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SIMULTANEITY O F  ISSUES AND ADDITIVITY 

IN BARGAINING 


Simultaneous bargaining over more issues by two bargainers is treated by taking sums 
of bargaining games and requiring bargaining solutions to satisfy certain (super-) additivity 
axioms. A (new) characterization of a family of so-called proportional solutions is given 
with the aid of three axioms: (partial) superadditivity, homogeneity, and weak Pareto 
optimality. Requiring, besides individual rationality and Pareto continuity, the axioms of 
restricted additivitv, scale transformation invariance. and Pareto optimality, yields an 
alternative characterization of a family of solutions consisting of all nonsymmetric 
extensions of Nash's solution. Also these solutions exhibit a (limited) proportionality 
property. Further, the relation with the Super-Additive solution of Perles and Maschler is 
discussed, and also the link with Myerson's results on proportional and utilitarian solutions. 

1 .  INTRODUCTION 

SUPPOSE,TWO PARTIES are facing several (separate) bargaining situations, on 
(possibly quite) different issues. Handling these situations one by one may yield 
both parties only small profits. Bargaining, however, over these issues simul- 
taneously, may yield both parties larger total profits, thus reflecting more properly 
their perhaps strong interests in some of these issues. The following simple 
example illustrates this. 

EXAMPLE1.1: Mr. X and his wife each have a ticket for a magnificent movie, 
but, unfortunately, these tickets are not valid for the same show. Now, for each 
of the two shows for which one of the tickets is valid, there are three alternatives: 
(a)  the ticket-holder watches the movie leaving his/her partner at home, which 
gives him/her 6 units of utility and his/her partner -2 units: (b )  they both stay 
at home, but with the ticket-holder grudging the whole evening: 0 utility for both; 
(c) they both stay at home and play some card-game: 0 utility for the ticket-holder 
and 1 unit of utility for the partner. If we suppose for a moment that these utilities 
are additive, then Mr. X as well as his wife d o  very well by each one using 
his/her ticket and receiving a net utility of 4. 

In this paper, we will follow the axiomatic approach to the bargaining problem 
as initiated by Nash [12]. We restrict our attention to two-person bargaining 
problems. Simultaneous bargaining over more issues will be reflected in our 
model by taking appropriate sums of bargaining games, and its possible advan- 
tages for the players by additivity axioms for bargaining solutions. 

Formally, a (two-person) bargaining game S is a proper subset of the plane 
satisfying: 

(1.1) S is closed, convex and sup {x,; x E S}E R for all i E {1,2}; 

(1.2) 0( =0,O)) E S and x >0 for some x E S;  

' The author would like to express his gratitude to the referees for their valuable comments and 
suggestions. The proofs of Theorem 3.2 and Lemma 4.6 have been considerably improved by their 
suggestions. 
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(1.3) S is comprehensive, i.e. for all x E S and y E [ W 2 ,  if y x then y E S. 

Let B denote the family of all bargaining games. When interpreting an SEB, 
one must think of the following game situation. Two players (bargainers) may 
cooperate and agree on a feasible outcome x in S, giving utility x, to player 
i = l ,2 ,  or they may fail to cooperate, in which case the game ends in the 
disagreement outcome 0. So for any SE B, the disagreement outcome is fixed at 
0 (which allows us to omit the usual axiom of translation invariance for bargaining 
solutions, which are defined below). Closedness of S is required for mathematical 
convenience; convexity stems from allowing lotteries in an underlying bargaining 
situation. Further, it is assumed that S is bounded from above, but not from 
below, since we allow free disposal of utility. The requirement x >  0 for some 
x E Sserves to give each player an incentive to cooperate. Not all of the restrictions 
in 11.1)-(1.3) are necessary for all of our results, but assuming t h e a  simplifies 
matters and, moreover, none of them goes against intuition. 

A (two-person) bargaining solution is a map 4: B + [W2 assigning to each SE B 
an outcome 4 ( S )  E S and such that Axiom 0 holds: 

AXIOM0: 4 ( S )  depends only on (the shape of) S. 

Axiom 0 states explicitly that 4 does not depend on an underlying bargaining 
situation (i.e., a set of lotteries and a pair of utility functions mapping these into 
the plane). By most authors, this is implicitly assumed or taken for granted 
(however, cf. Shapley [16]). We will explicitly use Axiom 0 in the next section. 

Before introducing some further axioms for bargaining solutions, we need a 
few definitions and notations. A scale transformation a = ( a , ,  a,) is a vector in 
[W:_ := jx E [W2;x > 0). For a E R:,, x E [ W 2 ,  SE B, ax := (a,x,,  a2x2) and a s :=  
{ux;xES}.  For ~ E R ,  a > O ,  a S : = ( a , a ) S .  For S , T E B ,  S + T : =  
{ x + y ; x ~ S , y ~T}. (Note that a S , S + T € B . )  For SEB, P ( S ) : = { x € S ;  for all 
y E S, if y 2 x, then y = x} denotes the Pareto optimal subset of S, and W(S) := 
{xE S;  for all y E [ W 2 ,  if y > X, then y & S)  denotes the weakly Pareto optimal subset 
of s .  

Let 4:B + [W2 be a bargaining solution. The f~l lowing axioms will play an 
important role. 

AXIOM1 (Indiuidual Rationality, IR) :4(S)  2 0 for all S E B. 

