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NOTATION

General remarks

In this thesis small Latin letters are used to denote exogeneous parameters
and functions. Latin capitals are wused to denote endogeneous variables.
Greek letters are used to demote auxilliary wariables (for instance, shadow
prices). Below is a list of symbols, which is wused throughout the thesis.
If a symbol is not explained in the text, it should be in this list.

The figures in this thesis are only rough sketches, mainly to indicate
whether a particular function is increasing, decreasing or constant.

A dot above a letter (as in K) denotes the total time derivative. In
general total derivatives are denoted by d, partial derivatives by 3.

If a reference is made to a formula, table or figure in a different
chapter, the number of the chapter is added. For instance, Figure 5.3
refers to Figure 3 of Chapter 5; equation (26) refers to equation (26) of
the current chapter; equation (4.30) refers to equation (30) of Chapter 4.
The formulas in the appendices are denoted as follows: (A3.14) refers to
formula (14) in Appendix 3.

List of symbols

Endogeneous variables

D(t) dividends (dollars/time)

I(t) investments (dollars/time)

K(t) number of capital goods

L(t) number of units of labour

X(1) equity (dollars)

Yt) debt (dollars)

Q1) output (numbers/time)

S() revenue (dollars/time)

R(K) marginal return on investment

R (K,X) marginal return on equity

N’G(t) birth date of oldest capital goods still in use at time t
V{t) scrapping date of capital installed at time t
M(t) lifetime of capital installed at time t (=V(t)-t)

Vi~



Tt lifetime of capital scrapped at time t (=t-MN(t)}
B(t) derivative of V

Exogeneous parameters and functions

a rate of depreciation

] maximal debt-equity ratio

¢ price of capital goods

da(t) fiscal depreciation scheme

€ price elasticity of demand

f corporation profit tax rate

g growth rate of the demand function

h growth rate of the labour productivity

i discount rate (required return of the shareholders)
k capital to output ratio

I labour to output ratio

n m-g is the rate of decrease of the demand function
n, initial time in models with technological progress
P price per unmit of output

r rate of interest

t, beginning of the recession

t, end of the recession

v fiscal lifetime of a capital good

w wage rate

y demand

z end of the planning period
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1
INTRODUCTION

This thesis is a theoretical study of the optimal dynamic policies of a, to
some extent, slowly adjusting firm that faces an exogeneously given
technological progress and am exogeneously given business cycle. It belongs
to the area of mathematical economics. It is intended to appeal to
mathematical economists in the first place, economists in the second place
and mathematicians in the third place. It entails am attempt to stretch the
limits of the application of deterministic dynamic optimisation to
ecopomics, in particular to firm behaviour,

A well-known Dutch economist (and trained mathematician) recently stated in
a local university nw:\w.'s‘paperl that mathematical economists give economics a
bad reputation, since they formulate their problems from a mathematical
point of wview and they are only interested in technical, mathematical
problems. At the same time, however, “profound as economists may be, when
it comes to extending or modifying the existing theory to make it
applicable to a certain economic problem, an understanding of optimal
control theory (which is the mathematical theory used in this thesis, ovh)
based solely om heuristic arguments will often turn out to be inadequate”
(Sydseter [1978]). So if one is convinced of the possible usefulness of
mathematics in economics, ome has to sail between the Scylla of being
accused of dealing with technical, economically uninteresting problems, and
the Charybdis of being accused of a careless, “inadequate” wuse of
mathematics. This thesis is meant to deal with economically interesting
problems in a mathematically adequate way. It is up to the reader to decide
whether it does so.

The economic problem addressed can be summarised as the behaviour of a
relatively slowly adjusting firm im a changing environment. This thesis
belongs to a tradition of books and articles (Lesourne [1973], Ludwig
[1978], Leban & Lesourne [1980, 1983], Leban [1983], Van Loon [1983, 1985],
Van Schijndel [1988], Kort [1988, 1989]) that use a dynamic optimisation
technique called the ‘Maximum Principle’ to study the optimal behaviour of

"an der Ploeg in "Univers”, vol. 25, no. 25, 11-3-1988)
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a firm in a deterministic context. Most of these books and articles are
primarily concerned with the optimal policy towards some statiomary state,
of which the existence iz guaranteed by the statioparity of the
environment. Maintaining the deterministic context, this thesis extends the
analysis by studying the optimal investment, financing and dividend
policies of the firm while the environment is changing in two specific
wWays:

1y the firm is confronted with a business cycle, represemted by an
exogeneously given fluctuating demand function. If the firm could
quickly and costlessly change its size, a changing demand for its
product would not cause real problems. If however the firm can only
adjust the volume of the capital and/or labour stock relatively slowly
(represented in  particular by the irreversibility of investments),
this ‘slowness’ may cause that the firm cannot perfectly adjust itself
to the changing circumstances.

2y if newer machines are better than old ones, due to an exogeneously
given technological progress, the firm not only has to decide on the
volume of the capital goods stock, but also on the optimal mix in
respect of the age of the individual capital goods. Moreover, if the
firm can replace old machines by mew ones, part of its ‘slowness’ with
regard to changing its size has been removed. However, if the
technological progress is embodied in new capital goods, the firm is
slow with regard to changing the technology of its entire capital
goods stock.

If these subjects are to be studied im a dynamic optimisation framework,

three mathematical problems arise:

a) the models involve more than one state wvariable. Pitchford [1977]
argues that problems with more than one state variable are often very
difficult to solve. The popular ‘phase-space anmalysis is not
applicable in this case. The only general, consistent method to deal
with such problems is the path connecting procedure developed by Van
Loon [1983].

b) the models involve so-called pure state conmstraints, that is,
constraints which do not contain control variables. These constraints
may cause the ‘costate variables’, which can wusually be interpreted as
the shadow prices of the state variables, to jump (to be
discontinuous). This not only complicates the mathematics, but also
the economic imterpretation of these costate variables as shadow

2



prices.

c) (and most important in this thesis) the models are non-autonomous.
This means that time not only appears as an argument of the control
and state variables, but also explicitly as an independent wvariable.
This is caused by the changing environment. In the first place this
complicates the application of the path conmnecting procedure mentioned
under a). In the second place, with regard to technological progress,
it leads to a type of model to which the standard Maximum Principle

cannot be applied.

Treating the economic problems mentioned, dealing adequately with the
mathematical problems above, leads to an exploration of the interplay of
economics and mathematics.

Chapter 2 gives a survey of relevant ‘predecessors’ of the models in
Chapters 5, 7 and 8. Chapter 3 goes deeper into the nature of the class of
dynamic optimisation models to which the models in this thesis belong amd
it derives some methodological advices (guidelines) for the rest of the
thesis. Chapter 4 treats the model which forms the basis for the medels in
the following chapters. Chapter 5 discusses a model in which the firm is
confronted with a business cycle. Chapter 6 belongs to “that twilight zone
of  semantical  interpretations of  previously developed  mathematical
structures”  (Mirowski [1986]). It extends the interpretation of costate
variables as shadow prices. Chapter 7 discusses a model with technological
progress. Chapter 8 extends the analysis in Chapter 7 and tries to combine
Chapter 5 and Chapter 7. Chapter 9 summarises the thesis and gives the main
conclusions.

The order of the appendices is dictated by the order of the chapters in the
main text. Appendices 1, 2 and 5 treat the mathematical details of
respectively Chapters 4, 5, and 7 and 8. Appendices 3 and 4 are of a
different character. They contain independent results of a  general
character. Appendix 3 derives a shadow price interpretation of the
multipliers of the pure state constraints, which is used in Chapter 6.
Appendix 4 derives an extension of the Maximum Principle, which is applied
to the model in Chapters 7 and 8.

3.






2
A SELECTIVE LITERATURE SURVEY

2.1 Introduction

This chapter discusses some relevant predecessors of the models in the
following chapters. All the models in this chapter are dynamic optimisation
models, which are in most cases solved by means of the Maximum Principlcl.
Lesourne & Leban [1982] state: "In the last ten years, control theory has
proved to be a very efficient tool to study the dynamics of the firm”
(p.1). Indeed, many dynamic models of the firm wusing optimal control theory
have appeared in literature. Surveys can be found in Lesourne & Leban
[1982], Van Loon [1983], and Sethi [1978]. For a wider range of economic
applications of optimal control theory, see, for instance, Feichtinger
[1982,1985,1988]. The survey in this chapter discusses some models which
have the same basic structure as the models in the following chapters and
models which in some way incorporate technological progress or a business
cycle. Only those aspects which seem relevant for this thesis are
considered.

As already stated in Chapter 1, the models in this thesis are theoretical
models, aimed at the derivation of anmalytical principles, such as “marginal
revenue equals marginal cost”, and “the level of X only depends on
parameters y ,..., yn”.

The fact that these models are theoretical does not mean that they cannot
be wsed in empirical work. Testing this kind of models would require, for
instance, ' the modelling of expectations and the incorporation of possible
lags between investment decisions and investment realisations (see Arrow
[1968]; for a nice example see Malcomson [1983]). In general, the models in
this thesis and most of the models discussed in this chapter only give a
very broad outline of "the” firm.

Simce theoretical results are asked for, the analytical solution of the
optimisation problem imvoived must be found. As stated in Chapter 1, the

"In this thesis "Optimal Control Theory” and "The Maximum Principle” are
treated as synonyms. The Maximum Principle is explained in Chapter 4.
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mathematical complexity of the models in this thesis comes from the
non-autonomity, the number of constraints and the number of state
variables. This complexity is ome of the reasons to work with deterministic
instead of stochastic models” (see also Chapter 3).

In the following sections a number of models is discussed. All the models
are deterministic and time is represemted by a continuwous wvariable. The
economic problem in these models can be summarised as follows: the firm
described is engaged in the production of a homogeneous output using
capital and labour. It earns money by selling this output, the costs are
mainly expenditures on capital goods and labour costs. The goal of the firm
is maximisation of the properly discounted stream of profits or dividends
(Leland [1980] shows that the assumption of profit maximisation is useful
in many cases). The emphasis lies on the amount and timing of investments,
and on the optimal combination of capital and labour. The financial
structure of the firm is considered only in a few cases. And last but not
least, in most cases the firm is, in one way or another, faced with an
exogeneously given technological progress, or with a business cycle.

Section 2.2 discusses some models which use the same framework as the
models in this thesis. Section 2.3 examines some models in which the firm
faces a business cycle. Section 2.4 reviews some models in which the firm
is confronted with technological progress. In Chapter 3 more will be said
about the nature and the use of this kind of models.

2.2 The predecessors of the medels in this thesis

The model serving as a framework for the models in this thesis is discussed
extensively in Chapter 4. In mathematical form, the model is:

Max njz e'itD(t) dt + e"izx(z) 4]
I1,D

Kty = 1) - aK(t) @)
X = (1-) {S[QW] - wL(t) - aK(t) - rY(®)} -D(V) 1K)
Q) = K(tyk, Lty = IQ(1) (4)

Maccini [1984] states on this problem: “...nterteraporal models appear to
be mathematically intractable when wuncertainty may enter in a complex
fashion and when closed form solutions for choice variables are sought...”

(p.46).



Kty = X + Y@ %)
Y@ = 0 (6)
Y1) < bX(D) 7N
0=1I) =1 ®)
0 <D <D__ )
K(0) and X(0) are given (10)

Equation (1) gives the objective of the firm: the firm wants to maximise
the discounted wvalue of future dividends plus the discounted value of
equity at the end of the planning horizon. The instruments which the firm
uses to achieve this (the control variables) are dividends and investments.
If the firm invests now, the capital goods stock grows, which may lead to
higher revenues and dividends in the future. So the decision problem of the
firm is clearly dynamic. Equations (2) and (3) give the development over
time of the stock of capital goods and the book value of equity. K and X
are the ‘state wvariables’. Together they contain all relevant information
from the past: the only things the firm has to know at time t to make an
optimal plan for the future are the values of X(t) and X(t). The initial
values of K and X are given by (10). Equation (2) shows that the
capital goods stock increases through investment and decreases through
depreciation. It is assumed that the price of a capital good equals
one. Equation (3) denotes that ‘after tax profits' (profits equal reveoue
minus wage costs, depreciation costs, and interest costs) are used to pay
out dividends or added to the stock of equity. Equation (4) gives the
relation between the factor imputs (capital and labour) and output.
Equation (3) is the balance sheet equation: the firm has two sources of
funds, equity and debt. Equations (6) and (7) give a lower and an upper
bound on the amount of debt. Equations (8) and (9) determine the region
from which the control variables must be chosen.

This model goes back to Van Loon [1983]. Van Loon distinguishes swo linear
production  activities. He studies the optimal choice of production
activities, the optimal dividend policy, and the optimal investment policy
(with emphasis on the influemce of investment grants, see also Van Loon
[1985]). He develops a procedure to derive the optimal policy for the
entire planning period, for all possible initial conditions (10). This
‘path connecting procedure’ (or ‘coupling procedure’) is used throughout

.



this thesis and it is exemplified in Chapter 4 and Appendix 1. Using this
procedure ome can obtain pictures like Figure 1, which sketches the optimal
development over time of the relevant variables for a growing firm, while
equity is cheaper than debt. In this case the firm wuses debt to grow
quickly in the beginning of the planming period. After reaching a certain
size, the firm pays back the expensive debt and only uses retained earnings
to grow further. For an extensive discussion of this optimal policy, see
Chapter 4.

K, Y.D

x K
| —

K0

Y(0)

: i . . T T . T
rapid growth consolidation growth statiomary z
state

Figure 1: An optimal trajectory

The thesis of Van Loon has been extended in several directions. Van
Schijndel [1988] uses the above model to study the optimal behaviour of a
firm under personal taxation. Kort [1989] uses the model (without debt and
taxes] to study the influence of adjustment costs (see also Kort [1988])

§

and he derives ‘net present value'-rules for the model and several
extensions.

More or less related models can be found in Steigom [1983] (rate of
interest depends on the leverage ratio), Krouse & Lee [1973], Sethi [1978],
and Senchak [1975] (emphasis on financial policies; Krouse & Lee
concentrate on the optimal financing mix of retained earnings and external
equity, Senchak adds debt financing), Hayashi [1985] (a stochastic model
linking the Q theory on investment with the theory of optimal capital
structure), Auerbach [1984] (an empirical analysis of financial policies,
based on a deterministic dynamic model), Auerbach [1979] (a study of the
impact of personal income and capital gains taxes on firm value and the
cost of capital).

-8-



2.3 Optimal behaviour of a firm facing a business cycle

There are two approaches to study the behaviour of a firm faced with a
business cycle with the aid of dynamic optimisation models. This section
discusses both approaches.

2.3.1 An explicite business cycle
The first approach is taken by Leban & Lesourne {1980, 1983], Leban [1982],

and Nickell [1974]. In these articles, the firm faces a given fluctuating
demand curve, looking as follows:

,,;
-
!

—> ¥ >t

Figure 2: The demand function

The left hand side figure shows the demand curve at a given point of time.
In the right band side the price of output is given. The model of the firm
in this case contains the restriction that production must be larger than
or equal to demand:

QM = yip.t) (11)
The optimal behaviour of a firm facing a business cycle is now studied by
examining the (optimal) evolution through time of important wvariables like
production,, price, investment, recruitment and firing.
In Nickell [1974] and Leban & Lesourne [1980] the price of output is a
control variable, whereas in Leban [1982] and Leban & Lesourne [1983], the
price of output is fixed. In all these models the financial policy of the
firm is not considered. The firm maximises the discounted value of future
cash-flows, and investment is irreversible®.

*Other articles studying aspects of firm behaviour during a business cycle
(especially the demand for labour) are Nickell [1978a], and Van Long &
Siebert [1983].

i " . " . " Il
The reasons to assume that investment is irreversible are discussed in
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NWickell [1974] studies the optimal policy of a firm during a business cycle
in a model with a fixed coefficient production technology (which means that
there is only one combination of capital and labour which leads to a given
amount of output) and with investments anmd the price of output as control
variables. He finds the “rather natural result, that if wage costs, capital
costs and the rate of discount are fixed, then the firm will not invest if
demand is falling at least as fast as capacity is depreciating, and there
will be no investment over amd above replacement unless demand is growing”
(p.4). So if during a slump demand decreases at a rate which is larger than
the rate of depreciation, a ‘zero investment’-period will occur. The dates
when the firm stops and resumes investment (n@ and nl) are implicitly given
by the conditions that the marginal revemue of capital goods (i.e. the
extra revenue generated by an extra capital good) is the same in o and o,
and that the discounted stream of marginal revenues over the interval
‘[“o“nn]" due to a capital good bought at . equals the discounted cost
(i.e. wage costs and the cost of capital) over that interval. Only if the
recession is very deep, excess capacity occurs. For ‘moderate’ recessions,
price is used to equate production capacity and demand.

Leban & Lesourne [1980, 1983] study the optimal investment, recruitment and
firing policies of the firm, with a Cobb-Douglas production function and
linear hiring and firing costs. It is assumed that the recession is ‘hard’,
implying that the firm will, for some time, stop investment and recruitment
during the recession, and will possibly fire employees. The conditions for
the dates when the firm stops and resumes investment are the same as in
Nickell [1974]. The dates when the firm stops and resumes recruiting (mg
and m;) and the dates at which firing begins and stops (n,” and n 7} are
determined analogously. A typical development of the relevant variables
over time is shown in Figure 3, which is taken from Leban & Lesourne
[1980].

Chapters 4 and 5. There is a considerable amount of literature on
irreversibility of imvestment in deterministic models in the context of the
optimal allocation between investment and consumption on a macro-level. See
for instance Majundar & Nermuth [1982], Mitra & Ray [1983] and Mitra
[1983].

-10-
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Figure 3: Optimal policy ‘over the cycle’

If the firm can manipulate its output price (Leban & Lesourne [I980]), it
doesn’t allow excess capacity. This is contrary to Nickell [1974]. Since
the specification of the business cycle is the same, the difference must
lie in the different production techmology. In Leban & Lesourne [1980] the
firm does not fire people if the firing costs are “high”. In the model
without price manipulation (Leban & Lesourne [1983]) excess capacity occurs
and the firm will use firing as a substitute for price manipulation, even
if the firing costs are “high”. In a “mild” recession, however, the firm
will not fire people. In this case employment fluctuations are small, but
the excess-capacity-period will be longer. In general the firm stops
recruitment and iovestment before the start of the recession and will
resume them after the end of the recession, thereby aggrevating the
recession.

Lebam [1982] simplifies the model in Leban & Lesourne [1980,1983] to
concentrate completely on wage and employment strategies. Now labour is the
only production factor, the number of applicants and the natural quit rate
depend on the wage rate, and price policy, investment policy and financial
restrictions are excluded. In this simation firing is never optimal, even
if it is free of cost. After all, it is always better to lower the wage
rate instead, because then the number of employees is reduced (due to a
higher quit rate) and at the same time the wage bill for each of the
employees is lowered. [f the firm does not expect the labour supply
constraint (i.e. the number of applicants must be larger than or equal to
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the pumber of recrwits) to be binding, there is a trade-off between on the
one hand saving wage costs during the slump (by lowering the wages and
hiring people after the slump) and om the other hand saving hiring costs
(by keeping the wage rate constant and hiring less people after the slump).
If the firm expects the labour supply constraint to be binding at some time
after the recession there is another trade-off, namely between on the one
bhand recruiting an employee at a time when the constraint is not binding
(but when the new employee is not productive because of excess capacity)
and on the other hand recruiting an employee at the time when the excess
capacity has disappeared but the labour constraint is binding (so that the
firm has to increase wages to attract employees).

2.3.2 An implicit business cycle

In the second approach to study the behaviour of a firm during a business
cycle, the business cycle is mot explicitly modelled. Given a constant
environment, the steady state solution (implying constant values for the
state variables; cf. the last part of Figure 1) is derived, and it is
assumed that the firm has reached this steady state. A business cycle is
then represented by an exogeneous change of the demand conditions, leading
to different steady state values. As a consequence, the firm will try to
adjust the walues of the state variables, in order to reach the new steady
state, The behaviour of a firm during a business cycle is then studied by
linearising the model in the neighbourhood of the ‘new’ steady state and
deriving ‘adjustment paths’ from this. -
An example of this approach is Rossana [1984]. He studies the relationship
between labour demand and inventories, which is “widely regarded to be a
prominent feature of business cycles” (p.731). The number of employees L
and the stock of finished goods imventories F are state variables. If all
parameters are assumed to be constant, steady state values L" and F can be
derived. Linearisation of the model in the neighbourhood of these wvalues
gives:

Ly = A {L)- L} + A {F(t)F} (12)

Fty = A {L(r) LYy o+ A {F(l) E') (13

i

These equations give approximations for the optimal paths of L and F
towards the steady state values, if the deviations from the steady state
values are small. Next it is assumed that during a business cycle L and F
will deviate from their steady state values, and that these deviations are

-12-



small, permitting to use (12) amd (13) to analyse the optimal policy. In
many optimal control problems it is relatively easy to determine the sigms
of the ‘adjustment parameters’ Aij, and there are many technical results
concerning the stability of the steady state solution (i.e. do the state
variables indeed converge to the steady state or not). Samuelson showed
that the comparative statics with respect to the steady state values is
intimitely related with the stability properties of the steady state (the
famous ‘correspondence principle’).

Salop [1973] discusses "the behaviour of a profit-maximizing firm (over a
business cyle,ovh) in a market characterised by uncertain  wage
differentials for a homogeneous occupation” (p.321) in a similar way.
Maccini  [1984] studies the interrelationship between price and output
decisions and investment (in capital and inventories of finished goods)
decisions. He discusses {a.o.) the optimal reactions of the firm to changes
in demand using the same method as Rossana.

2.4 Optimal behaviour of a firm facing technological progress

This section treats some models in which the firm is faced with a given
exogencous  technological  progress.  Models  incorporating  technological
progress are an jmportant issue in the modern theory of economic growth
(see, for instance, Stiglitz and Uzawa [1969], Van den Goorbergh, De Groof
and Peer [1979]), and since 1974 they have played an important role in the
economic models of the Dutch Central Planning Bureau (for a review see Den
Hartog [1984]). These models are not discussed here. In the following some
optimisation models are discussed in which the effecis of exogeneous
technological progress on the behaviour of an individual firm are studied.

One can discern six different types of exogeneous techmological progress.
The following table is taken from Wan [1971].

Disembodied Embodied
OQutput-gugmenting  Q(t,v)=A(F{K(t,v),L(t,v)} Qt,v)=AMWF{K(t,v),L(t,v)}
Labour-augmenting  Q(t,v) =F{K(1,v),A(t)L{t,v)} Qit,v) =F{K(t,v),A(v)L(L,v)}
Capital-augmenting  Q(t,v)=F{A()K(1,v},L{t,v)} QULv)=F{A(WK(t,v),L{t,v)}

At time t Q(t,v) products are produced on machines of vintage v, using

K(t,v) machines and L(t,v) units of labour. F is the production function.
The function A measures the technological progress and it is assumed that A
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is an imcreasing function. The difference betweem embodied and disembodied
technological progress is that embodied progress at time t only affects
capital goods bought at time t, while disembodied progress affects all
capital goods imstalled in the past. For instance, consider the
labour-augmenting type. Suppose K(tn,‘v)::K(tI,v) and L(t],w)rL(tz,v). Then
production with capital goods imstalled at time v is the same at t oand t
{Q(tl,v):Q(tl,v)) if there is only embodied technological progress. If
there is only disembodied progress, production at t is larger than at t,
{provided T‘z>tx)’ because the disembodied techmological progress for t> t,
positively affects production at t=t.

It is assumed that capital goods installed at the same time are identical
and that the disembodied type of technological progress affects all capital
goods in the same way. Thus the set of capital goods installed at a certain
time can be treated as a homogeneous set, named a vintage. Models in which
technological progress works im this way are called vintage models.

Moreover, in the models to be discussed it is assumed that, after a vintage
of capital goods has been installed, there is no substitution possible
between labour and capital (i.e. ex post the production technology is of
the ‘clay’ type). Regarding ex ante substitwtability, the production
technology may be of the ‘putty’ or of the ‘clay’ type. In the ‘putty’ case
the firm can choose different combinations of capital and labour to
generate a given amount of output. In the ‘clay’ case there is only one
combination of capital and labour that generates a given amount of output.

In the wvintage models to be discussed now the necessary conditions for
optimality are derived and imterpreted. However, the development over time
of the relevant variables, like in section 2.2 and 2.3.1, is not givem. Ome
of the reasons is the mathematical complexity of vintage models. In Chapter
% the optimal policy for the entire planning period is given for a
(relatively simple) vintage model.

Virmany [1976] discusses a putty-clay vintage model (i.e., the ex ante
ptoduction techmology is of the ‘putty’ type, the ex post technology is of
the “clay’ type) with disembodied output augmenting technological progress.
Virmany points out that, whereas in a neo-classical non-vintage model the
firm reacts to price changes by adjustments of the capital and labour
stock, in his model adjustments are made through the level of investment
and the capital-labour ratio of the mew vintage.

Virmany assumes that a capital good depreciates exponentially, but that
it is never scrapped. This is not a harmless assumption in the presence of
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embodied technological progress. Since im that case newer machines are
beiter than older ones, it may be profitable to scrap old machines and buy
new ones even if the scrap wvalve is zero. From a technmical point of view,
the possibility to scrap old vintages is the central problem of vintage
models. The capital good stock in such a vintage model is given by:

Kty = i K@,v) av (14)

~T(h)

Techpically, this is a constraint of the optimisation problem,
Unfortunately, the standard Maximum Principle does not deal with
constraints like (14) (note that differentiation of (14) does not give a
differential equation like (2)). Nickell [1975] gives a set of conditions
which are sufficient conditions for optimality, but he does mnot tell how he
derived these conditions. Malcomson  [1975,1983] ‘derives’  mecessary
conditions, but he does not explain why his method is correct, and his
models do not involve pure state constraints. In Appendix 4 a set of
optimality conditions is derived (using in fact the same ‘tric" as
Malcomson does) for a rather general vintage model with pure state
constraints, and a formal sufficiency proof is given. These conditions are
used in the vintage models in Chapters 7 and 8.
Malcomson [1975] and Nickell [1975] concentrate on replacement investment
in a clay-clay vintage model (i.e. the ex ante as well as the ex post
production technology are of the ‘clay” type). In Malcomson [1975] capital
is the only production factor and the firm maximises profits (revenues
minus operating costs and investment expenditures) over an infinite

horizon:
max [Pt { PY(R),0Y(1) - § L e(v,0IWdv - eI } dt
1,Y,T 0 C-T(1) ‘
(15)
Y(t) = §* bev,OI(v)dv (16)
-T(t)
Y()=0, (D=0, T()=0, T =1, an
where:

b(v,t): units of output of a machine of vintage v at time t
c(v,t): operating costs of a machine of vintage v at time t

Technological progress is represented by the fact that "the operating cost

per unit of output is always less on more recent vintages than on older
ones” (p.26). He derives an optimal replacement rule which implies that the
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optimal lifetime of capital goods is bounded by a sequence of lower bounds
and a sequence of upper bounds. Unfortunatély he is not able to show that
these sequemces converge to the same limit, which would imply a wunigue
optimal lifetime of capital. In Chapter 7 an optimal replacement rule is
derived which is more general than Malcomson’s rule and it is shown that
the sequences of upper and lower bounds indeed comverge to the same limit.
Mickell [1975] discusses a clay-clay wvintage model with embodied capital
and labour augmenting technological progress. Capital goods do mot
depreciate but maintenance costs grow with age. He shows that there is a
unigue optimal lifetime of capital goods if the Iabour-augmenting
technological progress is zero and the rate of capital-augmenting
technological progress is constant. Nickell also treats the case of
possible “‘zero investment’-periods. He states that the optimal scrapping
condition {or replacement rule) still holds during the zero investment
period, which seems questionable to me. The problems with zero investment
periods are discussed in the context of the model of Chapters 7 and 8 in
Appendix 5.4,

Nickell also studies the effect of demand wvariations, but he assumes that
the rate of technological progress is zero. During a slump in demand he
finds a cyclical pattern for the price of output and investments, with
‘backward echo effects” (the cyclical pattern also occurs before the
slump). This result is discussed further in Chapter §.

Nickell extensively examines a model with adjustment costs, which is not
considered here.

Malcomson [1983] studies the effects of changes in tax incentives for
investment in a putty-clay vintage model with disembodied capital- and
labour-augmenting technological progress and embodied output augmenting
technological progress. Malcomson does not try to find the optimal values
for the comtrol and state variables. His aim is to perform simulations with
the model to study the effects of a change in investment incentives. One
theoretical aspect of this model is interesting in wview of Chapters 7 and
8. Malcomson observes that if the tax incentives for investment are
increased, existing wvintages are scrapped earlier than planned. This
creates a spurt in (replacement) investment, which reproduces itself when
the vintages installed during the spurt are scrapped themselves. Thus an
‘echo-effect’ is created. This kind of echo-effects is typical of vintage
models.

Broer [1987] uses vintage models to study aggregate firm behaviour. He
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devotes much attention to the theoretical properties of wvintage mwodels. His
models do not incorporate the financial side of the firm, but apart from
this his models are more gemeral than the models in this thesis, because
they, for imstance, include wvarious adjustment costs and the possibility to
vary the utilisation rates of production factors. Broer proves the
existence of a unique steady state solution for a clay-clay model and
studies the linearisation of the model in the neighbourhood of the steady
state. For a putty-clay model he does not succeed in proving the existence
of a steady state because of the "anmalytical complexity of vintage models”
{p.150). Moreover, in the putty-clay case, “"general results do mnot seem to
be available outside the steady-state” (p.12). Broer does not use the
Maximum Principle to find the optimal solution, simce, in his view, a
vintage model “cannot easily be formulated as an optimal control problem in
the absence of a suitable set of state wvariables” (p.119). Although in
Appendix 4 the vintage model is formulated as an optimal control problem,
Broer’s observation will play an important role in Chapters 7 and 8.

2.5 Summary

This chapter discusses some relevant predecessors of the models in this
thesis. The framework of the models in the following chapters is a model by
Van Loon [1983], in which the optimal investment, dividend and financial
policies are derived simultaneously. This model and some extensions are
discussed in section 2.2.

Section 2.3 discusses some models which study the optimal behaviour of a
firm during a business cycle. These models do not treat the dividend and
financial policies of the firm. The same is true for the vintage models in
section 2.4, which involve exogeneous technological progress. In Chapters §
and 7, the financial side of the firm is incorporated im a business cycle
model and a vintage model.

It is shown that there are two ways of studying the behaviour of a firm
during & business cycle, of which one will be chosen in Chapter 5.

Section 2.4 shows that wintage models involve technical problems, which
make it difficult to derive analytical results. In Chapters 7 and 8 a
vintage model of the firm will be discussed. A set of optimality conditions
for vintage models, derived in Appendix 4, will be used to generate, as far
as possible, analytical results.
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3
ON DYNAMIC OPTIMISATION MODELS OF THE FIRM AS A BRANCH OF
‘PURE THEORY’ AND ON THE USE OF MATHEMATICS

3.1 Imtroduction

This chapter consists of two parts. Section 3.2 discusses the wuse of
theoretical optimisation models of the firm. In section 3.3 some guidelines
are derived for the use of mathematics in the remainder of this thesis.

3.2 Theoretical dynamic optimisation models of the firm: a branch of ‘pure
theory’

3.2.1 Pure theory

After reading Chapter 2 one might wonder: what is the wuse of those
theoretical optimal control models, as part of an empirical science like
economics? An answer can be found in Klant [1984]. Much of what he says on
‘pure theory’ applies to this thesis. Klant does not give one clear-cut
definition of pure theory (the difference between pure and applied is
gradual), but he gives several descriptions: ‘pure theory’ is theory being
"entirely free from considerations regarding its practical wuse” (p.85);
”..a theory, which is based on assumptions of an empirical nature but
describes  formal relations”  (p.85); “"What economists since Walras
understand by ‘pure theory” is the general theory on the behaviour of
economic: agents, who in taking their decisions allow themselves to be
guided by certain praxeological principles. Pure theory then consists, at
any rate in part, of decision theory - applied logic, in other words”
{p.83).

What is the use of a ‘pure theory’? Klant states: a pure theory is a tool
box. He quotes Robinson ( a pure theory is "an essay in the technique of
economic analysis..”; p.104) and Hutchison (“pure theory offers us a sharp,
clear-cut language or system of definitions with which to approach the
problems which the facts of the world raise”; p.108), and he summarises the
view of De Vries (p.109): the task of ‘pure theory’ is to formulate and
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define ideas; it produces a conceptional apparatus that can be used in
discussing comcrete ecomomic problems. However, the ultimate goal of
economic science always is ”...a working model of the actwal world..... To
tinker with the tool-box is merely a preliminary to the main attack”
(Robinson, quoted by Klant, p. 104). But the essential problem is: "It is
difficult to establish to what extent purely formal theories could ever be
used in framing theories with empirical content” (p.185).

The distinction between pure theory and empirical ecomomics is similar to
the distinction between pure and applied mathematics. Browder [1976]
defines: “Pure mathematics is that part of mathematical activity that is
done without explicit or immediate consideration of direct application to
other intellectual domains or domains of human practice”. With regard to
possible future applications of pure mathematics, Browder states: "We do
not know what will be useful (or even essential) until it has been used”.

3.2.2 An illustration

There are many optimal control models of the firm and mot all these models
are to the same extent ‘pure theory'. On the one hand there are optimal
control models that are focussed onm a2 micro-economic foundation of
macro-economics (e.g., Malcomson [1983], Rossana [1984], Maccini [1984],
Vroman [1987]). Using this kind of models, one tries to show that
“macroeconomic behavioral relations have a solid microeconomic foundation”
(Maccini  [1984], p.41). If these models are really tested, on an
aggregated level, they are used to frame theories with empirical content,
and in that case they are not ‘pure theory'.

