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In social choice problems where players may strategically misrepresent their 
preferences, we call a profile of preferences self-optimal if reporting them is a 

Nash equilibrium given that they are the true preferences. Self-optimality can be 
interpreted as a very weak honesty requirement. We apply the self-optimality 

concept to a utility distortion game in the context of bargaining and obtain a 
characterization of efficient Nash equilibria. Journ~ll of Economic Literotrtre Clas- 
sification Numbers: 020,210,610. o 19% Academic PESS. IK. 

1. INTRODUCTION ANDGENERAL FORMULATION 

We consider the following n-person social choice problem. N = (1, 2, 
. . ., n} denotes the set of individuals, A is a nonempty set of alternatives, 
and, for each individual i, Q”’ denotes a nonempty collection of utility 
functions ui: A -+ R! representing the possible preferences of i over A. A 
solution is a function cp: % + 2A, where % := QL’ x . . . x %“, such that 
u’(a) = u’(b) for all i E N, u = (u’, . . . , d, . , . , u”) E Q, a, b E (p(u). Note 
that a solution is a social choice correspondence; the converse, however, 
does not necessarily hold in view of the utility-equivalence constraint 
implicit in the definition of a solution. 

Suppose a solution cp were single-valued, Ic&u)J = I for every 14 E Q.. 
Then cp would be a game form, and, for each fi E Q, would give rise to a 
noncooperative game with N as the set of players, Q”’ as the strategy set of 
player i, and a(~&)) E [w” as the payoff vector resulting from a strategy n- 
tuple u E (IL. Since, in general, we consider solutions cp that are not single- 
valued, we give the following definition of a Nash equilibrium. 
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DEFINITION. We call an (n + I)-tuple (u, a) E % x A a N&r equilih- 
riumfor (o und u E % if the following two conditions are satisfied: 

a E (p(u) (1) 

v i E N v 6’ E 9Lu’ v ii E p(u-‘, a’) [u’(u) 2 u’(a)]. (2) 

Here, we use the notation (u-‘, 2) for the vector obtained from II by 
replacing ~2 by 2. In a Nash equilibrium, no player can possibly gain from 
unilaterally reporting a different utility function. This Nash equilibrium 
concept is equivalent to the equilibrium notion introduced by Thomson 
(1984, p. 451). 

An appropriate context for this model is the following setting. There is a 
central planner who is going to use some solution cp to determine a final set 
of outcomes. However, he does not know the true utility functions of the 
individuals or players, and can only rely on the information given to him 
by these players. The players report (not necessarily true) utility func- 
tions to the central planner. We assume that the players report an tz-tuple 
of utility functions leading to a Nash equilibrium for the given solution 
and the true utility functions. For this assumption to be reasonable, one 
might assume that the players known not only their own but also the other 
players’ utility functions, and-especially in the case of multiple Nash 
equilibria-that there is some preplay communication between the play- 
ers. Further the players might suggest an equilibrium selection N from 
q(u) as well. 

We suppose that the central planner in this model wishes to use a 
solution that has appealing properties (such as the Nash bargaining solu- 
tion discussed in the next section). Using such a solution, he will in 
general not elicit the players’ true preferences in a Nash equilibrium, and, 
indeed, some of the solution’s attractive properties, notably efficiency, 
may be lost ex post. The question we raise in this paper is: can one find 
restrictions on the allowed reports of the players, such that the set of 
possible Nash equilibria is narrowed down to the set of efficient Nash 
equilibria‘? 

The restriction we impose in this paper is self-optimality: 

DEFINITION. An n-tuple 14 E % is called seljbptimalfbr (a solution) cp 
if (II, u) E Q x A is a Nash equilibrium for cp and II, for every a E cp(rr). 

(By the utility equivalence implied in the definition of a solution cp, it is of 
course sufficient for self-optimality that (M, a) be a Nash equilibrium for 
some u E p(u).) Self-optimality of a vector of reports II means that these 
reports constitute a Nash equilibrium given that they are the true reports. 
In requiring the players’ reports to be self-optimal, the central planner 
might reason as follows. 
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Suppose 1 receive reports that are not self-optimal. If these reports are the true 
utility functions of the players, then 1 know that at least one player could have 

deviated and thereby gained. So there must be one or more players lying, since I 
assume the players to be utility maximizers. 