AXIOM2 (Pareto Optimality, PO): 4(S)E P(S)for all S E  B. 

AXIOM3 ( Weak Pareto Optimality, WPO): 4 ( S )  E W(S) for all SE B. 

AXIOM4 (Scale Transformation Invariance, STI): d ( a S )  = a 4 ( S )  for a//  S E B, 
a E R:,. 

A X I O M  5 (Homogeneity, HOM): 4 ( a S )  = a4(S)for all SE B, a E [W, a > 0. 
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AXIOM6 (Super-Additivity, SA): 4 ( S +  T)  2 (P(S)+ 4 ( T )  for all S, T E B. 

AXIOM7 (Partial Super-Additivity, PSAf: 4 ( S +  T )  2 (P(S), 4 ( S +  T)  4 ( T )  
for all S, T E B. 

AXIOM8 (Symmetry, SYM): 4 i ( S )  = &(S)  for all SE B such that S= {(x,, x,); 
x = (x,, x,) E S). 

AXIOM9 (Pareto Continuity, PCO): rb is continuous on (B, n )  where n is the 
metric on B de$ned by n(S,  T )  = dH(P(S) ,F ( T ) ) and dH is the Hausdorff metric. 

Note that Axiom 3 is implied by Axiom 2, 5 by 4, 7 by 6 and 1. (The last 
implication is the reason why we use the expression partial SA rather than weak 
SA: PSA is not implied by SA alone.) Axiom 6, super-additivity, was first 
formulated by Perles and Maschler [13]. Note also that the continuity axiom 
P C 0  is weaker than the continuity axiom mostly used (see, e.g., Jansen and Tijs 
[5]). As far as needed, we will discuss all these axioms in due place. 

The main purpose of this paper is to find bargaining solutions which satisfy 
(partial) super-additivity. The following example is a translation of the example 
at the beginning of this section, with the extras of allowing randomization between 
alternatives and using a bargaining solution. It  indicates that it may indeed be 
advantageous for both players to bargain over more issues simultaneously. 

We adopt another notation: for a finite number of vzctors x ' ,  x 2 , .  . . ,x' in UX2, 

~ ( x ' ,x2 , . . . ,x l ):= {yE w'; y s x for some x E conv {x', x2 , .  . . ,xl}). 

EXAMPLE1.2. (See Figure 1): Let 4 :  B + UX2 be a bargaining solution satisfying 
IR, WPO, SYM. Then 4,(S((O, I) ,  (6, -2))) + d , ( S ( ( l ,  O), (-2,6))) s 3 for i E 

{1,2), whereas 4(S((O, I ) ,  (6, -2)) + S((1, O), (-2,6))) = (4 ,4) .  So it is clearly 
advantageous for both players to play both games simultaneously. 

The organization of the paper is as follows. Section 2 tries to give a foundation 
to taking sums of bargaining games as a tool for handling simultaneous bargaining 
over more than one issue, and pays due attention to the super-additive solution 
of Perles and Maschler [13]. In Section 3, a family of super-additive solutions 
is characterized. This family does not contain the Perles-Maschler solution; it 
does, however, contain the so-called proportional solutions proposed by Kalai 
[6]. The result of Section 3 might be regarded unsatisfactory in one specific sense: 
most of the solutions characterized there do  not obey Axiom 4, scale transforma- 
tion invariance. As a possible remedy for this and an alternative, the super- 
additivity axiom is weakened in Section 4 to an axiom called restricted additivity, 
and this leads to a new characterization of a family containing the nonsymmetric 
Nash solutions (Nash [12], Harsanyi and Selten [3]). The last result is closely 
related to Aumann [ I ]  and Shapley [16]. Also in Section 4, the link of the 
characterizations in Sections 3 and 4 with the paper of Myerson [ l l ]  will be 
discussed. Section 5 concludes with a few final remarks. 
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2. TAKING SUMS OF BARGAINING GAMES-THE SUPER-ADDITIVE SOLUTION OF 

PERLES A N D  MASCHLER 

Let P denote some Prospect space or set of pure (riskless) alternatives, 
containing a disagreement alternative p E P, and let 9 denote an appropriate 
mixture set of lotteries on P. Suppose there are two bargainers, 1 and 2, with 
von Neumann-Morgenstern utility functions ui ( i  = 1,2) defined on 9,such that 
u i (p)=0.If P is large enough (e.g. P =R'), then we can view every bargaining 
game S in B as S= {(ul(l),u2(1) ) ;1E 2')where 2' is the mixture set of lotteries 
corresponding to some subset L cP with p E L. Suppose now, the two bargainers 
are faced with two bargaining games S and T in B, with S as above and 
T ={(ul(m), u2(m)); m E A}where A is the mixture set of lotteries corresponding 
to some M c P with p E M. Simultaneous bargaining over more issues means in 
this case: bargaining over the product set of lotteries 2' x A ={(I, m); 1 E 2, 
m E A). Of course, we assume that both bargainers have preferences also on 
2' x A, which are represented by utility functions wi(i = 1,2). 