On the other hand there are models that are explicitly intended to help the
management of a firm to solve problems, concerning finance, production and
inventory, marketing, machine maintenance and replacement, optimal
consumption of natural resources. There are a number of books containing
such models, for instance Bensoussan, Hurst and MNaslund [1974], Sethi &
Thompson [1981], Kamien & Schwartz [1981], Tu [1984]), and Feichtinger &
Hartl [1986]. Sethi [1978b] gives an extensive survey of management science
applications of the deterministic Maximum Principle. Sethi and Thompson
state in the introduction of their book (p.xiii): "The emphasis of the book
is ... on modelling realistic sitnations faced im  business and
management”. Tu states (p.331): "Optimal Control has proved a wvaluable tool
in all these areas” (of management science,ovh). So the aim of these books
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is clear: modelling of realistic situations so that the results cam be used
by the management of firms. However, although the books are full of
‘management science’-examples, there are only a few examples of an
empirical application or an actual implementation of an optimal policy. The
reason seems quite clear: if a dynamic model of the firm is to be usable
for the management, then it has to be solvable and it has to describe the
problem at hand adequately. These two demands are almost inevitably
conflicting.

Given this state of affairs (the present models lack empirical content), an
interesting discussion arises whether these models will, in the terminology
of Klant, ever be wused in framing theories with empirical content. This
discussion affects to a lesser degree also many of the models in Chapter 2
(Van Loon [1983,1985)], Salop [1973], Leban [1982], Leban & Lesourne [1980,
1983], Kort [1989], Van Schijndel [I988]). (to a lesser degree because
their aims are less ambitious with regard to modelling realistic sityations
and management science applications). Tapiero [1978] formulates the
difficulties of optimal control models as part of management science as
follows: “Thus, the management scientist must continually assess the
relevance of a particolar model, as a simplification of reality, versus the
possibilities of obtaining wuseful analytical amd computational results”,
Bensoussan, Hurst and Naslund [1974]) have made an unambiguous choice: *At
this stage in the application of control theory to management problems, it
is felt preferable to solve exactly the perhaps inexact statements of real
problems, using this solution to gain structural insights, rather than to
solve approximately an exact statement of the problem, failing in the
process to gain any real feeling for the structure of the solution”.

With regard to modelling realistically the way people make choices, Simon
[1979] states: “There can mo longer be any doubt that the micro assumptions
of the ‘theory (of the firm, ovh)-the assumptions of  perfect
rationality-(which are inheremt in many optimal control models, ovh) are
comtrary to fact. It is not a question of approximation, they do not even
remotely describe the processes that human beings use for making decisions
in complex situations”. Moreover: “If our interest lies in descriptive
decision theory (or even normative decision theory, (underlining added)),
it is now entirely clear that the classical and neoclassical theories have
been replaced by a superior alternative that provides us with a much closer
approximation to what is actually going on”. The central element of that
“superior alternative” is the concept of ‘bounded rationality’,
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Schmidt [1982], who also discusses ‘decision theory’, especially concerning
the use of economic theory for financial management problems, admits that
the neo-classical theory at present gives no answers which the financial
manager can wuse, for imstance because financial institutions are irrelevant
in that theory. S8till Schmidt concludes, when judging different approaches
on their contributions to the fipancial management of firms, "I temd to
believe that the ‘ecomomic approach’ is in the lomg rum more succesful than
the behavioral approach. Taking for granted that presently (underlining
added) behavioral theories give a more ‘valid® representation of those
parts of reality which matter for financial management, I cannot see a
‘hard core’' in the behavioral approach. ... The ‘economic’ approach to the
study of institutions, on the other hand, is still in its infancy, but it
can be expected to advance rapidly, because it is a research programme
with the ‘hard core’ of agents’ rationality and market equilibrium. To
overcome the  sterile irrelevance propositions in  financial  economics
requires drastic changes in the ‘protective belt’. They can be made...”.

These two opposing opinions show a wide disagreement on the significance of
the presemt lack of realism of a theory. It seems that the dispute cannot
be decided on the grounds of objective arguments. A great deal of personal
assessment and belief play an important part. This illustrates Klant’s
point that it is difficult to “establish to what extemt purely formal
theories could ever be used in framing theories with empirical content”.

Another line of criticism of deterministic optimisation models of the firm
is to reject the usefulness of deterministic models in economics at all. It
is clear that ecomomic life is stochastic, take for instance the financial
markets. And, with respect of firm behaviour, the firm will try to protect
itself against unforeseen calamities by being flexible, which is hard to
model in a deterministic way, even when using expectations of uncertain
variables instead of ‘certain’ parameters. So modelling the stochastic
elements in economic life brings the models closer to reality. However, for
stochastic models Tapiero’s problem (assessing the relevance of a
particular model, as a simplification of reality, versus the possibilities
of obtaining useful analytical and computational results) is probably even

'The term ‘hard core’ is meant in the sense of Lakatos: it is that part of
a ‘research program’ that “is treated as irrefutable by the methodological
decision of its protagonists” (Blaug [1980], p.36).
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bigger.

The supporters of stochastic optimisation can point at a tremendous success
with respect to the application of theoretical results, npamely the Black
and Scholes formula (however, this success can mot only be comtributed to
the stochastics, but also to the fact that financial markets are “orgamized
auction markets operating under high information conditions”, Teece and
Winter {1984]). And, more in general, stochastic optimisation seems to make
more of the claim of being useful in management science than deterministic
optimisation (Sengupta [1985], Bensoussan, Kleindorfer and Tapiero [1980]).
However, there seem to be not many applications at the firm level (see also
Tapiero  [1988]).  Stochastic models which are comparable to the
deterministic models in this thesis mostly consist of only a few variables,
and consequently they incorporate less aspects of firm behaviour (see
Bensoussan & Lesourne [1980], Lesourne & Dominguez [1983], Kort [1989] and
section 6.5 of Tapiero [1988]). So the practical use of stochastic optimal
control models of the firm seems to be very limited at present. Ome of the
reasons  certainly is the  difficulty to  solve  stochastic  dynamic
optimisation  problems, in  particular  with  respect to  constrained
optimisation. Especially analytical results are hard to obtain,
Deterministic dynamic optimisation (subject to constraints) might serve as
a point of reference for the (more difficult) stochastic variant,

3.3 Some guidelines for the use of mathematics
3.3.1 Introduction

The previous section concluded that the dynamic optimisation models of the
firm in this thesis can be seem as a tool for economic analysis. The
economic conclusions of these models are derived with the aid of a branch
of mathematics, called Optimal Control Theory (i.c. the Maximum Principle).
So the mathematics of optimisation is, as it were, a tool in a tool. This
section derives some guidelines concerning the use of mathematics in the
remainder of the thesis. Section 3.3.2 briefly discusses the role of
mathematics in economics in general. Section 3.3.3 discusses the status of
the economic assumptions in mathematical models. Section 3.3.4 goes further
into the mathematical translation of some common economic assumptions and
emphasises the importance of inmterpreting, as much as possible, the
mathematical tools.
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3.3.2 Ou the role of mathematics in ecomomics

It is without doubt that mathematics plays an important role in ecomomics
nowadays. Mathematics constitutes a substantial part of the education of
economists and many economic journals are full of mathematics. What is the
reason of this important role of mathematics? It seems that this question
is not answered satisfactorily yet. Weintraub [1985] writes: "It is a minor
scandal that there is no comprehensive history of either the rise of
econometrics or the mathematization of economics” (p.140). Ome can discern,
however, some factors which stimulate the use of mathematics in economics®.
The most ‘basic™ of these factors is probably that “two of its central
concepts, commodity and price, are quantified in a unique manner, as soon
as units of measurement are chosen” (Debreu [1986], p.1261).

Secondly, Pareto, one of the pioneers of the application of mathematics in
economics , asserted that the complexity and interdependency of social
phenomena are reasons for the successful application of the mathematical
language to economics (Klant [1984], p.143). Especially the possibility to
express  simultaneous relations in  mathematical language is important,
according to Pareto. Moreover, the consistency of a set of mathematical
equations is relatively easy verified (Vermaat [1970], p.11).

A third factor is the fact that mathematics has been successful in other
disciplines, especially in physics. The scientific character of physics has
often beem seen as outstanding by economists, and thus it is tempting to
use the same methods in economics as in physics. According to Mirowski
[1987], economists did not resist this temptation. On the contrary, in his
view “...the early neoclassicals took the model of ‘emergy’ from physics,
changed the names of all variables, postulated that ‘utlity’ acted like
energy, amd then flogged the package wholesale as economics” (p.81). The
reason that it is possible to simply apply the same mathematical model to
different subjects, is, as Mirowski states, in the npature of mathematics:
mathematics is a method of thinking in metaphors. Poincaré once defined
mathematics as ‘the art of giving the same name to different things® (see
also Weintraub [1985], p.37: “Mathematics is a metaphor machine”). But it

*This list is not meant to be exhaustive, For a more systematic treatment
of the advantages and disadvantages of the uwse of mathematics in economics,
see Debreu [1986] and Vermaat [1970].
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is not without danger to apply metaphors. Weintraub (p.34) cites Xoopmans,
who states: "the succes of a mathematical tool or theory in one field (such
as physics) creates no presumptiom either for or agsinst its wusefulness in
another field (such as economics). But each transfer of a tool between
fields is attended by a risk....The test of suvitability of a tool of
reasoning is whether it gives the most logical and economic expression to
the basic assumptions appropriate to the field in question, and to the
reasoning  that  establishes  their  implications...... The  difficulty in
economic dymamics has been that the tools have suggested the assumptions
rather than the other way around”.As a fourth factor the work of the Vienna
Circle can be mentioned, which has given a strong stimulus to the use of
mathematics in twentieth century economics. Weintraub [1985] extensively
describes how members of the Vienna Circle, who propagated that mathematics
must play the premier role in philosophy and science (Weintraub [1985],
p.63), play an important part in the development of general equilibrium
analysis.

Finaily, part of probably all these factors is the recognition that the use
of mathematics has heuristic value: it is a tool to find theories (see, for
instance, Vermaat ([1970], p.11) and section 3.3.4).

3.3.3 The status of assumptions

Many articles on dynamic models of the firm start off with a set of (often
bold) economically phrased assumptions and their mathematical translations,
Musgrave [1981] distinguishes three types of assumptions:

1)  negligibility assumptions: these are hypotheses that some factor F
has mo effect on the phenomenon under investigation. "Now suppose an
economist ‘assumes that there is no government’, meaning thereby to
assert that the existence of the government has negligible effects on
the phenomena he is investigating, It would be plain silly to object
that this assumption is “‘umreal’” because there is, infact, a
government” (p.379).

2) domain assumptions: this kind of assumptions specifies the domain of
applicability of a theory. "The more unrealistic domain assumptions
are, the less testable and hence less significant is the theory”
(p.382).

3}  heuristic assumptions: simplifying assumptions, made to develop a
theory. “Heuristic assumptions play an important role in developing
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any theory whose logico-mathematical machinery is so complicated that
a method of successive approximation has to be used..... The
consequences drawn from heuristic assumptions do mpot represenmt the
precise predictions of the theory in question; rather, they are steps
towards such precise predictions” (p.383).

Confusion about the status of an assumption easily arises because “the same
form of words” is employed for all three types of assumptions (p.381).
Therefore Musgrave states: "Misunderstanding, misguided criticism, and
methodological — controversy, could  be alleviated if  this rather
prosaic recommendation (i.e. that economists make it clear
exactly which sort of assumption they are making at any point
in their investigations, ovh) were to be followed”.

This advice is especially relevant in empirical work. In a purely
theoretical thesis (like this), one could of course ignore the status of
assumptions or simply state that all assumptions are heuristic (compare the
definition of heuristic assumptions with the statement in section 3.2.1
that pure theory is a “preliminary to the main attack”). But concerning a
number of assumptions one can argue: if this model is to be tested one way
or another, assumption X will most likely belong to category Y. For
instance, the assumption that the wages are conmstant will probably not be a
‘negligibility assumption’, and if treated as a ‘domain assumption® it will
allow only a wvery small domain. The assumption that the debt-equity ratio
is limited by some constant ¢ and the assumption act solely in the interest
of shareholders will probably be domain' assumptions. In Chapter 4 it is
tried to follow Musgrave’s recommendation.

More generally, in highly mathematical models like the ones in this thesis,
one often wonders whether a certain  assumption is economically or
mathematically motivated. For instance, in equation (2.8) the assumption
I=0 is economically motivated (investments are irreversible, see Chapter
4), while the assumption Iﬁlmm1 is primarily mathematically motivated (to
avoid jumps of the state wariables, see Chapter 4). In the remainder of
this thesis special attention will be given to the question whether an
assumption is mathematically or ecomomically motivated.
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3.3.4 On the mathematical translation of economic assumptions
and the interpretation of mathematical tools

Another problem connected to the wse of mathematics in economics is whether
the mathematical tools which are used have an economic interpretation. This
interpretation is often a source of confusion. The heuristic use of
mathematics in ecomomics can be pictured as follows (Weintraub [1985],
p-146):

Economic model: assumptions conclusions
A E
Interpretation: g
!
Mathematical model: B c D

assumptions tools conclusions

Weintraub writes: "We would like to go from A to E. What we do, in fact, is
go from A to E indirectly, identifying A with B, then proceeding from B to
D (using C) and reidentifying D with E”. It is often said, as in the
Koopmans® quote in section 3.3.2, that C determines B and A instead of the
other way around. Moreover, the economic interpretation of C is often
lacking. This subsection does mot focus on the point whether C determines B
and A (see for instance Weintraub [1985] or Mirowski [1986]), but
concentrates on the difficulties in translating A into B and interpreting
C.

As an example, consider the assumption that agents independently optimise
subject to constraints, which is an important element of the hard core of
neo-classical  ecomomics.  ‘Optimisation  subject to  constraints” is  a
‘B-assumption’. The corresponding ‘A-assumption’ is often wunclear. It seems
to be wery difficult to mark out the set of A-assumptions about economic
behaviour that correspond to the B-assumption ‘optimisation subject to
constraints’. For a discussion, see Van Witteloostuyn [1988]. In this
thesis the assumption that firms maximise the discounted value of future
dividends is not questioned (it is a ‘hard-core” assumption). This thesis
can thus be seen as a contribution to the attempts to model firm behaviour
on the basis of the maximisation principle.
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Another element of the hard core of mneo-classical economics is the
assumption that: “Observable economic outcomes are coordinated, so they
must be discussed with reference to equilibrium states” (Weintraub [1985],
p.109)°. In economics, the notion equilibrium has many meanings (see, for
instance, Hahn [1984]). In optimal control problems the notion equilibrium
mostly means a so-called ‘steady state’ equilibrium, which means (a part
of) an optimal solution with constant values for the state variables’. Very
often the analysis of the optimal solution of a model is confined to a
discussion of the steady state.

There is much discussion whether this equilibrium is a fact of economic
life (am “operational concept”, see Blaug [1980], p.101) or only an
analytical notion (a "tool for theoretical analysis”, Blaug [1980], p.101),
used as a reference sitwation (see Carvalbo [1984]). If one favours the
latter view, it seems logical to wuwse the optimal trajectory towards the
steady state equilibrium as a referemnce situation as well. Adherents of the
first view motivate their confinement to steady state analysis with the
argument that the path towards the steady state is subject to mnoise
("accidental influences”, see Carvalho [1984]), and thus not of interest.
However, it seems that the same argument applies to the local analysis in
the neighbourhood of the steady state, which often accompanies a steady
state analysis. This Jlocal analysis follows from a linearisation (that is,
an approximation!) of the model around the steady state’. But why then not
study the exact optimal policies in the neighbourhood of the steady state?®

One reason certainly is a mathematical one. In many optimal control
problems, one can only achieve nice analytical results on the steady state
of the problem and on the linearisation of the problem im the neighbourhood
of the steady state. Very seldom one encounters a model in which a complete

3Acc«o‘rding to  Debrea [1986] there is a "perfect fit between the
mathematical concept of a fixed point and the social science concept of an
equilibrinm” (p.1262).

‘It should be noted that in most optimal comtrol models of the firm the
equilibrium is a partial equilibrium.

SAs an example consider the models which use the second method to decribe
behaviour during a business cycle, as described in Chapter 2 (Rossana
e.8.)

STeece and Winter [1984] state: “While comparative statics is one way to
get at dymamic issues, it suffers from inattention to the path to
equilibrium, a matter which is usually exceedingly important” (p.118).
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solution of the optimisation problem is given, including the exact (as
opposed to approximate} optimal trajectory towards the steady state. The
reason is that such a complete solution is in most cases wvery difficult
andfor wvery time consuming to achieve. In spite of this, the analysis in
the following chapters will not be restricted to the study of steady
states. The entire optimal solution of the models is searched for,
including the optimal trajectory towards the steady state (if there is
one), using the coupling procedure of Van Loon (see Chapter 4 and Appendix

1).

One of the very nice aspects of Optimal Control Theory with respect to its
use in economics is that the necessary conditions it gives for optimality
can often be interpreted economically. This is primarily due to the fact
that the auxiliary variables appearing in the Maximum Principle can be
interpreted as shadow prices. However, a confusion of tongues easily
emerges as a consequence of the difference between economical intuition and
mathematical formalism. Chapter 6 tries to help resolve this confusion.

The wpshot of this section is that if mathematics is widely wused in
economics, translations of ‘economic’ statements into  "mathematical’
statements and vice versa, are crucial, But that is often where the shoe
pinches. After all, ome cannot expect from economists that they know the
latest developments in mathematics, let alone that they invent suitable
mathematics”. So if one wants to find out if mathematical techniques exist
or can be developed for a certain economic problem (for instance group
theory, as mentioned by Mirowski [1986], or the application of Lie groups
to the theory of technological change (e.g. Sato [1981))), then there has
to be a good communication between mathematicians and economists.
Mathematical economists could perform the task of intermediairies.

Given a group of mathematical economists as intermediairs, the
communication between this group on the one hand and economists and
mathematicians on the other hand should be good. Although, according to
Koopmans {1957], “there is substantial agreement that mathematical
economists...should do their utmost to communicate the assumptions and

"Mirowski ([1986], p.200) states: "In fact, since economists are so rarely
first-class mathematicians, most of the contributions ecomomists can
reasonably aspire to make to their chosen discipline must come in that
twilight zone of semantical interpretations of previously developed
mathematical  structures”.
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conclusions of their analyses in verbal form...”, it seems that the
communication between mathematical economists and economists is rather bad.
According to  Vermaat [1970], the opinion of the economist about
mathematical econorpics reads: "1 admit that 1 do not understand it and 1 am
sure that 1 do mnot like it”. It is probably even worse. Many economists
seem to think: "I admit 1 do not understand it and I am sure that I will
never uonderstand #t”. Apart from several well-founded objections, many
economists seem to bave cold feet concerning the use of mathematics. These
economists came to the conclusion a long time ago that mathematics was to
difficult for them and since that time they do not want to have anything to
do with it (out of fear or irritation). To warm their feet, it might help a
lot if the mathematical economists would possess more didactical qualities.
Mowadays it is popular to teach ecomomists as much mathematics as possible,
but it is at least as important to teach mathematically trained persons the
ability to  translate  mathematical  theories and techniques into
nop-mathematical  terms,  The  interaction  between  ecomomists  and
mathematicians would greatly benefit from this®

3.4 Summary and Conclusions

Section 3.2 concludes that many optimal control models of the firm can be
seen as ‘pure theory’. Pure theory consists for a large part of development
of tools and, as again Koopmans said ([1957], p.vii) "...tools are of
interest more in their promise than in their achievements”. However, as
Klant concludes, it is hard to determiné whether pure theory will ever be
used for framing theories with empirical content. One of the reasons of the
present lack of empirical content of many optimisation models is that
(adapting Koopmans [1957], p.179) "One enters a different, and in many ways
poorer and more rigid, world when one examines the mathematically expressed

YA long time after I had written this, | found out that I am like ome of
the students in Weintraub’s book, who states: ”...professional integrity
seems to require that the subdiscipline (i.e. mathematical economics, ovh)
be opened to all economists so that professional standards can be widely
appreciated. For too l(mg our profession has been full of calls by the
mathematically literate for higher mathematical literacy rates in the
economics profession and calls by the unsophisticated for more surveys and
translations of standard mathematical results” (p. 149). In Weintraub’s
book emphasis is put on the translation between A and B and between D and E
{see the scheme on p.27).



literature of economic dynamics”.

This is especially apparent with respect to management science models. In
the terminology of section 3.3.3: when management problems are concerned,
few things are negligible. Thus most assumptions can not be treated as
negligibility assumptions. Moreover, if ome treats these assumptions as
domain assumptions, the field of possible application becomes very narrow.
Consequently, most assumptions have to be treated as heuristic assumptions,
and thus the present usefulpess of dynamic models of the firm is very
limited.

The use of dynamic optimisation models of the firm as a branch of pure
theory can be compared to  what Solow [1985] says om the functions of
‘amalytical economics®, namely: “to organize our necessarily incomplete
perceptions about the economy, to see connections that the untutored eye
would miss, to tell plausibe -sometimes even convincing- causal stories
with the help of a few central principles...”.

Section 3.3 discusses the use of the mathematical language in economics in
general and in dynamic optimisation models of the firm in particular. Three
guidelines are derived with respect to the use of mathematics in this
thesis: 1) make clear the motivation of assumptioms; 2) consider not only
the steady state solution of a model, but the enmtire optimal solution (that
is, the optimal control and state variables as functions of time for the
whole planning interval; 3) as a contribution to the interpretation of the
mathematical tool which is used (the Maximum Principle), give attention to
bringing together economic intuition and mathematical formalism concerning
shadow prices in a dynamic context.

The remainder of this thesis can be seen as an exercise im ‘pure theory’.
There will be a lot of "tinkering with the tool box”, meant in a positive
sense., And as far as the economic implications are concerned, they should
be comsidered with care, since each model in this thesis will involve some
heuristic assumptions.
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4
THE BASIC MODEL

4.1 Introduction

The model to be presented in this chapter will serve as the core of the
more complicated models in the next chapters. It is im fact also the core
of most of the models in Van Loon [1983], Van Schijndel [1988] and Kort
[1589]. Their analysis of this model is extended in three directions.
Firstly, bringing into practice ome of the guidelines of chapter 3 (section
3.3.3), Musgrave’s advice concerning the background of assumptions is
followed (section 4.2). Secondly, a feedback decision rule is derived
(section 4.4), which gives the optimal policy for (almost) all possible
initial conditions (the exceptions are treated in section 4.6). It will be
argued that this decision rule is a very convenient and useful shorthand
way to characterise the optimal solution. In the following chapters it will
be investigated if and why this decision rule is still wvalid in more
complicated models. Thirdly, whereas Kort, Van Loon and Van Schijndel are
primarily focussed on the analysis of the growth of the firm, section 4.5
also studies how the firm reduces its size in an optimal way (which is
used in the mnext chapter). The necessary and sufficient conditions for
optimality are given in section 4.3, Section 4.7 discusses the difference
between the ‘book wvalue® and the ‘market wvalue' of equity in the model.
Section 4.8 summarises this chapter and gives conclusions.

~33-



4.2 The model and its assumptions

The model which is the core of this thesis is:

Max Of e dt + e Zx@) )
1.D

Kty = It - aK(t) 2)
X = (1-H) {S[Qmﬂ - wlit) - aK(t) - rY(l)} - Dy (3
Q) = K@k, Q) = L{yl “
K@) = X(t) + Y@ )
Y() = 0 (6)
Yty < bX(t) ]
0= I(t) = I[m 8)
0 =D =D__ e))
K(0) and X(0) are given 10y

Before the specific assumptions of this model are discussed, two general
features of the models in this thesis are stressed.

Firstly, time is a continuous wvariable. If one is primarily interested in
analytical results, the wuse of continuous time is in my opinion most
appropriate. The choice to treat time as a continuous wvariable is thus
clearly mathematically motivated. The wuse of continuous time has many
consequences, especially in Chapter 7.

Secondly, all models are deterministic. Uncertainty is kept outside the
model in the following way: the firm bas certain specific expectations and
on the basis of these expectations it makes its plans. If at some time the
expectations prove imcorrect, the firm reformulates its expectations and
computes & new optimal policy (e.g. Nickell [1974])". As already indicated

'See also Arrow [1968]. Arrow observes that "to determine the empirical
implications of this model, it would be necessary to add a second relation,
showing how the anticipated profit function and interest rates (or, in
general, the anticipated values of all parameters of the model, ovh) shift
with time, possibly in response to mew observations on market magnitudes”
(p.17).
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in Chapters 2 and 3, the reason to work with deterministic models in this
thesis is the combination of the aim to obtain analytical results and the
wish to imcorporate more (many) aspects in existing models.

Mow the specific assumptions of the model are discussed.

The firm acts solely in the interest of the shareholders (domain
assumption). Its goal is to maximise the discounted stream of divideads (D)
plus the discounted value of equity (X) at the end of the (finite) planning
period (see (1)). This form of the objective function implies unanimity of
the shareholders concerning the investment plans of the firm. Therefore it
is  irmoplicitly assumed that, for instance, the possible existence of
personal taxes or borrowing and lending restrictions does not destroy that
unanimity. It is assumed that the business risk does not change (domain or
heuristic assumption). Moreover, the wvariability of the financial risk is
limited by the constraint Y=<bX. Finally, the interest rate r is assumed to
be constant (heuristic assumption). Together these assumptions imply that
the discount rate i can be assumed constant.

The firm uses two homogeneous production factors, capital (K) and labour
(L), to produce a homogeneous output (Q) (domain or heuristic assumption).
The production technology is a fixed coefficients technology, which means
that there are limear relationships between capital and labour and between
capital and production (domain or heuristic assumption; see (4))2. The
capital goods stock depreciates at a rate a. It is implicitly assumed that
fiscal  depreciation equals techmical depreciation. This could be a
negligibility assumption, but it most likely is an heuristic assumption,
Separating technical and fiscal depreciation and describing both in a
realistic way would make the model less elegant and would create great
difficulties with regard to finding the optimal solution. In the vintage
models of Chapter 7 the need, from an economic point of view, to separate
fiscal - and technical depreciation is even more pressing. . Fortunately, the
variant of the Maximem Principle, derived in Appendix 4 to cope with the
vintage structure, also makes it possible to treat fiscal depreciation in a
realistic way. At this point, the economic and mathematical incentives to
chamge a certain unrealistic assumption go hand in hand, by way of
exception.

*Van Loon [1983], Van Schijndel [1988], and Kort [1989] do not impose
these simple limear relationships in all their models.
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The capital goods stock cam be augmented by investments and it is assumed
that all prices are normalised in such a way that the price of a capital
good equals ome. This gives (2). The only costs associated to labour are
proportional to the volume of the labour stock: wl. (this assumption can
be of each of the three types). For simplicity, w is named the ‘wage rate’.
This wage rate is assumed to be constant (heuristic assumption). The firm
sells all goods it produces (beuristic assumptionm). In this chapter it is
assumed that the output price p is only a function of production and it is
assumed that this function is such that revenue S=pQ is a comcave function
of @ (domain assump‘ftionj):

dQ?

New issues of equity are not allowed (domain or hewristic assumption). X

s=slvl. g5 > O, <0 (11)

only increases if retained earnings are positive. Retained earnings are
defined as revenue minus costs after taxes and after dividends (see (3)).
The costs consist of wage costs, depreciation costs and interest costs®,

The firm has two sources of funds, equity X and debt Y (with regard to the
qualitative properties of the optimal investment and dividend policy, this
can be a negligibility assumption). It is assumed that X, Y, and K are book
values®, so that the balance sheet equation assures (5). The amount of debt
is limited: debt is assumed to be non-negative (domain assumption; see (6))
and the debt-equity ratio is bounded from above by a certain constant b
(domain assumption; see (7)). It may seem odd to distinguish between equity
and debt in a deterministic model. The difference between debt and equity
is that the suppliers of debt get a fixed reward, whereas the suppliers of
equity only have a residual claim on the firm. The value of this residual
claim depends on the policy of the firm and, moreover, if the expectations
of the firm prove incorrect (see p.34), the shareholders bear the
consequences.

*The assumption of a concave revemue function is clearly mathematically
motivated. As is well known, for a maximisation problem to have a solution,
a concavity is needed. However, in optimal control problems it is not
necessary that the objective function is concave. For the details, see the
sufficiency theorem in Appendix 1.

“Note that the revenue at time t and all costs, except the depreciation
costs, at time t are cash-flows at time t.

A consequence of this assumption will be discussed in section 4.7.
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The restriction I=0 means that investments are irreversible {domain
assumption). The irreversibility of investments can have several reasons.
Appelbaum and Harris [1978] mention technological phenomena and market
imperfections in the market for capital goods. Pindyck [1988] argues:
"Trreversibility arises because capital is industry- or firm-specific, that
is, it cannot be used in a different industry or by a different firm”
(p.969). Nickell [1978b] states :"Now it is quite clear that there is a
large class of capital goods which are, in reality, almost impossible to
sell other tham as scrap” (p.39). Given the fixed-coefficients technology,
the irreversibility restriction may also reflect a restriction on the rate
of change of the labour force. The assumption of irreversibility is crucial
if the firm wants to contract. Arrow and Kurz [1970] show that
irreversibility influences the optimal strategy in a Ramsey model when the
initial capital goods stock is high. For the same reason irreversibility
will play an important role in the Chapter 5, simce if the firm is
confronted with a business cycle, it is likely that situations will oceur
which force the firm to contract.

As in Nickell ([1975], p.56) it is assumed that labour is employed on all
capital goods. An interesting extension of the model would be a model in
which idle capital has no labour working on it. However, as Nickell notes,
this would lead to "considerable notational and expositional inconvenience”
(p.56). Moreover, the assumptions made in this chapter (which lead to a
rather ‘rigid” firm) accentuate the effects of a fluctwating demand,
studied in Chapter 5.

Although the assumptions of full utilisation of capital and no inventory of
finished goods can be motivated economically (see also p.62), an other
important motivation for these assumptions is to keep the number of (state)
variables low (see the remarks on p.2).

Finally, this model will not describe reality equally well for all possible
kinds of firms. Assumptions like ‘a homogeneous capital stock and
production’, and ‘mo access to sources of external equity’ seem to make,
when considered as domain assumptions, the model most suitable for
relatively small firms. Moreover, in the case of small firms the reward for
suppliers of debt is not mnecessarily lower than the reward for suppliers of
equity. It is possible that the suppliers of equity (the owner(s) of the
firm) only ask a relatively low reward, for instance if their main goal is
to stay imn business (to survive).
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From a techmical point of view, note that Q, L and Y can be eliminated from
the model (see {4} and (5)). Thus the model has two state variables (K and
X} and two control variables (I and D). The upper bounds on I and D are
artificial and they are imposed because the model is linear in the control
variables. An infinite control variable would imply a discontinuous change
(jump) of the state variables affected by this control wariable. Imposing
upper bounds on the control wvariables implies that abrupt changes in the
state variables are impossible; only gradual changes are permitted. This
emphasises that the firm can only slowly adjust its size (see Chapter ne.
A policy where the control wvariables are on their artificial bounds can be
interpreted as: the firm wants to bring about a change of one or more state
variables as quickly as possible. It is assumed that the wupper bounds are
very high, so that the firm can only maintain I=][m“ or D=]Dmm through
borrowing the necessary money, implying a rapid rise of the amount of
debt’.

4.3 Necessary and sufficient conditions for optimality

The Maximum Principle is wused to find the necessary and sufficient
conditions for optimality. All details can be found in Appendix 1. After
elimination of Q, L and Y, the model contains two pure state constraints.
Pure state constraints, i.e. constraints that do not explicitly contain one
or more control variables, complicate ‘the application of the Maximum
Principle, since the wvariables appearing in these constraints can only be
manipulated indirectly through the control wvariables. Feichtinger and Hartl
[1986]® give an excellent exposition of the different ways to handle these

®The reason to exclude abrupt changes is partly mathematical: abrupt
changes (jumps) of the state variables complicate the application of the
Maximum Principle.

"Kort ([1989], p.13) states that there are implicit financing bounds on the
control variables; it seems to me, however, that the firm can temporarily
finance an arbitrarily high 1 or D by lending money.

¥ will refer frequently to this book, although it has been written in
German. The reason is that I think it is the most complete book from an
applicants  point  of view: all existing variants of the deterministic
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pure state constraints. They advise to wuse the so-called ‘direct adjoining
approach’ and this advice is followed in this thesis. Now the necessary
conditions are presented and explained afterwards.

The Hamiltonian and the Lagrangian are defined as follows:

W=D + A0-aK) + A{(1H(E-wL-aK-rY)-D} (12)

Il

=
Il

W+ oul + a0 D+ uD + u O D)

X

+ 0 (K-X) + v,{(1+b)XK) (13)

When using the ‘direct adjoiming approach’, ome has to take into account
that the costate variables Ai, which can usually be interpreted as shadow
prices of the state variables, may jump in entry- or exit points of a
boundary (i.e. an interval on which a pure state comstraint is active™.
When some appropriate regularity conditions are satisfied (see Appendix 1),
the Maximum Principle states that for an optimal (I,D,K,X) there exist
piecewise  continuously  differentiable  functions Ai,‘ piecewise  continuous
functions H and v, constants ¥, and for each timepoint 7 where A is
discontinuous a vector n(r), such that for all timepoints t where (I,D) and
A are continuous:

optimal control  problem are treated systematically. less  extensive
references in the English language are Selerstad and Sydsaeter [1987)
(mathematically precise), Kamien and Schwartz [1981], and Sethi and
Thompson [1981].