In this situation, the central planner could punish the collective of the 
players for being provably dishonest, e.g., by choosing a known bad 
alternative. Instead of modifying the game in this way, we will equiva- 
lently assume that the players are obliged always to come up with a self- 
optimal Nash equilibrium vector of reports. Thus, self-optimality can be 
viewed as a very mild honesty requirement. 

There is a close relationship between self-optimality and strategy proof- 
neSS (in the social choice literature-for instance, Moulin, 1983; Peleg, 
1984) or incentive compatibility (in mechanism theory-for instance, 
Hurwicz, 1972; Myerson, 1979). In the present setting, these concepts 
(which are statements about a solution cp) would mean self-optimality of 
every u E % for (a. Thus, self-optimality is much weaker, and our ap- 
proach is more in line with Thomson (1984), and, for the specific context 
we study in the next section, with Sobel (1981). The next section studies 
bargaining over the division of a commodity bundle; we show, mainly, 
that self-optimality leads to a characterization of efficient Nash equilibria. 
The final Section 3 concludes with some discussion. 

2. DISTORTION OF UTILITIES IN BARGAINING 

Let there be two players who are to divide a bundle of m commodities. 
There is exactly one unit of each commodity. So the set of alternatives A 
can be described as {x E KY: 0 I x 5 1) where 0 (1) denotes the vector 
with only zeros (ones). The interpretation of x E A is that player 1 re- 
ceives x and player 2 receives 1 - x. Let Q1 denote the collection of 
functions ul: A + [0, l] that satisfy: 

(i) U’ is concave and strictly increasing, i.e., x 2 f and x # f j 
u’(x) > u’(2); 

(ii) u’(0) = 0, u’(1) = 1; 
(iii) U’ is twice continuously differentiable on the interior of A. 

Condition (iii), in particular the word “twice,” is needed in order to be 
able to apply Lemma 2 in Sobel (1981), below. 

We assume that player I’s set of utility functions or strategy set equals 
Q’, and that player 2’s strategy set is Q2 = {u*: A + R: there exists U’ E 
Qi with u2(x) = ~‘(1 - x) for all x E A}. Note that u2(x) denotes player 2’s 
utility from receiving 1 - X. Further, we denote % : = %’ X %2. A solution 
assigns to each u E Q a subset of A such that all alternatives in this subset 
are utility equivalent. 
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x E A is called efjcientfor u E % if there is no f E A with u’(a) 2 U’(X), 
u*(a) 2 uz(x), and with at least one of these inequalities strict. A solution cp 
is called efficient if x is efficient for u for every u E % and x E (P(M). A 
solution p is called symmetrically monotonic if U(X) 1 (4, $) for every u E 
(3 and x E p(u). Symmetric monotonicity can be seen as a very weak 
symmetry or monotonicity property. 

Suppose the players report a pair of utility functions II E %. Given the 
solution p, the attainable set for player 1 is defined as 

A’(u*, cp) := {x E A: 3 u’ E Q’, y E p(u’. rr’)[x I y]}, 

and the attainable set A2(u’, cp) for player 2 is defined analogously. In what 
follows, we will need the requirement that such attainable sets have 
smooth boundaries, at least in the interior of A. Formally, a solution cp is 
called smooth-regular if for any attainable set A’(u?, cp) there exists a 
function F: A --+ R, continuously differentiable on the interior of A and 
strictly increasing, such that 

A’($, cp) = {x E A: F(x) 5 O}, 

and for any attainable set A2(u’, cp) there exists a function G: A + R, 
continuously differentiable on the interior of A and strictly decreasing, 
such that 

A2(u’, p) = {x E A: G(x) 5 O}. 

Note that, in general, F and G will depend on U? and N’, respectively. The 
monotonicity conditions on F and G guarantee that the (preferred) bound- 
aries of these attainable sets are given by F(x) = 0 and G(x) = 0, respec- 
tively. 

A further requirement to be imposed later on is the following one. A 
solution cp is called conuex-regular if all attainable sets are convex. 

