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Abstract 

This paper explores nonlinear dynamics in the time series of  the short-term interest rate 
in the United States. The proposed model is an autoregressive threshold model augmented 
by conditional heteroskedasticity. The performance of  the model is evaluated by consider- 
ing its implications for the term structure of  interest rates. The nonlinear dynamics imply 
a form of  nonlinearity in the levels relation between the long and the short rate. 
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I. Introduction and background 

The dynamic process of  the short-term interest rate receives considerable at- 
tention in the finance literature, where it is the main input in models of  the term 
structure of  interest rates. In most of  this literature it is assumed that the short rate 
follows some autoregressive process with possibly conditional heteroskedastic er- 
rors. Campbell and Shiller (1984) analyze linear discrete time ARIMA processes, 
and their implications for the term structure. The Cox, Ingersoll, and Ross (1985), 
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Merton (1973), and Vasicek (1977) models are examples from the continuous 
time finance literature. Most of these popular interest models in finance are based 
on univariate linear AR( 1 ) processes, with or without a unit root, and with varying 
forms of heteroskedasticity. Chan, Karolyi, Longstaff, and Sanders (1992, CKLS) 
have empirically investigated the class of univariate autoregressive linear models. 

There are, however, several indications for nonlinear dynamics in interest rates, 
both in the mean as well as in the variance. For example, Hamilton (1988) ap- 
plies a Markov switching regime model to monthly U.S. short-term interest rate 
data, and finds that this model fits the data better than a linear autoregressive 
model. Granger (1993) reports regressions on monthly data showing that the 
U.S. short-term interest rate depends in a nonlinear way on the spread between 
long and short rates. Anderson (1994) provides additional evidence for this type 
of nonlinear effects. Kozicki (1994) finds different responses to positive and neg- 
ative shocks. Naik and Lee (1993) and Das (1993) link the nonlinearities to 
changes in economic regime and stochastic jumps, respectively. This evidence 
raises questions about the appropriateness of a linear process to fit the shGrt-term 
U.S. interest rate. 

Additional evidence for nonlinear dynamics is obtained from the term structure 
of interest rates. Linear time series models for the short-term interest rate also 
imply linearity of the term structure relation between the yield on a long-term 
bond and the short rate. Nonlinear dynamics will imply a nonlinear equilibrium 
relation between the level of the short-term interest rate and the long-term interest 
rates. For instance, linear dynamics cannot explain the empirical fact that the long- 
term interest rate is less responsive to shocks in the short rate, when the short 
rate is high compared to when it is at low levels. We propose a nonlinear model 
for the short rate that is consistent with the empirical fact that the ratio of the 
voiatilities of long and short rates decrease as the short-term interest rate rises. 

A visual inspection of the U.S. data, shown in Fig. !, suggests that interest 
rates behave differently in the episode around between October 1979 and mid 
1982, when interest rates were high and also extremely volatile. The episode 
around 1974 has similar features, although both the level as well as the variance 
were less dramatic. The important modelling decision is how to treat the few 
episodes when the interest rate is clearly behaving differently. Do we deem these 
observations as outliers and throw them out, or should we specify a separate 
regime for periods with high interest rates? What is the probability that such an 
exceptior, al episode recurs? We follow the latter approach, and investigate the 
hypothesis that the interest rate dynamics deviate from a random walk at high 
levels of the interest rate. Such kind of regime-specific interest rate behavior can 
result from monetary policy of the Federal Reserve Bank, and could be motivated 
by fixed costs, in terms of reputation or credibility, that are associated with 
changes in policy. Linear models are not able to capture this kind of dynamics 
and nonlinear models are required. In particular, an autoregressive model with 
different regimes seems a promising alternative. 
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The main purpose of this paper is to explore the impact of possible nonlinear 
dynamics in the univariate time series of the short-term interest rate for term 
structure models. We expect term structure models to fit better if nonlinearities 
are allowed for in the stochastic model of the short-term interest rate. 

We will take the results of CKLS (1992) as our point of departure. In this 
paper we will use a dataset similar to CKLS (1992). This also means that we 
confine ourselves to univariate models. For the univariate models we can still 
solve the term structure model for the yield on long-term bonds using numerical 
integration techniques. In a multivariate model with the yield on long-term bonds 
as one of the forecasting variables for the short-term interest rate, the formal 
solution of the equilibrium term structure becomes technically more involved, 
and is beyond the scope of this paper. 

An important issue in interest rate models are the long-memory properties. 
Since in the term structure models the yield on a ten-year bond depends on 
expected short-term interest rates over a ten-year horizon, long-term expectations 
and hence the long-memory properties become crucially important. Under a linear 
stationary autoregressive process the long-term expectations quickly converge to 
the unconditional mean, whilc for the random walk [or an I(1 ) process in general] 
the long-term expectations will depend on the current interest rate. Parsimonious 
models under both hypotheses appear inconsistent with the data. Both fractional 
integration as well as nonlinear dynamics are alternatives that can provide the 
required long-memory properties in a parsimonious model. The advantage of the 
nonlinear threshold model that we use in this paper is that it can handle time- 
varying persistence of shocks. The main characteristic of the model we develop 
is that the random walk is correct most of the time, except in extraordinary 
circumstances. 

The plan of the paper is as follows. In Section 2 we explain the theoretical 
implications of models with linear interest rate dynamics. Section 3 presents the 
empirical puzzles that linear dynamics have difficulties to account for. The em- 
pirical evidence is based on monthly observations of  the U.S. three-month T-bill 
rate and the ten-year government bond rate for the period January 1962 through 
June 1990. Section 4 discusses threshold autoregressive models; empirical results 
with these models are presented in Section 5. This includes the development of  
a Gibbs sampling algorithm that allows formal (Bayesian) statistical inference 
on the threshold parameters. Section 6 investigates the implied term structures. 
Section 7 concludes. 

2. Term structure models 

Our motivation for considering nonlinear in*.erest rate dynamics stems from 
some empirical puzzles that cannot be solved by the widely-usod term structure 
models like Vasicek (1977) or Cox, Ingersoll, and Ross (1985, CIR). These term 
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structure models belong to the class of so-called one-factor models. They are built 
on time series processes of the form 

d r = g ( r ) d t + a ( r ) d Z ,  (1) 

where r is the instantaneous spot rate and Z is standard Brownian motion. The 
drift function /fir) and the volatility function a(r) both depend solely on the 
single state variable r(t). l For the CIR and Vasicek models the drift function is 
linear in r: 

/~(r) = / c ( 0  --  r ) ,  ( 2 )  

with g the mean reversion parameter and 0 the unconditional mean of the (nom- 
inal) interest rate. The volatility is of the form 

a(r) = ar',  (3) 

with 7 = 0 for the Vasicek model and 7 = ½ for the CIR model. The models 
imply that the yield on a discount bond with time to maturity z is given by 

R(t, 3) = a (Q + b(T)r(t), (4) 

with the functions a(z) and b(Q depending on the parameters of the time series 
process defined in (1), (2), and (3), and the price of risk. A linear relationship 
between a long-term yield and the spot rate exist only if the drift function is 
linear as in (2). 2 

In discrete time an equation like (4) is obtained for an AR(1) process under 
the simplifying assumption of the expectations hypothesis. In discrete time rt 
denotes a one-period interest rate, and  RI n) the yield on a discount bond with n 
periods to maturity. According to the expectations model, 

Rln) I n-I = ni~=gEt[rt+i] + dp tn), (5) 

which states that the yield on an n-period bond is given by the average expected 
future one-period short rates rt+i plus a possible term premium ~b~"). 3 A discrete 
time approximation to the diffusion process [(1) to (3)] is given by a linear 
AR(1) process (possibly with beteroskedasticity): 

rt -- r t - i  = (1 - p)(O - r t - i )  -k- 6 t e t ,  (6) 

I As a matter of notation, we will denote time for continuous time variables in parentheses as in r(t)  
and for discrete time variables by a subscript as in rt. 