’For a precise definition of a boundary, see Appendix 1, p.151.
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%:o = A+ -u =0 (14)
%:Uﬁ = =5 l-).z-f-uz-yd‘:{) (15)
i = g%c + QA = (i+a)k, + Az(l-f){?ﬂ,f; +a+r- %ﬁ} -u, + oo (16)
A= 8%+ i = GUupL, + v - (b, (n
ui=0, g (I -H=0, u D=0, u(D_ -D)=0, u=0,i=1,234 (18)
v, (K-X)=0, v {(1+h)X-K}=0, v 20, v,20 (19)
L@ =7y -7, A =1-y + (1+by, (20)
7 {K@-X(@)} =0, y {(1+6)X()-K(@)}=0, y =0, y,20 @y

If A is discontinuous in 1, then:

It

207 = A0 - n @) + @2)

it

AT = A0 + 0 - (1+bn, ) (23)

n (M{KD-X(D)} = 0, n,({(1+5)X(x)-K(x)} = 0, (1)=0, n,(1)=0 (24)

Equations (14) and (15) constitute the heart of the Maximum Principle. From
the definition of the Hamiltonian (12) and the Lagrangian (13), it is clear
that (14) and (15) state that the Hamiltonian is maximised with regard to
the control variables, subject to the control constraints (8) and (9). The
Hamiltonian can be interpreted as follows: ll is interpreted as the shadow
price of capital and /1.2 as the shadow price of equity. This means that )11
(‘12) measures the rate at which the objective function grows if the capital
(equity) stock grows. The Hamiltonian (12} is equivalent to:

HIXLDY = D) + 4 0K+, 0% (25)

At time t the firm can wuse the comtrol wvariables to generate direct
contributions to the objective function (i.e. pay out dividends) or it can
use the control wvariables to generate contributions to the objective
function in the future. These indirect contibutions at time t are measured,
due to the shadow  price interpretation  of Al and ,12, by
Al(t)]l‘ii(t)+ll(t)5((t)! So, maximising the Hamiltonian with regard to the
control  variables at each point of time means maximising the foral

-40-



contribution (the sum of immediate and future contributions) tw the
objective function ar each point gf time. This implies that the dynamic
optimisation problem is split wp in infinitely many staric optimisation
problems.  Of  course, these  static  optimisation  problems are not
independent. Their interdependency is captured by equations (16) and (17),
which give the developement over time of the shadow prices }tl and ‘12“
Chapter 6 is devoted to the interpretation of 4, and Az, especially with
regard to the interpretations of the possible jumps (see (22)-(23)). For a
more elaborate intuitive derivation of the Maximum Principle, see for
instance Dorfman [1969] or Intriligator [1971].

Equations (I8) and {19) are the complementary slackness conditions for the
inequality constraints (like in linear programming). Equations (20) and
(21) constitute the transversality conditions, which determine the values
of J.t and A, at the end of the planning period.

In Appendix 1 it is shown that these necessary conditions are also
sufficient, but that there may be more than one solution. Also in Appendix
1 one finds an elaboration of the so-called ‘coupling procedure’ (or path
connecting procedure), which is an iterative procedure, developed by Van
Loon [1983], to find the optimal policy for the entire planning period
[0,2]. The idea of this procedure is as follows: the optimal policy is
determined by answering the question: which constraints are active at each
point of time. It is most likely that a constraint is only active during
one or more subintervals of [0,z]. Consequently, the set of active
constraimts at a certain point of time will change over time: at time t
other constraints are active than at time L Now a path is defined as an
interval of time on which the set of active constraints does not change.
The optimal policy will in general consist of a succession (a string) of
paths. The coupling procedure is a systematic way to find the optimal
string’ for every initial situation (given by K(0) and X(0)).The relevant
properties of the feasible paths are summarised in table 1. See Appendix |
for the details'.

"“The borderline case i=(1-fir is excluded. For a motivation, see van Loon
([1983], p.48).
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path I D Y X K L' dS§/dK
_owl 1

1 akK  + 0 0 0 = Mpratyiy

2 ek  + 4+ bX = Wlegsbrt 11

3 + 0 + 0

4 ak 0 -+ 0 o+ = y‘{%-ﬂ»aﬁ*r

5 0 + 0 - - 0

6 0 + - - - bX

7 0 0 + £ - +

8 ak D__+ - 0 4+ = E"E+a+r

9 1 D + + + +

mEex mEx

10 10 + + + +

]Il 0 Dman + - - +

12 + 0 + + + bX

Table 1: The optimal paths

Path 1 and path 5 are only feasible if i<(l-f)r. Path 2 and path 6 are only
feasible if i>(1-fyr. Since dS/dK denotes marginal rcvemuc”, one expects
that the right hand sides in the ‘dS/dK-column’® in the table denote some
marginal costs. It is clear that wl/k and a are respectively the wage costs
and the depreciation costs per unit of capital. The only other costs are
financing costs. If an extra unit of capital is entirely financed with
equity, before tax financing costs equal i/(1-f) (N.B. the price of a
capital good equals one). If this extra unit is entirely financed with
debt, the financing costs are r. If the firm has maximal debt (i.e.
Y =bX=>b/(1-b)K), an extra unit of capital will be financed with b/(1-b)
units of debt and 1/(1-+b) units of equity. Total financing costs per unit
of capital are therefore:

b 1 i
5" * TF6 T
So on path 1,2,4 and 8, marginal revenue indeed equals marginal costs for

A more precise (but longer) mame would be: marginal revenue product of
capital.
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different financing situations.
4.4 A feedback decision rule

This section gives a feedback decision rule which characterises the optimal
policy in ecopomic terms. It is good to realise that this rule was in fact
derived ex post: the optimal policy was first found mathematically and
economically interpreted afterwards.

The decision rule wuses a few well known economic concepts. The marginal
return on assets, R(K), is defined as the extra income generated by one
extra unit of capital, divided by the expenses made to acquire that capital
good. The price of a capital good equals one, so that:

RK) = (1) { 4§ - %4 - a} 26)
Note that, since S is a concave function of K, R is a decreasing function
of K. This R(K) is an important quantity, but for the sharcholders the

crucial quantity is the return on equity, denoted by RB(K,X)u The following
leverage formula can be used to derive the marginal return on equity:

RK) = R(KX) * % + (fHr* v2)
And thus, using (5):
R (K,X) = R(K) + {R(K)-(1-Hr} *:}Y( (28)

Given the values of the state variables K and X (implying Y) at a certain
time t, there is a net cash-flow equal to:

(1-N{ SK/K) - CHK - aK ¥ } + aK 29)

Equation (29) is wsually named ‘accounting cash-flow’ (after tax profits
plus depreciation). In this chapter and Chapter 5 the term ‘accounting
cash-flow’ always denotes the quantity in (29). The problem facing the firm
at every instant of time can now be phrased as follows:

How should it spend this ‘accounting cash-flow’ to obtain the highest

possible value for (1)7
From (2), (3), (5) and 29) it follows that:

‘accounting cash-flow’ at time t = It} + D(t) - Y(1) (30)
So to reach its goal, the firm can choose between three activities:
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4} imvest in capital goods

b} pay back debt or borrow

¢} pay out dividend
In fact, the firm can choose two activities freely; together with (30) this
fixes the third activity, The firm will now make a comparison between the
returns on each of these activities. The minimum return required by the
shareholders equals i The fmarginal retirn on paying back debt equals
(1-fir and the marginal return on investment equals R(K). The marginal cost
of borrowing equals (1+fjr. Note that (1-fyr and i are constants, but R{(K)
and RB(}{,X‘) are not.
For the moment it is assumed that (29) is always a positive amount. To see
how the firm should optimally act, three different situations have to be

distinguished:

A) R (K.Xy > i

The marginal return on equity the firm can achieve exceeds the required
return on equity, so0 in this situation it is certainly not optimal to pay
out dividend. It is better to keep the money inside the firm. But how
should the ‘accounting cash-flow’ be spent?

If RK) > (l-fir, the firm invests as much as possible and borrows the
necessary money, If debt is already maximal, the firm maintains Y=5X;
together with D=0 and (30) this determines the level of investments.
Borrowing is profitable, since the marginal return on investment exceeds
the cost of debt. Or, putting it differently, as long as R(K) > (1-Hr the
firm has a positive leverage (see (28)) and therefore borrows as much as
possible to finance investments. If R{(K) < (1-f)r, the firm has a negative
leverage, so if it has debt, it is optimal to spend all its ‘accounting
cash-flow” to pay back debt (the marginal return on paying back debt
exceeds the marginal return on investment); if it has no debt, it invests
its  ‘accounting cash-flow”. Finally, if R(K) equals (1-fir, the firm
invests to maintain this equality and wuses the remaining ‘accounting
cash-flow’ to pay back debt: if it would invest more, R(K) would fall below
(1-fir which would call for an end to investment; if it would invest less,
R(K) would become larger than (I-f)r and this would call for maximal
investment,
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B) RQ(K,X) < i

The marginal return on equity the firm can achieve is less than the
required return on equity. Now it is tempting to say that the firm should
use all its ‘accounting cash-flow’ to pay out dividend. But that does not
have to be optimal. Suppose i<(1-fr. RG(K,X), the marginal return on
equity, is im fact the extra return a shareholder gets if the firm invests
an extra umit of equity, given the debt-equity ratio at that moment. But
the firm has more opportunities for spending its momey than just investing.
It can easily be secen from (28) that R@(K,X)(n‘ implies R(K)<(1-fir. So if
the firm has debt, the leverage effect is negative. Therefore, if i<(1-fir,
it is more profitable for the firm to lower its debt-equity ratic by paying
back debt than to pay out dividend.

The decision rule in this situation is: do not invest in capital goods; if
i>(1-fir, borrow to pay out dividends at a maximal rate; if debt is already
maximal, maintain maximal debt and use the remaining ‘accounting cash-flow’
to pay out dividend; if i{<(l-fyir, use all ‘accounting cash-flow’ to pay
back debt if there is debt, otherwise pay out dividend.

O R(KX) =i

If (I-fir<i, then this is the optimal situation, provided debt is at its
maximum (since debt is cheap now). So the optimal policy is: invest to
maintain RQ(K,X):E and use the rest of the ‘accounting cash-flow” to pay
out dividends. This means that if debt is not yet at its maximum, the firm
pays out dividends at a maximal rate and borrows the necessary money.

If i<(l~fir, debt is expensive. When the firm has debt, it can easily be
scen that R(K)<(l1-fir and thus it is most profitable to use the ‘accounting
cash-flow” to pay back debr. If debt is already zero, the situation is
optimal and the firm invests to maintain RO(K,X):i and uses the rest of the
‘accounting cash-flow’ to pay out dividend.

In summary, the decision rule for the firm is:
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IF R > i THEN D=0
’ IF R > (1-ir THENIFY <bX THEN I=1__
IF ¥ =bXTHEN maintain Y =bX and
invest
IF R = (1-fir THEN maintain R=(1-f)r and pay back debt
IFR < (1-fir THENIF Y>0, I1=0 and pay back debt
IF Y=0, invest the ‘accounting
cash-flow"
IF R, < i THEN I=0;
IF i < (I-fir THENIF Y>0, D=0 and pay back debt
IF Y=0, pay out the ‘accounting
cash-flow’
IF i > (I-fir THENIFY<bXTHEN D=D_
IF Y =§pX THEN maintain Y=>5X and
pay dividends
IF R = { THEN
IF i < (I-fir THENIF Y>0, D=I=0 and pay back debt
IF Y =0, maintain Rc=i and pay
dividends
IF i > (l-fyr THEN maintain Rﬁ=i and D=Dmx
In the mnext section it is illustrated that this decision rule exactly
explains the optimal strategy of the firm for every possible initial
(K(0),X(07), assuming that (29) is always positive.
It is important to note that this decision rule implies that for this model
the optimal control is  synthesised, which means that the optimal
(I(t),D(t)y is given as a function of (X(t),K{t)). (see Seierstad and
Sydsaeter [1987], p.161). This is an extremely wuseful property, especially
with regard to the way uncertainty is treated (see p.34). If the
expectations of the firm prove wrong, it does not have to solve a new
optimisation problem. The firm can simply apply the decision rule to the
changed circumstances!
In general, such a synthesised comtrol can not be found (cf. Feichtinger
and Hartl [I986], p.62). Feichtinger and Hartl suggest that if one succeeds
to apply the coupling procedure of Van Loon, one can also find a
synthesised control (see p.365). In the next chapter however, the coupling
procedure is applied, but a synthesised control is not found. The reason
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seems (o0 be that the model in Chapter 5 is no longer autonomous. The model
in this chapter is autonomous (i.e., the time argument only appears as
argument of the control and state variables, and not as a separate variable
(except in the discount factor); in other words: the parameters do not
depend on the time wvariable) and time does not explicitly appear in the
decision rule. In other words, the optimal (I(t),D(t)) is expressed as a
function of (X(t),K(t)) instead of  (X(1),K(t),f). One can imagine that in
a model with a business cycle, not only X(t) and K(t) determine I and D,
but also t (that is, the position in the cycle).

This decision rule has a different structure than the decision rules in Van
Loon [1983]. Van Loon divides the optimal decision into three ‘sub-rules’,
where each subrule is concermed with a different decision: production
(choice of production techmiques), finance (borrowing or mnot) and the
distribution on the financial means between investments and dividends.
There is a hierarchy in these rules. They have to be applied in a specific
order: first ‘production’, then “finance’ and finally
‘investments/dividends’. This rule has a ‘management science’ character:
each ‘division’ of the firm has its own (sub-)rule. The rule derived in
this chapter has a ‘systems theory’ character: the optimal controls are
given as functions of the state variables. Of course, the rules are
equivalent in that they lead to (are based on) the same optimal policies.
It is a matter of taste which formulation one prefers.

4.5 HMustrations of the decision rule
Two cases have to be distinguished: i< (1-fir and (I-fir<i.

The case i<{1-fir
From (26) it is easily seen that:

dSIK =wllk+a+r == REK)=(1-Hr 31
dS/dK <wilk+a+r == RK)<(1-Hr 32)
dSIdK =wllk+a+il(1-) == R(K)=i (33)
dSIK > wilk +a+il(1-f) == RK)>i (34)

Moreover, Y=0 and dS/dK=wl/k+a-+i(1-f) together imply RG(K,‘X)=R(K):L This
is the optimal situation for this case, according to the decision rule.
This suggests that the firm will try to reach path 1 (see Table 1). In
Appendix 1 it is shown that path 1 indeed satisfies the transversality
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conditions at tme 7. Note that K is comstant on path 1, because d8/dK is
congtant. The initial condition is given by K(0) and X(0). which
immediately give dS/dK{0) and Y(0). The decision rule, however, is phrased
in terms of R, Re, i and (1-fyr. Therefore it is necessary to take a closer
look at the relations between dS/dK, Y/X, ch R, i, and (I-fir. It can
easily be seen that if Y/X grows from zero to b, the corresponding value of
d8/dK  that maintains the equality of RD(M,X) and i, increases from
wilk+a+il(1-fy to wlk+a+bri(1+b)+i{(1-NH(1+b). Together with (31)-(34)
this leads to the following picture:

0 o
T i
' wlik+a +r e ek (1) r

wllk+a+bri(1+b) -
+ i1 - fY1+b)

L i

wilk+a+il(1 - f) 4~

tiJ — Y{t) /X

Figure 1: The relation between marginal revenue, the
debt equity ratio, the marginal return to
assets and the marginal return to equity.

Together with Figure 1, the decision rule gives the optimal solution for
each (K(0),X(0)), since K(t) and X(t) determine Y(t) and dS/dK(t). Figure 2
gives the optimal solution if the initial level of the capital goods stock
is much lower than the ‘desired’ level om path 1. Figure 3 gives the
optimal solution if the initial level of the capital goods stock is larger
than the ‘desired” level. Note that dS/dK is a decreasing function of K.
This implies that the firm grows (K increases) if and only if dS/dK
decreases.
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‘ﬁ o (¢ )-\
wllk+a+rd e T

willk+a+if (1 -f)J

Y(0)

T 1 1 1 H

path: 10 12 4 3 1z -t

Figure 2: The optimal policy if the initial capital
goods stock is ‘low’

IR .Y (1)

wilk +a+rd
wilk+a+il (1-f3 o
R0 )-/’/——
Y (0)
path: 7 ' 3 1 oz st

Figure 3: Optimal policy if the initial capital goods
stock is ‘high’.

The case (1-Ar<i
Equations (BD-(34) are still valid. Moreover, Y=0X and
AS/dK =wllk +a+bri(1+By+if((1-H(1+b) imply that RJ(K,X)=L This suggests
that the firm will try to reach path 2 (see Table 1). For this case, the
following figure corresponds to Figure I:
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ax(t) R >i

wilk+a+ i/ (1-f}4

wilk+vat+br/(1+by

il (1= fyel+8)) ;
R <i I
wilk+a+r - : S L

Y (1) /X

The relation between marginal revenue, the
debt equity ratio, the marginal return fo
assets and the marginal return to equity.

Figure 4:

the decision rule gives the optimal policy for each

Together with Figure 4,
if the initial

set of initial conditions. Figure 5 gives the optimal policy

level of the capital goods stock is much lower than the desired level on

path 2. Figure 6 gives the optimal solution if the initial level of the

capital goods stock is larger than the desired level,

REOY () 4g
! ax (0
wilk +a-+bri{ 1 +b)
il (L-F)(0+b))]
Y (O
path: 10 I 12 ! 2 z[’ > 1

Figure 5: The optimal policy if the initial capital
goods stock is “low’.
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dSMHE(t), Y(t)

wlik+a+bri (1 +b) -
+H(1-H+b)

d
aI'S{(O\).
Y (0),
path: 11 ' 6 ! 2 I —t

Figure 6: The optimal policy if the initinl capital
goods stock is ‘high’.

4.6 Limitations of the decision rule
Until now it was assumed that (29) is always positive. This section relaxes

this assumption. Figure 7 shows the sign of the ‘accounting cash-flow’ for
all possible combinations of K and Y.

Yt
Kty b |
T T+5 accounting cash-flow

_ negative

accounting jcash-ﬂow
positive
i T
K R — K(t)

Figure 7: The relation between the accounting cash
flow, debt and capital

The levels of K on the final paths 1 and 2 lie to the left of ]!?C in Figure
7. This reveals that (29) is only negative if the capital goods stock is
extremely large. The reason to be interested in such situations, is that a
change of the environment may lead to a change of the ‘equilibrium (‘final
path’™-) wvalue’ of marginal revemue. With regard to this new ‘equilibrium
valug” the ‘old’ optimal K may be far too large in the new circumstances.

Before explaining the limitations of the decision rule, it is wuseful to
discuss the meaning of bankruptcy in the model. Bankruptcy occurs if the
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‘acconnting cash-flow' is still negative as debt reaches its wupper bound.
If such a sitwation occurs during tbe planning period, the model of this
chapter is no longer an adequate model. In the first place, if bankruptcy
occurs 4t time t, the planning horizon for the firm is not z but t. In the
second place, since the occurrence of bankruptcy is foreseen at time t=0,
it may be optimal to liguidate the firm at t=0 or at some point of time
before bankruptcy actually occurs. Howewer, the possibility of liquidation
is not included im the model, A realistic treatment of this possibility
would reguire a  specification of the cost of liguidation and a
specification of the market value of the capital goods.

MNow there are two important implications for the models in this thesis.
Firstly, anm optimal solution of the model is by definition a feasible
solution (i.e. an investment and dividend policy for the interval [0,z]
satisfying (2)-(9)y). This implies that the existence of an optimal solution
means that the firm will not go bankrupt (except possibly at time z; see
Appendix 1, p.156). So, if the firm can avoid bankruptcy, it will do so (in
an optimal way). Secondly, if the firm can nor avoid bankruptcy, the model
is not appropriate.

Thus, to determine the area of application of the model it is important to
find owt for which parameter configurations the firm is not able to avoid
bankruptcy. This will be an important issue in Chapter 5.

Now turning to the limitations of the decision rule, consider the case rthat
i<(1+fyr. If the ‘accounting cash-flow’ is negative at t=0, the firm does
not invest and does not pay dividends. It borrows just enough money to pay
the wages. If the ‘accounting cash-flow” is still negative as debt reaches
its upper bound, the firm is bankrupt. If this is not the case, the
decision rule can be applied beginning at the moment that the ‘accounting
cash-flow’ becomes positive. So the decision rule can easily be adjusted in
this  situation: as lomg as ‘accounting cash-flow’ is negative, do not
invest and do not pay dividends.

The situation is more complex when i>(1-fir.

In this case the cost of debt is smaller than the cost of equity, no matter
how large the capital goods stock is. So it seems optimal to reach Y=5bX as
soon as possible, If the initial level of the capital goods stock is high,
this would mean: =0 and D=Dm“. In Figure 7 this means an almost vertical
upward movement (Y increases rapidly, K decreases relatively  slowly;

-52-




remember the assumption that D=Dmu requires massive borrowing). This
implies that even if the ‘accoumting cash-flow’ is positive at t=0, this
policy (J[:O,D=Dm“; path 11) may lead the firm inte the “negative
‘accounting cash-flow’-region”, and eventually into a bankruptcy. The only
way to avoid bankruptcy in this case is to leave path 11 and to stop paying
dividends in time (i.e. switch to path 7). So the firm will start on path
11; at a certain time, when the ‘accounting cash-flow’ is negative but Y is
not yet maximal, the firm switches to path 7. This ‘switch’ is timed inm
such a way that when the debt-equity ratio reaches its upper bound, the
firm can continue on path 6 (or path 2). This phenomencn (the firm wuses
path 7 to avoid bankruptcy) will be discussed in detail in Chapter 5. The
important point to note now 1is that the decision rule does not tell when to
switch from path 11 to path 7. The answer to this question seems to depend
crucially on the specific form of the revenue function 8§ and om the walues
of the parameters. For instance, given some initial conditions K(0) and
X(0), the firm will go bankrupt for a low b and it will survive for a large
b. Moreover, the value of b is ome of the determinants of the point of time
at which the firm switches from path 11 to path 7. So the firm cannot
simply look at the values of the state variables. In other words, the
feedback decision rule breaks down.

4.7 Book value and market value

In section 4.2 X and Y have been defined as the book values of equity and
debt. The book value of X appears in the objective function (1). To be in
accordance with the theoretical finance literature, the objective function
should be: the discounted dividend stream plus the marker value of equity
at the end of the planning period. The question is whether the approach
using book wvalues leads to different result, compared to an approach using
market values. This question can be partially answered by examining a
result in Hartl [1988]. Hartl compares the optimal solutions of two models
which only differ with regard to the objective function. The two objective
functions are:

. “ Lo« BN
max @Jle"lD[t) dt + e Xz, and max OJ e'”D(‘l) dt. (34)

He finds that for both models the optimal policy is the same, provided z is
large enough. So the ‘book value approach’ apparently does not lead to
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hiased results. However, he also finds that
, ) w .
Oj'ze"‘m) dt + eX@) < OJ' e D) dt (35)

The same result can be easily derived for the model in this chapter.
Bquation (35) implies that the book wvalue of equity at time z, X{(z), Is

oo .
less tham the market value of equity, .[ e"(t"z)‘D(t) dt.
Zz

This can be understood in the following way. "z is large enough” means: the
firm reaches the final path before time z. So at time z the firm is om path
1 @f i<(1-Hr) or on path 2 (if i>{(1-fir). Consider the case i<(l-fyr. The
firm is on path I and on path 1 dividends are constant (use (3)), say
]6. This implies that the market value of equity at time z, MVE(zZ), equals
Dli.
The next step is to realise that on path 1 marginal revenue equals marginal
costs:

ASIOK. = wilk + a + i/(1-f) (36)
The right hand side of (36) is a constant, so rotal costs are a linear
function of K. Moreover, it is assumed that total revemue S is a concave
function of K. Finally for K=0, total revenue and total costs are zero.
This leads to the following picture:

K~

MR =MC

Figure 8: Total revenue and total costs

Figure 8 implies that if margival revemue equals marginal costs (as on path
1), then rotal revenue exceeds fotal costs. So on path [:

S(K) > {wi‘/k +a+ il(ltf)} K a7

The important point to observe now is that total costs include a reward iX
for the suppliers of equity. Thus (37) implies that after covering all
costs, including the required reward for the shareholders, there is still



some revenue left, to which these shareholders are entitled. The conclusion
is that, although on a marginal dollar the return is exactly i, the return
on the total amount of dollars supplied to the firm by the shareholders
exceeds i In other words, the market value of equity exceeds the book
value. Indeed, it can easily be seen (using (3)) that (37) iz equivalent
to:

D > iX = X < Dfi = MVE (38)

4.8 Summary and conclusions

In this chapter the optimal solutions of the basic model of this thesis are
discussed. Emphasis is laid on the assumptions of the model and om the
derivation of a feedback decision rule which gives the optimal policy for
almost all possible initial conditions, including conditions which imply an
initial capital goods stock which is too large. This decision rule breaks
down if there is a chance of bankruptcy, while i>(1-fir. In the following
chapters the model of this chapter is extended in several ways.
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5
MODELS WITH A BUSINESS CYCLE

5.1 Introduction

The models discussed thusfar in this thesis are dymamic models: the
objective function is defined on an interval consisting of many periods of
time {in models with continuous time even infinitely many), the state and
control variables are functions of time, the development in time of the
state variables is given by differential equations, and, generally spoken,
decisions takem by the firm today have consequences for the decisions of
tomorrow. In these models, the environment is stationary. This often
implies the existence of some ‘steady state’ (final path), which implies
constant values for the capital goods stock, equity, dividends and
investments. In the models of Van Loon, Wan Schijndel and Kort it is mainly
studied how the firm reaches this steady state in am optimal way. In this
chapter the environment is no longer stationary: the firm faces an
exogeneously given business cycle, represented by a fluctuating demand
curve. This leads to another kind of dynamics: the model is non-autonomous
(see p.46). In a npon-autonomous model it is difficult to apply the path
connecting procedure amd the existence of a decision rule is doubtful.

If the demand curve changes ‘smoothly’ over time (that is, there are mno
abrupt changes) and the firm is not restricted with regard to changing its
size (except that it can only change its size smoothly, since K must be
continuous), then the firm would simply maintain the equality of marginal
revenue amd marginal costs (or the equality of marginal return on equity
and the cost of equity), as on path 1 and 2 in Chapter 4. However, if
investments are irreversible and labour is working on all capital goods
(see section 4.2), the firm cannot quickly reduce the size of the capital
goods stock and labour stock, which only diminish due to depreciation. So
in the context of a changing environment, irreversibility of investments is

o

a crucial element of the model. Arrow [1968] states: ”...at a time at which
investment is  still profitable as far as curremt calculations  are

concerned, the firm may refrain from investment if it anticipates that in
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the relatively mnear future it would have disinvested if it could” (p.3).
Before this problem is analysed im detail, several preliminary remarks bave
to be made.

In ecomomics ome discerns several cyclical patterns in economic activity,
mainly determined by demand factors. The ‘busimess cycle’ in this chapter
is not meant to refer to a particular kind of cycle. It is only meant to
designate that the demand curve exhibits an up and down going movement,

The bulk of the Iliterature on business cycles concentrates om the
explanation of those cyles: why does a cycle occur?. There is much less
literature on how firms react when they are confronted with a variability
in ecomomic activity. It is of course an important issue whether a business
cycle is simply the sum of all actions taken by individual economic
subjects, or whether there is some phenomenom on an aggregate level to
which individual ecomomic subjects can only react. The same phenomenon can
be observed concerning growth theories, as indicated by Marris [1971]:
“...but most of these theories have left open the question of whether we
should best see the growth of the system as a direct aggregation of the
growth of the parts, or whether the parts mainly respond passively to
underlying forces pervading the whole” (p.1).

In its macro-economic models, the Dutch Central Planning Bureau identifies
‘demand expectations’ as one of the explanatory wvariables for the level of
investments. And when businessmen are interviewed about their investment
behaviour, they often mention the expectations on economic activity in
general and on the demand for their products in particular as an important
factor, which they can only partly influence. When economic activity is
going up, the firm expects to be able to sell more in the future and thus
it invests. Thus businessmen react to fluctuations in economic activity,
considering these fluctuations as given. This especially holds in an open
economy like the Dutch economy, where the economic situation, the trend of
the market, is largely exogemeous. So there seems to be reason enough to
study the optimal behaviour of firms as they react to fluctuations in
economic activity. In this chapter it is assumed that these fluctuations
are captured by a cyclical movement of the demand function of the firm in
question,

In the literature on  business cycles, the study of irreversibility of
investments s (again) primarily concerned with the explanations of
business cycles: it is shown that the combination of irreversibility and
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uncertainty about the profitability of investments may lead to cyclical
movements of the capital goods stock (Bernanke [1983]).

This chapter concentrates on the consequences of an exogeneously given
busimess cycle for the optimal policies of a firm, while investments are
irreversible. Section 5.2 discusses the model and gives the necessary and
sufficient conditions for optimality. Section 5.3 discusses the optimal
policy for different degrees of severeness of the recession if equity is
cheaper than debt (i<(1-fir). Section 5.4 does the same for the opposite
case (i>(1-fir). In section 5.5 this chapter is summarised and the main
conclusions are presented.

5.2 The model and the optimality conditions
5.2.1 The model

In the literature survey in Chapter 2 it has been noted that there are two
approaches to handle business cycles in a dynamic model of the firm. One
approach explicitly models the fluctuations in economic activity, the other
approach studies the behaviour of firms during business cycles by assuming
that the steady state of the model changes exogeneously and studying the
adaptive process of reaching the new steady state. In this chapter the
first approach is applied.

The models in this chapter are partly based on three articles (Leban &
Lesourne [1980,1983], Nickell [1974]) in which a firm faces a business
cycle (for a discussion of these articles, see Chapter 2). Nickell studies
the investment behaviour of the firm over a business cycle and concludes
that the expectations of the firm on the demand function are a crucial
determinant of that investment behaviour. Leban & Lesourne sum up the means
a firm has at its disposal to face economic fluctuations: “it can try to
influence the market through pricing or products differentiation; it can
create  manufacturing  capacities, finance research-development  projects,
invest or disinvest, recruit, let its staff decrease through voluntary
quits, bear labour hoarding, fire, distribute more or less dividends,
increase or not imcrease its equity, borrow or pay back its currenmt debt”
(p.201-202). In their articles, they concentrate on investing behaviour
when there is irreversibility of investments, and on recruiting and firing
policies. The last three items of their list of means, all concerning
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financial policies, are not adressed in their articles, nor im the article
by Nickell. Introduction of a business cycle in the basic model of Chapter
4 makes it possible to study these financial policies, within the same
framework as used by Nickell and Leban & Lesourne.

The only thing to change in the model of Chapter 4 is the specification of
the revemue function 5(Q), From now on this revenue function will also be a
function of time. To be more precise, let p(t,Q(t)) be the price per unit
of output at time t if the total output at time t is Q). Now S(Q,t} =
p,Q(tNQIt). The specification of the price function is the same as in
Nickell and Leban & Lesourne:

r@o = [ ¥y | Ve for ts ¢,
(m-g )t -mt -lle
= l: e e Q) J for t, <tst, (1
-gt m(tﬁ-w’tﬂ) -1le
= [e e Q(t)J for t> t,.

It is assumed that e>1 and m>g',
In graphical form:

=
5 d

N —
Q 0 , >t

Figure 1: The demand function

In the left-hand figure, t is fixed, in the right-hand figure , Q is fixed,
The left-hand figure shows the demand curve at a particular point of time,
the right-hand figure shows how the demand curve changes over time. It can
easily be derived from the algebraic formulation of p that for fixed Q the

1 ' . 4 . \
Note that p is not differentiable in t, and t,. The Maximum Principle

requires  that all  functions appearing in  the model i
re ) ) i are  continyously
differentiable, but in Appendix 2 it is shown th i tnuiti

‘ j at the discontinuiti
dpldt do not cause any trouble. uities - of
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price elasticity of the demand curve is -e. So the price elasticity is
constant over time. This implies that the so-called degree of monopoly
(1/¢) is also a constant. This reflects that the market conditions for the
firm do mot change; the business cycle affects its competitors in the same
way.

Deliberately, only ome recession is modelled. It is assumed that the
expansion period following the recession is lomg emough for the firm to
recover from the recession, so that the behaviour of the firm will be the
same if it faces another recession.

The given specification of p leads to a linear relationship between
marginal revenwe and price and to relatively easy expressions for the rate
of change of marginal revenue:

as8/aK(ty = (UE(I-1/ey*p(Q,r) for allt 2)

d 38/8K (1) = (1-1/e) { (g+a)K (1)-1(t) } BSIK(1) for t<t, and t>t,
dt eK(t) &3)

d 38/9K
dt

® = (1-1/e) { (8“"”1)(’;3)'“‘) } 3SIAK(t) for 1, <t<t. (4)
€ i ]

The complete model is:

Max OJl ey dt + e FX(r) (5)
1,D

Kty = I(t) - gK(©) (6)
X@t) = (1) {SIQ.t] - wL(t) - aK(t) - rY()} -D(t) (M)
Q) = Kityk, L) = IQ() = %"—I K(t) (8)
Kty = X + Y@ &)
Y1) = 0 (10)
Y1) = bX({) (11)
0=1I=T1I (12)
0 < DM =D 13)

Mote that again Q, L, and Y can be eliminated. It is assumed, as before
that i, @, r, k, I, b and f are constant and that >t
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In the context of a business cycle it would be interesting to introduce the
possibility to keep am invemtory of finished goods. The reason to exclude
this possibility is partly a heuristic assumption (it can of course also be
a dJomain assumption, for instance in the case of perishable goods). An
economic justification for pot including inventories is given by Nickell
{1974]: "It is reasonable to assume that ome of the major Toles of
inventories is to protect the firm against inevitable small random
fluctuations in demand. Since this model is focused on broad chamges in
demand, I do no think that their exclusion is a matter of very vital
importance” (p.l7)w2,

Another assumption of the model is that labour is employed on all capital
goods. It would be interesting to study a model in which capital goods can
be idle, with no labour working on it (see also p.37) In such a model,
excess capacity may occur during a business cycle. Nickell [1974] shows
that such excess capacity periods omly occur if the recession is very long
andfor steep.

The assumptions made in this chapter (no imventory, no idle capital)
accentuate the effects of a business cycle on the investment and dividend
policy of the firm. So, although they are partly mathematically motivated,
for the purposes of this chapter these assumptions are reasonable.

The problem for the firm is clear: if in a recession marginal cost becomes
larger than marginal revenue, it can try to shift along the demand curve by
diminishing the capital goods stock and production. But this is omnly
possible to a limited extent due to the irreversibility of investments. The
capital goods stock can only diminish through depreciation. Thus there are
two competing effects during a recession: price tends to increase as a
consequence of a leftward shift along the demand curve, but it tends to
decrease as a consequence of a downward shift of the demand curve.