In order to use sums of bargaining game? as representing simultaneous bargain- 
ing, we would like to have S +  T ={(wl(l, m), w2(1, m)); (1, m) E 2 'x  A} and this 
is true if we have, for i = 1,2, w'(1, m) = ui ( l )+  ui(m) for all (I, m) E 2 x  A. The 
obvious question then is: when, i.e. under which conditions on the bargainers' 
underlying preferences, does w' have this additivity property? This question is 
answered in detail in Peters [14]. There, it is shown that, besides some normaliz- 
ation requirement, two conditions or axioms are necessary and sufficient, namely 
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an axiom of weak monotonicity and an  axiom of additive independence. The latter 
axiom can also be found in Fishburn [2] or  Keeney and Raiffa [8, p. 2311, and 
requires that player i be indifferent between the lottery which gives him (I, m )  
and (If ,  m') both with probability i, and the lottery which gives him (I, m')and 
(Ir, m)  both with probability :, for all I, I 'E 9 and m, m ' ~A. For further details 
see Peters [14]. In the above argument, we have viewed every bargaining game 
S as arising from a subset of a large set of alternatives ( P ) ,  the bargainers' utility 
functions being the restrictions of their utility functions on  the lottery set of this 
large set. Although we think this is a natural approach, one might still argue that 
bargaining solutions are supposed to be defined on bargaining games arising 
from all possible kinds of situations. At this point, Axiom 0 comes into the 
picture: once the image of a bargaining situation in utility space (i.e., the 
bargaining game itself) is known, the underlying bargaining situation becomes 
irrelevant with respect to determination of the solution outcome. 

We will now shortly review the model of Perles and Maschler [13] and compare 
it with our present model. We will describe their results using our  own framework. 
Let B":= { S E B; x 2 0 for all x E P(S)}.  Perles and Maschler prove that there 
exists a unique solution P M  on  the proper subset B' of B (the so-called super- 
additive solution) satisfying the Axioms IR, PO, STI, SA, SYM, PCO. (Perles 
and Maschler d o  not need the individual rationality axiom, since they restrict 
every bargaining game to the positive orthant of the plane.) Dropping SYM gives 
a two-parameter family of nonsymmetric super-additive solutions. We omit for- 
mulas here. Perles and Maschler justify their super-additive solution (or, more 
specifically, the SA axiom) by the following observation which we copy almost 
exactly within our own model. 

OBSERVATION be a solution satisfying SA and HOM. For 2.1: Let 4 :  B-[w' 
any game consisting of a lottery on two games R and S in B, players who obey 
4 will both prefer to reach a n  agreement before the outcome of the lottery is 
available. 

PROOF: Let (p ,  1 - p )  be the distribution of the lottery, w.1.o.g. O<p < 1. If the 
players reach a n  agreement immediately, it must be 4 ( T ) ,  where T =  
p R + ( l - p ) S .  By HOM and SA, 

The right-hand side of (2.1) is the expectation of the players from a delayed 
agreement. Q.E.D. 

Thus, Observation 2.1 provides a different justification for the SA axiom. 
Another important difference between the present model and the model of Perles 
and Maschler is that their solution is restricted to the class B0 where no player 
has an incentive to commit himself to a feasible outcome which is not individually 
rational for the other player. Indeed, if one feels that one is actually dealing with 
noncooperative Nash bargaining games (Perles and Maschler [13, p. 167]), then 
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this restriction to B@is justified. Recall Example 1.2.The outcome of the sumgame, 
(4,4) ,  can only be achieved by the sum ( 6 ,  -2) + ( -2 ,6 ) .  This means that in one 
game player 1 can commit himself to (6 , - 2 ) ,  whereas in the other game player 
2 can commit himself to ( -2 ,6 ) .  In  a noncooperative setting, such commitments 
would be impossible: we are stuck in a prisoner's di!emma. Yet in a cooperative 
setting, where binding agreements are possible, these commitments lead to a net 
utility profit of 4 for both players. We will assume such a cooperative setting and 
our main purpose will be to find super-additive solutions defined on  B. 

Perles and  Maschler have already indicated that their solution cannot be 
extended to  B. This will also follow as a corollary of the results in the next section. 

3 .  A FAMILY OF SUPER-ADDITIVE SOLUTIONS 

In this section we single out a family of super-additive solutions with the aid 
of the (weak, odd-numbered) axioms WPO, HOM, and PSA. So we considerably 
weaken the Perles-Maschler list of axioms in order to avoid an  impossibility 
result. As already remarked before, in Section 1, for individually rational solutions 
the partial super-additivity axiom follows from super-additivity; it states that in 
the simultaneous bargaining game, each player should get a: least what he can 
get in each of the composing bargaining games separately. We start with a 
definition and  the main results, and defer discussion to the end of this section. 

DEFINITION 1, the bargaining 3.1: For every p E R2 with p 3 0 and p, +p,  = 

solution E P :B +R2 is defined by 

{ E P ( S ) )= W ( S )n {cup; a E R, cu > 0) for all S E  B. 

E P  is called the egalitarian or  proportional solution with weight vector p. 

For strictly positive weight vectors, these proportional solutions were intro- 
duced in Kalai [6]. Our main result is the following theorem. 

THEOREM3.2: Let 4 :B +R2 be a bargaining solution. Then 4 satisjes @'PO, 
HOM, PSA if and only if it is proportional. 

The proof of this theorem will make use of the following three lemmas. In 
every one of these lemmas, 4 is a bargaining solution satisfying the three axioms 
of the theorem. 

LEMMA3.3: Let S E  B and r~ R',,. Then ( i )  i f r  E i n t ( S ) ,  then 4 ( S )  3 4 ( S ( r ) ) ;  
( i i )  4 ( S ( R ) )3 0. 

