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1. INTRODUCTION

A game with changing payoffs or actions is a dynamic game in which the
payoffs or action sets may change from one decision moment to the next
as a consequence of the actions played previously. Stochastic games, as
well as differential games are, generally speaking, examples of such
games. On the other hand, a repeated game is not a game with changing
payoffs in this sense; although the payoffs may change over time, this is a
consequence of, for instance, time discounting, and not of the actions
played.

Our motivation for studying games with changing payoffs or action sets
comes from the idea that by (not) performing certain actions the payoffs
resulting from those actions may increase (decreasc), or the set of avail-
able actions may change. Although this phenomenon may be called learn-
ing or unlearning (see Joosten et al. 1991), these expressions should be
understood in a different way than is usual in the game-theoretic literature,
By (un)learning we do not mean (un)learning how to play the gume, nor
gathering (or losing) information about the game. Rather, it should be
interpreted as (un)learning how to perform a physical action — where
physical can be taken in a broad sense. Let us clarify this by some exam-
ples.

In a dynamic duopoly situation a firm may choose to offer more than
the Cournot-Nash equilibrium amount. The relative loss suffered may be
compensated by enhancing its production technology — by the ‘practical’
production experience —~ or enlarging its market share. This is an example
of a situation where (not) performing an action increases (decrcases) the
future payoffs resulting from that action.

An example from sports is the decathlon, where athletes may specialise
in specific skills, not only depending on their own capabilities but in par-
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ticular also on the skills and specialisations of their adversaries. If a cer-
tain skill — say, high jumping — is stimulated or neglected, then future
jumps will be higher or lower,

One might also think of countries competing in the world market, con-
templating the adoption of new technologies. Learning-by-doing effects are
to be anticipated on any adopted technology, whereas unlearning-by-not-
doing effects must be anticipated on the ‘traditional’ activities. The ex-
perience of certain former colonies in sub-Saharan Africa (¢f. Acharya
1981) may serve as an illustration in this context. Under colonialism irtra-
African economic ties were strongly discouraged in favour of economic
ties with the coloniser. Economic structures and relationships within the
colonies were transformed in the interests of the colonial power or in the
interests of European settlers. African economic interests were generally
disregarded, and African initiative was often heavily discouraged. For
example in Kenya, Africans were prohibited from growing coffee until
1948-1949, and veterinary services for African-owned dairy cattle were
withheld until 1955 (Heyer 1976). 1t is therefore not surprising that some
of these former colonies found themselves at independence with little
entreprencurial and managerial know-how, an agricultural sector with little
differentiation focused on production for the market of the coloniser, and
an economy open to the coloniser, lacking important inter-industrial links
and ties with neighbouring countries. The combined effects of not being
able to ‘learn’ certain skills and processes fast enough in the post-colonial
period to be competitive on the world market, and having ‘unlearned’
altractive alternatives which had been present in pre-colonial times, seem
to have contributed to the problems which these former colonies face in
industry and agriculture at present,

Such examples indicate that a variety of situations can be modelled as
dynamic games with changing payoffs or changing actions. In particular,
the choice a player may have between specialising on certain actions or
trying to keep the spectrum of available and worthwhile actions as broad
as possible, is an important feature of such games. Games like this fzave
been analysed in the game-theoretic literature, mainly in the form of
stochastic or differential games.

Before considering both types of games in somewhat more detail, a2 few
words on the existing learning-by-doing models are in order. Learning-by-
doing is the title of a pioneering paper by Arrow (1962). The existence of
the possibility to learn by doing is not surprising. The novelty of learning-
by-doing lies in its incorporation as a concept into economic theory. In a
game-theoretic setting learning-by-doing is a different phenomenon, since
learning-by-doing decisions also depend on what the other players do (see,
in particular, the next section).
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The purpose of this mote is to present some examples of dynamic
games with changing actions or payoffs. In section 2 we consider infinitely
repeated matrix games where actions vanish if they have not been used for
some time. Such games are a special type of stochastic game. In section 3
some differential games are analysed where each momentary action deter-
mines not only an immediate payoff but also influences a state variable
which is part of the payoff function. Section 4 concludes the paper with a
few remarks,