5.2.2 The conditions for optimality

The necessary conditions for optimality are (14)-(24) of Chapter 4, with
dS/dK replaced by 4S/8K, since § is now a function of K and t. The

YFor a deterministic comtinuous time optimal control inventory model, see
Feichtinger and Hartl [1985]. In their model a firm chooses the optimal
production and price paths, while demand is given. They make some remarks
on the case of a cyclical demand.
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definition of the feasible paths is also the same as for the basic model.
However, the implications of this definition for the values of aK/dt, dX/dt
and dY/dt are not the same. For imstance, if d45/0K is constant, it can no
longer be concluded that K is constant. For the details and an enumeration
of all feasible strings, see Appendix 2.1.

5.3 The optimal solution in case i< (1-)r
5.3.1 Introduction

As in Chapter 4, a distinction has to be made between i<(1-ir (‘equity is
cheaper than debt’) and i>(1-f)r (‘debt is cheaper tham equity"). This
section studies the case i<(1-fjr. In Chapter 4 it is shown how the firm
reaches the final, “desired” path (in this case path 1). Now suppose that
the firm is onm path 1 when the message is received that a recession is
likely to occur, beginning t time periods later. To study the consequences
of such a forecasted recession om the optimal policy of the firm, it is
assumed that the time at which the message is received is time zero. So the
magnitude of t, can be seen as a measure of how early the recession is
anticipated. Since the firm is on path 1 at time zero:

Y©) = 0 and g}S{(o‘) = %1 a4+ U%’)’ (14)

Because the central feature in this model is the business cycle, the
parameter m has a special role: for arbitrary but fixed wvalues of all other
parameters the optimal string is studied for different values of m. Note
that for given g, the magnitude of m is a measure for the severeness of the
recession. Remember that m must be larger tham g (see (1)). During the
recession, marginal revenue tends to decrease, due to the downward shift of
the demand curve (see (4)). Consequently, the profitability of investments
prior to and during the recession is reduced, as is the ‘accounting
cash-flow’. This indicates that two crucial aspects of the optimal policy
will be:

1y Does the reduced profitability of investments lead to a complete
(temporary) stop of investments (I=0)?; if so, when does the firm stop
investrnents and when does it resume investments?

2} Does the reduced ‘accounting cash-flow’ Jlead to liquidity problems (that
is, will the cash-flow become negative), forcing the firm to borrow during
the recession?; if so, will it be able to pay it back?; if so, when?
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In the following subsections the optimal policies are given for increasing
values of m, and the crucial wvalues of m, for which the optimal policy
qualitatively  changes, are derived. For each optimal policy, the
development over time of marginal revenue d5/3K, capital goods stock K,
equity X, debt Y, investments I and dividends D is given.

5.3.2 A ‘light’ recession (g < m = g+a)

At t=0 the firm is on path 1. Staying on path 1 for t>0 implies maintaining
both equalities in (14) and using the remaining ‘accounting cash-flow” to
pay dividends. Dwuring an expansion, (3) gives the rate of change of 4S/6K:

d 88/0K M = (I-1/e) { (g +a)X (t)-I(1) } g{’((‘) (15)
dt e K(t)

Maintaining the equality of marginal revenue and marginal costs implies

keeping 3S/0K constant, since marginal costs

wi ;
¥ ota+ (Téﬁ (16)

are constant, From equation (15) it is clear that this implies
I=(g+a)K(t). Thus K grows at an exponential rate g. So during an
expansion the firm can stay on path 1

During a recession (4) gives the rate of change of JS/dK:

d 48/3K _ ; (g+a-m)K{)-1(t) | 88
4 05/08 = (1-1/6) for
it t) = (1-1/¢) { K (0 } ag(® for t <t<t (17

(17) reveals that keeping marginal revenue constant during a recession asks
for I(ty={g+a-m}K(1). Thus the firm is able to keep marginal revenue (and
price) at a constant level without wviolating the irreversibility of
investment constraint if and only if g+a-m=0. As long as m-g, the ‘rate of
decrease” of the demand function is smaller than or equal to the rate of
depreciation a, the firm can compensate the downward shift of the demand
curve with a leftward shift along the curve (note that the value of the
price elasticity does not matter in this respect). Thus, for m&(g,g+al, the

It is assumed that path 1 is a feasible path during an expansion, which
means that there is emough ‘accounting cash-flow' to invest (g+a)K(t) and
to pay out dividend. It is easily derived that for t<t, this assumption

implies: (wlik+a)le + (i-g(1-Ue))/(1-f) =0.
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optimal policy is to stay on path | during the recession. Figure 2 shows

the development over time of the relevant variables.

Figure 2: The optimal policy if me(g,g+al

Staying on path 1 implies a cyclical movement of the capital goods stock,
investments, equity, and dividends, following the movement of the economic
activity: K, I, X, D  increase until Ly decrease between t and L and
increase again after t .

In fact, the optimal solution of the model in this case (g-+a-m>0) for
arbitrary initial conditions is to reach path 1 as quickly as possible,
just like in the basic model. The ‘extra’ dymamics does not influence the
structure of the solution : the optimal decision at time t does not depend
on t, but only on K(t) and X(t). The decision rule can be used to find the
optimal solution,

LJ
§.3.3 A *moderate’ recession (g+a<m=m )}

The previous subsection shows that to keep marginal revenue constant
during the recession, investments must equal {g-+a-m}K(t). So if m>g-+a, the
firm will not be able to keep marginal revenue constant (and equal to
marginal cost), due to the irreversibility of investments constraint. In
this case the optimal string is 1-5-1. Figure 3 shows the optimal
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* g
development over time of the relevant variables if m&(g+a,m ], where the

u #* N »
critical value m is explained later on.

Lad

KXY

&
Figure 3: The optimal policy if m&(g+am ]

As derived in Chapter 4, on path 5 debt is equal to zero, the firm does not
invest and the ‘accounting cash-flow” is used to pay owm dividends. Figure
3 shows that it is not optimal to stay on path 1 as long as possible (which
would mean up to ta), At ts the firm decides to give up the remaining
growth opportunities: it stops imvestment and consequently marginal revenue
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grows and becomes larger than marginal costs (which are constant). During
the recession price and marginal revemuwe decrease. At a certain time during
the recession, marginal revenue falls below marginal cost: the firm is too
large, given the circumstances. The firm will continue to contract its
capital goods stock after t until marginal revenue equals marginal cost
again. As Leban & Lesourne [I980] observe, the fact that ts is smaller
than t, indicates that "an anticipation of a recession may be sufficient to
generate a recession” (p.69). The reasom that the firm stops investing
before the recession starts is that it seeks an optimal balance between
‘leaving path 1 as late as possible during the first expansion” and
‘returning to path I as quickly as possible during the second expansion’.

As in the case of the light recession, K and X show a cyclical pattern, but
their *‘downswing’ is now longer tham the expected length of the recession.
Dividends jump upward when the firm switches from path 1 to path 5, since
the ‘accounting cash-flow" that is no longer spemt on investments can be
paid out as dividends. During the recession dividends decrease rapidly,
since both p and K decrease (implying a rapid decrease of revenue S).

The two conditions determining the switching points tl.sand t,, are:

a) since dS/0K=wl/k+a+il{l-f) on path 1 and dS/dK is continuous, this

equality must hold at t,,as well as at t - This is equivalent to:

t
i G iRmar =0 (18)

1,5
In Appendix 2 it is shown that (18) is equivalent to:
(t,-t) (19)

(19) shows that the heavier the recession (i.e. the larger m-g), the longer

G bs = g-l-a

the “zero investment’-period. Leban & Lesourne and Mickell, who use the
same specification of the demand function, also find equation (19). So, the
introduction in the model of financial wvariables does not lead, at this
point, to different conclusions concerning the length of the “‘zero
investment’- period.

b) 4,(t, )=4,(t, )=0 and A,() <0 for t&(t, .1, ). (20
Appendix 2 shows that this implies:
z -(i+a)r-t ) ‘ .
i e L.s {gﬁ[{,}‘+a+~r‘f” dr = 0 @1
t
1.5
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)]

~{i+ayr-t .
IZ 6(1 ay(r-t) {a& [%vj + g+ l” dr < O for tE“;,s’ts_x

K - 1-F
(22)
This can be interpreted as follows: during the ‘zero investment -period
(path 5) the present wvalue of future revenues due to an extra unit of
investment is legss than the presemt walue of future costs. To understand
this, note that one unit of capital bought at time t depreciates at rate a;
thus at time 7 this unit leads to marginal revenue equal to
-afT-t}
e a5/0K,
and marginal costs equal to
ATl ) + i
{F a+mﬁ}
Thus the integrals in (21) and (22) denote the discounted value of the
revenues minus costs gemerated by ome wunit of capital over the remanining
part of the planning horizon. In other words, the ‘net” present wvalue.®
Similar conditions are found by Nickell and Leban & Lesourne.
Equations (19) and (21) constitute two equations with two unknowns, tl,S
and t oy Table 1 gives the derivatives of t s and Y, with regard to the
parameters.  If  possibe, they were derived analytically, otherwise

€

numerically.

w ko rf ot o b i g m a €
dt _/d.. o o o o 0 + - + - + -
d to id.. ¢ 0 0 0 0 - + + - + - -
method A A A A A N N N N N N N

Table 1: Sensitivity analysis for 11,5 and *5,1

“A" stands for anmalytic, "N” for numeric.
When reading this table it is important to keep in mind that the derivation

4 .

Note that the revenues and costs are discounted. For an extemsive
ireatment of the use, in dynamic models of the firm, of the net present
value rule based on cash-flows, see Kort [1989].

-68-



of tu and tS,l uses (14). So if wkJla,i or f change, 35/3K(D)
automatically changes, and thus the ipitial wvalues of the state wariables
change. Consequently, the value of the marginal cost (wlfk+a-+i1-f)) does
not influence t and t This explains the derivatives with regard to
wyk.l, and f. So, the wage costs per unit of capital and the level of the
corporate tax rate do wnot influence the length and the position of the
‘zero investment’-period, given the fact that at time zero marginal revenue
equals marginal cost.

The parameters g and { have an additional effect on ts and 1 - A higher
a means that the firm can diminish its size more quickly during the
recession. For a given wvalue of m, this means that the firm can stop
investments later and resume investments earlier. If { is large, events
close to t=0 get more important, so the firm will try to benefit more from
the growth of the economy before t, and thus it will postpone the ‘zero
investment’-period.

The derivatives of s and t - with regard to e are negative. To
understand this remember that during the ‘zero investment’-period, the firm
tries to decrease the capital goods stock as quickly as possible to offsett
the consequences of the downward shift of the demand curve. If e, the price
elasticity of demand, is large, a relatively large decrease of the capital
goods stock is mnecessary to bring about a certain increase im price. To
compensate this, the firm will stop growing earlier.

The remaining derivatives in Table 1 are self-evident.

The string 1-5-1 is optimal as long as ts is positive and the firm has
enough ‘accounting cash-flow” on path 5 to pay a positive or zero dividend
during the whole recession. Table 1 shows that the heavier the recession
(the larger m), the smaller Ly It is assumed that t, is ‘large’, so that
tx,s is - positive (dtl,s"‘dto>@’ see table 1)°. This means that the firm
starts on path 1.

It is obvious that for a ‘large’ m, marginal revenue is small during the
recession and thus there is not much ‘accounting cash-flow® available to
pay a positive dividend, For a certain crucial value of m (named m*),
dividends on path § become zero during the recession. For values of m

SIn Appendix 2 strings beginning with path § are also studied and it is
shown that 1-5-1 and 5-1 cannot both be optimal for the same set of
parameters.
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larger than this m*, the optimal policy qualitatively changes. Im Appendix
%

2 it is shown that this m equals:

* (g‘%‘»a)(tl-ti‘sj-eln‘ﬁ

(23)
m ==
Yt

where @=(1-1/e) * (wlik-fa/(1-f}) / (wl/k+a+i‘/(l-ﬁ)6‘

The timepoint at which the ‘accounting cash-flow” becomes nfgative is mamed

onois interesting to see how the parameters influence t . The following
w . - 1

table gives the derivatives of t, partly derived analytically, partly

numerically.

| w k / rf ty, oty i g m a €
de*/d. .. S+ -0+ o+ o+ -+ o+
method A A A A A N N N N N N N

Table 2: Sensitivity amalysis for ¢

"A" stands for analytic, "N” for numeric.
To analyse this table note that the characteristics of path 5 (see Chapter
4 or Appendix 1) imply that dividends become zero when

SMote that (23) only makes sense if ¢ >0, that is, if
wl_ fa > 0

If the left hand side of this expression is negative, the wage costs per
unit of capital are less than the tax deductions per unit of capital due to
depreciation. In that case dividends would never become zero during the
recession, and  consequently  liquidity problems  would not  occur,
irrespective of the wvalue of m! However, in the model it is implicitly
assumed that if profits (S(Q)-wL-aK) are mnegative, the government ‘pays
taxes” to the firm (see for instance (7)). In practice, losses can be
‘carried back or forward’ to reduce the tax bill in other years. In the
model the firm in fact receives this reduction ar the moment that it incurs
a loss. It is clear that a realistic treatment of these ‘carry back and
forward" opportumities would complicate the model comsiderably, but it
would not change the message: liquidity problems oceur if the wvalue of m is

*high enough’. So, although the precise value of m has mo real meaming, it

- * ~ .

is reasonable to assume that m does make sense. Moreover, even within the
context of the model, parameter configurations for which wilk-fal(1-f) is
negative are extreme.
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g = (1~Ue){wl ; %} Q24

MNote that the right hand side of (24) is a constant, and that 88/3K
decreases during the recession. The higher the right hand side of (24) or
the Jower the right hand side, the earlier 3S/0K reaches the right hand
side of (24).

The level of 8S/9K during the recession is determined by m, g, ¢, a (see
(3} and (4)), the value of tm, and the value of 35/0K at “z=tl'5 which is:

L i (25)
This implies that w, I, k, f, @, and e influence the right hand side as
well as the left hand side of (24), and { influences the left hand side of
(24) in a complicated way. The derivatives in Table 2 measure the net
effect of the different influences. As an example consider the derivative
of ¢ with regard to e, which is negative for e close to 1 and positive for
large e. Note that e affects t* in two ways: a larger ¢ diminishes the
difference of the marginal revenue at the beginning of path 5 and marginal
revenue at t* (compare (24) and (25)); this tends to make t smaller; and a
larger e decreases the rate at which 0S/0K decreases during the recession,
(m-g-a)/e; this tends to make 1:* larger. Thus there are two opposing
effects of e plus the effect of e on e through L and apparently the
net result depends on the value of e.

* Wk
5.3.4 A ‘severe recession’ (m <m=m )

If cash-flow problems occur during the recession, the firm has no other
choice than to borrow money to meet its obligations (to pay wages). If the
firm survives the recession it will pay back the debt as soom as possible,
since debt is expensive (i<(l-f)r). Borrowing means entering path 7. On
path 7 dividends and investments are zero and the ‘accounting cash-flow’
equals -dY/dt (see Appendix 1). This means that if the ‘accounting
cash-flow” is megative, exactly that amount will be borrowed and Y will
rise, while if the ‘accounting cash-flow’ is positive, it is used to pay
off debt, It can easily be seen that Y increases during the recession, so
at time tu’ at the end of the recession debt is positive and (as in the
previous subsection) marginal revenue is less tham marginal cost. For t>t,
the decision rule of Chapter 4 can be applied to find the optimal
trajectory towards the final path 1. For values of m sufficiently close to
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mw, Figure 4 shows the optimal policy:

as
gK
T T T T T T
tl,s to ts,v t\x tw,s 5.1
KXY

I1,D

i
t
0

1.5

) &
Figure 4: The optimal policy for m close to m

The development of a85/8K and XK, as well as the length of the “zero
investment’-period are the same as for the string 1-5-1. During the ‘debt
period’ no dividends are paid and the stock of equity decreases to a lower
level than it does onm string 1-5-1.
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There are four conditions to determine the switching points Lo Lo
t, and t 17. These conditions are discussed im detail im  Appendix 2.
The first condition is (see (24)):
‘accounting cash-flow® equals zero at the end of path 5 (at t, ,) (26)
The second condition is:
]
8 dy
debt equals zero at L and at = ‘)‘” mw(ﬂw dr = 0 27
5,7
The third condition is the same as {18):
t
g Bmar =0 (28)

This ilr;:pﬂies, since the differential equation for JS/8K is the same on path
5 and path 7, that (19) is again valid, which means that the length of the
‘zero investment’-period is the same for string 1-5-7-5-1 as for 1-5-1.

The fourth condition is the same as (20):

An(tl.s)=A (t_ )=0 and Al(t)<0 for te(t 3 (29)

1S, n.s’ts,n

This condition is now more complicated since ll is discontinuous at time
t,, (see the end of Appendix 1). The analog of (21) is:

‘t‘ ~(i+a)(r-t ,s) 35 wi .
tj” e ! (l—f){m - [F +a+ T%’]\} dr +
1.5

t —-(i+a)}r-t ) ‘
7,8 157 o a8 [wl |
s e a sz('c){HK [7&“ +a+ r]} dr  +

IR S | T

=i

Ls

G+t -t )

o 5.7 1,87 n o= 0, 30y
where e the magnitude of the jump of }“r att, equals:

"Note that, t = and t_ are now switching times of the string 1-5-7-5-1

which in general will not coincide with the switching times of the string

1-5-1, even  though ¢t -t is the same  for  both  strings!
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f“ {(1pr-i} A(r) ot (31)

S

Equation (30) can, in the same way as (21}, be interpreted as: the ‘net

present value’ of an investment at t, equa]ls ZEro.

The first and the third mtegra] are similar to (21): they denote the
discounted value of the marginal revenue minus marginal costs due to a umit
of capital bought at time t=t during the interval t“_u tg A resp.
[‘7u5,z] Marginal costs include wage costs, depreciation costs and
financing costs. Financing costs are /(1-f), the cost of equity. In the
second integral two things are different: ,12 appears and the financing
costs are r instead of if(1-f). The appearance of r is not difficult to
understand: on path 7 the ‘accounting cash-flow’ is zero, thus an
additional unit of capital can only be financed with debt; this implies
that the marginal financing costs of investment are r. The appearance of 12
is more difficult to understand. An extra capital good installed at time

leads to an extra revenue

r-t”)
bT o A8/8K (1),

at time t. This implies that X rises with this amount (see (7)). The
contribution, at time 7, of this rise of X to the objective function is
measured by Az(r)w (see also (4.25)). So the contribution, at time 1, to the
objective function of an extra capital good installed at time s equals

~a{1- ”]

e L3R,
Likewise for the extra costs. So

t, se-(i+a)w(r- t, )

t
5.7

measures the total contribution to the objective  function during the

WM {Gg - [ +a + r} o

interval (t” L, 5) generated by an extra unit of capital installed at
time t, s discounted to time t LS
Now the obvious question is of course: why does l not appear in the first

and third integral of (30) and in (21-22)? In f'xct it does occur, but on

-74.



path § A,!:Ism

There are two differences with regard to the interpretation of (21-22) and
(30), compared to Leban & Lesourne and Nickell. In the first place, in
Leban & Lesourne and Nickell the financing cost is, im all cases, simply
the discount rate. In the model of this chapter, the fimancing cost depend
on the source of funds wused, which in turn depends on the financial
situation of the firm. In the second place, the objective function of Leban
& Lesourne and Nickell is the discounted value of revenues minus expenses;
the effects of extra unit of capital have the same ‘“dimension’. In this
thesis, howewver, these effects (revemues and costs) have to be translated
in terms of dividends (that is, multiplied by the shadow price of equity).
If A is larger than ome, marginal costs and revenues are valued higher,
becau,:sc equity is ‘extra’ wvaluable (more equity would mean less expensive
debt).

To complete the interpretation of (30) the appearance of the jump has to be
explained. Note that n is positive, so that the ‘jump-term’ in (30) has
the same sign as marginal revenue. Apparently the upward jump of the shadow
price of equity may be seen as a revenue. I have not found a satisfactory
explanation of the magnitude of the jump from am economic point of view.

The analogue of (22) has to be split in two seperate conditions, ome for
t<t and one for t>t )

Itm e-(i-%—a‘)‘(r-t) a-n {g& - [%’l + a + Téf]} dr +

t
t -(i+a)(r-t) c
7.5 _ a8 _ [wl
tir_’ e (1 fMI(r) {B‘K [k—— + a + r” dr  +
z -(i+a)z-t) 3S wi ;
foe (- e Hllar o+
3o e 1)
“(i+a)(t. _-t
e )t -0, n, < 0, fort<t, (32)

In Chapter 6 it is explained why A,=1 on path 5.
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s JOFOED (1N D) {%f{ ; B‘E’f +a+ r]} at  +

tﬁz ﬁ‘(""ﬂ)ﬁ“ t)(l-ﬁn {g% - E{l + a + 1%} dr < 0 for 1z.>tﬂ»7 (33)
1.8

Together (32) 4nd (33) denote that the net presemt value of an investment
at time tE(tm, um) is negative.

Of the four equations for the “‘switching-points” of the string 1-5-7-5-1,
two are very large and complicated non-linear equations (see (A2.22) and
(A2.26)). It is impossible to solve these equations analytically for the
four timepoints. In Appendix 2 the results of a numerical solution of the

set of equations are summarised.

For larger values of m, debt Y will reach a higher level. Provided that Y
does not reach its upper bound, this means that it will take the firm
longer to pay back the debt. So the ‘contraction process’ after t (which
can be derived wusing the decision rule, as said before) gets more
complicated. The string 1-5-7-5-1 is replaced by 1-5-7-3-1, which in turn
is replaced by 1-3-7-4-3-1. The details of these strings can be found in
Appendix 2. The contraction process 7-4-3-1 is pictured in Figure 3 of
Chapter 4. It is interesting to note that for the strings 1-5-7-3-1 and
1-5-7-4-3-1, the ‘zero investment'-period is Jonger than for the strings
i-5-1 and 1-5-7-3-1. 8o if the recession is very hard, the liquidity
problems of the firm influence the length of the ‘zero investment’-period.
This is a nice example of how financing decisions and investment decisions
are related. Note that it is not true that the mere presence of a “debt
period” leads to a longer ‘zero investment’-period, since for 1-5-7-5-1 it
has the same length as for 1-5-1 (see page 73).

5.3.5 A fatal recession

In the previous subsection it was assumed that debt does not reach its
upper bound. If debt is on its upper bound bX and the ‘accounting
cash-flow” is negative, the firm is bankrupt. If the firm goes bankrupt at
a certain time t, the model of this chapter is not an adequate model, as
explained in section 4.6. This subsection studies the circumstances under
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which the firm goes bankrupt.
The firm will certainly go bankrupt if the amount of debt explodes. The
interest expenses rise as lomg as Y rises. It might happen that after L
the rise of the interest expenses dominates the rise of the ‘accounting
cash-flow’, which implies that the firm has to borrow more, etcetera, To
decide whether Y explodes or not, the differential equation of Y on path 7
is solved in Appendix 2. The results are:
If

(g+a)e-a-r(1-f) > 0, (34)
debt will not explode. Note that since I=0 on path 7, K decreases at rate
a, and thus total revenue, pK increases during an expamsion at rate
(g+a)e-a. The interest expenses increase at rate (I-ir. So (34) implies
that  total revenues increase faster than interest expenses. It is
understandable that in this case debt does not explode.
1f

(g+a)e-a-r(1-f) < 0, {35)
whether debt explodes or not, depends on the level of debt at the moment
that the ‘accounting cash-flow’ before interest becomes positive. If the
level of debt is relatively low at that point of time, the firm succeeds in
paying back this debt, despite the fact that interest expenses increase
faster than total revenue. If Y is relatively large, debt explodes. In
other words, since the interest expenses rise fast, the firm only survives
if it can pay back the debt quickly. Appendix 2 gives some numerical
examples.

Even if debt does not explode the firm can go bankrupt, namely if debt is
still increasing as it reaches its upper bound. It is clear that the firm
can try to avoid bankruptcy by stopping investment immediately at t=0. So
if the firm goes bankrupt (that is, there is no solution to our model
obeying all constraints), it must be that the restriction Y=bX is even
violated for strings beginning with path 5, followed by path 7. For a
string beginpning with 5-7, the value of m can be computed, for which the
firm is at one moment on the brink of bankruptcy but does not go bankrupt.
This walue of m is named m“w In Appendix 2 it is shown how mM can be
derived.The firm will certainly go bankrupt if m>m”
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5.4 The opiimal solution in case i>(1-fr
5.4.1 Introduction

This section treats the case (1-fir<i. It will be much shorter than section
3, since many aspects of the optimal solution for the case (1-fir<i are
similar to their counterparts for the case i< (1-fjr.

If (1-pHr<i, debt is cheap. In Chapter 4 it was argued that if S is not a
function of t, the optimal strategy for almost all sitwations is: whatever
the investment/dividend decision is, attract maximal debt as quickly as
possible and maintain Y=5X for the rest of the planning period. The only
exception was the case where maximal debt leads to bankruptcy. The same
phenomenon appears in this section. Agaim it is assumed that at t=0 the
firm is in its desired position, that is, path 2. This implies (see Chapter
4y:

! | ; .

Y(0)=bX(0) and JF@=2 + a + 25+ s iy (36)
MNote that the last equality in (36) implies that marginal revenue equals
marginal cost, where the financing costs are a weighted average of the cost

of equity and the cost of debt (note that maximal debt implies Y=1%b- K and

=1 . sep al
X-—-m K; see also p.42).
5.4.2 A ‘light’ recession {(g<m=g+a)

This situation is completely analogous to the sitoation described in
section 5.3.2, with path 2 instead of path 1.

5.4.3 A ‘modcrate’ recession (g+a<m=m )

If g+a<m, path 2 is not feasible during the recession. The firm is mot able
to keep 9S/3K om its desired level, since this would require a negative
investment (see (4) or (17)). 4S/8K will decrease during the recession. To
keep the ‘damage’ limited, the firm will stop investment during the
recession and possibly even longer. The optimal string is 2-6-2 and the
development of 85/8K, K, I and D over time has a similar pattern as in
Figure 2. The only difference is that the firm maintains maximal debt. Path
6 is the analogue of path 5: investments equal zero, the firm maintains
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maximal debt and the remaining ‘accounting cash-flow’ is used to pay out
dividends. The two conditions determining the switching points . and

tanz are:
3 3s ‘ ;

D SR = KU = Fratres TriE T S

and thus:
t
o2 4 93 dr =o. (38)
1.6

This leads to:

trte = g &) (39)

Note that the length of the ’zero imvestment’- period is exactly the same
as in the case i <(1-f)r for the string 1-5-1.

b) Al(tl 6) }&l(t‘6 2) 0 and A (t)<0 for te(t

(40)

1,6’ 62)
This is equivalent to:

z -(i+a)(r-t_ )
i R [ et ko e = 0 @

2,6

t

wi

HK-[F+a+]_%ﬁr+1%wﬁT%]}dr<O,for
) (42)

[

z -(i+a)\(‘[-t)
f {3 S

le(tw 6.2
These formulas can be interpreted in exactly the same way as (21} and (22).
The ‘*net preseat walue” of an investment is negative during the “‘zero
investment'-period. Only the financing costs are different now.

Equations (39) and (41) constitute two equations with two unknowns, b
and te o The derivatives of t 26 and t‘s,z are the same as in Table 1, and

also b docs not influence l: amd te,

If the recession is ‘severe’ (m is ‘large”), it may happen, since marginal
revenue  decreases  steadily, that the “‘accounting cash-flow”  becomes
negative, In that case 2-6-2 is no lomger a feasible strategy. The analogue
of (23) is: the string 2-6-2 is no longer possible (since the ‘accounting
cash-flow’ would become negative during the recession) if m>m (see Appendix
2, p.173).
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. {g+a)(t -t - eln¥
A (g +a)( : _%'6‘) eln , @3)
=

0
where

, wilk+a+bri(1+b) - al((1-f)(1+b))
F=0-1e) * G aF brI (T F By F i T FB))

In section 5.3.3 a sensitivity analysis has been performed with regard to
the timepoint where the ‘accounting cash-flow’ becomes nfgmivc‘. For the
string 2-6-2 this timepoint is named t. The derivatives of t with regard to
the parameters have the same sign as the partial derivatives in Table 2,
with the difference that t also depends on b and r.

1) d?/dr>0. If the rate of interest increases, the marginal costs per unit
of capital increase, so ome would expect that t would decrease. But if r
increases, marginal revenuc on path 2 increases and apparently this more
than offsets the increase of marginal costs.

2) The effect of b on E depends on the wvalue of b: d?/db>0 if
o< b < (r-witk-a)/(r +wlik+a), and d;/db<0 otherwise. This is inwitively not
clear. A larger b means more debt and thus a lower marginal financing cost,
since (1-fir<i. But a highfl‘ b also means a lower marginal revenue on path
2. The rotal effect on t depends on the actwal value of 5. Note that
dt/db<0 if b>1 .

A
5.4.4 A ‘severe’ recession (m>m )

Suppose the firm stays on path 6 during the recession: the firm carries
maximal debt, does not invest and pays out dividends; K, X and Y decrease
at rate a; at a certain moment the ‘accounting cash-flow’ becomes
insufficient to keep the debt-equity ratio constant, even if dividends are
zero: to keep the debt equity ratio constant, the firm has to pay back
debt: Y(t)=-a‘((t); from (4.30) it can be seen that this implies that the
‘accounting cash-flow’ at time t must be at least as large as a¥Y(yy. If
this is no lomger the case, maintaining the cash-flow identity (4.30) would
require paying back debt at a lower rate, but this would raise the
debt-equity ratio. But since this debt-equity ratio is already maximal, the

%See footnote 6.
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firm would be bankrupt! However, if the firm foresees this, it will v to
take precautionary measures. The firm will not employ the myopic strategy
of maintaining maximal debt, come what may. It will pay back debt while it
is still possible {(at the cost of dividends!) to create a borrowing buffer
for the ‘hard times’. The optimal policy will now be: 2-6-7-6-2, which is
depicted in Figure S.

38
K
|

oy
o o
e
-
=

2,6 1] 6.7 1 7.6 6,2

I | T
B6 Yo 6.7 1 7,6 6.2

g

Figure 5: The optimal policy if m>m
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From ¢, onwards the firm stops paying ont dividends and uses the
available ‘accounting cash-flow’ to pay back debt in order to lower the
debi-equity ratio. The firm will postpone t, 38 long as possible. In
fact, it will time t » in such a way that at the moment that ¥ reaches its
upper bound bX (at U 7'6), the ‘accounting cash-flow’ is exactly sufficient
to switch back to path 6!, The string 2-6-7-6-2 is the analogue of
1-5-7-5-1. Again four conditions are needed for the ‘switching times’. The
analogue of (26) is:

the ‘accounting cash-flow" at t is just sufficient to switch to

7,6
path 6 s

The analogue of (27) is:
Y(t, )=bX(t, )  and Y(t, )=bX(t, J. (45)

The third condition is (39), and the fourth is the analogue of (29). This
last condition can again be interpreted as: the net present value of
investments during the ‘zero invesiment’-period is negative. Again a ‘jump
terrn’  appears, since '{2‘ is discontinuous at nmh For the details, see
Appendix 2.

5.4.5 A fatal recession

As in section 5.3.5 the firm can stop investment immediately at t=0 to
avoid bankruptcy. Then the optimal policy is 6-7-6-2. It seems impossible
to derive analytically the sign of the derivative of tey with regard to m,
since the expression relating L and e is so complicated. But
intuitively it is clear that tﬁ.? will decrease, since the amount of
‘accounting cash-flow” decreases during the recession if m increases, so it
will take the firm longer to pay back the debt; therefore it will start to
pay back debt earlier to create a borrowing capacity that is large enough.
Numerical examples confirm this (see Appendix 2): for larger m, t is
smaller and eventually i, , tends to zero. However, the numerical exarﬁpies

show that te o decreases relatively very slow if m increases. To get values

'?‘Tgchmiczﬂly, this ‘exactly sufficient’ 1is represented by the fact that
dividends are continwous in the coupling point of path 7 and path 6 (see
Appendix 2). This means that dividends are zero in the starting point of
path 6. The firm can indeed switch to path 6, but initially there is no
money left to pay out dividends
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of t 61 close to zero, ome has to take unrealistically high values of m.
The firm is bankropt if t is smaller than zero, because this means that
even if the firm starts redeemmg debt immediately at t=0, liquidity
problems during the recession force the firm to accumulate debt at such &
rate that the deht-eqmty ratio exceeds b. This happens when m>m , where m

is the analogue of m
5.5 Summary and conclusions

This chapter discusses a model in which the firm faces a temporary
recession. Section 5.3 treats the case where debt is expensive, section 5.4
treats the case where debt is cheap. For different values of ‘severeness’
of the recession the optimal policy is presented. Due to the sluggishness
of the firm, represented by the irreversibility of investment constraint,
doring ‘moderate’ and ‘severe® recessions the firm canmot painlessly adapt
its size to the decreasing demand. The firm stops investment already before
the recession begins amd resumes investments some time after the end of the
recession. During this ‘zero investment’-period marginal revenue does not
equal marginal cost. For ‘severe’' recessions, an additional problem for the
firm is the possibility of a negative ‘accounting cash-flow’. For the case
of expensive debt this forces the firm to borrow, in order to meet its
obligations. For the case of cheap debt this forces the firm to create a
borrowing buffer for the ‘hard times’. In both cases the liquidity problems
may even cause bankruptcy, which may occur affer the recession is over. For
the case of cheap debt however, numerical examples show that bankruptcy
only occurs for unrealistically high values of m-g [m-g indicates the
severeness of the recession).

With regard to the length of the ‘zero investment’-period, the same results
have been found as in Nickel [1974] and Leban & Lesourme [1980,1983] (who
do not include finmancial variables in their models), except for very severe
recessions., Careful interpretation of the costate variables as shadow
prices makes it possible ro interpret the ‘“zero investment’-period as the
period in which the net present wvalue of investments is negative.
Unfortunately, no economic interpretation has been found for the magnitude
of the jump of the shadow price of equity.