PROOF: (i) Suppose r E int ( S ) .Then 4 ( S )3 4 ( S ( r ) ) ,in view of PSA and th.e 
fact that S = S ( r )+ T where T:= {x- r; x E S ) E B. (ii) Suppose 4 , ( S ( r ) )<0. 
Then, by HOM, 4 J : S ( r ) )= : & ( S ( r ) )> & ( S ( r ) ) which contradicts (i). Similarly, 
the assumption 4 , ( S ( r ) )<0 leads to a contradiction. Hence 4 ( S ( r ) )3 0. 

Q.E.D. 
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In particular, the following corollary is an immediate consequence of Lemma 

COROLLARY3.4: Every homogeneous and partially super-additive bargaining 
solution is individually rational. 

PROOF: Follows from the observation that we did not use WPO in the proof 
of Lemma 3.3. Q.E.D. 

Henceforth, we may assume that 4 is also individually rational. Let now L be 
the set i p  E R:+; + P 2  = 11.  

LEMMA3.5: Either ( i )  4 ( S ( p ) )  = p  for some p  E L, or ( i i )  4 , ( S ( p ) )  <p2 for all 
p E L, or ( i i i )  4 , ( S ( p ) )  < p, for all p E L. 

PROOF: Suppose (i) does not L':= { p ~  hold. Let L;  4 , ( S ( p ) ) < p l } ,  E':= 
{ pE L; & ( S (  p))  < p2},and suppose that L L# m, L' # 0.Let E L', P' E L'. We 
show 

Suppose (3.1) does not hold, i.e. pi < p :  and p:> p:. Let then q E R:+ be defined 
by q , := ; ( P :  + 4 , ( s ( p k ) ) ) ,  q2:= $(P:+ + , ( s (~* ) ) ) . q E int sip1),  byThen so 
Lemma 3.3(i) ,  4 , ( S ( p k ) )  3 d l ( S ( y ) ) .Similarly, gb2(S(p2))2 # 9 ( S ( q ) ) .Altogether 
we obtain q > 4 ( S ( q ) ) ,in contradiction with WPO. So (3.1) must hold. 

From (3.1) and our assumption that (i) does not hold, we conclude that there 
exists ii E L such that for all p E L with pl < pl we have p E L2, and for all p E L 
with p, > p,  we have p E L 1 .'The proof of the lemma is finished, by contradiction, 
if we show 

Suppose (3.2) does not hold, w.1.o.p. suppose p~ L'. Let a > 1 such that 
a + , ( S ( p ) )+ ( ~ 4 ~ ( S ( p ) )= 1 ,  and let p* E L be defined by p* := $ ( p+ a 4 ( S ( p ) ) ) .  
Take P E (0 , 1 )  such that for r:= pp* we have r,> 4 , ( S ( p ) ) ,  r, < d , ( S ( p ) ) .Since 
pT > p,, we have p* E L L ,hence & ( S ( p * ) )= p:. By HOM, & ( S ( r ) )= r,. However, 
r E int S ( p )  so that 4 ( S ( p ) )2 4 ( S ( r ) )by Lemma 3.3(i), in contradiction with 
4 , ( S ( r ) )= r2> & ( S ( p ) ) .  So (3.2) must hold. Q.E.D. 

Next, let p E L with & ( S ( p ) )= p  if (i) in the above lemma holds, let p = (0 , 1 )  
if (iii), and let p = ( 1 , O )  if (ii). 

LEMMA3.6. For all S E  A, 4 ( S )= E P ( S ) .  

PROOF: Let S EB. First suppose E P ( S )E P ( S ) .  If p>O, 4 ( S )2 

4 ( S ( ( l -  e ) E P ( S ) ) )  = ( 1- e ) E P ( S )for 1 > E > 0 , by Lemma 3.3(i) and HOM, so 
we are done by letting E go to 0. If p = (1, 0 ) , then take a sequence r l ,  r2, .  . . in 
int ( S ) ~ R : ,converging to E P ( S ) .Then again + ( S ) 2  4 ( S ( r f ) )  for each i = 

1,2, .  . . ,so cb1(S)2 @ ' ( S ( r 1 ) )= ri for each i = 1,2 , .  . . , hence 4 , ( S )3 E?(S) .We 
conclude that 4 ( S )= E P ( S ) .By a similar argument, 4 ( S )= E P ( S )if p = (0 , 1 ) .  
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Suppose now that E P ( S )  Ff P ( S ) .  W.1.o.g. (the other case is similar) there exists 
x E P ( S )  with x, = Ey(S) .  Given E > 0, let R EE B be defined by R' := 
S ( ( E ,  EP(S) -xz) ,  (0, E ) ) .  Let T' = S+R' (cf. Figure 2). Note that E P ( T ' )  E 

P ( T C ) .  By the first part of the proof, $ ( T L )  = E P ( T " ) .  If E goes to 0, E P ( T ' )  = 

4 (T') converges to E P ( S ) ,  and  by PSA, $( T F )2 $(S)  for all E ,  so E P ( S )  3 $(S) .  
If p = (1,O) the proof is finished. If p > 0, then also the proof is finished, noting 
that 4 ( S )  3 E P ( S )  by the argument in the third sentence of the proof. 

Q.E.D. 