2. STOCHASTIC GAMES: VANISHING ACTIONS

A stochastic game (introduced by Shapley 1953) is characterised by a
collection of states. In each state the players choose actions; these actions
determine immediate payoffs as well as a probability distribution over the
collection of states, The state at the next decision moment is determined
on the basis of this probability distribution. The overall reward can be a
discounted sum of immediate payoffs, or a limit of average payoffs; both
criteria have been and are still being studied. A stochastic game clearly is
an example of what we have called a dynamic game with changing ac-
tions.

Our first attempt to study (un)learning in the sense as described above,
is Joosten et al. (1991). Two players repeatedly play a matrix game, where
the entries of the matrix represent payoffs by the column player to the row
player. Each player has a memory of a certain length, say r; and r, for
players 1 and 2, respectively. If player 1, the row player, does not choose
a certain row for r; consecutive times, then he loses the possibility to do
s0; that row is deleted from the matrix. Similarly for player 2, the column
player, when he does not play a certain column for r, consecutive times.
The payoff criterion is the limiting average payoff. Observe that this game
is a stochastic game with a very special payoff/transition structure. The
existence of limiting average e-optimal strategies, for any € > 0, follows
from an established result in stochastic game theory (Mertens and Neyman
1981). The interesting aspect is that for some cases optimal strategies can
be found and are relatively easy to describe. As an example, consider a 2
X 2 matrix game:

If this game has a saddlepoint, as for instance in the specification
then it is obvious that the one-shot optimal actions, namely the top row for
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player 1 and the left column for player 2, are, when repeatedly played,
also optimal in the memory-restricted infinitely repeated game. In this case
there is no proper ‘learning-by-doing’ or ‘unlearning-by-not-doing’. The
players concentrate on what already are their optimal strategies; by doing
so,‘eventually they lose their suboptimal strategies, which only reinforces
their incentives to play optimally ~ so to speak. This is similar to the one
decisionmaker case, and a game-theoretic analysis sheds no further light
on the situation,

The situation becomes different and more interesting if the original zero
sum game does not have a saddlepoint, say a 2 d > b > c.

As an example, assume that both players have memory of length equal
to 2. In this case, for player 1 it is optimal to start by playing each row
with probability V2. If payoff a or d is realised, then he should play his
second or first row, respectively, at the next stage, and keep switching
rows as long as player 2 still has both columns available; as soon as play-
er 2 loses a column, player 1 should play the payoff maximising row. If,
at the first stage, payoff ¢ or b is realised, then player 1 should play the
first row forever. Player 2 has a similar optimal strategy. The expected
payoll — the value of the game - is, thus, ¥(b + d). In this game, both
players at first keep both actions alive; actually, in optimal play their first
moves are chance moves, and only from the second move on do the play-
crs play deterministicaily.

If both players have memories of length equal to three, then the optimal
strategies are somewhat more complicated but can still be described. The
value of the game is equal to v := Ya(a + b + ¢ + d) if this number is
between b and d. It is equal to b if v < b, and it is equal to d if v > d. We
refer to Joosten er al. (1991) for more details.

For an arbitrary but finite length of memory it is not easy to calculate
or describe the optimal strategies in the above games. To some extent, this
is due to the discrete nature of the game; the game is played in discrete
time, and actions vanish suddenly. In the next section we consider a few
examples of differential games with changing payoffs. In simple cases it is
possible to calculate a certain type of Nash equilibrium by optimal control
methods.
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3. DIFFERENTIAL GAMES: CHANGING PAYOFFS

In a differential game, the players choose actions in continuous time,
thereby receiving a flow of payoffs. Such actions are called controls, and
they are chosen subject to certain constraints, in particular with respect to
a state variable, Such a constraint is called the state equation or transition
equation. The state plays a role similar to the state in a stochastic game; in
the vanishing actions games of the preceding section, states are described
by keeping track, for each possible action, of the number of times that
action may not be played before it is lost. Differential games are often
analysed by methods provided by optimal control theory, or by dynamic
programming (see for instance Starr and Ho 1969a,b).