Sensitivity analysis is performed for the starting and ending point of the
‘zero  investment™-period and the time point at which the ‘accounting
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cash-flow’ becomes pegative on the strings 1-5-1 and 2-6-2. One of the
fesults is that the wage costs do mét influence the starting and ending
point of the ‘zero imvestment’-period, but they do influence the time point
at which the accounting cash-flow becomes megative: higher wage costs force
the firm to leave the ‘desired’ level of debt (i.e zero resp. maximal) for
smaller walues of m. The sensitivity apalysis with regard to many
parameters can only be performed numerically, since these parameters have
different, opposite effects. Especially the effect of the price elasticity
is complicated.

From a technical point of view the most interesting feature of the model in
this chapter is the fact that the model is non-autonomous: time enters the
problem explicitly (that is, not only through the state and control
variables) because of the cyclical movement of the demand function. As a
consequence, the optimal solution cannot be described with the decision
rule derived in Chapter 4: the optimal choice of the control variables at a
certain point of time not only depends on the values of the state variables
at that point of time; it also depends on the rate of change of the demand
function at that point of time (is it shifting upwards or downwards) and on
the entire future development of the demand function.

Interesting extensions of the model would be models in which: the firm has
the possibility to wvary the utilisation rates of the production factors;
the firm has the possibility to keep an inventory of finished goods; the
cyclical movement of the demand function is accompanied by cyclical
movements of parameters (for instance the interest rate or the discount
rate).
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6

SHADOW PRICES IN A MODEL WITH PURE STATE CONSTRAINTS

6.1 Introduction

The concept of ‘shadow prices’ is often used in ecomomic analysis. Many
books and articles appeared on the existence of shadow prices in dynamic
optimisation models (e.g., Maurer [1984], Peterson [1973]) and their
usefulness in economics (e.g., Intriligator [1971]). Of course, the most
prominent feature of dynamic shadow prices is that they are functions of
time. In Optimal Control Theory, especially the shadow prices belonging to
the state wvariables play an important role in the ecomomic interpretation
of optimal solutions (e.g., Dorfman [1969]). The shadow price of a state
variable, which in technical terms is the walue of the costate wvariable
(see p.39), is the rate of change of the maximum attainable wvalue of the
objective function as a consequence of a marginal change of the state
variable!

However, in a dynamic context the interpretation of these costates is often
not intuitively clear. Especially in models with pure state constraints,
where it has been shown that the costates may jump. Moreover, there are
rather strong theorems concerning the timepoints of these possible jumps,
but there is mo theorem which states: "The costates jump if and only if
..... ". In short, as Feichtinger and Hartl [1986] state in their reference
work on the Maximum Principle (p.179), a full economic interpretation of
the costates and multipliers in problems with pure state constraints is
still missing. This chapter can be seen as a contribution to the attempts
to find such a full economic interpretation. The aim is to shed more light
on the shadow price interpretation of the costates and o study the
question: when and why does a costate jump.

A crucial element in that attempt is a shadow price interpretation for the

'Note that the costate cam be seen as a kind of Lagrange multiplier of the
equality comstraint dx/dt=f(x,u,t}. This suggests that the interpretation
of the costates is similar to the interpretation of Lagrange multipliers in
linear programming problems.
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multipliers associated with the pure state constraints, which is also of
interest in itself. The proof of that interpretation, which presupposes a
thorough understanding of functional analysis, can be found in Appendix 3.
Section 6.3 states the result and gives a sketch of the proof.

The immediate cause for this chapter are the jumps of the costate variables
in the model of the previous chapter. In section 6.2, a model is formulated
which is a slightly modified version of that model and which will be used
48 a stepping stone for the presentation of the results in this chapter.
Section 6.4 gives an interpretation of the costate wvariables. Section 6.5
explains the jumps of the costates which occur in the model. Section 6.6
gives some general guidelines concerning the shadow price interpretation of
costates in models with pure state constraints. Section 6.7 summarises this

chapter and gives some conclusions.

6.2 The model

In this chapter the model of Chapter 5 is used, with one modification®: it
is assumed that the demand over time for the products of the firm is given
by a cyclical function y, independent of the outputprice:

¥

I

{ t
0 !

Figure 1: The demand function

A specification of y is not needed, but one may see y as function (1) in
Chapter 5, made differentiable at t, and t and with p=e=1°. Furthermore it
is assumed that the firm is obliged to meet this demand at any poimt of
time:

Qty= p(t) (L
This modified model equals the model (5)-(12) in Chapter 5, with this
constraint added and with S[Q,t] replaced by »(t). The Lagrangian (4.13) is

2, . v g . .
The reason for this modification is that there are more jumps of the
costates in this modified model.

3Unl§lke_in chapter 5, the differentiability of the demand function is now
crucial in the coupling procedure.

-86-



apgmented  with u,‘(KI»'cny)~ With regard to the wmecessary conditions
(4.14)-(4.24), (4.16), (4.20) and (4.22) are to be replaced by:

=S v = Gran 1 an®l rar v ook @

L@ = -y, oy, e, 4@ = 1+ 140y, -y 3)
If A is discontinuous in T, then:

AN = 400 - 2@ + a0 + a0k “
Furthermore, (4.19), (4.21) and (4.24) are to be supplemented with:

Ug(K/k—y)=03 032‘0 5)

7, {K@/k-y@)} =0, 7,20 ©)

1,(D(K/k-y)=0, 7,20 !

Only one optimal string will be studied. Suppose:

- i<{I-fHr and Y(0)=0;

- K(0)/k=y(0);

- during the slump the firm is not able to keep production equal to demand
(i.e. the recession is severe). Due to the irreversibility of investments
(I=0), the capital goods stock does not diminish quickly enough: the firm
suffers from excess capacity.

- during the slump the ‘accounting cash-flow® becomes negative, forcing the
firm to borrow money to meet its obligations (as in Chapter 5).

The optimal solution in this case is sketched in Figure 2. It can be
compared with the optimal string 1-5-7-5-1 in Chapter 5. The firm tries to
maintain K/k=y as long as possible. At T, however, the constraint I[=0
becomes active and the firm is forced to leave the boundary K/k=y. At 7,
the ‘accounting cash-flow' becomes negative and the firm is forced to
borrow. If the recession is owver and the ‘accounting cash-flow’ becomes
positive again, the firm pays back its debt as quickly as possible. At 1,
all debt is paid back. When the recession is over, y rises steadily and at
T, the period of excess capacity emds. From then on the firm maintains the
equality between production and demand.
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D >0 D >0 D 0 D >0 D >0
I > 0 I = {0 1 0 I = 0 1 > 0
l|“{) Aj<0 Al<0 Ax<0 Amr—ﬂ
i, =1 A, =1 A, > 1 A, =1 A, =1

Figure 2: The optimal policy

Application of the coupling procedure reveals that Al is discontinuous at
T, and T, and A, is discontinous at 124. As said before (p.38), since the
‘direct adjoining approach’ is used to handle the pure state constraints,
the costates can be interpreted as shadow prices of the state variables at
timepoints where they are continuwous (Feichtinger and Hartl [1986], p.176;
a proof can be found in Maurer [1984]). So the wvalue of a costate at time t
equals the rate at which the objective function would grow, if we would
inject the corresponding state variable with an extra wnit at time t. With
this in mind, the aim of this chapter is to explain the actual values of
the costates and to interpret the jumps of the shadow prices.

Equations (2) and (4.17) can be written as (N.B. )Ll(z)=0, Az(z):-l, and uz-—-O
everywhere):

A0 = tj%“”*‘““"“ {—Al(r)\(ﬂ-f)(%ﬂ}-a+r)+ul+ug/k} dr + ‘jumps’ (8)

A = t;’:e"{“"(1‘”}”‘%!(1) dr + e EUANEY gy ©)

Obviously, in order to use these equations to analyse )‘1 and ‘lz’ it is
necessary to kmow if and how the multipliers of the pure state constraints
b, can be interpreted. This is the subject of the next section.

Aoy . A N
The jumps at 7, are similar to the jumps at t, , in section 5.3.4.
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6.3 A shadow price interpretation for v

Like im linear programming, the shadow price of a constraint in a general
static optimisation ptoblem can be obtained by measuring the effect of
‘perturbing’ that constraint. By relaximg a constraint, one enlarges the
nsmber of ‘feasible’ points from which the optimal solution must be chosen,
so the walue of the objective function for the optimal solution will
certainly not decrease. The rate at which the objective function increases
is defined as the shadow price of the constraint, and in static
optimisation this rate equals the walue of the Lagrange multiplier
belonging to that constraint. In a dynamic problem, the Lagrange multiplier
is a function of time. Reasoning by analogy, one might expect that the
value of this Lagrange multiplier function ‘(ui) at time T equals the effect
of a momentary relaxation at time 1 of the corresponding state constraint
(fhi), This, in fact, is true, but it takes some hard mathematics to make it
precise. What happens is, in short, the following:

Replace h(x,0)=0 by h(x,)=B(1), where B(t) is defined as:

B)=0 for O=stsT,
B)y=yle for r<st=<=t+€&, p<0, (10
py=0 for 1+ € <t=z.
b(ty 4
| T T+¢& e L
| i

£,
FiigUl € 3: The pcrtum‘batiﬂn funcliﬂn

For € approaching zero, this perturbation resembles a momentary relaxation
of the state constraint hi(x,t)z‘f). To measure the effect of soch a
perturbation, the ‘optimal value function’ V(o) is defined as the optimal
value of the objective function if the constraint h‘(xyt)z@ is replaced by
hix,)=zaft). (N.B. in general, the optimal solution of a ‘perturbed’
plroblﬁm will of course differ from the solution of the original

5This perturbation comes from Léonard [1987].

-89-



‘unperturbed’ problem). In Appendix 3 W is proved that: the directional
derivative of the optimal wvalwe function V(a) in the direction of B 0]
defined as above) at w=0 equals uﬂ(r). So vi(r) can be seen as the rate at
which the objective function would grow if the pure state constraint
h(x,0)=0 would be momentarily relaxed at time 7, and as the rate at which
t!:xe objective function would decrease if the pure state constraint would be

momentarily violated!®
6.4 Interpretation of the costate variables

Using this interpretation of v, the integrals in (8} and (9) can be

interpreted as marginal contributions to the objective function of an

injection of the state variable at time t (the walues of the jumps 1

cannot explain, see section 5.3.4). To see this, onme has to keep in mind

that a shadow price is in fact the partial derivative of the optimal wvalue
function (as defined in the previous section) with regard to a state
variable. Thus, when evaluating the effects of an extra unit of K (resp.

X), X (resp. K) should be kept constant,

1)  Am extra unit of equity at time t, with K constant, would lead, as it
were, to a negative debt. This can be viewed as lending: the firm puts
this extra unit in the bank and thus it grows at a rate (1-)r. At
time z this amounts to ‘e(l-f)r(‘z-t)' Meanwhile, this extra unit of
equity would lead to a violation of the constraint K-X=0 (if it is
active). To be precise, at time 7t (v=t) the constraint would be
violated  with eI i, This  ‘costs’ e“‘ﬁr(?t)vl(ﬂ‘
Discounting back to time t and integrating leads to the integral in
(9y.

2)  An extra unit of capital at time t, which depreciates at a rate a,
would lead, for X wunchanged, to extra costs at time 7 (r=t) of
e'“(r"t)(l-ﬂ(wl‘/k+a+r). Consequently retained ecarmings at time t
would decrease with this amount, So X would decrease at a rate
e"a(r'”(lwf}w(wllk-ka-l-r} and in terms of the objective function this

In the same way the interpretation of Ai(O} can be derived by perturbing

the initial value of the corresponding state variable. Another example can

be fmunq in Maurer [1979,1984], who studies the effect of a “permanent”

perturbation of hi(x,t)zﬂ; he replaces hi(xyt)aﬂ by h(x,}=# for all t
1

with f a real number.

¥
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‘costs’ Al‘(r) times that amount, since JLE is the shadow price of
equity. Moreover, this extra unit of capital would lead, at time 1, to
a relaxation of K/kzy with eV ynits and a relaxation of K-X=0
with e‘am_t) units (if these constraints are active). This is worth
&'“(T'm){(llk)vB(r)+ul(r)w}. Discounting  these contributions back to
time t and integrating leads to the integral in (8).
So it is clear that when interpreting the wvalue of a costate, the effects
on the constraints in which the corresponding state wvariable appears must
be taken imto account’ With regard to the jumps in (8) and (9) I can only
say, as in section 5.3.4, that apparently they have to be added as separate
contributions to the objective function.
But there is an other way to explain the actual values of Al and Az‘ To
onderstand  this, it is wuseful (in spite of the danger of terminological
confusion) to make the following distinction: in principle am extra unit of
a state variable can be “invested” (i.e. be used to generate contributions
to the objective function in the future) or “consumed” (i.e. be wused to
generate contributions to the objective function now). "In principle”,
since “consuming” an extra unit of equity means paying it out as dividends,
and this is not possible if dividends are on their upper bound®. Likewise,
"consuming” an extra unit of capital means lowering investments I by one
unit, and this is not possible if investments are on their lower bound.
Since the objective function 1is the discounted stream of dividends,
“"consuming” an extra unit of equity implies a contribution to the objective
function equal to one, “consuming” an extra unit of capital implies a
contribution to the objective function equal to 2zero. As can be seen from
(8) and (9), the shadow prices Au and 12 measure the effect of "investment”
of the extra unit of the corresponding state variable. If “consumption” as
well as “investment” are possible, their contributions to the objective

"Note again the resemblance to linear programming: if a decision wvariable
in a linear programming problem appears in several constraints, the
Lagrange multipliers of these constraints are interrelated.

",

8At this point it is important to be very careful with expressions like “an
extra unit of equity”., The costates measure the marginal contribution of a
state wvariable to the objective function, so one should think in terms of
an infinitesimal extra amount of the state variable instead of in terms of
an extra unmit. In other words, "am extra unit of equity” is in fact an
extra umit of X, measured in dollars per unit of time. From this and the
differential equation for X ((5.7) or (4.3)) it is clear that “"consuming”
"an extra unit of equity” amounts to lowering D with one unit,
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function must be equal along the optimal path (since otherwise the actual
fevels of 1 and D would not be optimal). Thus, in that case, Al" the shadow
price of capital, must egqual zero (being the value of “comsuming” a capital
good), and ﬂlz, the shadow price of equity, must equal one (being the wvalue
of “consuming” a unit of equity). Indeed, the necessary conditions show
that AJ equals zero when the constraints on I are mnot active and that .112
equals ome if the constraints on D are not active. If the firm does not
invest (I=0), apparently “consuming” am extra unit of capital is more
advantageous than “imvesting”. Indeed, AK is negative.” So it is clear that
the flexibility with regard to the control variables determines whether
“consumption” of a state variable is possible and together with the
specification of the objective function this gives information about the

value of the corresponding costate variable.'®
6.5 Why amnd when does a costate jump?

In section 6.3 it was observed that )11 is discontinuous at 7, and 7, and ).2
is discontinuous at 7, ({(see Figure 2). How are these jumps to be
understood? Since the pure state constraints are of order one, the jump
theorem of Appendix 1 can be applied, which for the model of this chapter
amounts to:
the costates can only jump if the control variables are continuous and
the strong comstraint qualification is not satisfied'’.
The matrix of the strong constraint qualification for the wmodel in this
chapter is:

*This explanation can easily be extended: for instance (see (4.15)), if

Dszax’ Azr—-l-,u“. The firm pays out the maximal amount of dividends, so

apparently “consuming” equity is more advantageous than “investing”. This
18 in accordance with the fact that Az is less than ome.

“Note that the specification of the objective function plays an important
role. If the objective function would have been the discounted wvalue of
fuuqre cash-flows [(-H*py-(wllk)KY+faK-1], the wvalue of "consuming” a
capital good would equal one and the firm would only invest if the shadow
price of capital would be larger than one.

1 : S
In the model of this chapter the situation that the control variables are
discontinuous and the entry or exit is nevertheless tangential does not
occur. See Appendix 1, p.152.
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M1 o1 0 0 0 0 0 0

-1 0 0 I -1 0 0 0 0 0

0 1 0 0 D 0 0 0 0

0 -1 0 0 0 D _-D O 0 o |as
1 1 0 0 0 0 K-X 0 0

-1 -(1+B)0 0 0 0 0  (1+B)X-K 0

Wk 0 0 0 0 0 0 0 K/k-y |

The costate wvariable Al jumps in L Indeed, I and D are coatinuous in T,
and it is easy to werify that the strong constraint qualification is not
satisfied in T, But it is possible that I and D are also contimuous in T,
Then the strong constraint qualification is not satisfied in t, either. In
that case the question is: why does Al jump in T, and not in r4‘? The jump
theorern does not provide the answer. My suggestion for an answer is as
follows:

a costate variable, belonging to some state variable x, jumps if the

entry or exit of a boundary of a constraint involving x could not be

postponed: the restrictions on the control variables force the firm to

leave or enter the boundary.”
At time T, investments have reached their lower bound. Thus the firm has
no choice there: to stay on the boundary K/k=y would require a negative
investment. It simply has to leave the boundary, forced by the restrictions
on the control variables. At time T, the firm could easily postpone entry:
it would simply invest more to do so. Likewise, ).l and Az jump at T,
because at that point the firm is forced to borrow money, that is, it is
forced to leave the boundary of the constraint K-X=0. Since this constraint
involves both state wvariables, both costates jump. Note that 1 and D are
continuous  in 7, and that the strong constraint qualification is not
satisfied. The entry of the constraint K-Xz0 in T, could easily be
postponed by borrowing some extra money. The strong constraint
qualification is not satisfied at T, but even if I and D are continuous in
T, (which 1is in principle possible), the costates will mot jump. In the
models of this thesis several jumps of costates occur, and all jumps occur
at entry or exit points where the firm is forced to leave or enter the
boundary, due to the restrictions on the control wvariables. In all other

A boundary of a constraint is defined as an interval on which this
constraint is active.
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where costates are continuous, the firm gould avoid

exit and entry points,
the restrictions on the control variables did not

entry resp. exit (i.e.
prevent them to postpone emtry resp. exit).
In my view, it is intuvitively plauosible
leads to a sudden change in the wvaluation of the state wvariables involved;
or, in other words, to discomtinuities in the corresponding costates.

that such a forced entry or exit

It might seem strange that such a sudden change in the wvaluation of a state
variable can occur in spite of the fact that the costate variable captures
all future effects of a change in the state variable (to put it informally:
at t<t, the firm ‘knows’ that the constraint 1=0 will become active; why is
this knowledge not incorporated in the value of A(t)?). However, this does
not preclude that there can be discontinuities, in the course of time, in
the effects of an extra unit of a state variable. For instance, if the firm
would get an (undesired) extra capital good just before 7, it would simply
“comsume” it; extra capital goods which the firm gets after ., however,
cannot be “consumed”. It is this discontinuity in the possibility of
“consumption” that leads to the discontinuities in the costates. So again
the flexibility with regard to the control variables is crucial. Before T,
there is flexibility with regard to I; after T, there is no flexibility
since the lower bound om I is active. One could say that if there is no
flexibility (i.e. ome or more bounds on a control variable are active), the
firm is vulnerable to changes in the state variables in the neighbourhood
of a jump: it can make an enormous difference if the firm gets an  extra
capital good just before time T, or a fraction of time later,

6.6 Some general guidelines for the interpretation of costates

In discussions about the shadow price interpretation of the costates, one
can often hear things like: “"suppose at time 1 there is a tiny increment of
the state wvariable, Then the corresponding costate measures the rate at
which the objective function grows”. If such a “tiny increment” occurs at
time t , it seems to matter whether one has the opportunity to revise one's
plans for the remaining part of the planning period or not. Bensoussan,
Hurst and Nuslond [1974] show that it does not matter. In the same spirit
is the result of Leéonard [1987], which states that it does not matter if
the perturbation of the state variable was anticipated at time t=0 or not,
Leonard explains these results, which run counter to economic intuition, as
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follows (p.121): "We are dealing here with the rate at which gain could be
made if we were to perturb the optimal path - which in the ead we do pot”
(underlining added).

These two ‘it does not matter'-results enable us to choose the most
convenient formulation of the shadow price interpretation of the costates,
most convenjent in the semse of “‘easiest to use in  economic
interpretations’. In this chapter shadow prices have been discussed on the
basis of formulas (8) and (9), where the costates at time t are expressed
as integrals over the time period from time t onwards. This implicitly
assumes that the perturbation of the state was not expected and explicitly
assumes that the plans are not changed at time t, simce the ‘old’ values
(i.e. the values from the solution of the unperturbed problem) of the state
variables and the multipliers appearing in the integrands were used to
interpret (8) and (9). Thus, I would recommend to interpret A(t) as the
rate at which the objective function could increase as a result of an
unexpected increment of the state variable at time t which does npot lead to
a change of plans on [t,z]. This also implies that an extra unit of a state
variable at time t has no influence on the constraints in the semse that
active constraints remain active. One has to keep, as it were, a separate
account for this extra unit. Moreover, the effect of am extra unit of one
state variable has to be evalvated while the other state variables do pot
change, since the costates are partial derivatives of the optimal wvalue
function.

6.7 Summary and conclusions

When interpreting the value of a costate variable in a moedel with pure
state constraints, it is important to remember that an increment of the
state variable at time t would mot only have direct consequences (in
economic terms: a change in revenues and costs) but also indirect
consequences, namely the violation or relaxation of active  state
comstraints. A violation leads to a negative contribution to the value of
the costate, a relaxation to a positive one (section 6.4}, The multipliers
of the pure state constraints can be interpreted as shadow prices in the
sense that they measure the effect of a momentary relaxation of these
constraints (section 6.3).

An impression of the value of the costates, without actually computing
them, can be obtained by comparing the effect of "investing” an extra unit
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of a state variable (i.e. wusing it 1o gemerate contributions to the
objective function in the future), which is measured by the costate, with
the effect of “consuming” (i.e. using it to genmerate contributions to the
objective funmction immediately). The constraints om the control variables
determine whether “comsumption” of a state variable is possible (section
6.4)., These constraints on the control variables also play a crucial part
in the interpretation and explanation of possible jumps of the costates: in
the models of this thesis, a jump of a costate occurs when the constraints
on the control wariables force the firm to leave or emter a boundary
(section 6.5).

It can be concluded that in the models of this thesis, which involve pure
state constraints, the costate variables can still be interpreted as shadow
prices. The actual wvalues of the costates and the occurrence of jumps can
be understood in terms of an interplay of the pure state constraints and

the control constraints.
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7

TECHNOLOGICAL PROGRESS IN VINTAGE MODELS OF THE FIRM:
SCRAPPING CONDITION AND STEADY STATE

7.1 Inmtroduction

In the previous chapters the environment of the firm changes in that its
demand curve changes over time. Im this chapter the enviromment changes on
the supply side: due to an exogeneously given technological progress, the
production function of the firm shifts over time'. The analysis will be
restricted to a very specific type of techuological progress, namely the
‘embodied labour augmenting” type. The adjective ‘embodied” means that the
technological progress omly applies to the latest capital goods: new
investments are the wehicle of technological innovations. The adjective
‘labour augmenting’ means that these technological innmovations lead to a
higher productivity of the people working with these new investments®. So,
although the capital productivity is not affected by this type of
technological progress, the capital goods stock is no longer homogeneous.

In this context, the meaning of the conmstraint I=0 changes. The assumption
of zero scrap wvalue is maintained, but the model is modified to allow for
the scrapping of old capital goods. This implies that the firm regains some
flexibility —with regard to changing its size. The constraint I=20 is
maintained, since I(t) denotes the number of ‘new” machines (i.e. machines
incorporating the latest technological innovations). So 120 is now a
logical restriction, while in previous chapters there was an economic
assumption behind it.

There is a considerable amount of literature om the effects of
technological progress on theories of ecomomic growth (starting with
articles by Johansen [1959] and Solow [1959]). Special attention is often
given to questions of ‘balanced growth' (see for instance Bliss [1968], Van

'Section 8.4 tries to combine both changes in one model.

*See Chapter 2 for the different types of technological progress.
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Especially in the Netherlands

den Goorbergh, De Groof and Peer [1979]).
theories

there have been a number of empirical applications of economic
that ipcorporate techmological progress, starting with Den Hartog and Tian
[1974], who use a vintage model, in which the technological progress is of
the type described above, to explain the growing umemployment rate in the
Netherlands. The central idea is that scrapping older vintages for economic
reasons may lead to an increase of the unemployment rate, even though
investments are taking place: the mew capital goods require less labour
than the same amount of old capital goods. This already indicates that the
‘scrapping condition’ (the rule which gives the optimal ecomomic lifetime)
plays an important part in vintage models. This scrapping condition will
have an accordingly prominent place in this chapter. The ‘balanced growth’
theories and the empirical vintage models are macroeconomic. The need for
micro-economic vintage models is expressed by Van den Goorbergh ([1978],
p.7) : "Juist bij de jaargangentheorie, waarin het al dan niet handhaven
van bestaande machines em arbeidsplaatsen micro-economisch gefundeerd wordt
op het verschil van opbrengstprijs en (loon-)kosten per eenheid product -de
zogenaamde  afkapconditie-, is men gemeigd te  zoeken maar een
micro-economisch geynspireerde analyse van het investeringsgedrag, waardoor
immers nieuwe machines en arbeidsplaatsen worden gecreserd”. Broer [1987]
explicitly formulates a ‘vintage theory of the firm’. His ultimate aim
however is to perform empirical applications on an aggregated level.

This chapter will be of a more theoretical nature. In section 7.2 a vintage
model is presented, based on the basic model of Chapter 4. The resulting
model is more general than the usual vintage models in that it includes the
financial decisions of the firm. The vintage structure asks for an adapted
version of the Maximum Principle, which is used to derive the optimality
conditions. In section 7.3 g1 general scrapping condition is presented and
it is shown that it entails some well known, seemingly different, scrapping
rules. Section 7.4 demonstrates that there exists a steady state solution
for the model. Moreover, it is shown that the ‘final path’ implies this
steady state. Section 7.5 gives a summary and conclusions. The optimal
trajectories towards the steady state of the model in sections 7.2-7.4 are
discussed in Chapter 8.
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7.2 The model and the optimality conditions
7.2.1 The vintage structure and the role of taxes

The model to be presented is a so-called ‘clay-clay’ model in which the
firm chooses its iavestment-, dividend-, and scrapping-policy to maximise
the discounted stream of dividends. It is based on the basic model of
Chapter 4. Ome of the differences concerns the production function. Broer
({19871, p.23) summarises the common ways to specify the production
fupction im a wvimtage model: "The standard assumption made in the
specification of this type of production function (i.e. a production
fapction of a vintage model) is that strict separability obtains between
capital goods of different ages, which results in a separate production
function for each capital vintage. Here we must distinguish between
specifications in which the firm can wvary the labour intensity of capital
goods equally before and after installation of the capital good
(‘putty-putty’ production models) and specifications in which the firm
lacks this freedom after installation (‘putty-clay’ specifications}”. A
third possibility, and the most simple one from a technical point of view,
is that the firm cannot wvary the labour intensity before and after
installation  (‘clay-clay’  specification).  This  chapter uses this  last
specification.

Concerning the scrapping and buying of capital goods, the following is
assumed: a vintage is scrapped as a whole and the firm receives no scrap
value for the scrapped capital goods. Moreover, the firm cannot buy second
hand capital goods. Since newer capital goods are better than older ones,
it will not happen that vintage t+7 will be scrapped while vintage t is
still being wsed. Thus the vintages still in use at time t are given by an
interval [N(t),t], where N(t) is the birth date of the oldest capital goods
still in wse at time t. PFor a clay-clay specification, this gives the
following expressions for K, L and Q:

=1 = 1 t a(t-T),,
)= ¢+ Kt - ‘ I(r) dr,
Qo= ¢ KO = ¢ N({) e v

Ly = 8 0Dl g )
© =5 e o

As before, k is the constant capital to output ratio and Kt) is the labour
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to output ratic at time t. The embodied labour augmenting technological

progress is represented by the fact that ! is a decreasing function of

time.

Due to the vintage structure the capital goods
because of depreciation but also because of the scrapping of vintages.
Until now, it bhas been assumed that fiscal depreciation equals technical
depreciation. In practice capital goods are fiscally depreciated in a fixed
number of wyears, which is in general less than the technical and economical
lifetime. The Maximum Principle of Appendix 4, derived in order to handle
constraints of type (1) (see section 7.2.4), also makes it possible 1o
model fiscal depreciation in a more realistic way: from now on it will be
assumed that capital goods depreciate technically at an expomential rate a
(as before}, and that a capital good is fiscally depreciated in a fixed
number of years, which is shorter than the actual economic lifetime of the
capital good. With this assumption, total depreciation at time t is:

stock not only decreases

A = | e(dItndit-) dr (2)
t-v

where
A(t) : total depreciation at time t
¢(t) : the price of a capital good at time t
d(t) : the rate of depreciation if a capital good is t years old
v : the number of years in which a capital good is fiscally depreciated.
The fact that a capital good is scrapped im v years according to the given
depreciation scheme d is captured by the relation:

Dj" dt) dt = 1 (3)
The only further assumption on ¢ is that it is a continuous function, which
implies that very general depreciation schemes are included.
The fiscal book value of the capital goods stock is no longer equal to K.
So if the balance sheet equation is used, it is mnecessary to make a
distinction between the fiscal balance sheet and the commercial balance
sheet”. In the following it is assumed that the upper bound on debt is in

aThi.s also  gives different wvalues for equity. Therefore it is more
straightforward  to wse a differential equation for debt instead of a
differential _equation  for equity (as was done in the previous chapters).
Moreover, if equity would be defined as K-Y, the right hand side of the
differential equation of equity would contain the term
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terms of the commercial valve of the capital goods stock, that is: YﬁT;—i’ﬁﬁcK«
The differential equation for Y is:

Y(t) = -(1-H{ pQQ) - wL() - rY(®) } + c@®I) + D) fAQ)
4
Note that the price of capital goods equals <(t) instead of one. This is
done in order to compare the results of the model with the results of other
models.

7.2.2 The model

If the basic model of Chapter 4 is changed as explained in the previous
subsection, the result is:

max e -it D(t) dt (5)

I,D,B 0

Koy = 90 ar = it ey dr (6)
N(t) V(o

Qr) = K(t)k M

Lo = § ik dr = STk dr ®)
N(t) Vi)

A = P e@I@)di-n) dr (9)
t-v

Yt) = -(1-p{ pQQU-w(OLM)-rY(®) } + c(®I(t)+D(1)-fA(1) (10)

V(t) = B(t), for all tzn, where n0=N'(O) (11)

Y(1)=0 for all t=0 (12)

Be(HK(t) - (1+b)Y() = O for all t=0 (13)

ﬂsI(t)sJ[mu, for all t=0 (14)

0=DM)=<D_, for all t=0 (15)

e N )N,
since X=K-¥ and K(©)=1(0-ak()-e * N vl Gsee (1)).

It can easily be seen that the Maximum Principle in Appendix 4 cannot
handle terms like I(N(t)).
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B =B(M=B , for all tzn (16)
min TRER a

I(ty is given for t€ [n,0) (17

Note that V eguals N' (gsee (6) and (8)) and that B is the derivative of V
(see (11)). The change from N 1o V"' and the restrictions on B {(16)y will
be discussed in the next subsection. The objective function (5) is the
usual one. A infinite horizon is chosen for simplicity. Equations (6)-(8)
have already been explained. The constraint I=0 means that the firm can
only buy a non-megative amount of new capital goods. Equation (17) replaces
the usual "K(0) is given”. Due to the vintage structure, K(0) no lomger
contains all relevant information from the past. Equation (17) gives the
missing information, the number of capital goods of every vintage still in

use at t=0,
7.2.3 Some properties of N(f)

At this point it is necessary to examine the function N(t) carefully.
Define:
N(t): the birth date of the oldest capital goods still in use at time
L.

V(t): the scrapping date of capital goods installed at time t.

Note that V(t) only makes sense if I{t)>0. For the moment assume that
indeed I(t)>0 for all ¢,
The most obvious properties for N and V are:

N{ty<t, V{t)>t (18}
Next assume that scrapping is irreversible. So if a capital good s
scrapped at time t it cannot be used at a time t’>t. Assuming that N is
continuous, this means that

dN/dt=0 (19)
Moreover, it does not make sense to scrap newer capital goods earlier than
older ones if there is technological progress. Assuming that V s
continuous, this means that

dVidt=0 (20)
From the interpretation of N and V it is clear that
VNt =t (21

If it is also assumed that dM/dt and dV/dt are not equal to zero, them N
and V  have an inverse function. Then, if investments are positive
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everywhere, N(t} equals V'l(t) (given the interpretation of N and WV,
V(N())>t leads to a contradiction. So (21) implies N =V‘I). Moreover, even
if investments are not positive everywhere, replacing N by V' does not
affect the model (see Appendix 5.4). In Appendix 4 it is made clear why
this replacement is crucial from a techmical point of view.

The existence of the inverse functions is based om the strict monotonicity
of N anmd V. Strict monotonicity does not follow from (19) amd (20).
However, since the existemce of the inverse function of N is indispensable
from a techmical point of wview, B is bounded from below in (16) by an
arbitrarily low but positive Jower bound to ensure strict monotonicity of W
and bounded from above by an arbitrarily high upper bound to ensure strict
monotonicity of N (note that N(V(D)=N(N'))=1/B(t)* When interpreting
particular optimal solutions, an active lower bound on B means that the
firm would like to set B equal to zero, implying a constant V (which means
that a number of vintages are scrapped at the same date), an active upper
bound at t means that the firm would like to set B(t) equal to infinity,
implying a constant N(V(t)) (which means that for some time no scrapping
takes place). If I>0, it will never be optimal to have V(i)<t, and thus
there is no meed to include the restriction V(t)y>t (see (18)) in the model.

It should be noted at this point that the assumptions concerning N and V (N
and ¥V are continuous, strictly increasing functions of time) are
partly mathematically motivated: these assumptions are indispensable in
Appendix 4.