An example is the solution Y derived from the well-known Nash bar- 
gaining solution (Nash, 1950), as follows: to each pair (u’, u*) E %, v 
assigns the subset of all x E A such that the product u’(x)u’(x) is maximal 
on A. For simplicity, we call v the Nash solution. This solution is efficient 
and symmetrically monotonic. Smooth-regularity and convex-regularity 
of the Nash solution are consequences of Lemma 2 in Sobel (1981, p. 
612). 

It is easy to see that v is not “strategy-proof,” that is, that not every 
u E % is self-optimal for v: for instance, for the case of one commodity, 
Crawford and Varian (1979) have already shown that, for each player, 
reporting the (unique) linear utility function is dominant. Also the follow- 
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ing example, taken from Sobel(1981, p. 617), can be used to this end. We 
include it, however, to show that a Nash equilibrium may lead to an 
alternative that is inefficient for the true utility functions. 

EXAMPLE. Let m = 2, let u’(x) = x:‘“x:‘“, u’(x) = (5x’ + 3x,)/8, u’(x) = 
u2(x) = d(l - x’)(l - x2). Then (u’, u2, (2, 4)) is a Nash equilibrium for v 
and (u’, u2), as can be verified with the aid of Lemma 2 in Sobel (1981). 
Consider the allocation (;Z, 4). Then u’(f, 3) > u’(d, 4) whereas u’(;i, # = 
u2Q, 4). So the above Nash equilibrium allocation is inefficient for the true 
preferences (u’ , u2). 

Thus, the Nash solution 1, admits inefficient Nash equilibrium alterna- 
tives. Besides, there may be inefficient Nash equilibria not Pareto domi- 
nated by some efficient Nash equilibrium (Sobel, 1981, p. 617, same ex- 
ample): therefore, it may be plausible that the players actually come up 
with an inefficient equilibrium. How can a central planner avoid this, not 
knowing the true preferences and still using the Nash solution v? The 
following observation gives an answer to this question. 

In the following, “V” denotes “the gradient of.” 
THEOREM 2.1. Let cp be an ejjkient and smooth-regular solution. Let 

(u, 2) be a Nash equilibrium for cp and u E (3. Suppose i is an interior 
point of A, and suppose u is self-optimal for cp. Then .? is ef$c.ient for u. 

Proof. Let the functions F and G correspond to the attainable sets 
A’(u2, cp) and A2(u’, cp), repectively, as in the definition of smooth-regular- 
ity. Since (u, a) is a Nash equilibrium for cp and u, 2 maximizes u’ on A’(u2, 
q) and u2 on A’(u’, cp). Since u’ and Fare increasing, u1 and G decreasing, 
and i is by assumption an interior point of A, F(1) = G(i) = 0 and there 
are numbers A and A’ with Vu’(a) = hVF(.?), VU~(~) = A’VG(a). For 
analogous reasons and the self-optimality of 11, there exist numbers p and 
11’ with Vu’(a) = pVF(.?), V&(a) = pVG($. By the efficiency of cp and 
hence of 2 for 11, there is a number K with Vu’(a) = ~Vd(i). Combining all 
these equalities, we find that Vu’(a) is a multiple of Vu’(i). Since u’ and u2 
are concave, this implies efficiency of i for u. n 

Thus, when using an efficient and smooth-regular solution, the central 
planner can achieve efficiency by requiring the reports to be self-optimal, 
that is, by requiring the reports to be not provably dishonest. There is also 
a converse to this theorem. We start with a definition. 

DEFINITION. An equal income competitiue equilibrium (EICE) for 
u E Q is a pair (p. 2) where 

(i) p E R”, p P 0, i E A 
(ii) .f solves 

max u’(x) subject to p . .Y 5 $p . 1 and .Y E A 
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and 

max v*(x) subject to p 3 (1 - X) i 4p . 1 and x E A. 

So an equal income competitive equilibrium is a competitive equilibrium 
starting from equal division of the goods. Note that a price vector p in an 
EICE must be positive, since the utility functions are strictly monotonic. 
Hence, such a price vector p gives rise to an element p” of %’ by F’(X) : = 
p * X(Xc’pi)-’ and an element p* by p*(x) := p * (1 - x)(~~~~;)-’ for all 
x E A. 