An immediate consequence of Lemma 3.6 is that, if 4 ( S ( p ) )  = p  for some 
p~ L, then this p is unique. The proof of Theorem 3.2 is now straightforward. 

PROOFOF THEOREM3.2: If 4 satisfies the three axioms of the theorem, then 
4 is proportional in view of Lemma 3.6 and  it is straightforward to verify that 
a proportional solution satisfies these axioms. Q.E.D. 

We first remark that the proof of Theorem 3.2 could have been shorter had 
we added some continuity axiom (e.g. PCO) to our  list of axioms. Doing so, 
however, we would have hidden the fact that such an axiom is not necessary 
here, whereas it is in the main result of the next section (Theorem 4.9). Note 
further that, apart from partial superadditivity, we need only two relatively weak 
axioms (WPO and  HOM) to single out the family of proportional solutions in 
Theorem 3.2. It has turned out (Corollary 3.4) that individual rationality is implied 
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by PSA and  HOM. (If this had not been the case, we would have required it, 
since I R  is indisputable as an  axiom.) 

Finally, it can be easily seen that PSA is implied by SA and  I R  combined, and 
that SA is implied by the combination of PSA, WPO, and H O M  (since every 
proportional solution is super-additive). So the following corollary is immediate. 

COROLLARY3.7: Let 4 :  B+ R' be a bargaining solution. Then 4 satisjes the 
axioms WPO, HOM, IR, and SA if and only if it is proportional. 

Recall that a super-additive solution (in the sense of Perles and Maschler [13]) 
is a solution satisfying IR, PO, STI, PCO, SA, SYM. 

COROLLARY There does not exist a super-additive solution: B +[ w ~ .3.8: 

PROOF: In  view of Corollary 3.7, the only candidate for such a solution would 
be EP  with p = ($, $), but this solutidn satisfies neither PO nor STI. Q.E.D. 

Since von Neumann-Morgenstern utility functions are being assumed, one  may 
find it a drawback for a solution not to satisfy the scale transformation invariance 
axiom, since this implies that utilities (of different players) are being compared. 
However, arguments can be given against this objection. For more discussion, 
we refer to Shapley [16], Kalai [6], and Myerson [lo]; and to the final section 
of the present paper. 

There are only two scale transformation invariant proportional solutions: this 
observation leads to the following corollary immediately. 

COROLLARY The only two solutions satisfying WPO, STI, IR, and SA, are3.9: 
the proportional solutions E "J' and E ",". 

Since these two "tyrannical" solutions are very unlikely to describe a n  actual 
bargaining process satisfyingly, we might view Corollary 3.9 as an  impossibility 
result. In the next section, we will considerably weaken the super-additivity axiom 
to obtain an  alternative characterization of a well-known family of solutions, the 
non-symmetric Nash solutions. 

4. SOLUTIONS WITH T H E  RESTRICTED ADDITIVITY A X I O M  

In this section, we will describe a family of scale transformation invariant 
bargaining solutions satisfying the following axiom, where we ca!l an  SE B smooth 
at x E S if there exists a unique line of support of S at x, and where 4 is a 
bargaining solution. 

AXIOM10 (Restricted Additivity, RA): For all S and T in B, if S and T are 
smooth at 4 ( S )  and 4 ( T )  respectively, and 4 ( S )+ + ( T )  E P ( S  + T) ,  then 4 ( S +  
T)  = 4 ( S ) + 4 ( T ) .  
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Axiom 10 is a slightly different version of the Conditional Additivity axiom in 
Aumann [I].  We defer most of the discussion and due references to the end of 
this section, and start with definitions and results. 

DEFINITION4.1 : For every q E (0, I) ,  the bargaining solution F q :  B +IW* is 
defined by: for every SEB, F q ( S )  (uniquely) maximizes the product X Y X : - ~  on 
S~R: , .  The "dictator" solutions Dl  and D~ are defined by: for every SEB, 
D1(S)  is the point in {x E P(S) ;  x 3 0) with maximal ith coordinate, for i = 1,2. 

The solution F'" is Nash's solution (Nash [12]) and the solutions F q ( q  E ( 0 , l ) )  
were derived in Harsanyi and Selten [3]. All solutions in Definition 4.1 satisfy 
the following axiom (cf. Nash [12]). 

AXIOM11 (Independence of Irrelevant Alternatives, IIA): For every S and T 
such that Sc T and 4 (  T )  E S, we have 4 ( S )  = 4( T). 

Axiom 11 has been amply discussed elsewhere (see Roth [15] for discussions 
and references). In de Koster, Peters, Tijs, and Wakker [9] the following resu!t 
was proved. 

THEOREM4.2: A bargaining solution 4 satisjies IR, PO, STI, and IIA if and 
only if it is an element of {Fq, Dl ,  D ~ ;  q E (0, 1)). 

Our main result in this section will be that, in Theorem 4.2, IIA can be replaced 
by restricted additivity and Pareto continuity. First, we have to do some pre- 
liminary work. The following lemma gives a geometric characterization of the 
solutions Fq(O <q < 1). The proof can be given by using a separating hyperplane 
theorem and is left to the reader. 

LEMMA4.3: For every SE B, Fq (S )  = z ( E P (S ) )  iff there exists a line of support 
of S at  z with a normal vector (qz,, (1 - q)z,).  

The following tool will also be of use. 