7.2.4 The optimisation problem

As in the previous chapters 1 would like to apply Optimal Control Theory
(in particular the Maximum Principle} to vintage models. In their survey
article on Control Theory and the dynamics of the firm Lesourne & Leban
[1982] suggest that this is wvery well possible. They state that "fumctions
with generations of equipment (which) have not beem used enough in
microeconomic control theory models” (p.4). However, constraints of type
(1) do not occur in standard optimal control problems. If the lower bounds
of the imtegrals in (1) are given (finite or infinite), variations of the
ordinary Maximum Principle exist that can handle constraints of type (1)

“In footnote 11 the assumption of strict monotonicity is relaxed,
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(see Kamien and Schwartz [1981] and Harl and Sethi [1984]). However, in
the model of section 7.2.2., that lower bound is a state variable. Another
possibility would be to apply the so-called ‘Distributed  Parameter
Control’, which Feichtinger and Hartl [1986] believe to be a suitable tool
to handle vintage models (p.527). I did not succeed, however, im writing
the model (5)-(17) as a ‘distributed parameter control’-problem to which
standard results could be applied. Broer [1987] states that a putty-clay or
clay-clay vintage model “cannot easily be formulated as an optimal control
problem in the absence of a suitable set of state variables (in principle
the entire investment history is relevant, which makes the state vector
infinite dimensional)” (p.119). He seems to be right, it cannot be done
easily, However, if one reconciles oneself with this situation, one is
forced to use more or less ad hoc methods to solve every ‘vintage
optimisation problem’. This is especially problematic if there are
constraints involved in the model which do pot contain control variables
and if one wants to apply the path connecting procedure. Therefore I tried
to derive a ‘new’ Maximum Principle for problems with constraints like (1).
K, L, and A are not treated as state wvariables in the usval sense, but
variables that are determined by the normal control and state wvariables and
the equality constraints (6), (8), and (9). This ‘Maximum Principle’ is
derived in Appendix 4 and will be used in the remainder of this chapter.

7.2.5 The optimality conditions

In correspondence with Appendix 4 the Hamiltonian and Lagrangian functions
are defined as’:

W =D + AB + 14[-(130{ POKIOKE-WL-FY } - fA + o] + D} +
I(t)lfv(t) SEHAEVE ) () + gomLm b dr +
e [ YA (e dr 22)
1

W o= AB + I(n)tjwl) DTN @) + UbaD) } (23)

*In Appendix 4 the constraint (9) can be freated in the same way as the
consiraints (6) and (8). The derivation of the optimality conditions with
constraint (9) added is straightforward.
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L=H + oY + 0f{bK - Q+HY} + ul + (L D)+
uD + uD D) + u(BB_) + u(B -B) (24)

X

L, =# +u(®BB_ )+ uB_-B) (25)

H and L are the usual Hamiltomian and Lagrangian; ]Ll, Ag and AS are the
multipliers of the equality constraints (6), (8) and (9) for capital,
labour and depreciation. Since the optimal B has to be determined on the
interval {no,oo) instead of [0,0), am additional Hamiltonian and Lagrangian
(Hb and H.b) are needed. W and L only contain the expressions in M and &
that involve B. The optimality conditions (A4.47)-(A4.55) of Appendix 4
amount to:

afa1=0 == ac + (VO EAENG o) 4 @ik ) dr
t

+ cmtjt‘“’ VL (d() dr + p - m, = 0,
for all t=0 (26)
alL.l‘B‘Dz-@ == 1 + /l4 *ou,-pu = 0, for all t=0 2n
albIaB=8&llaB=0 == Aa‘ + U - H = 0 for all tzn (28)
L0 = & /8K = -(1:)A,{85/6K} + vbe, for all t=0 29
A0 = & 3L = A (1w, for all t=0 (30)
Ay = & JBA = -Af (31)
L) = id-& 18V = id-a foV =
i, 0 - 10e CrOVODE 3 v+t .
for all tzn (32)
A = e ey = id® - AN - v + 1+, (33)

pI=0, u(_ D=0, 4 D=0, u(D_ -D)=0, u=0i=1234, 120 (34
'MS(B-Bmiu):O' ué(Bmax-B)=‘0’ MSZU’ MGZOT tz"o (35)

ulY=O‘, vz{ch-w(H-b)‘)Y}xO, vla‘(), v,=0 36)
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36 = 467 + 1) - A+bn(D) 37
7,020, 7,020, n@Y()=0, 1,(0) {be(m)K(D)-(1+)¥()=0 (39)

Equations (26)-(28) state that the Hamitonians are maximised with regard to
I, D, and B for all t=0 and with regard to B also for n05t<01, subject to
the constraints (14)-(16). Equations (29)-(31) give the values of the
multipliers of the constraints (6), (8) and (9). Note that they are
similar, but mnot identical, to the wusval differential equations for the
costate variables, (32) and (33). The differences between 113 and A4 on the
one hand and A, i and A, on the other hand are explained in the next
subsection. Equations (34)-(36) are the usual complementary slackness
conditions. Equations (37) and (38) are the jump conditions, which are
needed because of the presence of pure state constraimts.

In Appendix 4 it iz not formally proved that the conditions (26)-(38) are
necessary for optimality. Instead, these conditions are supplemented with
some concavity assumptions and it is proved in Appendix 4 that this
augmented set of conditions is sufficient for optimality, Unfortunately, I
am npot able to prove the concavity of the maximised Hamiltonian in all
cases, which is one of the concavity assumptions. So now the situation is
somewhat unsatisfactory: on the one hand not all sufficiency conditions of
Appendix 4 are satisfied, and on the other hand Appendix 4 only gives an
heuristic  derivation (instead of a formal proof) of the ‘necessary’
conditions (26)-(38). From now on 1 will treat (26)-(38) as necessary
conditions.

7.3 The scrapping condition
7.3.1 A gencral scrapping condition

In the Netherlands there has been some discussion about the scrapping
condition in clay-clay vintage models (see Den Butter [1976], Den Hartog,
van de Klundert, Tjan [1976]). In the publications of the Central Planning
Bureau, the scrapping condition is phrased as: a vintage is scrapped when
the revenues of that vintage no longer cover the variable costs (i.e.
labour costs). Malcomson [1975] phrases the scrapping condition as follows:
"Equipment of a given vintage should be used only as long as the operating
cost of producing a wunit of output on equipment of that vintage is less
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than the the marginal cost of producing that output on the most recemt
vintage” (p.28). Den Butter [1976] asserted that these two formulations of
the scrapping conditions are essentially different, but Den Hartog, Vaa de
Klundert and Tjan [1976] have shown that the Malcomson-condition is exactly
the same as the CPB-condition if one assumes perfect compétition on the
output market. In his article, Malcomson assumes a downward sloping démand
carve. In the following a scrapping condition is derived for the model
(5)-(17), which in its most general form is phrased in terms of a certain
type of sbadow prices of capital and Ilabour. This scrapping condition is
equivalent to:

Equipment of a given vintage should be wused only as long as the
marginal operating  cost of producing on equipment of that vintage is less
than the marginal revenue of producing on equipment of that vintage.

Note that this rule looks different from the Malcomson- and CPB-condition.
However, it will be shown that both the Malcomson-condition and the
CPB-condition are special cases of this condition. A careful examination of
the content of the ‘marginal revenue’ will be the crucial issue.

Suppose that the constraimts on B are not active. Then (28) implies }.3=0.
Combining A‘g(\t)-——ﬂ’ I{t)>0 and (32) gives the scrapping condition:

A VW) + {e,®kIA VW) = 0° 39)
To interpret this condition, it is necessary to know the interpretation of
A , and ‘11‘ Remember that Al and 4, are the multipliers attached to the
equality constraints (6) and (8) for capital and labour. In Appendix 3 it
is shown that the multiplier of a constraint which involves state variables
can be interpreted as the contribution to the objective function of a
momentary perturbation of the constraint. Although (6) and (8) are
different from the usual constraints, it is postulated that the multipliers
A][t)w and }LZ(t) can likewise be imterpreted as the contribution to the
objective function of a momentary perturbation of the capital resp. labour
stock at time t. It is important to mnote that this interpretation differs
from the shadow price interpretation of costate variables: the costate
variable measures the effect onm the objective function of a permaneny

‘Broer [1987] derives a similar condition (p.153 for instance). His rule is
even more general since his model incorporates utilisation grades.
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addition to a state variable. For instance, suppose the capital good stock
(denoted by K’y is a wusual state variable and denote the wrrespon‘ding
costate by Aﬂ’. Then ii;(t) measures the contribution to the ahjcclfve
function of anm extra capital good which is added to K’ at time t and which
the firm keeps from time 1t onwards. A.ﬂ(l:),‘ however, measures the
contribution to the objective function of an extra capital good which the
firm only has at its disposal during the instant o’

Mow it is possible to interpret condition (39), which is the scrapping
condition for capital goods installed at time €. AI(V(t)) measures the
contribution to the objective function of am extra unit of capital at time
v(ty; It)/k is the labour-to-capital ratio of vintage t; lz(V(t)) measures
the contribution to the objective function of am extra wunit of labour at
time WV{t). It is clear from the formulation of the model that capital
yields a positive contribution to the objective function and labour a
negative one. So l(t)/klz(V(t]]w is the (labour} “cost” at time V()
associated to an extra unit of capital of wvintage t. So (39) means that
capital goods of vintage t are scrapped when the ‘marginal revenue’ of this
vintage equals the associated ‘marginal labour cost’. This is the general
scrapping rule as proposed in the beginning of this section. It is now
clear that a careful examination of the marginal ‘revenues’ and ‘costs’ is
crucial: the ‘revenues’ and ‘costs’ should be interpreted as contributions
to the objective function and thus their interpretation strongly depends on
the nature of the model.

Two final remarks conclude this section. In the first place mote that AE
and 112 are more or less ‘static’ shadow prices: they measure the effects of
some change which lasts only ome instamt of time and these effects are only
different from zero at that instant. So it seems that the choice of the
scrapping date is a ‘static’ problem. This is further discussed in section
7.3.4.

In the second place note that (39), the scrapping condition at time t,
gives the date at which to scrap machines installed at time . It may seem

7If(omc swould define within this model the ‘ordinary’ shadow price of
capital, At, a natyral definition would be:

A;(l\) = tlvm a'(wmt(f'[)ﬁl(ﬂdt.
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strange to determine the scrapping date of a machine when it is installed.
It seems more appropriate to determine at time t which of the old machines
should be scrapped. Im a deterministic model however, there i3 no
difference. If one substitutes N(t) for t in (39), then, since N is the
inverse function of V, (39) becomes:

A + {NWYVEIALE) = 0 (40)

Now this rule gives N(t) and N(t) implicitly determines which old machines
should be scrapped at time t.

7.3.2 Comparison with other scrapping rules

In the wintage models ome finds in literature, the financial side of the
decision making problem of the firm is ignored. To compare the model of
this chapter with these models, set Y()=Y(t)=0 for all t and f=0 in
(5)-(17). Then D can be ecliminated. The result is: maximise the discounted
stream of cash-flows

05 ® & { p(QU).QM) - WOL() - c(VI(r) } dt “4Dn

with regard to I and B, subject to the constraints (6)-(8), (11), (14) and
(16)-(17). In most vintage models, the constraint (1S) on the cash-flows is
ignored.

These simplifications lead to the following simplifications of the
optimality conditions: set /14‘(t)=-1 and }Ls(t)=u3(t)==,um(t)=vl(t‘)=vg(t)‘=0 for
all t in (22)+(38) and ignore (33), (37) and (38). Now (29) and (30) imply
that Am(t)=BS/aK(t) and Az(t)w=-w(t) (Note that this confirms the postulated
interpretation for }Ll and Az). Now the scrapping condition (39) is:

FSIHK (VL)) - {HOEIW(V() = 0 (42)

So a capital good of vintage t is scrapped when marginal revenue equals the
wage costs of a unmit of that vintage (only wage costs, no financing costs
or depreciation costs!). It is now easy to see how this relates to the
Malcomson-condition and the CPB-condition, as mentioned is section 7.3.1,

The Malcomson condition

Assume that the bounds om I are not active. Substituting ,ul=,ulu() and
(29)-(30) in (26) and then differentiating (26) and using (39) gives:
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asiok() = "D wit) + ic®) + ac®) - ) -

VO a0 10, gy g @3)

t
The right hand side of (43) cam be imterpreted as the marginal cost of
producing on a machine installed at time t: the first four terms of the
right hand side constitute the ‘usuval’ marginal cost: wage cost plus
capital costs (see, for instance, Nickell [1978b], p.10). But with the
introduction of technological progress, the marginal cost is augmented by
the last term in (43) (Note that I(t) is negative). This term accounts for
the ‘extra’ wage cost the firm incurs due to forgone technological
progress: if the firm would invest a moment later, the wage cost per unit
of capital would be lower because mewer capital goods require less labour.
The higher the rate of technological progress (which means that the
absolute wvalue of | is large), the more expensive it is to invest now
instead of a moment later.
So (43) implies that 45/0K(V(t)) equals the marginal cost of producing on
machines of vintage V(t). So now the scrapping condition (42) can be
rephrased: capital goods of vintage t are scrapped when the wage costs per
capital good of vintage t equals the marginal cost of producing on a
capital good of vintage V(t), i.e. on a nmew capital good. This is exactly
the Malcomson-condition. Note that the Malcomson-condition is not valid
when the upper bound on investments is active.

The CPB-condition

To arrive at the CPB-condition one additional assumption has to be made,
namely: there is perfect competition on the output market. This implies
that: p=4a8/8Q=k(35/3K). Substituting this in (42) and multiplying (42) with
the total output om capital goods of vintage t gives the CPB-condition.

7.3.3 Interpretation of the serapping condition in the general model

In the general model, the values of AJ and Az are more difficult to
interpret, As stated before, '1‘1 and Az measure  contributions to the
objective function. An extra dollar cash-flow at time t means one unit less
debt. The contribution to the objective function of a wnit of debt equals
14 {since ).4 is the shadow price of debt). So the contribution of an extra
dollar cash-flow at time t to the objective function equals -A4(t)‘, which
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explains why 114 appears in the right hand sides of (29) and (30)%.
If the bounds on D are not active, (27) gives AQ—%—I. In this case two
situations have to be distinguished:
a) uz=0, implying ¥Y<bX.
In other words, the upper bound on debt is, in general, not active. Using
I>0, 13=0 {(see (28)) and ,‘14=-1 and substituting (29) and (30) in (32)
gives:

BSIFK(V(Y - {IORIwV(Ey = 0° (44

This condition has the same interpretation as before: a vintage of capital
goods is scrapped when the marginal revemue of producing with that vintage
equals the marginal cost. As before the costs consist only of wages.

by v, >0, implying Y=bX=bK/(1+b) and ul=0u

*In the course of writing this thesis, mamy models were developed which
were not good enough to be included. One of these models deserves to be
mentioned in a lengthy note. This particular model is a vintage model in
which: fiscal depreciation equals technical depreciation; the scrap value
of capital goods is not zero but equals the book wvalue; the firm faces
adjustment costs. These assumptions forced me to wuse a differential
equation of equity instead of debt. The scrapping rule in this model was:
ASIBK(V(t)) = w(VNItk + ac + ic

The remarkable difference with the scrapping rule in the main text is that
the relevant costs are not the operating costs but the total costs,
including depreciation. and financing costs, In fact, the scrapping rule in
the main text is phrased in terms of cash-inflows and cash-outflows, while
the scrapping rule above is phrased in terms of revenues and costs. The
reason is that the model in the main text is essentially based on
cash-inflows and cash-outflows, which determine the differential equation
for Y, while this alternative model is based on revenuss and costs, which
determine the differential equation for X. To evaluate the contribution to
the objective fumction of one dollar, in the main text this dollar should
be conceived as a cash-inflow which is then multiplied by the shadow price
of debt, while in the alternative model this dollar should be conceived as
a revenue which is then multiplied by the shadow price of equity.

*For a putty-clay model, this scrapping condition would have to be adjusted
in the following way. The scrapping condition, which one cam find in a
similar way as for a clay-clay model, would be:

L sa (VD)
3s/aQ(v(yy) - Lte Q(V(t),t)w‘fv(t))ﬂ’

where L(t,t), the amount of labour assigned to capital of vintage t, is am
extra decision wariable. The difference with the ‘clay-clay’ condition is
that this condition is defined per wunit of output instead of per unit of
capital, since in a putty-clay model there is not such a simple relation
between Q(t) and K(t). The interpretation of the condition is the same as
in the clay-clay model.
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Using A,=-1 in (33) gives ul(t)-——{i—(l—j)r}lw(!l+b)w, Substituting  this in
(29) and then substituting (29) and (30) in (32) gives:

381K V(DY) + %w%l—% - (HOMIWV@) = 0 (45)
In order to interpret (45), the second term on the left hand side has to be
gxplained. Note that this term equals:

bu (V()e(V(1)/(1) (46)
According to the results in Appendix 3, uz(’V\(m)) measures the contribution
to the objective function of a momentary relaxation of the constraint

be(VIK (V) -(1+B)Y(V(1)) 20 (47
at time V(). An extra capital good at time V(1) would lead to a relaxation
of the conmstraint with be(V(t)) umits. In terms of the objective function
this is worth ﬁC(V([))‘*Uz(V(t))*. This amount before taxes exactly equals
(46). So the second term on the left hand side of (45) can be interpreted
as part of the ‘marginal revenue’ at time V(t)! In gemeral onme can conclude
that if a constraint involving the capital goods stock is active, marginal
revenue includes the effects of the relaxation or violation of that
constraint due to an extra capital good.

7.3.4 Another way to derive the scrapping condition?

Another interesting question comcerning the scrapping condition is whether
the scrapping decision at time t can be seen as the solution of a static
optimisation problem at time t, independent of other (dynamic) decisions.
As mentioned earlier (p.108), the scrapping condition has a somewhat static
nature. Moreover, Broer [1987] derives his scrapping decision for time t
through maximisation of total after tax cash-flows from operations at time
t with regard to N and then uses this scrapping condition in the dynamic
optimisation problem of maximising the stream of profits over an infinite
borizon (leading to the optimal investment and optimal labour demand).
In the present model this approach amounts to maximising the ‘accounting
cash-flow’ (1-A(S(K/k}-wL-rY)+fA (see (4.30)) with regard to N:

4 { (LAGSKM) - wL - 1Y) + fA } = 0 (48)

From (6) and (8):

""T'he combination of Aaz-l and v2>0 only occurs if i> (1-f)r (see (33)).
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ko = ' e iman, Ly = e ar
N(D) N(b)

So (48) is equivalent to:
(m-f)[- S ™ Ny + woe N ook ]

=0 49
If IN@)>0, it is clear that (49) is equivalent to the scrapping
condition for case a) ((44) for t=N(t)) .In this case the scrapping
condition is indeed the solution of the static problem: maximise cash-flows
at time t with regard to the birth date of the oldest capital goods still
in use at time t''. The scrapping decision can be made separate from the
investment and dividend decisions in this case.
For case b) however, it secems impossible to formulate a static maximisation
problem that yields (45). So for case b) the scrapping condition can only
be found by solving the complete dynamic optimisation problem (5)-(17). The
separation of the scrapping decisions from the other decisions fails in
this case. From a techmical point of view it seems that this separation
fails if and only if there are active constraints on K. In case a) only the
restriction Y0, which does not involve K, is active. This is a plausible
result: since the scrapping decision affects K, it is obvious that active
constraints on K influence the scrapping decision.

7.4 A steady state solution
7.4.1 Existence of a steady state solution
For a model like the simplified model in section 7.3.2, Broer [1987] proves

the existence of a steady state solution, if certain assumptions concerning
the exogeneous variables are satisfied. This  subsection investigates

UNow it is possible to relax the assumption that N and V are monotomic (see
p.103). Equation (49) implies that capital goods of vimtage t will be used
at time <t if and only if 8S/AK(th-w(DI()k=0. The equation
3S/K (T w(TH(t)/k=0 may have several solutions, implying that the set of
years in which wvintage t is used can be a union of disjunct intervals (cf.
Broer [1987] p.122; Broer also examines the case (§4.4) where zero
utilisation of capital goods is not costless).
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whether there exists a steady state for the model (5)-(17), while making
similar  assumptions.  Firstly the function [, which represents the
technological progress, is specified as:

1)y=K0)e " (50)
This means that the labour-to-output ratio is exponentially decreasing over
time, Next it is assumed that there exist positive comstants w' and ¢ such
that:

lim w{t)c'm = w

t>00

lim coft) = c* 51y

£ o0
The revenue function is assumed to have the following form (compare the

price function (5.1) with m=g=0):

*

K 1-1/e
S(K) = { 7‘—} e>1 (52)

The assumption that the wage rate rises at a rate equal to the rate of
technological progress implies that labour gets the benefits of the labour
augmenting technological progress. In other words, the rise of the wage
rate equals the rise of the labour productivity.
A steady state solution should have the following characteristics:

lim K@) = X"

t»o0

lim It) = 1" (53)

toyco

lim V()-t = T
100

Equation (53) implies that the bounds on I and B are mot active. Assume the
bounds on D are also mot active, and consider the case i<(l-f)r. This
implies ,uimO, i=1..6, and v2=(} in the steady state,
Given_these assumptions, (44) is valid. Using N(©)=V"'(t), (44) implies:

3R - INOMkhw() = 0 (54)
In the steady state:

w ' * -lle
(A8/0K) = (i—]/e)(]( 13} , @ constant.
N(t) = tT (53)
_ o * ht
wit) = w e
Substituting this and the definition of I in (54) gives:
-1le

e

At iy Ve = 1oymw' e T (56)
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T!m only unknowns in (56) are K* and T*.

The steady state solution must also satisfy (26). In Appendix 5.1.1 it is
shown that substituting (50), the steady state values (51) and (53), the
values for 1‘1, Az" A‘ and lj, and (54) in (26), and then differentiating
(26) gives:

%}{ 1-f 0‘5" &7 d(p) dr} =
.

. *
EHeWT oy Gaa-meT - va) )
(f+a-hy(i+a)
The left hand side of (57) is a positive constant (this can be derived from
£ 3
(3)). The right hand side is a function of T*, g(T) Tt is easily seen
that:

woyw 1y { ke (57

gld) = 0, g(oo) = o and g is strictly increasing (58)

This implies that (57) has an unique solution for T*. Substituting  this
solution in (56) gives a unique value for K*. In the steady state:
e *® -
K = Jle alt-1) 4, (59
t-T
. . *
This gives for I :

*
I = a0 ) (60)
So indeed there exists a steady state solution of the form proposed in
(53).
Note that (53) implies that the optimal lifetime of capital goods
approaches the constant T". From (57) the derivatives of T with regard to
the parameters can be derived:

E 3 & * 24 E 3 *
dT /dc >0, dT /dk>0, dT /dl(0) <0, dT /dw <0, (61)

The sign of dT /df depends on the value of f, the value of i and the
depreciation scheme d. I did not suwcceed in determining analytically the
signs of the derivatives of T" with regard to a, i and h. One has to be
very careful explaining the signs of these derivatives, since all
parameters affect T and (asmm* as well. A suggestive explanation of the
results is as follows: there are two things to look at:

1) does the parameter affect the cost of a new capital good?

2) does the parameter affect the ‘cost’ of having ‘old” capital goods?

ad 1) The before tax cost of a new capital good equals:

-115-



@j‘te%c: { 1-f ¥ &7 dw dr} (62)
~ o

This cost consists of (technical) depreciation cost and financing cost,
corrected for the present value of future tax savings due 1o fiscal
depreciation of the capital good. The higher (62), the more expensive to
buy new capital goods. If buying new capital goods is expensive, it is
profitable to use the* ‘old” machines Img::r ilremdl thus a dlwmig‘hcr value of (62)
leads to a larger T . This explains dT /¢ >0 and dT /df: if the discount
rate is low, and/or the depreciation scheme is such that a capital good is
quickly depreciated in its first years, them a higher tax rate; reduces ‘the
cost of a mew capital good and thus it leads to a higher T . Finally, it
can easily be seen that a higher a and a higher i lead to a higher cost
(62) and consequently tend to increase T

ad 2) the technological progress is embodied: it only affects newly
installed machines. The corresponding rise of the wage rate, however,
affects all workers, including the workers assigned to ‘old’ capital goods.
Therefore it is more cxpensiwe for the firm to have ‘old’ capital goods,
inducing the firm to lower T" if the wage rate is high or lf the number of
workers per capital good is high. This explains dT /dw, daT /dk and
d1"/d1(0).

The signs of the derivatives with regard to the parameters i and a cannot
be determined analytically because these parameters have opposing  effects
with regard to questions 1) and 2). A higher discount rate i leads to a
higher cost of new capital goods (inducing the firm to increase T*), but a
higher i increases the ‘cost” of having ‘old’ capital goods (inducing the
firm to decrease T*). A higher technical depreciation rate a leads to a
higher cost of new capital goods (inducing the firm to increase T*) but a
higher a leads t() a higher average age of ‘old’ capital goods (inducing the
firm to decrease T )

Fm‘mﬂy, the rate of technological progress h has two opposing effects omn
*T“ with regard mwwl) a higher & leads to a higher wage rate (inducing the
firm to decrease T ), but a higher & also reduces the number of workers per
unit of capital (inducing the firm to mcreaae T )

The effect of the parameters on ' and 1T can be derived using (see (59)
and (60)):

dK 191" <0, d1*7dT" <0 (63)
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7.4.2 Is the steady state identical to the final path?

In the previous section a steady state solution was found, by assuming that
there was such a solution and checking whether it fulfilled the optimality
conditions. This is a very common way to treat an optimal control problem
(as already discussed in Chapter 3), but in this thesis a different
procedure was followed thusfar: so-called paths are derived and these
paths are coupled to find the entire optimal solution. Since the steady
state is a kind of a long run target, an obvious question from the
viewpoint of this procedure is whether ‘the’ or ‘a’ final path is
equivalent to the steady state. Assume that on the final path the bounds om
the control wvariables are not active and that debt is zero (i<(1-)r); that
is , the final path is characterised by “a=0’ i=1..6 and u2=0, It is easily
checked that this path fulfils the transversality condition (A4.53). Now
the question is: if ome assumes (50) and (51) but not (53), does this final
path imply a steady state of the form (53).

Appendix 5.1.2 shows, more or less in the same way as in the previous
subsection with the crucial difference that (48) is no longer assumed, that
manipulation of (26) gives, after substitution of the limit values of ¢ and
W

¢ = ﬂeh(t-N“)) + hc"ﬂ‘((v(t)'t)’ (64)
where § and @ are constants, given by:
B = i+a-h (65)
j i + *k
¢ = {1 N (S LIPTeN dr} P44 gy £ K 4 ita (66)
‘ 0 1+ w 1(0)
Define:
M(t) := W(t)-t, the lifetime of capital goods installed at time t
T(t) := t-N(t), the lifetime of capital goods scrapped at time t.
Then (64) is eguivalent to:
P = ﬂEhT([) + he—ﬂM(“t) (67)

It can easily be seen that if M(t)=T(t)==T*, (67} is equivalent to (57). In
other words, if the optimal lifetime on the final path approaches a
constant T*, this is exactly the same lifetime as the ome found for the
steady state solution in 7.4.1. .

The question now is: is M(O=T()=T the only solution of (67), for tsoo?
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This is indeed the case, provided f> 0!

p>o
Rewrite (67):

M) = -1/8 1n{ (@-e"TOn } %)
The argument of the logarithm has to be positive and M(t) also has to be
positive, Thig implies:

L2t < 10 < ;1§ (69)
Note that ¢ >0 (using (3)) and that

= B(1+5) with §>0 (70)

(69) has to be satisfied for tsco. From the definition of M amd T and the
fact that N is the inverse function of V, it is easily seen that:

M(t) = T(t+M(t)) (n
This implies that (69) has to be satified for T(t+M(t))=M(t), t>oo. Thus:

}imn@{gﬂ < M@ < & 1ng 2
Again rewrite (67):

Tty = 1k 1nf (p-hePMOyp 3 (73)

It is easily seen that T is am increasing function of M. Combining (72) and
(73) gives new bounds on T(t), which are narrower tham the bounds in (69).
Using (71) these new bounds are also bounds for M(t), and this gives
narrower bounds on T(t) using (73), and so forth. This way a sequence of
lower and upper bounds on M(t) and T(t) is obtained, for tooo.

The same phenomenon is observed by Malcomson [1975, 1979], who also finds a
sequence of bounds on M(t) and T(t). Howewver, even for special cases,
Malcomson ([1975], p.33) was “unable to show analytically whether the upper
and lower bounds converge to the same limit...." In Appendix 5.1.3 it is
demonstrated that the lower and upper bounds do converge to the same limit
and that this limit equals T (Using the method of Appendix 5.1.3 it can be
shown that in Malcomson’s articles the sequences of upper and lower bounds
also comverge to the same limit).

Remembering that (67) was derived from the optimality conditions after
substitution of the limit values of <() and w(t) as defined in (51}, it
can now be ‘concluded that on the final path the optimal lifetime of capital
goods  approaches T . Using (A5.7) this unphes that asza}c appmaches a
constamt (3S/8K) , and thus K approaches K where K and (asmx)‘ are
equal to the steady state values in section 7.4.1. Differentiating (6) with
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N{t)=t-T* gives:
dK oy * -z'ﬂ.”*
T ® = IV - aK(t) - I-T e (74)

*
Substitating K=K" gives I(t)=aK*+Ii(lz-‘T*)c'aT and thus:
* * 1" -naT" * -‘(n+1)aT‘* ;
I{t+oT ) = aK (1+e +...+e )y + It-T )e ’ (75)
*

This shows that for nsee, IMK*l‘(l-éaT ), which is exactly the steady state
value in (60).
So, on the final path, characterised by ,ui=0, i=1..6 and :)2=D, the optimal
values of K, 8S/0K, N, ¥V, M, T and I approach their steady state values as
tvoo. Using (7) it can be seen that

L@ - % {1-erDT y ot (76)

The right hand side of (76) is a decreasing function of time, so in the

limit L is decreasing, as was to be expected. Using (10) (with Y=0), (9)
*

and (3) this implies that dividends D approache a constant value D :

*: * * *
D = (1) [ pGIE - w' HPES (10T ) 4 et a7

Note that the depreciation scheme has dropped out of (77).

f<0

Using the same procedure as for §>0, in case #<0 I only found a sequence of
lower bounds for T and M, the same sequence as before. So it seems that it
canpot be concluded now that the optimal solution on the final path
approaches the steady state values. And since I have not been able to give
a general solution of (67), it is impossible to say much aboat the
behaviour of T and M on the final path and about the behaviour of the other
relevant variables either. In fact I can only conclude that dT/dt, icdM/’dt
and d(8S/8K)/dt have the same sign and that in the limit M{)z2T and
T(t)z'ﬂ‘*. Note that §<0 means that i+a<h, which implies that the rate of
technological progress is high. From now on it is assumed that §>0.

(I-fir<i

If the cost of debt is lower than the cost of equity, the fimal path is
most likely characterised by '”1=0° i=1..6 and vl=0. It is easily seen that
wnder these conditions (67) is still walid! This implies the same ‘steady
state’ wvalue for M and T. The steady state wvalues for K,L,Y,D, and 1 are
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pot the same as in the case i<(l-fir, but they are easily derived from the
A

optimality conditions and the steady state valoe T .
7.5 Summary and conclusions

This chapter studies the scrapping condition and the steady state solution
in s vimtage model of the firm. Section 7.2 shows that the Maximum
Principle of Appendix 4, which is derived to handle the vintage structure,
also makes it possible to model fiscal depreciation in a more realistic
way: capital goods are fiscally depreciated in a fixed number of years.
Section 7.3 derives the scrapping condition in terms of shadow prices and
shows that various scrapping conditions in the literature are special cases
of this condition. Section 7.4 shows that, with some additional conditions
on the exogemeous wariables, the optimal solution approaches, for tses, a
unique steady state, characterised by a constant lifetime of capital goods.

As stated clearly inm Chapter 3, not only the steady state solution of
optimal control models are of interest. The optimal trajectories towards
that steady state also deserve to be studied. This will be done im the next
chapter.
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8
OPTIMAL POLICIES IN MODELS WITH TECHNOLOGICAL PROGRESS,
WITH AND WITHOUT A BUSINESS CYCLE

8.1 Introduction

In Chapter 7 the steady state of models with technological progress was
studied, but pothing has been said about the optimal trajectory rowards the
steady state. This chapter discusses the optimal policies of the general
and the simplified model of sections 7.2-7.3. Moreover, the business cycle
of section 5.2 is introduced into these models.

8.2 The optimal solution for the simplified model of Chapter 7
8.2.1 Limitations of the coupling procedure

In the previous chapter it was shown that the optimal solution will
approach the steady state solution, on the assumptions (7.50)-(7.51). As in
all models thusfar, I would like to give the optimal solution for all t=0,
not only for t-co. This requires more specific assumptions comcerning the
time paths of w and ¢. With (7.50)-(7.51) in mind, it seems a logical
choice to assume:

wty=w e, clty=c , for all t=0 m

As before it is assumed that l‘(t):c'ht

1(0), so ‘labour’ gets the benefits
of the labour augmenting technological progress. All other exogeneous
variables are assumed to be constant. These assumptions are maintained
throughout the rest of this chapter.