2 See Duflie (1992, Ch. 7). There are also conditions on the volatility function that we will not 
explore here. 

3 This model is used in most of the monetary economics literature of the term structure. See Mankiw 
(1986) and Campbell and Shiller (t987) for extensive empirical work with this model. 
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with p the first-order autocorrelation coefficient and ~t white noise. By direct 
calculation of the expected future short rates we find the long-term rate as 

R~ n) = ~s (n) + w(')r,,  (7) 

where 

w(n) = 1 -- pn 

n ( l  - p ) '  

and ~b (n) is a constant related to the term premium and the parameters of the 
short rate process. For coupon bonds, which we will use in the empirical work, 
most of the empirical literature has followed Shiller (1979)'s linearised version 
of the expectations hypothesis that replaces (5) by 

y(tn) _ 1 -  r n - l  
Et[rt+i], (8) 

where Yt (n) is the yield to maturity on the bond and where ~ = (1 + ~ ) - i  is a 
constant discount faetur. 4 For the yield Yt the AR(I) process implies that the 
coefficient w equals 

l - / i  1 - ( / i p )  n 
w = - -  (9) 

1 - / i p  1 - ii n 

Eqs. (4), (7), and (8) are deterministic and will not hold exactly. Deviations can 
be due to model errors or to omitted factors. However, the residuals of (7) or 
(8) should be unrelated to the state variable ft. In particular the coefficient w 
should be a constant, and not depend on r. 

In the next section we will empirically test this implication, and show that 
linearity is not a valid assumption for single-factor models. The type of system- 
atie variation in w will indicate in what direction to modify the linear AR(1) 
model (6). 

3. Data  and stylized facts 

The data series in this paper consists of monthly observations of the U.S. three- 
month T-bill rate and the ten-year government bond rate for the period January 
1962 through June 1990; the series are shown in Fig. 1.5 Table I provides 
summary statistics of the level and first difference of the data series, with and 
without the influential period October 1979 through October 1982. The lower 

4 When there can be no confusion we will omit the superscripts (n) from now on. 

5 All data were kindly provided by the Federal Reserve Bank of  Minneapolis. Observations are 
sampled on the last trading day of  the month. 
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Fig. i. Interest rates. 

U.S. three-month T-bill rate (solid line) and ten-year government bond yield (dashed line); monthly 
data, 1962-1990. 

two panels of  the table split the sample according to whether the lagged short- 
term interest rate is above or below 8.5%. When considering first moments of 
the levels of the short- and long-term interest rate, a martingale appears to be 
a good model. A unit root can never be rejected, while first differences appear 
only slightly autocorrelated. 6 

In contrast, the volatility of  interest rates appears to depend on the level 
of interest rates. As is evident from panels C and D in the table, interest rates 
are more volatile in periods when the level of the short rate is also high, 
consistent with the CIR model, and also emphasized in Chart, Karolyi, Longstaff, 
and Sanders (1992, CKLS). In fact, the well-known difference in interest rate 
volatility between low and high levels motivates the sample split. The positive 
skewness of the levels is consistent with the unconditional distribution implied by 
the Cox, Ingersoll, and Ross (1985) model. Another standard feature of the 
data is the extremely high kurtosis of the first differences, partly due to 
heteroskedasticity. 

6 Formal unit root tests (not reported) have been performed using various treatments of transient 
dynamics and correcting for beteroskedasticity. To perform a unit root test for the subsamples created 
according to the value of the lagged short-term interest, one cannot use standard critical values. 
Presumably the Perron (1989) critical values for models with structural breaks are more appropriate. 
Formal tests, considering heteroskedasticity, for the significance of the autocorrelation in the first 
differences cannot reject the null hypothesis of no autocorrelation. 
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Table i 
Summary statistics 

155 

Mean Std. dev ~d z Min. Max. Skewness Kurtosis 

(A) Full sample 

rt 6.64 2.73 0.97 i 2.70 15.52 1.04 3.95 
Yt 7.87 2.76 0.988 3.85 15.84 0.60 2.80 
Art 0.01 0.62 0.116 --3.85 2.40 -- 1.35 1 ! .76 
3Yt 0.01 0.38 0.108 --!.88 1.59 --0.44 6.53 

(B) 60:1 - 79:9 and 82:10 - 90:6 (T = 315) 

rt 5.98 1.92 0.961 2.70 10.63 0.25 2.17 
Yt 7.28 2.23 0.982 3.85 13.91 0.43 2.88 
Art 0.02 0.42 -0.044 --2.8 ! ! .68 -- 1.40 ! ! .70 
AYt 0.01 0.30 0.009 --I.13 1.09 -0.34 4.62 

(C) Sample conditional on rt-1 <_ 8.5% (T = 273) 

rt 5.61 1.62 0.875 2.70 8.93 0.01 2.03 
Yt 6.91 1.93 0.917 3.85 11.91 0.19 2.49 
At, 0.05 0.36 0.143 -1.38 1.68 -0.18 6.14 
AY, 0.01 0.30 0.003 --1.13 1.09 --0.34 4.62 

(D) Sample conditional on rt-I > 8.5% (T = 69) 

rt 10.74 2.30 0.681 6.12 15.52 0.48 2.20 
Yt 11.71 2.10 0.683 6.90 15.84 -0.31 2.23 
Art -0.12 i.16 0.195 -3.85 2.40 -0.70 4.30 
zlYt 0.03 0.61 0.132 - ! .13  0.74 -0.69 4.99 

Short-term interest rate rt is the three-month T-bill rate; the long rate Yt is the ten-year government 
bond rate. Interest rates are measured as percent per annum, fil is the first-order autocorrelation. 
Skewness is the sample third moment scaled by d3; kurtosis is the sample fourth moment scaled 
by d 4 and minus 3. 

A drawback of  such linear processes is, however, that they cannot explain a 
puzzle in the term structure literature, related to the volatility of  long- versus 
short-term interest rates. 7 To see why, let us first return to the term structure 
model (7). This linear model implies that the conditional volatility of  innovations 
in the long rate is proportional to the conditional volatility o f  the short rate with 
proportionality factor w In), which in turn crucially depends on the autocorrelation 
coefficient p. If the short rate is a martingale (p = 1), the coefficient wtn) is 
equal to one for all n and the changes in the long rates should be as volatile as 
changes in the short rate. Yet Table 1 shows that the sample ratio of  the two 
standard deviations is considerably smaller than one: 0.38/0.62 = 0.61. 