LEMMA^.^: Le t s ,  TEB,  a n d z = x + y ~ P ( S + T )  w h e r e x ~ S , y ~ T  Then we 
have (i) x E P(S) ,  y E P (T ) ,  (ii) if 1 is a line of support of S +  T at  z, then there 
exist lines of support I' and 1" of Sand T a t  x and y respectively, such that I, I' and 
I" are parallel, (iii) i fS  and Ta re  smooth at  x and y respectively, then 1, 1' and 1" 
in (ii) are unique (and S+ T is smooth at  z). 

PROOF: (i) is straightforward by definition, and (iii) by (ii). To prove (ii), let 
1 be such a line with a normal vector A, then A 2 0, and the inner product 
A . z = m a x { A . ( s + t ) ; s ~ S ,  t ~ T ) = m a x { A . s ;  s ~ S ) + m a x { A - t ;  ~ E T ) ,  hence 
A. x = max {A. s;  s E S)  and A - y =max {A t; t E T), from which (ii) follows 
immediately. Q.E.D. 
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PROPOSITION4.5: Let + E {Fq,  D L ,  D2; q E (0, 1 ) ) .  Then + satisjies the axioms 
IR, PO, STI, PCO, and RA. 

PROOF: We only prove that every + E {Fq ,  D1 ,  D2;  q E ( 0 , l ) ) satisfies the 
restricted additivity axiom. First, let + = Fq for some q E (0, 1 ) .  Let S, T  E B such 
that S and T are smooth at x := F Y S )  and y := F q ( T )respectively, and x +  y E 

P(S+ T ) .  From Lemma 4.4(iii) it follows that there exists a vector A 2 0  such 
that A.x=max{A.s;  SES}and A.y=max{A-t ;  t~ T ) ,  A.(x+y)=max{A-v;  
v E S +  TI. From Lemma 4.3, it follows that x = yv for some y > 0, hence x +  y = 

( 1+ y)y. Applying Lemma 4.3 again, it follows that F q ( S+ T )= x +  y. 
Secondly, let + = D',  and S and T in B such that S and T are smooth at 

D L ( S )and D L (T ) ,  respectively, and D L ( S )+ D ' ( T )E P(S+ T ) .  If D:(S)= 

D:(T)-0, then D ~ ( S )  = 0, and so D' (S + T )= + D1( T )  since+ D:( T )  D L ( S )  
D L ( S )+ D 1 ( T )E P ( S +  T ) .  Otherwise, in view of Lemma 4.4(iii), the unique lines 
of support of S, T  and S + T at D L ( S ) ,D L (  T ) ,  and D L ( S )+ DL(  T )  are the straight 
lines with equations x , = D:(s ) ,  xl = D i ( T ) , and x, = D : ( S ) +  D ; ( T ) ,  respec-
tively. So D ' ( S +  T )  = D 1 ( S ) +D ' ( T ) since D L ( S ) +D ' ( T )E P ( S +  T ) .  

The third case, + = D2, is similar to the second one. Q.E.D. 

Before proving the converse of the previous proposition, we need two more 
lemmas. 

LEMMA4.6: Let 4 be a bargaining solution satisfying IR, PO, and PCO. Let 
S E B such that S is smooth everywhere ( i .e .  at  every point of P ( S ) )and such that 
the line of support of S at 4 ( S ) has a normal vector with one coordinate equal to 
0. Let z E P ( S ) ,z # + ( S ) .Then there exists an everywhere smooth St E B with S ' c  S  
and z E S' such that 4 ( S 1 )# z and such that the line of support of S' at 4 ( S 1 )has 
a strictly positive normal vector. 

PROOF: First note that + ( S )= D 1 ( S )or + ( S )= D2(S) .Assume 4 ( S )= D'(s)  
(the other case is similar). If 4 , ( S )= 0, then an S' as in the lemma can easily be 
found by cutting off a suitable neighborhood of + ( S ) in S in a smooth way. 
Suppose now, that # , ( S )> 0. First, choose .? E P ( S )  with +,(S)> .f,> z ,  and 
such that +,(T)> zz where T consists of all points of S except those strictly 
above the straight line through .f and b ( S ) .Such a point .f exists in view of 
PCO. We are done if 4 ( T )# + ( S ) for then we can take, for S f , the game T 
smoothed off at + ( S ) and 2, in view of PCO. Now suppose + ( T )= + ( S ) .For 
every E with 0 s F c d I ( S ) ,let S EE B be the game consisting of all points of S 
except those strictly above the straight line through .? and the point ( 4 , ( S )- F, 

+,(S)) . Note that S O  = T, so 4 ( S o )= + ( T )= + ( S )= D*(s)= D2(S0) .Now let 
F := sup { E  E LO, d , ( S ) ] ;  + ( S F )  = D 2 ( s E ) } .By PCO, + ( S F )= D 2 ( S F ) .If F = & ( S ) ,  
then we are back in the case of the first paragraph of the proof (where we assumed 
4 , ( S )= 0) .  Otherwise, 0 F r+,(S) . Then take 7 with F < 7< + , ( S )  small 
enough such that (D: ( s" )> )+*(S")> z2.And take for S' the game S" smoothed 
off at D ' ( s T )and 2. Q.E.D. 
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Let d E B be defined by d := S ( ( 1 ,O ) ,  ( 0 , 1 ) )  

LEMMA4.7: Let 4 be a  bargaining solution satisfying IR, PO, STI, PCO, and 
RA.  Let p  E { F q ,D 1 ,  D 2 ;  q E (0 , 1 ) )  be such that 4 ( d )  = p ( d ) .  Let T E  B be such 
that P( T )  3 cont. { v , w} where v, w E I W ~ satisff ul+ v2= w, + w,= a > 0 ,  vl > 0, 
w2>0,  t . , i O ,  wl<O. Then 4 ( T I = p ( T ) .  