Since it appears to be very difficult to apply the coupling procedure to
the general model (7.5)-(7.17) in Chapter 7, in this section an attempt is
made to find the optimal solution for the simplified version of the model,
as defined in section 7.3.2. To recall, this simplified model results from
setting Y=Y=0 and f=0 in (7.5)-(7.17). In section 7.3.2 the constraints on
dividends D, which are mow in fact constraints on the cash-flow p(Q(t)Q(t)
- w(t)L{t) - c(OI(t), are ignored because they do not affect the scrapping
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condition or the steady state. However, if the entire optimal trajectory is
studied, these conmstraints are relevant. An upper bound on the cash-flow is
not necessary, simee p(QU1))Q(t) cannot suddenly become infinite. The ‘old”
restriction D=0 is now replaced by:

PQRENQ(L) - w(L(Y) - (I} =0 2)
Mote that this imposes am upper bound on I, so that the restriction
I 120 can be dismissed. The resulting model is:

max  §* e { pQWIQW - WL - cOI(R) } dt &)
I,B 0
K@ = [ ey ar = ft ety ar 4)

N(t) v i
Qty = K{tyk 5)
Lw = ' e ik ar = Dk de

N(t) V'l(t)

(6)

V() = B(), for all t=n,, where n =N(0) N
0=<I(t)=< P(Q(‘)‘)Qggiwmm), for all t=0 (8)
BminsB(t)‘sBm“, for all lZno )]
I(t) is given for te 1[n0,0) (10

The optimality conditions are not exactly the same as in section 7.3.2,
because of the upper bound in (8). The meaning of all Greek symbols, except
H,, Temains the same as in Chapter 7: #, is now the Lagrange multiplier of
the comstraint (2). It can easily be seen that the necessary conditions are:

o+ VOO0« K@ ) 6

+ Hu, - e = 0, for all t=0 an
13 + ﬂj - ;Uﬁ = 0 for all LEHO (12)
Al(t) = g‘l%(t){ 1+li2(1i) }, for all t=0 (13)
411('?) = -w{t){ 1+,u2(t) }, for all t=0 (14)
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isqn:) = 400 -
{ 1+a,v) Hwe VO asmrviy) - Levey ).
for all t=n, (15)

a1 1=0, u {pQINQA-wOLM-cOID} =0, 4 ()20, u ()20, t=0  (16)
H BB =0, u(B_ -B)=0, u ()20, 4 (=0, t=n an

From (15) and the fact that _uzzﬂ, it is clear that the scrapping condition
in this model is the same as in Chapter 7'. Moreover, as in section 7.4,
the final path (defined by u (SH=a =l 6=0) implies the steady state solution
of this model.

Now the limitations of the coupling procedure can be demonstrated. Suppose
the final path starts at time 4. Then®:

V@®)=t+T and 85/3K(1)=(3S/3K)" for all t=4

N@O=t-T" for all t=V(A)=4+T" (18)

Assuming, as before, the revenue function S(K)={K/k}{KIIc}'”e

(18) also

determines K(t) for t=4. However, I{t),t=4 is not determined by the
optimality conditions for the final path! After all, for t=4 K(t)=K*, 50
E=0. Differentiating (4) gives:

(see (7.52)),

K@) = I - aK() - ¢ "Ny (19)

'Note that the scrapping condition is  3S/IK(V{t))-w(V(O))(t)/k=0, even if
the constraint (2), which involves K, is active. This seems to contradict
section 7.3.4, which states that the scrapping condition has to be adjusted
if there are active constraints involving K. However, constraint (2) is a
very special one, since it involves revenue S as well as labour costs wL,
which are the determining factors of the scrapping decision. If such a
constraint on K is active, the scrapping condition is mnot affected. In
general the statement in section 7.3.4 is true.

ZBince (7.54) is used to derive (7.67) and (7.54) is in prmogwle only
valid for t=V(d4), (7.67) is only vahd for t=V(4). Mow Appendix 5.1.3 can

be used to mnclude that M(t)=T(t)= T for all t=V(4). This gives: V(t)-t+T
and N(t)-—t—’[‘ fm' all t=V(4). Since N and V are each others inverse, thlS

implies V(m)=t+T for all t=A4. Consequently, using (AS5.6), 35/9K(t)= aS/BK
for all t=4.
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And thug I{r), for t24, depends on investments on the previous path and on
B (and V) on the previows path (implicitly determining N(t),t=4). In other
words, the optimal control variables on the final path depend on the
optimal control variables on the previows path, which depend in turn om the
control variables of an earlier path, etcetera. This complicates the
coupling procedure: for inmstance, if one wants to decide whether path x can
preceed the final path, one has to check, among other things, if path x
leads to an I om the final path which lies inside the control region; but
ome cannot check this unless ome knmows which path preceeds path x. It is
clear that this in principle leads to a regress up to the first path,
starting at t=n o

In general the conclusion is: in the earlier models the gquestion “Can path
y preceed path z” could simply be amswered with yes or no. Now it may
happen that one can only answer “yes (mo), if path y is preceeded by path x
and path x is preceeded by path w and path w ....”. So the procedure looses
its iterative character. The reason is that there is no state variable in
the wsual sense: in the previous models, I(t) for t>A only depends on K(4),
oot on investments before A. All the relevant information from the past is
summarised in the state variable K. In the present vintage model, however,
Iit|t=4) not only depends on I((A)=K*, but also on investments before 4.
Again the quotation from Broer on page 104 seems appropriate: "the entire
investment history is relevant, which makes the state vector infinite
dimensional”.

8.2.2 The optimal policy

With all this in mind, it seems sensible not to try to find all feasible
strings, but to ‘guess’ the optimal string for every set of initial
conditions {V(nﬂ), Iw(t),nﬂﬁt<0}‘, assuming that the ‘steady state” path
(defined by ”F‘“) is the final path,

and to check afterwards whether this guess satisfies the optimality
conditions.

To characterise the optimal string, it is convenient to tramslate the
initial conditions into the pair [3S/8K(0), N(0)}. Note that N(0} equals
V(no) and that, given N(0), different investment histories can l‘ifnd to the
same O5/0K(0). Remember that on the final path 85/0K=(35/3K) and that
BS/AK () =w(I(N(t))/k after some time on the final path. It seems logical
that the optimal string depends on:
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is 8S/dK(0) greater tham, smaller than or equal to (63!31‘()*? Q20
is #S/3K(0) greater tham, smaller than or equal to w{DM{N({)/k?
This gives nine possible combinations. The process of finding the optimal
policy for each combination did not have the solid, iterative character as
in the previous chapters, but a more ‘trial and error’ character. The
result is as follows, If the imitial volume of the capital
goods stock is small, the optimal policy can be summarised as fxil]imws:
use I{t) to close the gap between 8S/0K(t) and (38/0K) as quickly as

possible (21a)
use B(N(t)) to close the gap between 85/8K(t) and wIN())k as
quickly as possible (21b)

In appendix 5.2 this rule is closely examined for two imitial sitwations
and it is shown what are the difficulties if the imitial volume of the
capital goods stock is not small (in short the difficulty is: if one of the
gaps in (21) is closed, it is not always possible to keep it closed amd to
close the remaining gap at the same time! In such cases the optimal policy
is not clear to me).

MNote that (21) suggests that the decisions concerning I and B are taken
separately. This corresponds to the alternative way of deriving the
scrapping rule in this model (see p.112), where N is chosen independently
of 1.

Before illustrating (21), it is useful to reflect on the meaning of N and
V, or of N and V=B. As said before, if a machine is installed at time ¢, it
seems a bit awkward to decide right away when it will be scrapped (im
technical terms: decide what V(t) is). It is more realistic to say: at time
t a decision is made about the level of investment (I(t)), and a decision
is made about the scrapping of old wintages (N(t)). In a deterministic
model there is no difference between these two approaches. However, when
discussing the model in economic terms, it is far more convenient to think
in terms of I{t) and N(1), than in terms of I(t) and V(). For imstance,
for the development of 3S/dK(t) and K(1) over time, one is interested in
I{ty and N(t), and not in V(1) (see (19)). Technically, however, the model
is built in terms of I, V and B. The ‘first’ decision to be made at t=0 is
about I{0) and E(nm). This seems to be nonsense: the decision B(no)w was
taken at time n, mot at time 0! But B(MO) equals IIN(O) (because
N{ty=1/B(N(t)). So at t=0 in fact I{0) and N(0) are chosen. The moral is:
when discussing the model in economic terms, it is most convenient to think
in terms of I and N; for technical purposes (checking the necessary
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conditions), one must translate I(t) and N(t) into It} and B(N{)), using
() = 1/B(N(L).

Now the ‘decision rule’ given above in (21) can be illustrated.

Suppose: amaxmwcamamf* and 3S/3K(0) > w(OM(NO))/k.

Given a concave revenue function 8, the first inequality implies that the
capital goods stock K is smaller than K*. The second inequality implies
that the oldest vintage at t=0, is still profitable, since marginal revenue
i¢ larger than marginal cost on machines of vintage N(0). Therefore it
seems optimal to scrap as little as possible and to invest as much as
possible. Scrapping as little as possible means prolonging the lives of the
old wvintages as much as possiblea. In technical terms: Ec((t)szmm for tzn,
or I'll(tju:llﬂmx for t=0. As a consequence dS/dK will decrease and
wI(NM)Yk will increase®. Thus the two aims in the ‘decision rule’ (21)
are mot conflicting. At a certain point of time, one of the two aims will
be fullfilled. Which one is fulfilled first, depends on the parameters and
the inmitial conditions. If 6S/8K=(BSMK)* is fulfilled first, the optimal
policy is: maintain asmmqasmm* and continue B=~Bm,c until w(t(N(E)/k
reaches (63/&1(}*. If 3S/IK=wI(NWVk is fulfilled first, the optimal
policy is: maintain 3S8/8K=w()I(N(t)}/k and continue to invest at the
maximal rate until 8S/8K reaches (BSIB‘K)*’.

The next illustration is a bit more difficult.

Suppose: asra‘xmp(amm* and 3S/FK(0) < w(D)I(N(O))/k.

The first inequality implies that XK(0) is smaller than K*, the second
inequality implies that the oldest vintage at t=0 is mnot profitable. Now
the two aims in (21) are conflicting. On the one hand ((21a)) the firm
wants to grow as quickly as possible, which suggests investing as much as
possible and prolonging the lives of existing vintages. Om the other hand
((21b)) the firm wants to scrap the oldest vintages as quickly as possible,

f there was no positive lower bound on N, we would have found: N’(t)zﬂ for
t=0, implying no scrapping at all (see the discussion on page 103).

‘Given the assumptions for [, and w: - wO)((N(@)/K)={(Ow ) k}e*TW,
where T(t)=t-N(t). Note that T\(t)=1—1/B‘m“, so that T increases if the
artificial boundary Bm“ is high enough. This implies that {I(N()/E)w(t)
increases.

In Appendix 5.2 it is shown that I and B or I and N cannot always be
chosen separately, as suggested on p.125.
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since they are not profitable. In appendix 5.2 it is shown that it is
optimal to adhere to (21), even though the two aims in (21) are
conflicting., Disregarding (21b) and scrapping as little as possible in
order to grow as quickly as possible is nor optimal. The optimal policy for
this situation is depicted in Figure 1.

LIGITEINE w(t)
S
200
b -
n, T 0 ;1 ;1 — t
L Y o I b
,u5>0 u5=0 u,o= 0 u,o= 0 u, = 0, i=1..6
u6=0 u6=0 by, > 0 u, > 0
S 0 B, = 0
MQS = ()} ‘u6 =0

Figure 1: An optimal trajectory

The firm starts scrapping at the maximal rate (N(t)=l/Bmm) and investing

at a maximal rate (I()={SKO)-wL{O}c). At t=t', all unprofitable
vintages are scrapped and from t' onwards the firm employs the scrapping
condition and continues to invest as much as possible. At t=t* marginal
revenue reaches its steady state value and the final path starts. The
optimal lifetime of capital goods installed at time t, M(t), decreases for
t<[j,‘ and M\(t)zT* for t>t". It is not possible to make general statements
concerning  M(t) for tew{tl,tl)k For t<t' the capital goods stock increases
relatively slowly due to the maximal scrapping of old vintages. For
te@' 1) the capital goods stock increases more rapidly,

8.2.3 A decision rule?
The ‘decision rule’ (21) looks like the feedback decision rule of Chapter

4. A feedback decision rule gives the wvalues of the control variables at
time t, given the wvalues of the state variables at time t. In the present
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cage, there are no normal state variables. Instead the situation at time ¢
is summarised in J5/9K(t) and N(t), which are not state variables in the
nsual senge. This leads to two differences between (21) and a normal
feedback decision rule. The first difference is that 8S/9K(f) and N(t) do
not determine 1) and B(t), but I(t) and B(N(1)). The second difference is
as  follows. If  98/0K(ty= ‘(BS/BK)* and  AS/OK(ty=w(IN(Wk, or
aﬂfam)u(w/am* and  SS/OK(ty#£w(t)(N()/k, then (21} calls for
maintaining the equality and closing the remaining gap. But this does mot
give the wvalwes for I(t) and B(N())! For instance, maintaining
aSMK(t)z(B‘SMK}* implies keeping K constant, and this implies (see (19))

10 =ak(©)+e 2N N@E)N(@). So the exact value of I@t) not oaly
depends on 88/3K(t), N(t) and VB =N(t), but also on I{N(D).

This is an interesting situation. Prom a mathematical point of view, there
is no state variable in this model. From an economic point of view however,
the situation at time t is summarised by dS/dK(t), N(t) and I(N(t)). This
relativises to a certain extent the quotation at the end of the previous
subsection. The reason that only I(N(t)) is relevant, and not the entire
investment history, is the fact that the scrapping decision is a ‘marginal’
decision.

The impossibility of a deriving a ‘real” feedback decision rule can be
illustrated in yet another way. In previous chapters, the decision rule was
phrased in terms of the marginal return on investment and the marginal
return on equity, An analogue for the present model would be to find an
expression for marginal return on investment. The level of investment would
then have to follow from a comparison of this marginal return on imvestment
and the discount rate i. Define:

R() = {amaxmw(m(n/k.ac*- (VO gl+a)(r-t) w(r)i‘(t)/k}dr}/c* 22)
t

This seems to be a reasonable candidate for the marginal return on
investment (see the discussion of the Malcomson scrapping condition in
section  7.3.2). Indeed, if ”1'—"“1:0’ and the  scrapping  rule
BSIAK(V(I) =w(VItk is valid, differentiation of (11} gives (after
substitution of (13) and (14)) R()=i. In particular this equality is valid
on the final path. So this seems to suggest the following decision rule: if
R(t)>i, then invest as much as possible; if R(t)<i, them I=0; and if
R(t)=i, choose I to maintain this., However, this is not a feedback decision
rule, because R(t) cannot be computed at time t wsing only data from the
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past: R{t) depends om WV(1), V(1) depends (according to the scrapping rule)
on 3S/BK(V(t)), and 8S/8K(V(1)) depends om I(t) for all t€[L, V(1)) Trying
to find these I(t)} using the just developed ‘decisiom rule’ leads to an
infinite regress. The reason is that (22) ‘looks forward" (involves WV(t)),
while the decision rule (21) ‘looks backward” (involves only N{t)). The
optimal policy does obey the decision rule in terms of R(t), but this rule
cannot be used to find the optimal policy.

The conclusion is: although there is no feedback decision rule in the wusual
sense for this model, (21) is an economically plausible and workable rule®.

8.3 The optimal sclution for the general model

The general model of Chapter 7 can be seen as the simplified model with the
financial decisions added or as the basic model of Chapter 4 with the
vintage strocture added. The optimal solutions for the basic model and for
the simplified model are available. Still, ‘merging” these two optimal
solutions does not work. To be more precise: it is the combination of, on
the ome band, the fact that the objective function consists of dividends
instead of cash-flows (as in the basic model), and, on the other hand, the
fact that there are constraints of type (7.6), (7.8) and (7.9) (as in the
simplified model of the previous subsection), that prohibits the merging of
the two solutions. The reason is that concepts like the marginal return on
investment or the marginal return on equity can only be defined in
terms of the shadow price of equity. This is best illustrated by means of a
special case.

Suppose the initial conditions are the same as in the first example in
section 8.2.2:

GSIaK(O)>‘(aS/‘8‘K)* and  98/3K(0) > w(OIN(OWWk .

Moreover, assume that i<(l-f)r. Just as in the simplified model, the final
path implies a steady state with a constant 65/‘6}(——-(63/6]{)* (with of course
a different value than in the simplified model!), with N(‘t)r—t-T*, and with
AS/BK(y=w(t)(N())/k. The initial conditions are such that the capital
goods stock is smaller than its steady state value and that the oldest
vintage is still profitable. So it seems that the best policy is to scrap
as little as possible and to invest at the maximal rate in order to grow as

it should be mnoted, however, that this rule only applies to ‘growth
situations’ (see the beginning of section 8.2.2 and Appendix 5.2).
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quickly as possible. But, remember the optimal solution of the basic model:
growing as quickly as possible also implies attracting debt if the marginal
retarn on investment exceeds the cost of debt, and paying back the debt if
the marginal return on investment equals the cost of debt (R(K)=(1-f}r,
while keeping K constant (see p.44 and Figure 4.2)).
The easiest way to see if this policy is also valid in the present model is
to find out whether there is a consolidation path (the path with
R(K)=(1-fir and Y decreasing; path 4 in Chapter 4). In the basic model, the
technical characteristics of path 4 are: u =#,=v,=v =0. This implies (see
(4.14y and (4.16)):

A=0 = Al(t)(l-j){BSIMK(t)w-wllk-a-r}=O = 3SIBK(ty=wllk+a+r,
which is eguivalent to: the marginal return on investment equals (I-f)r.
The crucial fact to note here is that the shadow price of equity, Al, drops
out! The corresponding path in the general vintage model of Chapter 7 is a
path  with B === f”ﬁ"f“' Substituting this in the optimality
conditions (7.26)-(7.38) and differentiating (7.26), wusing (7.32) and A3‘=D,
gives:

-,14(!)(1-_)’){g%-w(t)%g}-ac*{-h-ft Y 0 (m)d(ey dr}

+oap VO U+ 0y 1O @) ar

=(1‘.f)m*{-&4m-ft;‘+" TV @)y dr} @3)
Note that
n(t):=c*{-,14(m)~ftf‘+" Ve m)dy dt} (24)

is the purchasing cost of a capital good: the price c* multiplied by 414
minus the discounted value of tax savings, where each tax saving 15 also
multiplied by —Ad. Remember (see sectiom 7.3.3) that the contribution to
the objective function of one dollar equals -1 X Dividing both sides of
(23) by JI(t) gives:

{d@(t)(]{-f){BSI/BK—w(t)wl(t)/k}-aH’(t) +

a-p YO e'(‘i+a)(T'ﬂw(1:)i(t)/k(-lﬂ{r))dr} | Q) = (- 25)
t

Comparing this with the definition of marginal return on investment in (22)
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(keeping in mind the meaning of JIT), it is clear that (25) is quite similar
to "R{t)=(1-fir". However, the shadow price of debt, A‘, does not drop out,
because of the two integrals im (23). If there is no technological progress
(}{ty=0) and fiscal depreciation is treated as im earlier chapters, the
integrals in (23) disappear and 14 drops out of (25).
Summarising: if the objective function consists of dividends, every dollar
has to be multiplied with the shadow price of debt (Ad) to know its
contribution to the objective function. If moreover the model involves
technological progress, this shadow price is inextricably bounded up with
the optimality conditions (as is clear from the example above). This makes
it very difficult to find the optimal policy for a model which involves
dividends-maximisation and technological progress, as illustrated in a
special case.
Another example of the same phenomenon concerns the scrapping decision. In
the  simplified model the optimal policy was: try to  reach
/K () =w()I(N(1))/k as quickly as possible and maintain it. This was
based on (15): ,u5=/u6=0 leads to BS/AK(V()=w(V(NI(1)/k. In the general
model (see (7.44)) "‘y5=u6=0 leads to AS/AK(V()) =w(VONI)/k" as long as
uz-zﬂ, But if u2>0 during some time the scrapping rule is:

8SIBK(V (1)) +bv, (V()e(V(D)/(1-f) =w(V(O) () /k
(see (7.45-7.46)). In other words, the optimal scrapping rule is net “reach
and maintain IS/AR (V) =w (V)K" but "reach  and  maintain
/ll(v(t))=‘J12(V>(t))‘l(t)/k” (this follows implicitly from (7.32); see also
Appendix 5.2).
The comclusion seems inevitable: the optimal policy for the general model
can only be characterised in terms of shadow prices. Define;

V(1) -i+a)(-

FO= § DA + {0 } dr (26)

The optimal policy can be characterised as follows:
1y The scrapping decision (see (7.32))
1F }LI(V(‘t)) < -{l(t)/k})t2(‘v’(m)) THEN B(’t)=Bmm

IFA(V®) > -{/k}A,(V())  THEN B=B

IFA(VWy = -{t‘(:)/kuz‘(vm) THEN B <B(t)<B__ to maintain
the equality.
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2) The investment decision (see (7.26))

IF F(t) > II(t) THEN I(t) maximal

IF F(t) < IIt) THEN I(t)=0

IF F(t) = F(t) THEN C)«:'.]i(‘n)m{S(ifi}j)—wL}J'c:'t to maintain the equality.
3} The dividend decision (see (7.27))

IF -A4(t) < 1 THEN D(‘t)'=DmlUl

IF -A‘(n) » 1 THEN D(t)=0

IF ‘-A‘(t)w

it

1 THEN 0<D(t)<Dm“ to maintain the equality.

Using the interpretation of the shadow prices it is easy to interpret this
‘rule’:

Part 1) is simply the scrapping rule which is interpreted in section 7.3.3.

Part 2) can be explained as follows: F(t) can be interpreted as the
marginal contribution to the objective function of one unit of investment
at time t: note that ome capital good at time t depriciates at a rate a. So
AT left of this capital good. The marginal
revenue im terms of the objective function at t=t of this capital good

at time t>t, there is e

equals e'aw't)ll(t}, the marginal cost in terms of the objective function

at t=7 equals C-a(r-t)“(t)/k)lz(‘ﬂ (using the shadow price interpretations
for A . and ‘1'1’ as in section 7.3). Discounting these revenues and costs
back to time t and summing up all revenues and costs during the entire life
of the capital good gives the contribution to the objective function of an
extra unit of capital, installed at time t. The costs in terms of the
objective function of acquiring a capital good at time t is JI(t). Now part
2) of the ‘rule’ is evident.

Part 3) of the ‘rule’ simply compares, from the point of view of the
shareholder, the value of a dollar inside the firm w(-l4) with the wvalue of
a dollar in his or her hands (1).

Note that the ‘rule’ has nothing to do with a decision rule. It does not
tell the firm what to do. It gives the optimal actions on the basis of the
values of the shadow prices. But these values are only known if the entire
optimal solution is known, in which case no rule is needed. In fact, the
‘rule’ is nothing more than a different way to write down the optimality
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conditions.
8.4 Technological progress and a business cycle in one model
8.4.1 Introduaction

If it is assumed that the revenue function in the models of Chapter 7 is
the same as in Chapter 5, then these models incorporate technological
progress as well as a business cycle. For such a model the derivation of
the steady state is still wvalid, umtil it is concluded that K is constant
because aS/JK is constant. This is no longer true, as is clear from Chapter
5. Moreover, [ is no longer a constant in the steady state. Remembering the
analysis in Chapter 5, one might expect that I=0 may be violated when the
recession is severe. How severe the recession must be to bring about a
violation of I=0 will be studied in the next subsection. Remember that in
the models of Chapter 7 the restriction Iz0 is a logical restriction,
whereas im Chapter 5 the assumption of irreversibility of investments is
behind it.

In the previous subsection the optimal solution has been characterised for
the gemeral model with technological progress. Im fact the specification of
the revenue function did not play any role at all in that subsection. Thus
the characterisation of the optimal policy derived there is equally valid
for the model including technological progress and a business cycle.
However since this characterisation (the ‘rule’} is mnot ‘operational’, it
is clear that it does not give insight into the consequences of a
fluctuating demand for a firm with an age-structured capital goods stock. A
more modest approach is to study the incorporation of a business cycle in
the simplified model of this chapter. This is dome in section 8.4.3.

8.4.2 When does the steady state solution violate 1=07?

As said before, the optimality conditions and the derivation of the steady
state {(BSIaK)*,T*} do not depend on the specification of 8. From now on it
is assumed that S is specified as in Chapter 5 (see (5.1)). The values of
@S/3K)" and T are given by (7.67), (7.56) and (7.55).

In Chapter 5 it was assumed that on t=0 the firm is in its desired
situation (the ‘final path’, implying a constant marginal revenwe) and then
the optimal policy ‘over the cycle’ was derived for different values of m
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{remember that m-g measures the stespness of the slump). The first step was
to find out for which values of m the business cycle had no influence, that
is: for which values of m can the firm maintain the desired position it has
at t=0. The conclusion was that for msa+g the optimal policy is to stay on
the final path with constant marginal revemue. For values of m larger than
a+g, keeping marginal revemue constant leads to a negative investment,
which is not allowed in the model.

The same procedure is followed now for the gemeral vintage model of
Chapter 7: if 85/8K(0)=(35/3K)" and M(0)=T(0)=T,

for which values of m is the firm able to maintain aS/BK(t)=(BS/6K)* and
M(t)=T(t)=T", without violating I=0?

From the assumption that a‘Sl’al-{{(t)n=(BS/'.«3K)"c for all t, the fact that
A8IIK =(1-1/e)p(K,t), and the definition of the price function (5.1), K{t)
can be derived for all t. Next,

KO = It g Q7
t-T
can be used to find I(t) for all t=0. This is dome in Appendix 5.3. From
that it should be possible to conclude for which values of m the constraint
120 is not wviolated. The optimal I (see Appendix 5.3) looks as follows

(with the assumption that I(t),t <0 has the ‘steady state’ value):

: : /
! -
T T T
t LT*

Figure 2: The optimal investment pattern
To keep 8S/8K at a constant level, investments have to grow steadily before

t, as in the business cycle model without technological progress. At t=t,
the recession starts and K will have to decrease to keep 8S/8K constant. In
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the model without technological progress the capital goods stock only
decreases due to depreciation. Now the capital goods stock also decreases
as a consequence of the scrapping of the vintage installed T years ago. In
fact (see (19)):

&
. #
K = I(t) - aK(@®) - ¢ 21T (28)
At t  investments will drop downward because now K has to decrease imstead
of increase (cf. Figure 5.2). After t investments will rise (evem though K

e
decreases) because the amount of capital scrapped (][(t-T*)c"aT) BIOWS,
At t=t0+T* the amount of scrapped capital jumps downward, as a consequence
of the jump of I at t. Since K must decrease in such a way to keep 9S/0K
constant, this downward jump in the amount of scrapped capital goods is
accompanied by ;1 downward jump of investments. So the original jump at %
repeats itself T years later. Likewise, the jump of I which occurs at t
as a consequence of the upturn of the price function, repeats itself at
tl-%‘T‘*, ‘tl+2‘T*, etc. These jumps do die down, because of (tmhnicalﬁ

. . * -
depreciation: the jump im investments at, for instance, t0+T is e aT

times the jump in investment in t,

In Appendix 5.3 it is shown that I{{t0+(n+l)T*} +} (to be precise: the limit

of I(t)y for t~9t0+m+1)\T*) is smaller than I[“to+nT*]+}, as long as

t,t (n+ I)T* <t. I have mnot been able to proof whether (see Figure 2)
[ I 2 *1 4 - :
I{[tnﬁ-uﬂ:u } is larger or smaller than Iﬂt0+3‘T] } So the conclusion is

that, if m grows, the point of time where I will become negative for the
first time f t0‘+NT* or t0+(N'+1)T*, where N is such that t0+NT* <t <
L, FN+DT .

If it is assumed, as does MNickell [1975], that the recession is shorter
than the optimal lifetime of capital goods (tl‘-tﬂ < T*, which implies N=1),

'1"‘a +)u S0 the

crucial point is: when does I(to+)‘ become negative. In Appendix 5.3 it is

derived that this is the case if
A

a+ )T,

then it is possible to prove that I{t0+) is smaller than I+

m > {a+g)/{l-e 29)
If m is smaller than or equal to the right hand side of (29), then the
policy to keep T and dS/0K constant is feasible. Note that in the model
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without technological progress we found that it is only feasible to keep
38/8K constant at its desired level if m=<g+a. The right hand side of (29)
is larger than g+a. So in the presence of technological progress it is
possible to stay in the desired situation for larger values of m than in
the model of Chapter 5. This is because the bottleneck im Chapter 5 is the
constraint [=0, which prevents a rapid decrease of K. In the model with
technological progress the capacity to let K decrease is larger due to the
scrapping of old vintages.

8.4.3 The business cycle in the simplified model

Equation (29) in the last subsection is of course also wvalid for the
*®
simplified model, although T will have a different wvalue than in the
*
general model. Maintaining the assumption that t-t, < T, the mext step is
£
to find the optimal policy of m > (a+g)/{1-e‘m+g)’r }.
for the optimal policy is: there will be a zero investment period during

A logical suggestion

the recession; in the second expansion phase, the firm will return to the
“final” (steady state) path.

In Appendix 5.4 the problems that arise when there is a ‘zero
investment’-period are discussed. The conclusion is that it is not clear
whether the length of the ‘zero investment’-period and the wvalues of V
during that period are determined by the optimality conditions. This
contradicts Nickell, who states (p.58): "It is clear that the necessary
conditions will determine a scrapping date V(t) for all t, even if no
capital is in fact purchased at t”.

An analysis of the optimal policy becomes wvery complicated (if not
impossible), if V{t) is not determined during a ‘zero investment’-period.
Note that the problem disappears if the lower bound for I would be positive
instead of zero. In that case it is indeed «clear that the scrapping
condition AS/BK(V()=w(V(OI()/k is walid for t&€(a,f) (see (15)), where
{a,f8) is the period during which the lower bound on investment is active.
For that reason, it will be assumed from now on that the scrapping
condition is wvalid even if I=0. Now an optimal policy which involves a
‘zero investment’-period can be investigated.

Suppose that there is a ‘zero investment™-period («.f) and that for t=<a and
t=f the firm is om the ‘final path’ (characterised by ui=0). This implies
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£
for instance: 8S/8K(a)=aSIAK(F)=(85/8K) . Equivalently:

JLBwa=-o (30)
Define:
s = (VOEHAEY B2k} dr < 31
t
-(i+a)t

Then: 5, () =58 l(ﬂ) =0  (use (11)). Define sg(t) =g L} l(t). Then

52‘(a)=52(ﬂ)=0 = oclﬂ éz(t) dt =0. Differentiating (1) and using the

scrapping condition shows that this is equivalent to (for a similar ‘tric’,
see Appendix 5.4):

JB i {gg(c)_w(t)l(t)/k-ac*-ic*+

YO l+a) Ty w(r)i(t)/k}dt} =0 (32)
t

Note that the two equations (30) and (32) contain two unknowns, « and §. In
fact, sﬁ(a)=0 and sz(t)<0 for t&(o,f) are equivalent to:

JE e rata {gﬁ(t)w-w(t)l(t)/kmc*-‘ic*+

VO l+a) -y w{t)i(t)/k}dr} it =0 (33)
t

7 e ra-) {gg(u)-w(u)l(u)lk—ac*-ic*+

Y@ o+ w) oiyiydr) du < 0, te(@f) (34)
u

Equations (33) and (34) are the analogues of (5.21) and (5.22) of the
business cycle model, with exactly the same interpretation. The only
difference is that marginal cost in the present model includes ‘missed
technological progress’ (see section 7.3.2),

Nickell [1975] also studies the effect of demand wvariations on the optimal
policy of the firm. His business cycle is different, but similar. He
assumes that there is no technological progress, but still there is a
vintage structure since the maintenance costs of a capital good depend on
its age. I will now analyse the zero investment period in the same way as
Nickell and compare the results.

It has been assumed that the scrapping condition is always wvalid. So for
te€la,f), AS/OK(V())=w(V(t)I(t)k. Moreover, since: 1) V{a)>pf (otherwise
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the capital good stock would be zex;o at t=f); 2) V is an increasing
fonction; and 3)  98/3K(1)=(88/8K)} for t>f, it is clear thau
BS‘/&K(V(I:)}@(BS/&K)* for t&(a,f), and thus the scrapping condition implies:
V(O=t+T for tE(aB).

This implies that (32} is equivalent to:

SOt (B3 - cpa = 0 35)

where C is a constant.
Moreover, s(t)<0 for tE(a,f) and thus Jl5,(0)dr<0 for tE(af). This
implies:

JeEIT B30y - ¢} ar > 0, for all te(@B) (36)

From (35) and (36) it is clear that during the ‘zero-investmemt’-period
» &

38/8K must first rise above 8S/8K  (note that (3S/0K) =C) and then fall

below (38/3K)". See Figure 3a:

s
)4
e
(;: b —3 time
Figure 3a
T
e
a B — time

Figure 3b

Figure 3;: Marginal revenue and lifetime of capital
goods during a ‘zero investment’-period

Until now there has been no difference with the analysis of Nickell.
However, NMickell finds that there are backward echo effects of these
fluctuations of marginal revenue: he finds the same cyclical fluctuations
in the intervals (m—T*,/S’—T*), (a-ZT*,ﬁQT*), etcetera. The reason for these
echo effects are the age-dependent maintenance costs. Inm the present model,
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however, d4S/0K(t) equals (BS/&K)* for all t<a. Thus the age-dependent
maintenance costs dé  produce backward echo effects, while the
fime-dependent labour productivity does mot. The labour productivity of a
capital good only depends on the date of purchase, Nickell’s maintenance
costs of a capital good depend on the date of purchase &nd the age of the
capital good. Nickell remarks that in the presence of these backward
echo-effects in the optimal policy, the firm has to predict demand
variations long in advance. In the present model that is not necessary.

In principle, (30) and (32) can be solved to give « and f. This would
require integrating 8S5/8K and (d/dt)3S/3K. This was possible in Chapter 5

(because K(t):e"a(t‘tls)mt] 5), where t s the starting point of the
‘zero investment’-period). In the present model, however, 1 cannot solve
the differential equation for 0S/8K, due to the vintage structure of K (see
Appendix 5.4). Thus it is impossible to compute the starting and ending
point of the =zero-investment interval. Moreover, it is impossible to check
whether B(t) lies in the interior of the control region for all t. Note

that differentiation of the scrapping condition

gives  (d/d0as/ok={w 10k} N1 Ny, This  implies  that  T(r)
(=1-N()) has the same sign as (d/dt)dS/AK(t). Since 88/0K first rises
above (B‘S/BK)* and then falls below (68/31()*, T(t) (the age of the machines
that are scrapped at time t) first rises above T and then falls below T
(see Figure 3b).