7 For an overview of  this literature see Shiller (1979), Campbell and Shiller (1987), and recently den 
Haan (1995). 
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On the other hand, for the empirical first-order autocorrelation coefficient in 
monthly data, fi = 0.97, the coefficient w ~n) decreases rapidly as a function of  n. 
For example, for a ten-year coupon bond, setting 6 = (1 + 0.07) -1/12 = 0.994, 
we obtain w 02°) = 0.33. In this case, the level of  the long rate should be much 
less volatile - since w = 0.33 - than the level of  the short rate. But the actual 
sample standard deviations (2.73 and 2.76, respectively) are about equal, therefore 
grossly violating this implication. 

The differences in implications between the unit root and a stationary AR(1) 
have sparked some of  the immense attention to tests of  the unit root hypothesis. 
Shea (1989) and Baekus and Zin (1993) consider a fractionally integrated model 
as an intermediate process. A fractionally integrated process can reconcile the 
unconditional relative volatilities of  the interest rates with long memory properties 
in both time series. 

However, fractional integration cannot explain why the volatility ratio falls as 
the interest rate level rises. Panels C and D of  Table 1 show that, if the short 
rate is below 8.5%, the implied value of  w is 0.30/0.36 = 0.83, whereas for high 
values of  rt-I  we find w = 0.61/1.16 = 0.53. As a crude test for the significance 
of  the change we used Seemingly Unrelated Regression to relate the squared 
changes in the short and long rates to a dummy variable Dt being equal to one 
if  rt-I  <~ 8.5% and zero otherwise (t-values in parentheses): 

( A i ~ ) 2 = O . 1 3 5 D t + l . 3 2 3 ( l  - D r ) ,  
(2.0) (9.7) 

(d }~t) 2 = 0.091Dt + 0.365(1 - Dr). 
(4.6) (9.4) 

(!o) 

A Wald test of the restriction that the ratio of  the parameters on Dt equals 
the ratio of  the parameters on (1 - D r )  gives W(I) = 8.94, rejecting the null 
hypothesis. 

For a slightly more sophisticated test we explicitly model the conditional het- 
eroskedasticity as in CKLS (1992). CKLS consider the model 

rt -- rt-i  = (1 -- p) ( r t - i  -- It) + ari"_lt;t, ( l l )  

where the conditional volatility depends on the level of  the short rate. We 
estimated (11 ) jointly for the long and short rate by quasi maximum likelihood, 
assuming a constant correlation between the innovations to the short and long 
rates (t-values in parentheses): 

Art = 0 .115-  0.016rt_l + 0.033 r~" re, t, 
(2.1) (1.4) (7.8) 

A~ = 0.09 - 0.011 ~--I + 0.038r~Ltfft, 
(1.8) (!.7) (7.9) 

71 = 1.42, 
(20.8) 

F2 = !.i5, 
(14.4) 

(12) 
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with the main result that ~ is smaller for the long rate than it is for the short 
rate. 8 A test for the null hypothesis that 7l = ]Y2 yields W(l )  = 6.93, rejecting 
the null. The ratio of  the two volatilities is 

0.038 -0.27 
ht = - 6 - ~ r t _ l  , (13) 

and is a decreasing function of  r t - l ,  ranging from 0.95 at r = 2% to 0.55 at 
r = 15%. At low interest levels the relative volatility would imply near random 
walk behavior for the short rate, while it would be more consistent with stationary 
dynamics at high values. 

This evidence of  a falling volatility ratio is at odds with the assumption of  a 
linear mean function as this would require the volatility ratio to remain constant. 
This is why it also cannot be explained by a fractionally integrated process. Our 
interpretation is that a falling volatility ratio indicates that the amount of  mean 
reversion in interest rates depends on the level of  the interest rate. Nominal 
interest rates are close to a random walk until they reach high values, when the 
comovements of  long and short rates seem to indicate that short rates become 
mean-reverting. 

The same information is conveyed by the low-frequency components of  the 
data. Plotting the short rate against the long rate we would expect to see ob- 
servations scattered around a 45 ° line in case of  a random walk, and scattered 
around a much flatter line with slope equal to w in case of  a stationary AR(I).  
Under the alternative of  nonlinear dynamics, however, and consistent with the 
volatility evidence above, we would expect the slope to be close to one for small 
values of  rt, whereas the slope flattens out as rt increases. 

In order to investigate the change of  slope in the levels relation we estimated 
a piecewise linear regression between the yield on ten-year government bonds Yt 
and the three-month T-bill rate rt: 

Y t= 1.19 + 1.02 r t -  0.58 m a x ( r t - c , O ) + u t ,  (14) 
(0.58) (0.11) (0.27) 

t? = !.18, R 2 = 0.82, D W  = 0.13, 

where c = 10.8% is the estimated breakpoint and ut an error term. 9 The slope is 
almost equal to one at low interest rates, but (significantly) lower for high values 

s The dependence of  the volatility on the level o f  the interest rate implies that we cannot have an 
exact unit root. See Broze, Scaillet, and Zakoian (1993) for exact ergodicity conditions for this 
model. A problem with the estimated model is that 7 > I violates the conditions. Pagan, Hall, and 
Martin (1994), Koedijk, Nissen, Schotman, and Wolff (1994), and A'it-Sahalia (1995) discuss issues 
in estimating 7. It appears that the estimate of  7 becomes smaller when GARCH effects are taken 
into account, and also that 7 decreases to below one ibr high interest rates. 

'~ Parameter estimates have been obtained by nonlinear least squares. Newey-West standard errors, 
conditional on c and using twelve lags, are in parentheses. 
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of the short-term interest rate. In this sense the data support the hypothesis of a 
regime shift at high interest rate levels, l0 

Summarising, the term structure data suggest nonlinear interest rate dynamics, 
with dynamic properties depending on the level of the short-term interest rate. 
Next section purports to specify a suitable nonlinear model for the short-term 
interest rate. 

4. Threshold autoregressive models 

4.1, Specification 

A simple way to approximate a nonlinear function is the piecewise linear 
approximation. In this section we consider several variants of the self-exciting 
threshold autoregressive (SETAR) model to fit the dynamics of the three-month 
T-bill interest rate. We also introduce a modification of" the SETAR model by 
adding proportional heteroskedasticity of the CKLS type [see Eq. ( 11 )]. Statistical 
inference is Bayesian and proceeds through the Gibbs sampler. 

Let a set of threshold parameters cy ( j  = 0, 1 . . . . .  J )  partition the real line 
into J adjacent regimes or regions [c . i - l ,c / )  with c/ < cj+l, co = -c¢ ,  and 
cj = +o0. At time t the jth regime is active if the realisation d periods ago lies 
within [cy, cj+l); d is called the delay parameter. Let yt denote the dependent 
variable and x2t the vector of explanatory variables in regime j .  A self-exciting 
threshold model SETAR(KI . . . . .  K j )  with d regimes can be written as II { fl~Xltq"tTl~,t if Co <.Yt-d < Cl } 

Yt = flt2X2t ~-t72F't if cl <- Yt -d  < C2 , 

f lJxjt+trj*t i f  c j - i  ~ Yt-d < cj  

with et--~N(0,1). (15) 

We will mostly concentrate on models with only first-order dynamics. In that 
case the conditional mean for time t in regime j is determined by a linear AR( ! ) 
specification with parameter vector p /=( r io / / / i  )' and with x~t = (1, yt-i  )'. Fur- 
thermore the delay parameter d is equal to one. 

