a contradiction in a similar way. Finally, we consider the case where 
k ~ l ° ( s ~ ) \ l ° ( s 2 ) .  Hence k ~ l - ( s 2 ) U l + ( s  ~) and it can be shown that k ~  
Jmin(p ~, /3) OJmax(P I, /3). Since k ~ l ° ( s ~ ) C l ° ( g ) ,  0 = z~(p ~) = z,(/3). By 
L e m ~ a  4.1 it holds that z~(/3) #= 0, which is a contradiction. [] Q.E.D. 

."~,eorem 4.8. Let a total excess demand function z that satisfies Assumptions 3-7  
~ given and let v ~ S" be a starting price system. Take t ~, t 2 ~ [0, 1] with t ~ < t 2 
and take k ~ I,+ ~. I f  z~(~r(t~)) < O, then Zk(~r(t~)) < Z~(~r(tZ)) <_ O, i f  Z~(~r(t~)) 
= O, then z~(Tr(t2)) = O, and i fz~(~(tt))  > O, then z~(~r(t~)) > z~('tr(t2)) >_ 0. 

Proof. If A* = 1, then the proof of Theorem 4.8 is trivial, so we consider the case 
A * <  1. Let s I, s 2 e S  ~' be such that 1 r ( t l ) ~ C ( s  I) and 7r( t2)~C(s2) .  Let 
j_ ~ l - ( s 2 ) ,  then by Theorem 4.7, j _ ~  l - ( s  I) and so 7ri_(t~)/~rj_(t l) = ((A* - 
l ) t 2 +  I ) / ( (A"  - l ) t  I + 1 ) <  1. Tet j+, f+~l÷(s~) ,  then using Theorem 4.7, 
rr, ( t2)/Tr,  ( t l )  = rrr (tz)/1r,, (tl). If jo ~ i ° ( s Z ) N l - ( s l ) ,  then ~ . ( t : ) / ~ , ( t  ~) 
~ i  ( t ~ ) , / ~  ( t ' ) .  l~oreover ')  0 ~ J,a~(~r(t ') ,  ~'(t~))since otherwise by Lemma 
4.1, z !o(rr(t ~))-> z, (~ '( t  ~)) =- 0, and a contradiction would be obtained. Similarly, 
Jo ~ i6(.¢~) ~ iO(s~ implies Jo ~ J,,i,(~r(t~), rr(t~)) UJm~ (~r(t~), ~'(t2)), and Jo 

10(:~2) N l+(s t) implies 7rj,(t2)/~r,o(t~) < ~r~.(t~)/rr~.(t ~) and J0 ~ 
Jmin('rt(t I), ~(t2)).  Consequently, l - ( s  :¢) c Jmin(~(tl), .'rr(t~)) and l+ ( s  2) c 

Jma,(~'(tl), ~(t~)). Using this result and Lemma 4.1, z~.(rr(tz))<O implies 
z~(~r(tt)) < z~(Tr(t~)) and z~(~r(t~)) > 0 implies z~(Tr(tl)) > z~(~r(t~)). By Theo- 
rem 4.7, z~(Tr(t~)) ~ 0 if z~(~r(t~)) < O, z~(~r(tz)) = 0 if z~(Tr(tl)) = 0, and 
z~(~r(t~)) ~ 0 if z~(~'(t')) > 0. L'3Q.E.D. 

Theorem 4.9. 
be given and 
there exists e > 0 such that V j  ~ 1~ + I: 
Vt E (t  -- 8, t) N [0, 1], ~'j(t) < ztj('t) 
zj( r0)) < 0, 
Vt G, + n [o, l], %(t)  > %(}) 

< 0. 

Let a total excess demand function z that satisfies Assumptions 3-7  
let v ~ S" be a starting price system. Let "t ~ [0, 1 ] be given. Then 

if  zj(rr(t)) > 0 and ~rj(t) > ~ri('t) if  

if zj(1r('t)) > 0 and ~j(t)  < 7rj('t) if 

Proof. For A* = 1 the proof of Theorem 4.9 is trivial, so we consider the case 
A* < 1. By continuity of the functions z and -n" it is possible to choose e > 0 such 
that Vj ~ I,,+ 1, Vt E () - ¢, } ~- e)  n [0, 1], zj(rr(t)) > 0 if zj(Tr(~)) > 0 and 
zj(1r(t)) < 0 if z~(Tr(t)) < 0. 
Let t ~ ( t -  ¢, } +  8)  N[O, 1] and z k ( r ( t ) ) <  0. Then 7rk(t) = ((A* -- l ) t +  l)v k. 
Hence if t ~ ~, then (t - })(~'k(t) - 7rk(})) = (A* - l)(t - })2 v~ < 0. 
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Let us consider the case where k ~  I,+ i is such that zk(Tr(~'))> 0 and 
t ~ (i, t + 6) N [0, 1]. Suppose ~k(t) < ¢rk(~'), so 7rk(i')/'trk(t) > 1. Then 
~rj(~)/Tr~(t) > 1, Yj ~ l~+ i satisfying zj(~r(t)) > 0. Also Irj(-t)/Ir~(t) > 1, Yj E 
1~+ i satisfying zj(rr(t)) < 0. Hence for some f ~ I,,+ i, zI(Tr(t)) = 0, and f 
Jmin(cr(t), ~0) ) .  By Lemma 4.1 it holds that z i (~O))  > 0, which contradicts the 
choice of ~. The case where zk(~(~'))> 0 and t ~  O - ~ ,  ~')N [0, 1] can be 
treated simil~ly, nQ.E.D. 
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