PROOF: (See Figure 3.) By STI, 4 ( S d )  = p ( 6 A )  for every S E (0 ,a).Fix 6 E 
( 0 ,  a ) .  Fix s < min {t.,- 6, w2 -d, -v,, -w,}. Let D E B be given by the following 
constraints: 

{ xE W ( D ) ;x , s 0 )= { ( x ,+ E, x2 - 6 - E ) ;  x E W ( T ) ,  x l  G - E ) ,  

{ X E  W ( D ) ; x ~ 0 ) = { x ~ O ; x 1 + x 2 = a - 6 1 ,  

Let E E B be given by E := S ( ( 6 +  E, - s ) ,  ( - s ,  6 +  E ) ) .  Then E T D = T. Note that 
E and D are smooth at  every x E { eE P ( E ) ;  e  3 0 )  and y E { d E P ( D ) ;  d  3 01, 
and that all supporting lines at  these points are parallel, with a normal vector 
A = ( 1 , l ) .In particular, x + y E P ( T )for every x E { eE P ( e ) ;  e  3 0} ,  y  E { d E P ( D ) ;  
d  2 0 ) .  So by PO, IR, and  RA, 4 ( T ) =  4 ( D ) + 4 ( E ) ,  hence 4 , ( E ) G  4 , ( T ) S  
4 , ( E ) + a - 6  and 4 2 ( E ) ~ 4 2 ( T ) ~ 4 7 ( E ) + a - 6 .  ELetting go to 0 gives, by 
P C 0  and the fact that 4 ( 6 A )= p ( 6 d ) ,  

Letting 6 go to a ,  gives 4 ( T )= p ( a d ) ,  hence 4 ( T )= p ( T )  since by definition 
of p, p ( f f J ) = p ( T ) .  Q.E. D. 

PROPOSITION Let 4 be a  bargaining solution satisfying IR, PO, STI, PCO, 4.8: 
and RA.  Let p := 4 1 ( d ) .  I f p  # O , 1 ,  then 4 = F P ;  i f p  = 1, then 4 = Dl and f p  = 0 ,  
then 4 = D2.  

PROOF:(Figure 4.) Let p E {F" D l ,  D 2 ;  0  < q < 1 )  be the solution such that 
p l ( J ) = 4 1 ( A )=p. Suppose there exists an  S E B such that 

By P C 0  of 4 and p, we may suppose that S is smooth everywhere, and by 
Lemma 4.6, that the line of support of S at  4 ( S ) has a strictly positive normal 
vector A. By STI, we may further suppose that A = ( 1 , l )and  4 , ( S ) +  4 , ( S )  = 1 .  
Then we have, by Lemma 4.3, 

Let T : =  S ( ( 3 ,  -2) ,  ( - 2 , 3 ) ) :  then, by Lemma 4.7 and p ( T ) = ( p , 1 - p ) ,  we have 

(4.3) 4 ( T )= ( p , 1 - p ) .  


Further, ST1 and Lemma 4.7 applied to S +  T, give 
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On the other hand, since S is smooth at 4 ( S ) ,T is smooth at ( p , 1 - p ) ,  and 
4 ( S )+ ( p , 1 - p )  E P ( S +  T ) ,  we have by RA and (4.3) 

Combining (4.4) and (4.5) gives 4 ( S )= ( p , 1 - p ) ,  in contradiction with (4.2). 
Hence (4.1) must be false, so 4 ( S )= p ( S )  for all S E B. Q.E.D. 

Propositions 4.5 and 4.8 lead immediately to Theorem 4.9. 

THEOREM D';q E ( 0 , 1 ) )  is the family of all bargaining solutions 4.9: { F q ,D1, 
B -+ R2 satisJ:ving IR, PO, STI, PCO, and RA. 

The following example shows that we cannot dispense with the P C 0  Axiom 
in Theorem 4.9. 

E X A M P L E4.10: We construct a solution 4:B+ [ w ~by first defining it for all 
games S which satisfy, for i = l , 2 :  

By applying the appropriate scale transformations, the definition is then extended 
to B, guaranteeing that 4 satisfies STI. So let S E B such that S satisfies (4.6).  
We define 4 ( S )as follows. If S is smooth at F' ' ( S ) ,then 4 ( S ) : =F'"(s) .  If S 
is not smooth at F'"(s),  then also 4 ( S ):= F'" ( s )  except for the case that there 
exists exactly one other point x E P ( S )n such that S is not smooth at x ;  in 
that case, 4 ( S ):=x. 
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It is straightforward to verify that this 4, besides STI, satisfies IR, PO, and 
RA, but not PCO. 