In the case of two-regime models the abrupt shifts of  regimes can be refined by 
using the Smooth Transition Autoregressive Model (STAR) discussed in Granger 

to Of course the single-factor models do not explain all variation in long-term yields. However, we 
do wish to capture all those fluctuations that are related to the level of the short-term interest rate. 
Although the errors are likely to be highly autocorrelated, the unit root hypothesis for yield spreads 
has always been rejected in the literature; see, for example, Campbell and Shiller (1987) and Hall, 
Anderson, and Granger (1992). Eq. (14) is therefore not likely to be spurious. 
t t Brockwell and Davis (1991 ) provide a good introduction to threshold models. An extensive analysis 
is given by Tong (1990). 
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and Ter~isvirta (1993). These models include some gradual shift from one regime 
to another, and thus additionally require some transition function. 

SETAR processes also introduce a specific kind of conditional heteroskedasti- 
city by allowing the variance parameters ~j ( j  = 1 . . . . .  J )  to vary across regimes. 
In this basic SETAR model conditional heteroskedasticity can only be driven by 
changes in the regime, i.e., by changes in y t - l .  

In order to allow for conditional heteroskedasticity of the CKLS type [see Eq. 
(11 )], which has found widespread application in models of interest rate dynam- 
ics in the finance literature, we introduce the SETAR model with proportional 
heteroscedasticity (SETAR-PH model). With rt denoting the short-term interest 
rate this model is written as 

rt = ~jo + g j l r t - i  + ~r~/_~t if rt-~ E [cj_~,c/) ,  j = 1 . . . . .  J. (16) 

In the SETAR-PH model the shift in regimes is automatically determined by the 
nonlinearity in the mean only. Volatility is related to the level of the lagged 
variable and is not subject to regime shifts. 

In general, determining the stationarity conditions for SETAR models is diffi- 
cult. For first-order models with J regimes [SETAR(I . . . . .  1 )] and with d = 1, 
Chan, Petruccelli, Tong, and Woolford (1985) derive sufficient conditions for 
ergod!city, which only depend on the parameters of the two outermost regimes: 

/hi < 1, /~Ji < 1, /hd~Ji < 1; 

P l l = l ,  /b~ < 1 ,  / ~ 0 > 0 ;  

/~: < 1 ,  /~ j~=l ,  PJo<O;  

/ h t = l ,  /~ j~=l ,  /~ Jo<O</hO;  

/~ll//gl = 1, /~ll < 1, ~JO +/~JI/~lO > 0. 

(17) 

For the SETAR-PH model we have the additional complication that the process is 
nonergodic if the volatility elasticity parameter 7 is greater than one (see Broze, 
Scaillet, and Zakoian, 1993). 

4.2. Es t imat ion  

The statistical inference for this kind of threshold models poses some difficul- 
ties, because the likelihood function is discontinuous with respect to the threshold 
parameters. The concentrated likelihood function is flat for values of a thresh- 
old parameter between successive observations of the re-ordered data series .vi 
(.Pl ~<.P2 ~<"" ~<.Pr for the T re-ordered observations f'i = Yt,). While least 
squares or ML estimates can be obtained by a (possibly multidimensional) grid 
search, correct standard errors are not available. 

This and other difficulties with classical sampling theory are discussed in detail 
in Pole and Smith (1985) and Geweke and Terui (1993) for the standard SETAR 
model. Both papers advocate a Bayesian approach, which we will pursue here. 
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However, the exact methods of these papers are not applicable if parameters are 
restricted across regimes. We therefore use a simulation method to obtain the 
marginal posterior densities of all the parameters in the model. Since the SETAR 
model is piecewise linear conditional on the threshold, it is well-suited for a Gibbs 
sampler. The Gibbs sampler can also deal with the type of heteroskedasticity in 
the SETAR-PH model. 

The Gibbs sampler is a simulation method that produces a sample of dependent 
draws from the posterior distribution. 12 The algorithm cycles through a series of 
conditional posteriors. The method is effective in models where alternative fac- 
torizations of the joint posterior in conditional densities and a marginal density 
produce a set of conditional densities from which it is computationally easy to 
generate random drawings. As the Gibbs sampler is a Bayesian procedure we 
need to specify a prior for our parameters. All results have been obtained with 
the standard fiat prior on all regression parameters. For the scale parameters a; we 
use the uninformative inverted Gamma prior p(tr) cx tr -~. For the thresholds we 
use .". uniform prior. Details of the simulation method are given in Appendix A. 

5. Empirical results 

The specification of SETAR models requires the number of regimes a priori. 
We start with the simplest possible model with two regimes: 

Art : ( ~xlO -{- ~Xllrt-I + O'l*;t' r t - I  < C, 
~X20 + ~x21rt-i + o'2/;t, rt_ 1 >~c. (18)  

Using the Gibbs sampler we obtain the results in the first row of Table 2. The 
first regime is a random walk and the upper regime implies mean reversion. This 
is exactly the type of dynamics that we anticipated in Section 2. At low levels the 
short rate behaves like a random walk, while it becomes mean-reverting at high 
levels. The process as a whole is stationary according to the criteria of Eq. (17). 

The threshold is estimated very precisely. However, the regime shift is largely 
the result of the variance shift at high interest rate levels. It is the big difference 
between the a 's  that identifies the regimes here. The possible nonlinearity in the 
dynamics is dominated by the change in the second moment. 

In the remainder of this section we examine some variations on the basic 
model to investigate the interaction between the heteroskedasticity and the non- 
linear dynamics. One way to separate the change in the dynamic structure and 
the variance shift is to estimate a three-regime SETAR model with parameter 
restrictions such that the breaks in flj and aj are only determined by the first and 

t2 The Gibbs sampler is described in Casella and George (1991) and Tiemey (1991). Examples of 
applications are Geweke (1994) and McCulloch and Tsay (1994). 
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Table 2 
SETAR models 

AYt = OtjO + OzjlYt-I + oj)'~_l~:t, Yt-I E lj(Cl,C2) 

161 

Model Threshold ~to st a 7 c 

SETAR ~ -  t < c 0.04 -0.00 0.37 0 8.44 
(0.08) (0.01) (0.02) (0.10) 

s~-I ~c  0.64 --0.07 1.15 
(0.71) (0.15) (0.10) 

SETAR-TWO • : ~ - I  <, ~cl 0.06 -0.00 0.37 0 10.32 (cl) 
(0.10) (0.02) (0.02) (i.!0) 

~:~2-1 <, ~c2 4.27 -0.34 !.12 8.44(c2) 
(2.75) (0.19) (0.10) (0.11) 