LEMMA 2.1. Let (p, .?) be an ElCE for v. Let cp be a symmetrically 
monotonic solution. Then ((9, p?), a) E 011 x A is a Nash equilibrium for 
cp and v. 

Proof. By symmetric monotonicity of cp, for all II E %, if x E cp(u’, $), 
then p2(x) 2 4, which implies p’(x) 5 f. Similarly, x E cp(p’, u*> implies 
F,“(X) 5 i. Further, since (p, 2) is an EICE for v and the utility functions 
are strictly monotonic, we have p .i = Bp * 1 = p . (1 - a), which implies 
F’(a) = p’(.Q = f. Therefore, 2 is efficient for (p’, p?). and hence P E cp(jT’, 
~7”) by symmetric monotonicity. We conclude that ((fl, p’), a) is a Nash 
equilibrium for cp and v. n 

A consequence of Lemma 2.1 is the existence of a Nash equilibrium 
since, by standard arguments, an EICE always exists. Let l/2 denote the 
vector in [w” with all coordinates equal to 1. 

LEMMA 2.2. Let cp be a symmetrically monotonic and efjkient solu- 
tion. Let (2, u) be a Nash equilibrium for (a and v. Then v’(a) 2 u'(1/2) and 
v*(a) 2 v2(1/2). 

Proof. We prove only the first inequality. Suppose to the contrary 
that v’(Z) < v’(1/2). Given u*, player 1 can report some utility function 12’ 
which is linear on the diagonal 

D := {(t, t, . . . , t) E BP:0 5 t 5 l}, 

and such that D is exactly the set of alternatives that are efficient for ti : = 
(li’, u2). By efficiency and symmetric monotonicity of p, (p(c) = {(f, . . . , 
i)} for some i 2 l/2. So d(i, . . . , 6 2 v’(1/2) > v’(a), contradicting the 
assumption that (u, 2) is a Nash equilibrium. n 

LEMMA 2.3. Let cp be a convex-regular, ef$cient, and symmetrically 
monotonic solution. Let (u, 2) be a Nash equilibrium for cp and v with P 
efhcient for v. Then (Vu'(i), i) is an EICE for v. 

Proof. Since f is efficient for v, and since the attainable sets A'(M?, p) 
and A’(u’, cp) are convex, the hyperplane Vu'(R) . x = Vu'(i) . 2 separates 
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these sets at z?. Let p := Vu’(J); then it follows that (u, 2) is also a Nash 
equilibrium for (p’, p2). Hence, by Lemma 2.2, $(a) 2 p1(1/2) andp2($r 
a2(1/2). Combined, these inequalities imply Vu’(a) * 4 = Vu’(a) * l/2 = l/ 
2Vv’(li) * 1. Hence, at f the function u1 is maximized subject to the 
constraint Vu’(J) * x I 1/2Vv’(i) * 1, and u2 is maximized subject to Vul($ 
* (1 - x) I 1/2Vu’(i) . 1. In other words, (Vui(a), a) is an EICE for u. n 

Lemma 2.3 is the only result in which convexity of the attainable sets is 
used. For the Nash solution, a direct proof of this result is given by Sobel 
(1981, Theorem 5). 

LEMMA 2.4. Let cp be a symmetrically monotonic solution. Let (p, a) 
be an EICE for u E %. Then (j5’, p2) is self-optimal for cp. 

Proof. From the definition of EICE and the strict monotonicity of the 
utility functions it follows that p . f = p . (1 - a) = Bp . 1. This implies ?Z E 
cp($, p2) by symmetric monotonicity of cp. Suppose there were a U’ E %’ 
and an x E (a(~‘, p2) with p’(x) > p’(f) = &. Then p2(x) < f, which 
contradicts the symmetric monotonicity of cp. One similarly shows that 
player 2 cannot gain from unilaterally deviating. So ((PI, p’), a) is a Nash 
equilibrium for cp and (pi, p2); hence (p”, p’) is self-optimal for cp. w 

We can now prove: 

THEOREM 2.2. Let cp be a convex-regular, efficient, and symmetrically 
monotonic solution. Let B be a Nash equilibrium allocation for cp und u E 
Q that is ef$cient for u. Let p := Vu’(a). Then ((PI, ,S), a) is a Nush 
equilibrium for cp and u with a self-optimal pair of reports. 