Differential games are used to model situations like common resource
extraction. Suppose two countries use a common resource over a certain
period of time. At each moment, their decisions to use an amount of the
resource influence their profits (in a Cournot-like fashion), as well as the
remaining stock of the resource (see, for instance, McMillan 1986). An
additional assumption could be that prices might increase as the amount of
the resource left for the future decreases. This would imply that the pay-
offs of the players change as a result of their previous actions.

3.1 An Investment Problem

In this subsection we analyse a differential game corresponding to a sty-
lised economic problem of choosing between two ways to invest money.
Specifically, we consider a two-player game in continuous time where at
each point of time ¢ € [0,e) each player has one (perfectly divisible) unit
of money to invest. Each player can divide this one unit between on the
one hand a project for which the payoff depends on the invesiments of
both players, and on the other hand a project for which the payoff depends
only on own investment. An investment in the first project will, moreover,
result in an additional payoff stream, depending on both own investment
and the investment of the opponent. This is meant to capture the idea of
learning or unlearning as explained in the introduction. One may think of
increasing or decreasing one’s skill/technology! or market share. These
additional payoffs constitute state variables,

Let a() e [0,1] and B(#) € [0,1] denote the investment decisions at
time ¢ of players 1 and 2, respectively, in the first project. Let g(af), P())
and h(a(t), P(t)) denote the resulting immediate payoffs at time ¢ for
players 1 and 2, respectively. The function g can be assumed to have
obvious properties, like being increasing in o and decreasing in B. Similar-
ly for A, In this basic formulation, however, we do not need such assump-
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tions. We just assume that both functions are continuously differentiable,
but that assumption may also be relaxed. As functions of ¢, however, we
require that o and B have only isolated points of discontinuity, in order to
ensure the existence of the integrals below.

The immediate payoffs from investment in the second project at time ¢
are equal to 1 ~ o) and 1 — P(), if o(z) and B(r) are the investments in
the first project, respectively. (Un)learning effects for player 1 are assumed
to be captured by a state variable x depending on o, as well as on § by the
state equation x(¢) = a(f) — B(¢) (where the dot denotes time derivative).
The additional resulting payoff stream for player 1 is given by x(f)e™,
where r may be any real number, Here, x(#) expresses the amount of ‘lear-
ning’ relative to the opponent, whereas ¢ describes its long-run effect.
Unlearning effects are stressed when r is positive; note that in that case in
the long run the term x(#)e™" practically vanishes, so that only short-term
effects are interesting. A formulation of the problem where this is avoided,
that is, where also long-term effects are interesting, is given in subsection
34.

Similarly, (un)learning effects for player 2 are given by a state variable
y governed by the state equation y(#) = B(f) — off). The corresponding ad-
ditional payoff stream is given by y()e™, for some real number 5. Note
that x(¢) + y(¢) is constant, so one can think of x(¢) as the market share of
player 1 at time ¢. According to this interpretation, the constants .x, and y,
in the two maximisation problems to follow can be seen as the initial
market shares, and it would be natural to choose x; + y, equal to 1. The
case of actual learning would correspond to both initial values being set
equal to 0.

We can now write down player 1's maximisation problem for any
given investment plan B(f) (t € [0,e)) of player 2 and any discount factor
p:

Maximise f(;"’ e [g(a(d),B() + (1 - al)) + x(t)e ")ds
subject to (@) = o) - B (10.1)
x(0) = xp08) € [0,1].
Similarly, for player 2, given investments o{#) of player 1 at each moment
t € [0,00);
Maximise ffoe TP LR, B + (1 - B@) + y(He ar
subject to () = B = By - oft) (10.2)
¥(0) = yg B & [0,1].
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Thus, the players are assumed to maximise discounted streams of payoffs
(with common discount factor p), given the investment plans of their
opponents. The initial conditions for the state variables x and y are inclu-
ded to make the maximisation problems well-defined, but play no role in
our analysis.