SETAR-PH t~-l < c 0.05 -0.00 0.027 1.54 10.80 
(0.02) (O.OI) (0.005) (0.10) (0.86) 

t~_ I ~c 4.68 --0.37 0.027 1.54 
(3.18) (0.24) (0.005) (0.10) 

SETAR-SUB ~ ~ < c 0.03 -0.00 0.024 i.62 9.24 
(0.02) (0.01) (0.02) (0.57) (0.93) 

~_~ ~c  4.33 -0.44 0.024 1.62 
(9.70) (0.95) (0.02) (0.57) 

SETAR-LOG In ~_ I < In c 0.0067 0.074 0 9.34 
(0.0054) (0.003) (2.47) 

In ~_ t ~ In c -0.0047 0.074 0 
(0.0257) (0.003) 

The table reports posterior means and standard deviations (in parentheses) obtained by the Gibbs 
sampler for various specifications of the self-exciting threshold autoregression model. SETAR refers 
to the basic single-threshold model (18); SETAR-TWO refers to the model with separate thresholds 
for the mean and variance (19); SETAR-PH is the proportional heteroskedasticity model (16) with a 
single threshold; SETAR-SUB is the proportional heteroskedasticity model (16) with a single threshold 
estimated over the subsample starting in November 1982; SETAR-LOG is a model for lnrt. 

second moments ,  respectively:  

A r t = { ~ t o + o q l r t _ ,  i f  rt- ,  < e l }  { t r ,  et i f  r t_ l  < c 2 } . ( 1 9 )  
• 20 + ~21rt-i i f  r t - i  >/el + o'2g t i f  rt-i  >~c2 

The results are in the row labelled S E T A R - T W O  o f  Table 2. The average num- 
ber  o f  observat ions in the three regimes are 269 ( =  79%),  35 ( =  10%), and 37 
( =  i 1%), respectively.  The est imates o f  ~r are the same as in the s impler  model ,  
but the autocorrelat ion parameter  in the highest regime is much different. The 

variance threshold is exact ly the same as the s imple threshold in (18);  the change 
in the dynamics  takes place at a higher level o f  rt. This model  illustrates the 
consequences o f  restricting the variance to be the same across regimes,  so that 
regime shifts can only be identified by  a shii t  in the condit ional  mean. Because o f  
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Fig. 2. Posterior density of thresholds. 
The solid line shows the posterior density of the threshold for the mean; the dashed line is the 
posterior density for the variance threshold in the SETAR-TWO model (19). 

the higher threshold for the break in the dynamic structure, the AR parameter is 
also much lower than in model (18). In the region between 8.44% and 10.32% 
the short rate still behaves like a random walk, but is already more volatile 
than at lower levels. As before, the estimated process is stationary. The high 
posterior standard deviation of  the AR parameter in the high interest regime can 
be attributed to the small number of  observations. 

In comparison to the precision of  the variance threshold c2 the precision of  
the mean threshold cl appears to be much weaker. Fig. 2 shows the posterior 
densities of  the two thresholds, and conveys similar information of  a very pre- 
cisely determired variance threshold and of  much weaker evidence for the mean 
threshold. 

Another way to separate mean and volatility effects in identifying the threshold 
is to combine a SETAR model for the mean dynamics and the proportional het- 
eroskedasticity specification as in the SETAR-PH model (16) introduced above. 
This takes us back to a two-regime model 

lift = ~tjo + ~ylrt-i + ar~ le t ,  j = !,2, (20) 

with volatility being a continuous function of  r , - i .  
The results are reported in the row labelled SETAR-PH of Table 2. Changing 

the volatility specification leaves the nonlinear mean dynamics almost unchanged, 
except for a somewhat higher threshold value and an improved precision of  the 
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threshold estimate. The main effect of separating the mean and variance switches 
in the specifications SETAR-TWO and SETAR-PH compared to the basic SETAR 
model is that the stationary regime starts at a higher threshold level, but at the 
same time shows much stronger mean reversion. Allowing for a nonlinear mean 
does not alter inference on ~. It remains around 1.5 as in CKLS and in model 
(12) above. 

In the sample the second regime primarily manifests itself in the period 1980- 
82, the same sample period that causes trouble in every empirical study of U.S. 
interest rates. Since only 10% of the observations are in the high regime, and 
since these observations are concentrated in a short period, the nonlinearity may 
be spurious, and only picking up a few outliers. 13 As a check on the robustness 
of  the results we re-estimated the model over the last part of the sample, starting 
in November 1982 after the interest rate had come down from double digits to 
the 8% region. The results in row 4 of Table 2 are surprisingly similar to the full- 
sample model, except for the much larger standard deviations on the parameter 
estimates of the AR process in the high-interest-rate regime which, again, can be 
attributed to the very few number of only 17 observations in the higher regime. 

The value of ? indicates that the variance of  the interest rate innovations is 
strongly related to the level of the interest rate. A standard econometric proce- 
dure to deal with this form of heteroskedasticity is to take logarithms of the 
data. Taking the log of rt also automatically guarantees positive interest rates 
by introducing a specific interaction between the conditional mean and condi- 
tional variance. It removes proportional heteroskedasticity completely only for 
~, = 1. In the finance literature time series models for the log of the short rate 
have been advocated in Black, Derman, and Toy (1990). When we estimated a 
SETAR(I,I) model for In rt, the autoregressive parameter in both regimes turned 
out to be very close to unity, which led us to simplify the model to a combination 
of two geometric random walks, that we will denote as SETAR-LOG: 

Alnrt = { Oqo if rt-i<c} 
O~2o if rt_l>~c +~t. (21) 

The results for this model are reported in row 5 of Table 2. Although both 
regimes are nonstationary, the upward drift in the first regime, and the downward 
drift in the second regime ensure that the joint process for in rt is statioaaD', see 
the conditions (17). Although this is the most parsimonious threshold model 

13 Detection of outliers would already be a good motivation for estimating nonlinear models, though. 
Also note that we think the nonlinearity is nonspurious because of the term structure evidence pre- 
sented in Section 3. Deleting observations to obtain a random walk will result in completely different 
term ~tmcture implications than the nonlinear specifications. This argument is similar to the treatment 
of the stock market crash in determining the risk of investment in the stock market. 
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that describes the main features of  the data, the threshold is not very precisely 
determined here. 14 

Conditional on the posterior mean of  the parameters, the residuals o f  the var- 
ious SETAR models do not show any linear autocorrelation. The residuals do 
exhibit ARCH-type heteroskedasticity, though, indicating that neither the CKLS- 
type conditional variance model nor the regime-switching SETAR-TWO model is 
fully adequate, and that a separate volatility factor as in Longstaff and Schwartz 
(1992) might be important as a second factor. 

As a further test o f  the time series specification of  the SETAR models we 
considered higher-order dynamics. For the basic SETAR model as well as for the 
SETAR-PH model we used maximum likelihood to estimate all models with two 
regimes and with AR orders of  1 through 5 in each regime. We also considered all 
values of  tile delay parameter from d = 1 to d = 3. These 5 x 5 x 3 = 75 models 
were ranked according to the Schwarz criterion, and for both the basic SETAR 
as well as the SETAR-PH model the first-order specification came out as best. 