Proof. First apply Lemma 2.3, then Lemma 2.1, and finally Lemma 
2.4. w 

Summarizing, we note that for an efficient and smooth-regular solution, 
self-optimality leads to an allocation on the contract curve in the Edge- 
worth box associated with the division problem. Actually, the reported 
indifference curves must coincide locally with the true indifference curves 
(which supports our intuition of self-optimality as a very weak honesty 
requirement). This observation follows from the proof of Theorem 2. I, 
which is based mainly on the smoothness of the boundaries of the attain- 
able sets. Further, Theorem 2.2 states that for a convex-regular, efficient, 
and symmetrically monotonic solution, any efficient Nash equilibrium 
allocation can be obtained by a self-optimal pair of reports. Requiring self- 
optimality does not narrow down the set of efficient Nash equilibria. 

By applying Lemmas 2 and 3 in Sobel(1981), finally, it can be seen that 
our results hold for the Nash solution as well as for the Kalai-Smoro- 
dinsky solution. 
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3. DISCUSSION 

We have introduced the concept of self-optimality for a general class of 
social choice problems. Application to a specific bargaining context has 
led to a characterization of efficient Nash equilibria for solutions satisfy- 
ing a number of reasonable conditions. Efficiency and symmetric mono- 
tonicity are easily verifiable conditions. Convex- and smooth-regularity 
are properties stated only indirectly, in terms of attainable sets, and there- 
fore are less readily verifiable. This last point may well be considered a 
drawback. 

Another way to obtain efficiency of the final outcome is to allow only 
linear preferences. As Sobel (1981, Theorem 2) shows, if the reported 
preferences in a Nash equilibrium are linear, then (under certain condi- 
tions) they must support an EKE allocation, which is always efficient. 
Furthermore, the results above show that (under certain conditions again) 
all efficient Nash equilibrium allocations can be reached by linear prefer- 
ences. Comparing the two approaches-self-optimality and linearity- 
however, we think that the former has a number of advantages. 

First, the self-optimality criterion is a more general principle than line- 
arity. Indeed, it can be formulated even if linearity of preferences has no 
meaning: linearity comes out in the specific application discussed in this 
paper. 

Second, in this specific application, self-optimal preferences do not 
have to be linear, as is shown by the following example. Although the 
difference with linear preferences in this example is not very essential, it 
remains true that self-optimality admits a larger class of preferences. 

EXAMPLE. Let m = I (one commodity), let u’(x) := $x for all 0 5 x 5 
t,U’(X):=gx+~forall~rxr l,u’(x):= I -xforallO5x5 l.Then(u, 
4) is a Nash equilibrium for u and (say) the Nash solution V. Note that U’ is 
not linear-although it is linear on a “ray” connecting 0 and the solution 
alternative. 

Third, and of interest by itself, self-optimality gives an alternative charac- 
terization of efficient Nash equilibria in the utility distortion game. 

REFERENCES 

CRAWFORD, V. P., AND VARIAN, H. R. (1979). ‘*Distortion of Preferences and the Nash 

Theory of Bargaining,” &on. Left. 3, 203-206. 

HURWICZ, L. (1972). “On Informationally Decentralized Systems,” in lkision crnd Orgu- 
nization (R. Radner and B. MC&ire, Eds.), pp. 297-336. Amsterdam: North-Holland. 

MOULIN, H. (1983). The Stralqy of So&d Choice. Amsterdam: North-Holland. 



260 HANS PETERS 

MYERSON, R. (1979). “Incentive Compatibility and the Bargaining Problem,” Econowwtricu 
47,61-73. 

NASH, J. F. (1950). “The Bargaining Problem,” Econornerricu 18, 155-162. 
PELEG, B. (1984). Game Theoretic Analysis of Voting in Comniifee.s. New York: Cam- 

bridge Univ. Press. 
SOBEL, J. (1981). “Distortion of Utilities and the Bargaining Problem,” Economerricu 49, 

597-620. 
THOMSON, W. (1984). “The Manipulability of Resource Allocation Mechanisms,” Reu. 

Econ. Stud. 51,447-460. 