Theorem 4.9 is the main result of this section. At first sight, the weakening of 
super-additivity to restricted addivity may seem somewhat arbitrary, but if we 
look closer, there is a strong link between the results in this section and those in 
the previous one. Of course, super-additivity implies restricted additivity. Every 
proportional solution satisfies IR, PCO, and RA. The solutions E"." and E"~" 
satisfy also WPO and STI. For a solution 4 and S, T  E B, say that RA applies to 
4 ,  Sand  T if S and T are smooth at 4 j S ) and # ( T ) respectively, # ( S )+4 ( T )E 

P ( S +  T )  and 4 ( S ) + 4 ( T )= 4 ( S +  T ) .  Then, as an immediate consequence of 
Lemmas 4.3 and 4.4, for all q E (0 , I) ,  if RA applies to Fq, S, and T, then 
F q ( S )= E P ( S ) ,  F q ( T )  = E P ( T ) ,and F Y ( S +  T )  = E P ( S +  T )  for some p >0. 
(With a few modifications, also a reversal of this statement holds.) So the restricted 
additivity axiom entails a kind of restricted proportionality property (not for the 
dictator solutions D' and D*, however). 
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The results in this section are closely related to Aumann's [I], where an 
axiomatic foundation to the so-called nontransferable utility value is given 
(Shapley [16]). Aumann uses a conditional additivity axiom, which is stronger 
than restricted additivity, in that it does not require smoothness. However, 
Aumann restricts attention to smooth games, where here we have essentially the 
Pareto continuity axiom to take care of nonsmoothness. The present paper also 
covers the nonsymmetric (and nonstrongly individually rational) case, and fur- 
ther, we note that (at least for strongly individually rational solutions) Theorem 
4.9 may be extended to characterize solutions for n-person games (that is, pure 
bargaining games, where only one-player coalitions and the all-player coalition 
are allowed) without difficulty. 

The smoothness condition in the definition of RA may be interpreted as "local 
transferable utility" (Aumann [ I ,  p. 141). It cannot be dispensed with: see the 
example in Aumann [ I ]  or the following one. 

EXAMPLE4.10: Let 4 = F' ' be the (symmetric) Nash solution, take A as 
before, and S := S((2, I )) .  Then 4(A +S )  = (2 ,2)  # ($,+)+ (2, 1 )  = +(A) + +(S)  E 

P(A +S). Here A is smooth at +(A), but S is not smooth at 4 ( S ) .  (See Figure 5 . )  

We end this section by discussing the relation of the results in Sections 3 and 
4 with Myerson's in [ l l ] .  Myerson considers the effect of timing in social choice, 
so essentially justifies his approach by Observation 2.1, but unlike Perles and 
Maschler in [13] does not restrict the domain of (in Myerson's case: social choice) 
problems. His main result (described within our model) reads: if a bargaining 
solution 4 satisfies SA, WPO, and IIA, then it is either proportional or utilitarian. 
(By the way, Myerson overlooks here the solutions E' ' .~'and E",".) Here 4 is 
called utilitarian if there exists some weight vector p (i.e. p 3 0, p, + p ,  = 1) such 
that, for every SEB, +(S)  is a maximizer of p . x  where x E S. Apart from the 
difference in interpretation-simultaneous bargaining over more issues versus 
timing effect-the main difference between our results and those in [ l l ]  is the 
fact that we do  not need the IIA axiom as a condition. Parenthetically, note that 
a utilitarian solution is not completely determined by the definition above. Yet 
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the following observation which links the nonsymmetric Nash solutions to the 
utilitarian solutions, holds: for all q E (0. I ) ,  if RA applies to Fq,  S, and T, then, 
as before F q ( S )  = E P ( S ) ,  F q ( T )  = E P ( T ) ,  and F q ( S +  T )  = E P ( S +  T )  for some 
p >0, and these equalities still hold if we substitute for E P  a utilitarian solution 
with weight vector A / / A1 1 ' where A = (qp? (1- q)p?pyq).  This observation 
again follows simply from Lemmas 4.3 and 4.4. It re-establishes the fact that a 
Nash solution offers a compromise between egalitarian (proportional) and 
utilitarian principles. 

5 .  FINAL REMARKS 

We set out, in the present paper, with the problem of simultaneous bargaining 
over more issues, and have tried to tackle the problem via an axiomatic treatment 
involving sums of bargaining games and (super-) additivity axioms for bargaining 
solutions. By these means, we have characterized different families of solutions 
for the two-person problem, in Sections 3 and 4. The super-additive solution of 
Perles and Maschler [13] vanishes from the scene since, for our purposes, its 
domain is too restrictive. In Section 3, we have characterized Kalai's (extended) 
family of proportional solutions, in Section 4 Harsanyi and Selten's (extended) 
family of nonsymmetric Nash solutions, by means of additivity axioms. A con- 
clusion of Section 3 is that, together with a few standard axioms, the super- 
additivity axiom only allows "tyranical" solutions if comparisons between the 
players' utilities are forbidden; in Section 4, we have considered the weaker 
restricted additivity axiom. One general conclusion from the present results may 
be that (super)-additivity more or less implies proportionality, i.e. implies to a 
greater or smaller extent a comparison between the players' utilities. 

In the previous section, we indicated one possible extension to n-person 
bargaining games. It is also of interest to look for extensions to the general case 
of n-person games without side payments. Contributions in this area are, besides 
the already mentioned paper by Aumann [I], a paper by Hart [4] and a paper 
by Kalai and Samet 171, the former one showing results closely related to the 
ones obtained by Aumann, the latter one extending, axiomatically, the family of 
proportional solutions. 
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