We also considered the logistic first-order STAR model proposed in Granger 
and Teriisvirta (1993). For the SETAR-PH model the least squares estimates (not 
reported here) implied a near infinite speed of  transition, so that the model is 
almost indistinguishable from a SETAR model. 15 

Summarising the results, heteroskedasticity and nonlinearity interfere in the 
identification of  a threshold in the basic SETAR models. The SETAR-PH model 
with proportional heteroskedasticity and the three-regime SETAR-TWO model 
appear promising as these do not show signs of  serious misspecifications. Fi- 
nally, the log model with two geometric random walks is suggested as a very 
parsimonious alternative. All models have two regimes with distinct dynamics in 
common. The next section explores the implications of  these models for the term 
structure. 

6. Implied term structures 

In this section we investigate the term structure implications of  the various 
threshold models estimated in the previous section above. We will use the ex- 
pectations model (8) to generate theoretical values for the long-term interest rate. 

14The posterior standard deviation for the threshold is so large because the posterior density 
of the threshold is bimodal, with the secondary mode around r = 3%. Yet a model with two diffe- 
rent thresholds appears overpammeterized, and leads to extremely flat posteriors on all parameters 
except o-. 
Is Kozicki (1994) found evidence for smooth transition h: a different specification. In her model 
regime switches depend on the change of the interest rote instead of the level, implying a two-lhctor 
model. 
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That means that we compute expected three-months interest rates over long fore- 
cast horizons, and construct the theoretical ten-year Government bond rate l?t 
conditional on different initial conditions rt for the short rate: 

1 - 6  39 . 
]Tt -- i ----~-0 k_~_0 t~k Et [rt+3k ], (22) 

where 6 is the quarterly equivalent (0.994) 3 of  the monthly discount factor that 
we used before (see Section 3). 

Since there are no closed form solutions for long horizon forecasts, we have to 
use numerical methods. For a model with only first-order dynamics the forecasts 
can easily be generated by approximating the SETAR model by a finite-state 
Markov chain. For each drawing 0 {y~ from the Gibbs sampler o f  the parameter 
vector 0 the Markov chain is used to construct the long-term yield for each initial 
condition rt  = x~ ( i  = ! . . . . .  M )  as a function f i  of  the parameters and the initial 
condition: 

l~(0¢J)) = ,fi(0¢J)). (23) 

Averaging over all realized drawings 0 ~) ( j  = 1 . . . . .  N)  of  the Gibbs sampler we 
obtain the posterior mean and standard deviation of  the implied long-term yield. 
The details of  the algorithm are described in Appendix B. This section discusses 
the results. 

Fig. 3 contains the main results for the levels relation. The figure shows the 
implied long-term yield as a function of  the current short-term rate and a one- 
standard-error band (standard-errors are due to the parameter uncertainty). For 
comparison the same figure also shows the piecewise linear regression (14) of  
Section 3 and the long-term yield implied by a linear autoregression with monthly 
autocorrelation p = 0.97. The double threshold SETAR-TWO model (with sepa- 
rate thresholds for the mean and the variance) and the logarithmic SETAR-LOG 
model exhibit the same qualitative implications. For both models the implied 
levels relation becomes flatter as the short-term interest rises, exactly as we find 
in the data. 16 For low values of  r the slope is close to one, the value implied 
by cointegration. For the double-threshold model the slope of  the long rate con- 
verges quickly to a constant in the high-interest region, due to the strong estin:~ted 
mean reversion in the high regime. For the SETAR-LOG model the convergence 

16 One possibility for obtaining nonlinearities in the levels relation even if  the underlying dynamics 
are linear is by using the exact local expectations model instead of  the linear version. The exact 
local expectations hypothesis states that (I + R~n)) - "  = Etl]k(I + rt+k) - I  (see Ingersoll, 1987). If  
volatility is low, there is not much difference with the linearized version (22). Using the Markov 
chain method we checked the differences with the local expectations hypothesis, and found almost the 
same results. 
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is much slower, implying that shocks are much more persistent for this model. 17 
The linear AR(I ) model does much worse, since a first-order autocorrelation of 
0.97 implies a much flatter slope than either of the nonlinear SETAR models. 
The SETAR models, and especially the SETAR-LOG model, exhibit consider- 
ably more persistence than the linear AR(1) based on the monthly first-order 
autocorrelation. Standard errors for the implied yield are large, however. 

The implied volatility ratio can be computed analogously. Conditional on the 
short rate being at rt = xi, the one-period conditional variance is directly available 
from the SETAR model. To obtain the conditional variance of the long rate we 
again use the Markov chain approximation (see Appendix B for details). For 
each parameter drawing 0 (j) produced by the Gibbs sampler we then compute 
the ratio of the volatilities, denoted Ri(OtJ)), and average to obtain the posterior 
mean and standard deviation of the ratio. 

Fig. 4 shows the results. For comparison the figure also shows the volatility 
ratio estimated from the actual data on the long-term rate [see Eq. (13) in Sec- 
tion 3]. Both nonlinear models imply a decreasing volatility ratio, as we find in 
the actual data. In the SETAR-TWO model the volatility of the long-term rate 
drops suddenly as soon as the short rate passes the thre,:hold of 8.44%. At high 
short-term interest rates the model implies that a ten-year government bond rate is 
almost constant relative to the high volatility of the short rate. The smoothness of 
the long rate at high levels is due to the strong mean reversion in the high regime. 

Fig. 4 also indicates that the SETAR-LOG model implies more persistence 
than the SETAR-TWO model. The posterior mean of the volatility ratio for the 
SETAR-LOG model is close to the estimates from the actual long-term yield 
data. However, the standard deviations around this mean are extremely large. A 
sensitivity analysis with selective resampling from the Gibbs results revealed that 
the large standard errors for the SETAR-LOG model are due to the uncertainty 
in the threshold parameter c (see Table 2). Computing the posterior mean of  
the volatility ratio using only those 0 t j) for which c ~/) is above 7% produces a 

18 smoother picture with much lower standard errors. 
The conditional volatility results are in line with the evidence for the levels. 

The two types of results are theoretically related, since the volatility ratio is in 
effect nothing but an estimate of the first-order derivative ~ f / ~ r .  

17 We did not construct the implied long rote for the p~oportionai heteroskedasticity model, since that 
model is nonstationary for 7' > I. However, if we truncate the range for the interest rate to (0,30%) 
in the Markov approximation, the implied long rate is very similar to the double-threshold model, 
since both models have the same strong mean reversion in the high-interest-rate regime. 

t8 For all models we also redid the Gibbs run under the restricted prior that all parameter draws, 
conditional on the threshold parameter(s), produce a stationary dynamic process as defined by the 
conditions (17). These conditions are easy to impose. For the SETAR-LOG model this implies that 
the drift should always be positive in the lower regime and negative in the higher regime. The results 
are hardly different from those reported. 
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Table 3 
Implied moments 

Mean s.e. Std. dev. s.e. 