Observe that, in a seemingly more general but equivalent formulation,
the terms 1 — o and 1 - J3 in the objective functions could be taken into
the functions g and A, respectively.

A simultaneous solution of problems (10.1) and (10.2) is a Nash e-
quilibrium for this game. Depending on the nature of the strategies (i-
nvestment plans) employed, we distinguish between open-loop strategies
and closed-loop (feedback) strategies. In the latter case, strategies may
depend on the state variables, and the players have the possibility to adapt
their action choices while the game is being played. In the former case, a
strategy depends only on time and not on the state variables. We will
concentrate on open-loop strategies, which are much easier to calculate.

Solving problems (10.1) and (10.2) is a straightforward application of
optimal control theory, specifically, of Pontryagin’s maximum principle.
The Hamiltonian corresponding to problem (10,1) is the function

H(o,x,t,A) = e P [gloP) + (1-0) + xe "] + Ma - B,

where the Lagrange multiplier (or costate variable) A is also a function of
t. Necessary conditions for a function ¢ solving problem (10.1) are:

(a) At each 7, o, maximises® H. Thus, for an interior solution 0 < o < 1,
we have dH/do, = 0, hence

e P'og(a,B)/da - 1] + A = 0.
For a solution o, = 0 we have
e P[dg(oB)/da - 1] + A <0,

and for a solution o, = 1 we have

e P'[dg(o,B)/0c - 1] + A > 0,

(b) & =dH /oA, ie. & =0 - P,
(©) A =-0H/0x ie k=~ P
(d) Transversality condition: lim,_, A(#) = 0.
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Conditions (c) and (d) together imply
e -(p+r)t
pr
which may be substituted in the conditions formulated in (a).
The Hamiltonian and necessary conditions for problem (10.2) look sim-
ilar and therefore will not be written down explicitly.
Observe that, in general, interior solutions cannot always be expected.

For an interior solution for o (and fixed §), the appropriate condition
under (a) becomes

’

ag(a’B) _ 1_ e-rt
do. p+r

’

and, assuming that the partial derivative of g with respect to o is non-
negative, this condition cannot be met for low values of tif p + r < 1. In
that case oo = 1 for low values of ¢ On the other hand, if p+r 21, a
necessary condition to have an interior solution o for all values of ¢ (and
B) is that r > O and the derivative dg(o,B)/00. takes all values between
1-1/(p + r) and 1.

In the following subsections we consider a few specifications of g and
# which enable us to derive exact solutions.

3.2 Bang-bang Solutions

The specification considered here allows ‘bang-bang’ solutions, that is
solutions taking only the values O and 1, among the cpen-loop Nash e-

quilibria. Let
glo,P) = ol - B), reup) = (1 - o).
The conditions in (a) — (d) of the previous section lead to

o) =0 if B(t)>£i,
p+r

o = 11 B < S
pr

and analogous conditions for B(t), depending on a(z). Further, o (or B)
may take on arbitrary values between 0 and 1 if we have an equality sign
in any of these conditions. This leads to the following description of open-
loop Nash equilibria. Here, ¢ is the value of ¢ for which e™/(p + r) = 1
and " is the value of ¢ for which e™/(p + 5) = 1. Observe that /' < " if r
> s > 0, provided that ' and ¢" exist.
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Proposition 1 With the specifications g(a,p) = a(l ~ P) and h(a,B) =
B(1 — o) and for r > s > 0, the open-loop Nash equilibria are combina-
tions of strategies o and P containing only isolated discontinuities and
satisfying:

(i) ForeveryO<i<tma{d=B®=1

(ii) For t=1t" P@) =1 and o(¢) is arbitrary.