(A) SETAR-TWO model 

r~ 9.35 (1.89) 2.98 (0.79) 
Yt 9.69 ( i .96) ! .37 (0.78) 
Art 0.00 (--) 0.84 (0.17) 
zl )It 0.00 (--) 0.25 (0.07) 

(B) SETAR-LOG model 

rt 8.19 (2.50) 3.40 (!.30) 
Yt 8.50 (2.60) 2.06 ( I. 14) 
Art 0.00 ( - - )  0.67 (0.19) 
A Yt 0.00 ( - - )  0.29 (0.12) 

The entries are the posterior means of the moments of the long- and short-term interest rates implied 
by the Markov chain approximation of the three-month T-bill rate process. The columns labelled 
"s.c.' report the posterior standard deviations. 

Finally we consider the implied first and second moments of  both interest 
rates, Table 3 shows the implied means and variances of  the long and short rate, 
and first differences of  these rates. These moments are the model counterparts of  
the data moments in the first panel of  the summary statistics in Table 1. Both 
SETAR models imply a higher unconditional mean and variance o f  the short rate 
than we actually see in the sample. The large posterior standard deviation o f  the 
unconditional mean indicates that it is not estimated very precisely, though. The 
large standard deviations are due to the near nonstationarity of  the process~ which 
prohibits precise inference on moments related to the level. 

The standard deviation of  the first differences is estimated more precisely~ Since 
there is no drift the mean change is zero by default. The standard deviations show 
that the SETAR models are not sufficiently close to nonstationarity to geaerate 
enough volatility in the long rate. The ratio of  the standard deviations (0.25/0.84 
= 0.30 for the SETAR-TWO model and 0.29/0.67 = 0.43 for SETAR-LOG) is 
still below the sample value. 

The implied moments in Table 3 are directly related to the graphical evidence 
in Figs. 3 and 4. The slope of  the function Y = f ( r )  in Fig. 3 is still flatter on 
average than what is found in the data, and the volatility ratio in Fig. 4 is below 
the ratio found in the data for most values of  the r. 

The logarithmic model comes closest to the type of  nonlinearity and persistence 
that is required to explain the behavior of  long rates. The slope of  the function 
Y = f ( r )  in Fig. 3 is close to one initially (up to r = 6 % ) ,  but it flattens out too 
early. Increasing the threshold parameter for this model would improve its term 
structure fit. But given the small number o f  observations on high interest rates, 
such a high threshold value does not follow from a univariate time series model 
for the short rate; but neither can we rule it out. 
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7. Conclusions 

In this paper we have explored the scope of nonlinear dynamics in 
short-term interest rates and its implications for the term structure. Our choice 
of SETAR models was guided by the empirical analysis of three-months 
U.S. T-bill rates and its relation to the ten-year government bond rate. 
We found evidence for the presence of two regimes with distinct dy- 
namics in the mean. Until interest rates reach double digits they behave like 
a random walk. At higher levels, however, they show a mean-reverting ten- 
dency. In specifying the nonlinear models we also accounted for the strong 
heteroskedasticity. 

Nonlinear interest rate dynamics have asset pricing implications for the 
term structure of interest rates. We investigated the term structures arising 
from the threshold autoregressive models. One of the implications is that the 
levels relation between the short rate and a long rate is no longer linear (as 
in a cointegration model). The SETAR model predicts that the slope coeffi- 
cient of the short rate is close to one when the short rate is low, but gradu- 
ally decreases at higher levels due to the mean reversion. This implication is 
present in the data. The mean reversion at high levels can also explain why 
long rates are less volatile relative to the short rate at high levels of the 
short rate, 

The term structure implications have not been formally tested in this paper. 
For a test of the implications we would have to estimate a simultaneous model 
for the long- and the short-term interest rate, consisting of the time series pro- 
cess of the short rate, and the implied relation between long and short rates to 
provide overidentifying restrictions. Given the highly nonlinear way by which the 
parameters of the short rate process enter the implied process for the long rate, 
the Gibbs sampling methods in this paper are not suited for this problem, and 
we leave it for future research. 

One limitation of the present model is that there is only a single state variable, 
and consequently that there is a single threshold variable that triggers regime 
switches. This restriction may be crucial as a graph of the data suggests that 
there are ~everal episodes where the interest rate shows mean reversion ten- 
dencies. It would therefore be interesting to introduce a time-varying threshold, 
where the threshold is related to the rate of inflation and a business cycle vari- 
able like the unemployment rate. Such a model, however, requires at least two 
factors and could be motivated by direct observations on policy target rates as in 
Balduzzi, Bertola, and Foresi (1993), who have data on the Fed targets for the 
period 1985 to 1991. Another route to improve the model is the generalization 
to a multivariate time series model containing both the short rate as well as the 
long rate. This would lead to a nonlinear counterpart of the linear cointegra- 
tion models of Campbell and Shiller (1987) and Hall, Andersen, and Granger 
(1992). 
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Appendix A: Th~ Gibbs sampler 

A general formulation of  the threshold models we consider is 

Yt = fljx, + trjw~'et if It = j ,  (24) 

where fly is a K-vector of  parameters, xt a K-vector of  explanatory variables, wt 
a scalar variable, and It is an indicator variable specifying which regime will be 
active at time t, depending on the vector of  threshold parameters c. A fiat prior 
is assumed for fly, ?, and In aj. The prior on ? is restricted to ? 1> 0. The prior for 
the threshold(s) depends on the particular specification of  the threshold function 
and will be discussed for the individual models. Some of the parameters in flj, 
aj can be equal across regimes, or even be known a priori; the modifications to 
the algorithm will be mentioned briefly. Given the data set Y, the Gibbs sampler 
for the general SETAR model with heteroskedasticity consists o f  four steps: 

1. Reoression Step: Conditional on ?, tr, and c the distribution of  fly is normal 
with mean/~y and covariance matrix V(/~) given by 

~j t --1 / = (x~ w jx j )  (x~ Wjyj), 

= a (x; w, xj)- , ,  

where Xj is a Tj x K matrix of  the observations on xt in regime j ,  Wj a Tj x Tj 
diagonal matrix with w72~ on its main diagonal, and yj  a Tj vector with obser- 
vations on the dependent variable Yt in regime j .  

2. hwerted  Gamma Step: Conditional on c, r ,  and 7, the distribution of  
aj is inverted Gamma with parameters T j -  K and s ] = e)ey, where e i = 

WI/2(y  . - X j f l j ) .  Under the assumption al = 0"2 the sum over all et 2 replaces j 
the regime dependent sums. 

3. Proportional Heteroskedasticity Step: This step is only executed for the 
proportional heteroskedasticity model. Conditional on c, r ,  and a, tl~,e density of  
the heteroskedasticity parameter 7' follows from the conditional Iikclil~,ood function 

r 2 ( u , ~  2, 
lnL(?ic, fl, a, Y)  = -?Y'~ ln wt - ½ Y'] ~ 

,=l j=.~j, \ ajw~'/ 
(25) 

where ut is the unscaled residual Yt - fljxt and Jj  = {t: It = j} .  Since there is 
no direct way to sample from (25), an accept/reject algorithm is used. At each 
iteration the conditional posterior is approximated by a Student-t distribution with 
mean equal to the conditional mode, precision equal to the second-order derivative 
at the mode, and degrees of  freedom equal to 4. A new value ? is generated from 
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the Student-t P(7) and is accepted with probability 

Pr(accept) = k L(7) p(~)' 

where k is a normalizing constant such that Pr(accept) is between zero and one 
over the whole range of  7- 

4a. ThreshoM Step: The algorithm for drawing a new threshold value depends 
on the specific model. We will discuss the models that we used in Section 4, 
starting with the simplest case of a single threshold. 

In the single threshold model the sets of  the indicator variable are defined 
as Ji = {t: rt-l  < c} and ./2 = {t: rt_l>~c}. The prior on c is assumed to 
be uniform on a bounded interval (c: ,c . )  with boundaries that at a minimum 
leave enough observations in the upper and lower regimes to do a least squares 
regression. Conditional on fl, 7, and a, the density of  the threshold c is a step 
function which is discontinuous at the sample points of  the interest rate rt-~, 

2()2 
I u t  

lnL(cl~,7 ,a ,Y)  = - ~  ~ 
"j=lt6Ji ¢7)WI 

(26) 

The function (26) is evaluated in all admissible points c E (c:,c.) .  Numerical 
integration gives the cumulative density F(c). A new threshold value is obtained 
by drawing a uniform random number U and setting ¢( i )  = F-I(u). 

4b. Separate ThreshoMs Jbr Meai; and Variance: For the model with separate 
thresholds for the variance and the dynamics [see Eq. (19)] step 4a is replaced 
by two other steps. Under flat priors for both thresholds and assuming 7 = O, the 
joint density of  cl and c2 is written as 

Int(c,,e2lfl, a, Y)  = - ~  ~ (27) 

where Jll  = {t : rt--i < cl and rt-t  < c2}, J I2  = {t : r t - i  >~Cl and rt-t < c2}, 
J21 = {t: rt-i  < cl and rt-i >~c2}, J22 = {t: rt-i  >~cl and rt-i  >~c2}, and where 
el i~ = Yt - fl~xt. One of  the sets Jij will be empty. New values of cl and c2 
are drawn from the conditional densities of one threshold given the other. Both 
conditional densities are step functions with steps at each sample point rt-t  E 
(c:,c,,). The procedure to draw from these densities is analogous to step 4a above. 

The Gibbs sampler produces a series of i = 1 . . . . .  N dependent drawings by cy- 
cling through the conditional posteriors. Quantities like the expectation of certain 
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functions of  the parameters are computed as the average 

E[~/(0)] = O(0(i)). 

173 

(28) 

Some quantities are easier and more accurately computed by using the analytical 
expression for the conditional expectation, and averaging over the conditional ex- 
pectation (see Geweke, 1994). For example, the expected value of/~j is computed 
as the average conditional mean 

1 _NN ~(i) 
'E[/Ij] = -~ ~ l~j , 

and its variance as the average conditional variance plus the variance of  the 
conditional mean, 

1 N V ^(i) 1 N ^(i) 
Viii]  = ~,__~ [//) ] +  ~i=~l(/~) -E[~j] ) (~( j i ) -E[~j] )  '. 

This procedure is also used to estimate the marginal posterior densities. For the 
marginal posterior of  the threshold c we average over the conditional densities, 

N 
p(el Y) c< ~-'~L(e[I~ (i), ~(i), a(i), r ) .  

i=l 

For the threshold models in Section 4 the number of  iterations was set, after 
some experimentation, at N = 10000, after which the numerical standard errors 
are negligible. 

A p p e n d i x  B: Cons truc t i on  o f  the  y ie ld  curve 

The expectations model for the term structure introduced in Sections 2 and 6 is 
represented here for the relation between the three-month rate rt and a long-term 
rate on a coupon bond with maturity 3n months: 

1 - 6  n-I  
Yt - -  ~ ~ ¢~'Et[rt+3i], (29)  

1 -- 0 n i=0 

where 6 is the discount factor in the Shiller (1979) linearization. Eq. (29) is ana- 
logous to (8), but 6 is now a discount factor for a three-month period, reflecting 
the three months time to maturity of  the short-term interest rate. 

The model with first-order dynamics for the short-term interest rate rt can be 
written 

rt+3 = h(r~) + Ph+3, (30) 

with h(rt) the conditional expectation of  rt+3 at time t and Ih+3 the prediction 
e r ro r .  
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For the actual computations the process (30) is approximated by a finite-state 
Markov chain. Let x = (x~ . . . . .  xM)' be the (M x ! ) vector of  states rt at which 
the long rate will be constructed. The first stage of  the algorithm consists of  the 
estimation of  the matrix of  the one-month transition probabilities 

aij = Pr(r~+l = xj  [rt = xi).  (31) 

The SETAR models estimated in Section 4 provide an analytical expression for 
the one-month conditional densities, as they are all conditionally normal. Since 
the conditional densities of  the short rate have smaller variance at low levels 
than at high levels the number of  points at low levels needs to be larger. We 
therefore choose a logarithmic equidistant grid, i.e., x i /x i - i  = d. The transition 
probabilities are found as 

a i j = N ( d l / 2 x j - - l z i ) - N ( d - l ' 2 x j - l t i )  ' \  o9i \ ,oi (32) 

wherE' /ti and ~o 2 are the conditional mean and variance at rt = xi. Let ,4 = 
(~i,-/)(i,j = I . . . . .  M)  be the matrix of  transition probabilities. Then the transition 
probabilities for a three-month period are available as A = ,~3. 

The vector of  conditional expectations E[rt+3k ] rt = xi] (i = ! . . . . .  M)  is com- 
puted as A~x, so that the yield on a coupon bond follows from (29) as 

= f ( x ) -  II--~h~o(rA) x Y 

1 - 6  
- 1 - - i f ( !  - 6 A ) - ~ ( I  - (/~A)")x, (33) 

where y is an (M x I) vector of  yields. The conditional variance V~[~'t4 l] of  the 
long-term yield follows as 

V~[Y~+,] = ,4 ( ( y  - , 4 y ) .  ( y  - , ' IS)) ,  (34) 

where x • x denotes elementwise multiplication of  two vectors. The conditional 
variance of  the short rate is directly available from the SETAR parameters. 

To compute the unconditional moments of  long- and short-term interest rates, 
we need the stationary distribution of  the short-term interest rate conditional on 
the parameters of  the SETAR model. The interest rate distribution is available 
as the vector rt solving the eigenvalue problem n ' =  n 'A .  Using n all moments 
can be calculated straightforwardly, for example the mean of  y is given by n ,y ,  
with analogous expressions for other moments. 

The finite-state Markov state method works very fast. In the computations 
we used a grid of  200 points with interest rates in the range between I% and 
30%. For the term structure implications we averaged the implied long-term yield 
over all realizations of  the paranteter vector 0 ~k~ produced by the Gibbs sampler. 
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We also averaged over all implied volatility ratios. A particular draw 0 tk) for 
which the term structure is constructed consists of a draw of the threshold(s), 
and conditional on the thresholds a draw of the/~j parameters and finally a draw 
of  the volatility parameters. 
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