(iif) For#'<t<t”: B =1, () =0.

(iv) Fort 2 ¢’ () =1and o) = 0 or B(x) = 0 and a(r) = 1 or B =
e(p + r) and oft) = e™/(p + 5).

Thus, in this specification there are solutions taking on only the values 0
and 1. Solutions of this kind are usually called bang-bang solutions. Both
players might start off (depending on the values of r and s relative to the
common discount factor p) with full investment in the first (competitive)
project. In the longer run, however, in equilibrium either one of the
players invests fully in this project and the other one invests nothing or the
investments of both players are between 0 and 1 but in the long run con-
verge to 0. It should be noted that the solutions in Proposition 1 are for-
mulated at each point ¢ in time separately, so that the resulting strategies
may be highly discontinuous. The first player to jump (necessarily) to zero
investment is the one with the higher of the two rates r and s (as can be
easily seen); at that point, it is no longer advantageous to compensate for
the comparative ‘unlearning’ effect of investment in the first project (given
that the other player still invests fully) by also investing in that project.
Thus, the player with the higher of the two rates r and s is the first one ‘to
give up’, A plausible equilibrium would be one where afier this event this
player stays at a zero investment level, while his opponent stays at in-
vestment level 1.

A proof of Proposition 1 can be based on the necessary conditions
stated in the previous section and will not be elaborated.

3.3 A Cobb-Douglas Case

In this subsection we assume specifications which also allow interior
solutions of the players’ maximisation problems, that is, open-loop Nash
equilibria with investments which may be strictly between 0 and 1. To be
precise, we take

g(o.B) = ol - B), h(oB) =/BU - ay.

The analysis of the general Cobb—Douglas case is more tedious but will
not exhibit essentially different features.
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The next proposition describes the open-loop Nash equilibria for the
situation analogous to the one in Proposition 1. In order to make the des~
cription easier to digest, we first introduce some notation.

Assume r 2 s >0 and p + r £ 1. Then let

4 = - ln(pr+ r L = - ln(ps+ 5)
1 1
i+ ) il + )
fo= - 2 _ 2
35 T =" p

It can be verified that 0 < ¢, < tyStyand that £ S £y < 1.
For t = 0 define

v([) - e-l'l w(t) _ e ~$t
p+r p+s
_ 2
W) = LA gy o L RO
1 - 16v2(0 w0 1 - 16v2Ow®)

We can now state our proposition.

Proposition 2 Assume

rzs>0and p+rs1,andg(a,p) = yol - B), A@P) = yo(l - o)
The open-loop Nash equilibria are combmauom of strategies o and B con-
taining only isolated discontinuities and satisfying:

(i) ForO<r<ia@=p0=1.

(il) For ¢ = t: B(#) = 1, ar) arbitrary.

(iii) Fort; <t <ty B@®) =1, 0ff) = 0.

(iv) For 1, £t < t,, there are two cases. (a) If #; < 1,, then B =
o) = 0. (b) If £, < t3 < 14, then for 1) <t < t5 there are three pos—
Slbllltleb By =1, a(t) = 0, or B(r) = 0, ot) = 1 or B = B,
o) = o (t), while for t; <t < ¢, () = 1, oty =

(v) Forrzie: B = B 0, o) = o ().

Proposition 2 describes the most general case: in all other cases with r = s,
the only difference may be that the whole picture moves to the left (or,
equivalently, the origin to the right). Of course, the analysis of the case
r < s is similar. The proof of Proposition 2 is again based on the con-
ditions formulated in the previous section, and will not be given in detail.
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Figure 10.1 Proposition 2
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Figure 10.1 depicts some strategy combinations described by
Proposition 2. Again, it should be noted that the strategies are defined for
each ¢ separately, and thus may contain any number of isolated discon-
tinuities. In all cases, after ¢, the additional payoff effects associated with
the state variables x and y decrease rapidly, causing player 1 to start inves-
ting again, while player 2 gradually decreases investments in the com-
petitive project. In the limit, both o and B approach 1/5.

The following proposition applies to the situation where one of the two
players has a nonpositive depreciation rate of the (un)learning payoffs.

Proposition 3 Assume g(op) = yo(1-B), A(e,B) = yB(1 -0} , and
r<0,5>0,p+r<1,andlrl <p. Let, as above, t, = =In(p + s)/s. Then,
for an open-loop Nash equilibrium we have:

(i) For all > max{0,,}: at) = 1, () = 0.
(i) For all 0 < t < t,: () = B(r) = 1.

This proposition confirms the obvious intuition that the player with the
nonpositive depreciation rate survives, as far as investment in the first
project is concerned. If p + r > 1, then in the longer run this will still hold
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although, initially, the equilibrium strategies may look different (details are
omitted).

3.4 An Alternative Formulation

A drawback in the formulation of the investment problem in subsection
3.1 is that the effects of the state variables x and y vanish in the long run
due to the presence of the coefficients ¢’ and ¢~; there is not only rel-
ative but also absolute ‘unlearning’ or ‘depreciation’ as time goes on.* To
avoid this, we could alternatively require

x() = [ ko), B, (103)

where, as before, x is the state variable for player 1, where f describes how
the state variable depends on the investment plans of both players, and
where the function & reflects the depreciation or growth of the state vari-
able. Differentiating, we obtain

50 = [, akgﬂ) fa(@), @)t + ke fald, ). (10.4)

In the special situation that ok(z,7)/dt = I(2)k(z,t) for some function /
depending only on ¢, equation (10.4) implies

i) = xOIE) + kENfaw, BO). (10.5)
Instead of (10.1) now consider the maximisation problem
Maximise (e *'[g(ct), B@) + (1-0() + )]t
subject to () = x(OIE) + k(6.0 faD),B) (10.6)
x(0) = xp0(0) € [0,1].

The coefficient ¢ has now been removed from the objective function;
instead the state equation has been replaced by (10.5). A similar formu-
lation can be given for player 2. The corresponding Hamiltonian is now
given by
Ho,x,t,A) = e Pga, BE) + (1-o) + x(H)]
+ MO + k) flod), B,

with H
;\’ = =

ox
as the costate equation, Again, similar expressions hold for player 2.

—e P - IO
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A simple example is obtained by assuming, in line with the preceding
subsections,

flaqw), peo) = oft) - B(a),

and
k(t,t) = e,

Then I(t) = —r (we assume r > 0), and it is easily established, also using
the transversality condition lim,_, A(7) = O, that

_pt

A = £

r+p

Substituting this expression for A(f) in the Hamiltonian and maximising at
a given ¢ and for a given strategy B(¢) of player 2 over the possible values
of of?), it follows easily that the maximising value of o will be indepen-
dent of . In other words (and making similar assumptions about player 2),
in an open-loop Nash equilibrium the strategies of the players can be
chosen constant over time, for this particular choice of the function & (and
the corresponding function for player 2). For particular choices of the
functions g and A (the immediate payoff functions of players 1 and 2
respectively, from investing in the first project), such an open-loop Nash
equilibrium can be calculated, for instance for Cobb-Douglas payoff func-
tions as in the preceding sections. Details are left to the reader.

4. SOME CONCLUDING REMARKS

In the foregoing, some attempts were made to study (un)learning effects in
continuous-time two-person games. Here, (un)learning was to be under-
stood in a ‘physical’ sense of acquiring certain skills in actions, not in the
sense of (un)learning how fo play the game. The main model was simple
enough to enable the derivation of explicit solutions. The problem is that
only slightly more sophistication in the model is bound to lead to mathe-
matical intractibility as far as finding explicit analytical solutions is con-
cerned.
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NOTES

1. See also Cheng (1984) on this topic.

2. In what follows it is convenient to suppress ¢ from the notation whenever this does not lead
to confusion.

3. This was also pointed out to us by Fernando Vega-Redondo of Alicante University.
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