Conclusion: if the recession is not very hard, the firm will maintain the
steady state values for 4S/0K and T. At t=t and L=t investments will jump
and due to the vintage structure there will be an echo of these jumps every
T* years. If the recession gets harder, there will be a zero-investment
interval, during which dS/0K and T make a one-period cyclical movement. The
analysis of this ‘zero investment’-period depends crucially on the
assumption that the scrapping condition is always valid. It is impossible
to compute the length and the position of the ‘zero investment’-period, so
that comparisons with Chapter 5 cannot be made. For even harder recessions,
it may bappen that B hits the boundary of the control region. In that case
it is not clear what the optimal policy will be.
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8.5 Summary and conclusions

Section 8.2 and 8.3 discoss the optimal trajectories of the models of
Chapter 7. As the medels get more difficult, the characterisation 1 can
give of the optimal policy is more modest. For the basic model in Chapter 4
a feedback decision rule was found. For the simplified model of Chapter 7,
such a decision rule has not beem found, but it was possible to
characterise the optimal policy in ‘real’ terms, that is, without the wse
of auxiliary variables like shadow prices. Although wsual state variables
are not available, the ‘economic state wvariables’ a8S/0K(t), N(tj and
I{N(t}) contain all information wmneeded to determine the optimal policy
(section 8.2). For the general model in Chapter 7, only a characterisation
of the optimal policy in terms of shadow prices has been found (section
8.3). Section 8.4 introduces the business cycle of Chapter 5 into the
models of Chapter 7. Under the assumption that the recession is shorter
than the steady state lifetime of capital goods, it is derived for which
values of the severemess of the recession the firm is not affected, and the
pattern of investments is given. If the 7"I=0"-constraint becomes active
during the recession, omly wvery limited statements can be made concerning
the optimal policy, based on the assumption that the scrapping condition is
valid during ‘zero investment’-periods. For the simplified model of Chapter
7, augmented with the business cycle, it is shown that marginal revenue and
the lifetime of capital goods make a one-period cyclical movement, without
backward or forward echo-effects. More detailed statements are impossible
to obtain because of the complexity of the (differential} equations.
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9
SUMMARY AND CONCLUSIONS

The goal of this thesis is to find the optimal investment, financing and
dividend policies of a firm facing technological progress and a fluctuating
demand curve. This requires a stretching of the limits of the application
of dynamic optimisation to economics. Chapter 3 argues that this thesis
(and much related work) is still in the phase of working on the ‘tool box’,
which is a ‘preliminary to the main attack’ (i.e. empirical applications).
Chapter 3 derives three guidelines for this working on the tool box, which
are followed in the remainder of the thesis:
1) make clear the motivation of the assumptions of the mathematical
models.
2) pay attention to the economic interpretation of (aspects of) the
mathematical tools
3) consider not only the ‘steady state solution' of a model, but also the
path  towards this steady state, even though this is often difficult
and time consuming.
Chapter 4 treats the basic model of this thesis. The environment of the
firm is statiopary and this makes it possible to derive a feedback decision
rule, which prescribes the optimal policy for almost every imitial
condition. Guideline 1) plays an important role in this chapter,
In Chapter 5 guideline 3) asks for a stretching of the limits of the
application of the path connecting procedure. In this chapter the firm is
confromted with a fluctuating demand curve. The resulting model is
non-autonomous and this complicates, but does not make impracticable, the
path connecting procedure. The role of debt during the business cycle and
the interrelationships between investment decisions and financing decisions
are crucial im this chapter. If the recession is ‘moderate’, the firm stops
investment before the start of the recession amd resumes investments some
time after the recession is over. During ‘heavy’ recessions the firm has to
abandon its desired level of debt in order to cope with liquidity problems.
If these  liquidity  problems are  severe, the lemgth of the
‘zero-investment’-period is affected. For certain parameter configurations
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the recession causes bamkruptcy. The conditions determining the length and
position of the ‘zero investment’-pericd can be interpreted economically.
In the presence of a business cycle, the decision rule of Chapter 4 is no
longer applicable.

Chapter 6 puts into practice guideline 2). In Chapters 4 and 5, the costate
variables, which can usually be interpreted as shadow prices of the state
variables, occasionally jump. This complicates the shadow  price
interpretation. Chapter 6 extends the shadow price interpretation of the
costate variables, using a mewly developed (Appendix 3) shadow price
interpretation of the multipliers of the pure state constraints, and it
explaing the jumps from an economic viewpoint: jumps occur if the firm is
forced by the constraints on the control wariables to leave or enter a
boundary., Chapter 6 also explains the values of the costate wariable by
comparing the immediate and the future contributions to the objective
function of an extra umit of a state wariable. Unfortunately, no
explanation has been found for the size of jumps.

Chapter 7 treats a vintage model of the firm. This chapter makes perfectly
clear that the mathematical tools strongly restrict the freedom of the
economic model builder., In the first place, an extension of the Maximum
Principle has to be derived (Appendix 4) to be able to deal with vintage
models at all. In the second place, although this extension gives the
economic model builder many new opportunities, it also functions as a
straitjacket: the vintage models have to be moulded to a certain extent to
meet the requirements of the extended Maximum Principle. This implies that
some assumptions are clearly mathematically motivated (guideline 1Y).
Nevertheless, some interesting results are derived in Chapter 7. A
scrapping rule is derived which includes some earlier scrapping rules as
special cases and which is phrased in terms of shadow prices: equipment of
a given vintage should be uwsed as long as the marginal comtribution to the
objective  function of producing on that equipment is positive. This
contribution to the objective function is measured by several auxilliary
variables which can be imterpreted as shadow prices. Moreover, Chapter 7
describes how the scrapping decision is affected if there are active
consiraints on the capital goods stock. Finally Chapter 7 shows the
existence of a steady state solution (implying a comstant lifetime of
capital goods and a constant marginal revenue) and proves that the optimal
solution will indeed converge to this steady state.
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Chapter 8 brings into practice guideline 3} with regard to the model of
Chapter 7 and a combination of the models of Chapters § and 7. Whereas for
the basic model in Chapter 4 a feedback decision rule has been derived
{prescribing the choice of the comtrol variables), for the model of Chapter
7 only a description of the optimal policy can be given. For a simplified
model of Chapter 7 it is possible to characterise the optimal policy in
‘real terms' (that is, without the wuse of shadow prices). For the general
model of Chapter 7 only a characterisation of the optimal policy in terms
of shadow prices can be given, which is in fact nothing more than a
reformulation of the optimality conditions. With regard to the model
incorporating technological progress as well as the business cycle, Chapter
8 shows that the firm is more flexible than in Chapter §, due to the
vintage structure. Moreover, if the optimal policy involves a ‘zero
investment-peried’, the c¢yclical movement of price and marginal revenue,
which is similar to the movement in Chapter S, is accompanied by a cyclical
movement of the optimal lifetime of capital goods.

Only the future can tell to what extent this thesis can contribute to
"framing theories with empirical content” (see p.20). Pointing out
directions for future research thus is a precarious undertaking.

With regard to the application of deterministic dynamic optimisation models
to firm behaviour, the models in this thesis indicate two directions of
research: in the first place it seems worthwhile to give a more detailed
description of the firm itself (cf. the vintage structure of the capital
goods stock im Chapter 7 instead of a homogemeous capital goods stock). The
second direction of research is to pay more attention to modelling the
markets in which the firm is involved (cf. the business cycle in Chapter
5). With regard to modelling the inferaction of the firm with ‘the market’
or with specific competitors, a cooperation with game theoretic models
might be useful.

It seems obvious that the application of stochastic dynamic optimisation to
economics is a fruitful area of research, which has many advantages over
deterministic  optimisation. A really wser-friendly presentation of  the
mathematical theory of stochastic optimisation seems desirable.

Finally, the path connecting procedure, possibly combined with numerical
solution methods (which might help to ‘guess” the optimal string, cf.
Chapter 8) strengthens the probably biggest advantages of deterministic
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optimiisation over stochastic optimisation, namely the capability to deal
with ‘many’ aspects in one model and the possibility to derive analytical
results which cam be interpreted economically.
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APPENDIX 1
OPTIMALITY CONDITIONS FOR THE BASIC MODEL OF CHAPTER 4

Al.1 Necessary and sufficient conditions
After elimination of Y, Q and L, the model (4.1)-(4.10) is:

Model I:
Max Ofe‘“:o(t) at + X (AL1)
1.D
K = I(t) - aK(1), K(0)=K, (AL2)

%= (-0 {SEQR0O-ak@-rKOXW}} - D),

X(0) =X0 {A1.3)
Kty - X(t) =z 0 (AL4)
(+DX@) - Kty = 0 (A1.5)
0= I(t) = Im)c (A1.6)
0= D) =D (AL

max

In this appendix the necessary and sufficient conditions are stated in a
more precise manner than in Chapter 4, using section 6.2 of Feichtinger &
Hartl [1986]. All expressions appearing in the objective function, the
differemtial equations and the control constraints need to be continuously
differentiable as functions of (K,X,I,D,t). For model I, which is ‘almost’
linear in (K,X,I,D), this simply means that S has to be continuously
differentiable with regard to K. Moreover, the left hand sides of the two
pure state constraints (Al.4-A1.5) (i.e. constraints that do mnot explicitly
contain one or more control variables) have to be twicely continuously
differentiable with regard to (K, X,t). It is obvious that this s
satisfied. Mote that the pure state constraints are both of order one,
which means that the first total time derivative of those constraints
depends explicitly on at least one control wariable. In this appendix two
constraint qualifications are needed, a weak one and a strong one. From now
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on the control constraints are written as g(u,t)a@l, with g s-dimensional
and the pure state constraimts as h(x,t)=0, with h g-dimensional.

The weak constraint quolification  is  satified if the following matrix has
maximal row rank:

[ g /ou g .0
Ef ,g’. . (AL.8)

Bg;/‘au o ... gEN
For model I, this matrix takes the following form (gﬂ=l, gl=Im“-E, g3‘=D,

g=D,,Dx

> 4

t o1 o o0 o0
100 L. 1 0 0

010 0 D o0 (A1.9)
o 1to o o b -p

The strong constraint  qualification is  satisfied if the following matrix
has maximal row rank:

{a‘gﬂ/’&u g -0 0 ..0]

ag, /3 0..g 0..0
\ : (A1.10)
gedh/dt 0 .0 h .0

' : Do
| Bﬁdhq/dt 0... 0 0 ... th

For model 1 this matrix takes the following form (hl=K~X, h2=(1+b)X-K):

1 oy )
u will always stand for the vector of control variables and x for the

vector of state variables
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1 o I 0 0 0 0 0
10 0L 0 0 0 0

0 1 0 0 D 0 0 0

o -1 0 0o 0 D_- 0 0 (AL1D)
i1 1 0 0 o0 0 K-X 0

-1+ 0 0 0 0 0 (1+BH)XK |

Necessary conditions

It is weasily seen that the weak constraint qualification is always
satisfied in model I, since ]Imx#‘:(]‘ and Dmu;&(), Thus Theorem 6.2 of
Feichtinger & Hartl cam be applied, which wuses the so-called ‘direct

adjoining approach® to handle the pure state constraints (Al.4) and (ALS).
The Hamiltonian and the Lagrangian are defined as follows:

H(x,u,A,t) = JLOID + }Lu(l-a}() + A2{(1-f)(E—wL—aK-rY)-D} (A1.12)

Lud oty = + pl + p @ - -I) + 4D + u (D D)

max_

+ Un(K'X) + UI((l+b‘)X-K) (A1.13)

Now the Maximum Principle states that for an optimal (I,D,K,X) there exist
a  constant AO, piecewise  continuously  differentiable  functions )Li(‘t),
plecewise continuous functions ,ui(t) and v‘i(t)Z, constants  y., and for each
timepoint 7 where A is discontinuous a vector n(r), such that for all
timepoints t where (I,D) and 1 are continuous:

zFeichtingcr and Hart] note (p.178) that in general some extra conditions
are required to assure that a piecewise continuous function v exists. These
conditions can be found in Appendix 3, p.183-184,
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& = - u, = Al.14
H.r e J e = j,‘ + 'MI Mz 0 ( )
% =0 == 4 - Ay oy - Hy =0 (A1.15)
f!.l = 'HK + tﬂ. (i-&-a)lx + Azw(ﬂl-_f){% a4+ r- %]‘?’C} - v, + v, (A1.16)
i, = ‘g%( + ik, = {I-(1Hr}A, + v - (1B, (AL1T)

,ulI-”O, uz(lmm-nzi), ,ugD=0‘, y‘(Dmu-D‘):D, ,uiZD, i=1,2,3,4 (A1.18)

b (K-X)=0, v, {(1+b)X-K}=0, v =0, v =0 (A1.19)
M@ =y v A@ = AT oy 4 by, (A1.20)
y {K@-X(@)}=0, 7,{(1+HXDK@D}=0, 7,20, y,20 (A1.21)

If A is discontinuous in 1, then:

i

AEN) = 410 - 1@ + 1,0 (A1.22)

It

A" = A + 1D - 1+, (A1.23)

7,(M{@-X(} = 0, n({U+)X()-K(D} = 0, n(1)=0, n,(1)=0

(A1.24)

On page 155 it is derived that for the final paths considered in this
thesis, ¥, and Y, equal zero. This makes it possible to use ‘Remark 6.7° of
Feichtinger & Hartl (p.167), which leads to the conclusion that }10=I (see
also Exercise 6.1 of Feichtinger & Hartl (p.177)).

Sufficiency

Regarding sufficiency, theorem 7.1 of Feichiinger & Hartl, together with
their remark 7.1, can be applied. This theorem states that if the salvage
value term is concave im %, g(u,t) is quasi-concave in w, h(x,) is
quasi-concave in x, and, last but not least, H(x,u,d,t) is concave in
(x,u), a solution w[x*,u*) of the necessary conditions is an optimal
solution,
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In problems I the salvage walue term, g and h are linear amd thus
quasi-concave in (x,u,t). The Hamiltonian is linear with regard to I, D and
X and concave with regard to K since the revenue function S is by
assumption concave. Therefore the necessary conditions are also sufficient
for problem I.

Uniqueness

Regarding wuniqueness, Theorem 7.3 of Feichtinger & Hartl states that if
there is a solution which satisfies the sufficient conditions and for which
ok, A1) = mﬂx{m(x,u,i,t)! g(u,t)=0} is strictly concave in x for every
(4,t), then every optimal comtrol u leads to the same state trajectory x.
Feichtinger & Hartl show that the concavity of ®° is implied by the
stronger condition that ® is strictly concave in (x,u). In problem I
however, H is linear in X. So it seems impossible to establish uniqueness a
priori.

A theorem on jumps

In all models in this thesis, the pure state constraints are of order one,
and the control wvariables appear linearly. Therefore a very useful theorem
of Feichtinger & Hartl (Corollary 6.3) can be applied. Define a boundary of
the constraint hi as an interval on which Imi equals 2ero. Suppose (o) is
such an interval, them o« is called the entry point and f is called the exit
point. The Corollary of Feichtinger & Hartl states:

(a) If the control wariables are continuous im an entry or exit point of
one or more boundaries hi and the strong constraint qualification is
satisfied, then the corresponding jump parameters n, equal zero and
thus i is continuous.

(b) If the entry to or exit from one or more boundaries hi occurs in a
non-tangential way, then the corresponding jump parameter 1, equal
zero and thus A is continuous.
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hﬁ | \ / hi |
t t>
Tangential entry and exit Non-tangential entry and exit
Figure 1a Figore 1b

Let 7 be an exit or entry point of hi. The entry or exit of this boundary
oceurs non-tangential if and only if dhi/dt is discontinuous in .

dh1 _ oh, ax . ‘anj

dai- — gt dt at
For model I this amounts to:

dK-X) =1+ D - aK - (10 {S[E%l]-%"!x(walqtyr{K(ty-xm}}
HOHDXK} - o+ D1 +aK+(b+ 1)(1-f){sp’ﬂ,ﬁljﬁr’x(t)-ax(m)-r{mt)-xm}}

Note that X and X are continuous and that S is a continucus function of K.
Now it can be immediately concluded that the entry or exit of the
constraints (Al.4-A1.5) is non-tangential if only ome of the control
variables is discontinuous. Moreover, the entry or exit is tangential if
both control wvariables are continuous. Finally, if both control variables
are discontinuous, the entry or exit will in general be non-tangential;
however, it is possible that dhi/’dt is continuous if both control wvariables
are discontinuous.

This result will play an importamt part further on in the coupling
procedure of Van Loon.

Al.2 The coupling procedure
Al1.2.1 The paths
A path is defined as an interval of time on which the set of active

constraints does mot change. A path is thus determined by the values of the
six multipliers (,u&, i=1,4, v, i=1,2), If a multipier is zero, the
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corresponding constraint is in gemeral mnot active; if the multiplier is
positive, the constraint is active (see (A1.18) and (A1.19)). Since model I
contains six constraints, there are in principle 2%=64 different paths.
Fortunately, many paths can be excloded (are not feasible), for instance
because of the simple fact that the upper and lower bound om the comtrol
variables D and I and on Y cannot be active at the same time.
Furthermore, in Chapter 4 it has been asserted that the upper bounds on the
control wvariables are artificial. They serve to prevemt infinite wvalues for
the control wvariables. If a pure state constraint is active, the controls
are partly determined by the fact that they have to keep the state
variables on the boundary. For instance, if on an interval K=X, then also
dK/dt=dX/dt on that interval. Thus (use (Al.2) and (A1.3)):

I-aK = (I-H{ S(K/D)-(wllkh)K-aK-r(K-X} } - D.
Equivalently:

I+ D =aK + (1-H{ SK/K)-(wllk)K-aK-r(K-X) }.
Since X and X have finite wvalues, the control wvariables are bounded from
above by this equation. It is assumed that the artificial upper bounds are
never reached if at least one of the pure state constraints is active. This
again excludes a number of paths.
Finally it can easily be shown that some paths imply i=(1-f)r, which is
excluded (see p.41), Careful elimination leads to the exclusion of fifty
paths. The remaining fourteen are summarised in table 1:
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path oM, H, By vy v,
1 0 0 6 o0 + O
2 0 0 ] 1] 0 +
3 0 0 + 0 + 0
4 0 0 + 0 ] 0
5 + 0 4] 1] + 0
6 + 0 0 0 0 +
7 + 0 + 0 0 0
& 0 0 0 + 0 4]
9 ] + 0 + 4] 0
10 0 + + 0 0 0
11 + (4] 0 + 0 0
12 0 0 + 0 0 +
13 + 0 + 0 0 +
14 + 0 + 0 + 0 |

Table 1: The definitions of the feasible paths

Paths 13 and 14 will be excluded since they are borderline cases. For
instance, consider path 13: on path 13 I=D=0 and K=X. K=X on an interval
implies dK/dt=dX/dt, so -aK=(1-f}{S(K/k)-(wi/k)K-aK}. And thus,

(1-ASKI) = {(A-H(wllk+a)-a}K.

The left hand side is a concave function of K, the right hand side is a
linear function of K. Moreover, both sides equal zero for K=0. So the
equality has at most one solution (#0) for K. Since K is decreasing on path
13, this means that path 13 is only feasible during one imstant of time.
The same is true for path 14. Paths lasting only an instant of time can be
ignored.

It can easily be seen (using u3=‘u4=0 = JLJ=1, (A1.17), and the fact that
UIBO and v@z(’)) that paths 1 and 5 are only feasible if i<(1-Hr and that
paths 2 and 6 are only feasible if i>(1-fir.

From Table 1 the properties of the remaining twelve paths can be derived,
leading to Table I in Chapter 4. For a more elaborate description of the
translation of a table like the ome above into a table like Table 1 in
Chapter 4, see Van Loon [1983] or Kort [1989]. Van Loon and Kort also give
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a detailed description of the coupling prmedurc.3 In Chapter 4 the idea of
the coupling procedure is explained. The essential technical elements of
the coupling procedure are that the state variables are required to be
continuous at coupling points (which, for instance, excludes the coupling
of a path with ‘ul>0 (Y=0) and a path with uz>0 (Y=5bX)), and that in many
coupling points the multipliers 4, must be continuous. Suppose path x is to
be coupled before path y at time tv. If, for instance, ‘u3‘=0 on path y and #,
must be contimuous in 7, then the coupling of path x before path is only
feasible if d,ua,’dt&r') is negative (because @, must be non-negative
everywhere). In this way many possible couplings can be excluded, and many
couplings are omly feasible under specific conditions.

In the models of Van Loon [1983], Van Schijndel [1988] and Kort [1989]
continuity of H, is a consequence of the continuity of Ai. However, in the
models of Chapters 5 and 6 1 is not always continuous, so it can never be
assumed that Ai will be continuous at a certain coupling point. Instead,
the theorem on jumps of the costates will be wused to see if Ai is
continuous at a coupling point or mot,

Al1.2.2 Derivation of the final paths

A final path of an optimal string has to satisfy the transversality
conditions (A1.20) and (Al1.21). These transversality conditions are a bit
ambiguous, since A may jump at time z. After all, theoretically z can be
an entry- or cml point. The transversality condition (A1.20) should be
read as follows:

2,)=0, 4 @)=v, (A1.25)

Leh)=1, 1@)=1y,+1+by, (A1.26)
Using (A1.14) and (A1.15) this leads to:

B2 @) = vy, (AL.27)

il

B )u (@) = Ly +(1+b)y, (A1.28)
From (A1.21) it is clear that 7, and ¥, cannot both be positive, so there
are three possibilities:

*Wan Loon uses the socalled ‘Russak-method’ to handle pure state
constraints, which is different from the method used in this appendix; see
Feichtinger & Hartl, ch.6.



u @Y=, @y = p@)=p,)=0 AL29
ooy=n=0 = {uj(z'ﬁwaﬂz”) = p (2 )=u &)=0 (A1:29)

The only paths with these properties are 1 and 2

Y{z) = bX(z)
2 9,30, 7,=0 = { w @) u @) = -y, = 4 @)>0 (A1.30)
) u @) = (+b)y, = u@@)>0
The only path with these properties is 7
Y(z)=0
3 1,=0,y>0 =4 uG )uk) =y = uk)>0 (A1.31)

Az U ) = -y, = p)>0
There are no paths with these properties

So the only feasible final paths are 1, 2 and 7. Path 7 is a peculiar final
path: the transversality comditions imply that Y(z)=5bX(z). Moreover, I and
D are zero om path 7. Thus on path 7 the capital goods stock decreases,
debt rises and reaches its upper bound precisely at time z, and X
decreases. So in fact the firm is bankrupt at time z, since the ‘accounting
cash-flow’ (see (4.30)) is negative (this is implied by I=D=0 and Y
increasing) and debt is on its upper bound. In other words, on path 7 the
firm comes to a crash halt at time z. On economic grounds path 7 is
excluded as a final path. In Chapter 4 only path 1 and path 2, on which
dS/dK is constant, are considered as final paths.

Al.2.3 The coupling procedure

In this subsection the coupling procedure for model I is illustrated by
finding the predecessors of path 1.

The first thing to realise is that path 1 is only feasible if i<(1-fr.
Since i and r are conmstamts, i<(l-fir must also hold on predecessors of
path 1. This excludes path 2 and path 6.

The next important fact is that the state variables have to be continuous.
Therefore it is impossible that on predecessors of path | Y=»bX, since K=X
(Y=0) on path 1 and b>0. This excludes path 12.

Since the upper bounds on I and D are artificial (they only have to prevent
I and D from becoming infinite), Dmx and Im are set arbitrarily high, so

~156-



that that the firm can only finance I=Imﬂ and/for D*-=Dmu by “heavy’

borrowing : paths with D=Dmu or I=Imu are ‘short” adjusument paths. This

implies that at the end of paths 8,9,10 and 11 debt is positive. Simce Y

has to be continwous in coupling points (Y=K-X and K and X are continuous),

these paths cannot be predecessors of path 1.

Now paths 3,4,5 and 7 are left as possible predecessors of path I.

* can path 3 precede path 1?
,Jil equals zero on path 1 and path 3. Thus Al is continuous in the
coupling point and this implies n,=n, (see (A1.22)). Moreover, K=X on
path 3 and path 1, so 1, must be zero at the coupling point (see
(A1.24)). Thus we have ’71="1=0’ which means that ﬂ.‘l, Az and &, are
continuous at the coupling point. If the coupling point is 7, then
this implies ha(r')so‘u The  properties of path 3 reveal that ‘[13‘(1‘")50
if  dS/K(z)=wilk+a+il(1-f). This does not exclude the coupling of
path 3 before path 1, since on path 1 dS/MK(T)=wllk+a+i/(1-f).

* can path 4 precede path 1?
on path 1 dS/dK equals wllk+a+i/(1-f) and on path 4 dS/dK equals
wilk+a+r. Thus coupling path 1 and path 4 would imply a jump of dS/dK.
Since dS/dK is a continuous function of K, K would also have to jomp,
which is prohibited. So path 4 canmot preceed path 1.

* can path § precede path 1?7
Again, just as in the case of path 3, n1=n2=0‘, 50 that .JLI‘, ).2 and M,
are continuous in the coupling point. If the coupling point is 7, the
properties of path 5 imply that _L‘(l(r-‘)sﬂ if dSMK s wlfk+a+il(1-f).
This does not exclude the coupling of path 5 before path 1.

* can path 7 precede path 17
If so, the coupling point is the entry point of the restriction K-X=0.
Since K and X are continuwous, this implies that K#(1+5)X at the
coupling point, so n2=0 (see (Al.24)). Thus (A1.22) reduces to
A[(r+)=lﬂ(r')-nl. This implies that if Al jumps at the coupling point
7, it jumps downward. But }ilx(i‘ on path 1 and .1"=~,ul-<0 on path 7.
This leads to a contradiction, thus A] must be continuous in the
coupling point. This implies '71=0 and consequently )”z’ u, and p  are
continuous in  the coupling point. The properties of path 7 reveal
that ,ll:l[‘(‘l:-)sﬂ if dS/dK=swllk+a+r and that ﬂa(r-)sﬂ if i<(1-f)r. This
does not exclude the coupling of path 7 before path 1.

So the possible predecessors of path 1 are the paths 3, 5 and 7. The next

-157-



step of the coupling procedure would be to find the predecessors of the
strings 3-1, 5-1 and 7-1. Careful reasonimg along the same lines as above
leads to the desired results. In Appendix 2 a full represemtation of all
strings of the model in Chapter 5, which is an extension of the model in

this appendix, will be given.

For future reference the possible coupling 5-7 is examined here. The
coupling point between 5 and 7 is an exit point of the restriction K-X=0.
Therefore it can be concluded immediately that q2=0 in that coupling point
(see (A1.24)). Moreover, I=0 on path 5 and path 7, so I is continuous at
the coupling peint. Jf D is discontinuous, then the jump theorem states
that 1 will mot jump. In that case, u, is also continuous (see (Al.15)).
The properties of path 7 reveal that ﬁz‘(r‘*)aﬂ implies > (1-fyr which
contradicts the properties of path 5. Thus path 5 can omly precede path 7
if D is continuous and A jumps® This implies (from the definition of D on
path 5; use (A1.3) amd the fact that X=K=gK on path S5} that S(K/k)} equals
{wifk-fa/(1-H}K 1in the coupling point. This in fact means that the
‘socounting cash-flow’ becomes zero on path 5 and the firm is forced to

borrow money.

Finally, also for future reference, is the string 5-7-5-1 possible? It is
easily seen that the coupling 7-5 is feasible and that A1 is continuous in
the coupling point. Moreover, as just derived, in L, (which is the point
of time at which the firm switches from path 5 to path 7) the ‘accounting
cash-flow” equals zero. This implies that K(lm):K (see Figure 7 of
Chapter 4). On path 7 I=0, so K decreases for t>ta.7 and the ‘accounting
cash-flow’ except interest expenses becomes positive. Thus, since I=D=0 on
path 7, the firm has money to pay back debt (see (4.30)). But Y equals zero
at t - The conclusion is that the coupling of path 5 before path 7 would
lead to a violation of the conmstraint Y=0 for tatm. Thus the string
5-7-5-1 is not feasible for model 1.

4 i N . . .

N(_)tq that at the coupling point the strong constraint qualification is mnot
sla;msﬁad, 50 that there i5 no contradiction with part {(a) of the jump
theorem.
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APPENDIX 2
THE MATHEMATICAL DETAILS OF CHAPTER 5§

This appendix contains the details concerning the optimality conditions for
the model of Chapter 5. Section A2.1 gives some general remarks. Section
A2.2 corresponds to section 5.3.3. Section A2.3 corresponds to section
5.3.4 and also contains the analysis of strings beginning with path 3,
Section A2.4 corresponds to section 5.3.5. Section A2.5 discusses the
uniqueness of the solution. The numerical exercises for the case i<(1-fir
can be found in section A2.6. Section A2.7 corresponds to section 5.4.

A2.1 General remarks

Simce the model of Chapter 5 is, except for the formulation of the revenue
function, identical to the basic model, much of what has been said in
Appendix 1 is still valid. To be precise, the matrices of the weak and the
strong constraint qualification are the same as for the basic model; the
necessary conditions are identical (with 3S/3K instead of dS/dK); the
statements on sufficiency and wuniqueness are still valid, since § is again
a concave function of K for each t; the same argumentation concerning the
exclusions of paths can be applied so that there are again twelve feasible
paths; and the characteristics of these paths are the same., Only the
coupling procedure vyields different results. The final paths are the same
as before, but the set of possible strings is considerably larger, due to
the fact that 8S/dK is a cyclical function of time for a given value of K.
In particular, it is now possible that cycles occur, that is, it is
possible that a certain path x appears more than once im an optimal string.
For instance, at the end of Appendix 1 it was shown that the string
5-7-5-1 was pot feasible. In the business cycle model, however, that string
is feasible! In Appendix 1 the reasoning was as follows: suppose the string
5-7-5-1 1is feasible; then the ‘accounting cash-flow’ is zero in t, (this
is still true); moreover, on path 7 K decreases (this is also still true),
and thus, K is smaller than R (see Figure 7 of Chapter 4) and ‘the
accounting  cash-flow” before interest becomes positive immediately after
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L This is no longer true: K is now a function of time. Thus, although
inﬁmediately after to, K falls below K(‘n”), it iz not clear whether
Kih<B@ for t>t 5 In other words, it 1is mnot clear whether the
‘accounting cash-flow” before interest cxpemses becomes positive after b
In fact, it is easily derived from the definition of p(Q,t) (cf. equation
5.1) that p decreases on path 7 if the recession is ‘moderate’ (m-g>a).
Moreover, it can easily be derived that on path 7:

dy/du) = ~(1-f;{§ - # + ‘1%} K@) + (1-prY(), (A2.1)

and this equals minus the ‘accounting cash-flow’. Note that in t, Y=0 and
the ‘accounting cash-flow' equals zero, which implies plk=wl/k-fa/(1-f).
The right hand side of this equation is a constant and p decreases on path
7. Thus (AZ2.1) implies that dY/dt will increase on path 7 during the
recession. So the string 5-7-5-1 cannot be excluded om the same grounds as
in Appendix 1. Moreover, it can be shown that there are mo grounds at all
to exclude 5-7-5-1. This illustrates that a path may occur more than once
in a string.

A conscientious application of the coupling procedure yields the following
schedule of all possible strings ending with path 1. For reasoms just
explained, this schedule takes the form of a recursive tree:

|
| | |

One final remark has to be made concerning the coupling procedure. [In
Chapter 5 it has been stated that the price function is not continuously
differentiable, but that this does mot matter. What 1 did in fact, was to
'smoothen’ p in the mneighbourhood of t, and t so that it becomes a
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continwously differentiable function; mext I applied the coupling procedure
to find all strings. For all these strings, the differentiability of the
price function is mnot essential, so I can from now on use the ‘old’
function p. In other words, the discontinuities were temporarily removed to
make sure that all possible strings are found. Note that for the given
specification of p, p itself and 3S/8K are continuous.

A2.2 The details of section 5.3.3

1-5-1

Equation (5.18) of section 5.3.3 is:
t
o8 82D dr=0 (A2.2)
i3

On path 5 I=0, so (see (5.3) and (5.4)):

4885 = ama-1ap@u * { (x+aye ), (A2.3)

where x equals g during expansions and g-m during a recession. Furthermore,
on path 5:

-a(t—tm)

K@) = e K(t ). (A2.4)

1,5
Using t =t and t =t and formula (5.1} for p, (A2.2) can be rewritten
as:

t ‘
1-1/e [K(tl‘j)exp(—atluj)/k}'”e { [0 (gra)e8taTe 4

tl.ﬁ

(mle) t, t
€

N it (gm +a)ew(g—m+a)r/’e dr +
t
“(mley(t -ty t_ ' ‘
. AN (g_r,l+a)e(g"’1+ﬂ)T/¢ dr } =0. (A2.5)
¢ ‘
1

It is easy to show that this leads to (5.19).

The other condition for 1-5-1 is (5.20): Al(txns)=lu(ts,1)=0 and Al(t,) <0
for tE{Lu,tM). This condition is derived from the fact that AIzO on
path 1 and A is continuous in ts and t and from the fact that
Ai(t)=‘-,uﬂ(‘t)<0‘ on path §.

On path 5 u2=,u3=u4:vsz), so the optimality conditions (4.14)-(4.17) lead
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fo: A =1, v, ={1-fir-i, and thus:
= G+a)l, + (1-;){F +a+ "17 asl, (A2.6)
or equivalently:

A - G+a)d = (1 j){y +a + T7 BK} (A2.7)

Multiplying both sides with g +ak gives:

Y @ - e Vra @ =

HNap(t + o+ - G (A2.8)
The left hand side of this expression equals the total time derivative of
g i+a) tkl(t). Therefore:

_(H-a)ts ; ~(i+a)t
a 5,‘1) -e }'a‘m‘ =
t . y
3 e UFAT (ptwitkravini - S5 o (A2.9)
t
Substitating A {t_ )= in (A2.9) and  noting that om path 1

15,0
IS/IK =wllk+a+il(1-f) lcads to (5.21) and (5.22).

To perform the sensitivity analysis with regard to t, and t, the
integral in (5.21) can be calculated in the same way as above to give

(after substitution of (5.19)):

-{g+a-e(i+a)}t _le

e LS = g, (A2.10)
with:
-(8,/8,) J’(W (A2.11)
61 = exp{-m(i+a)t-t)/(g+a)} - 1, (A2.12)
d =

} {m/{g-m+u-‘e(i+a}|}} {exp{ (g+a-ei+a) fe }}
{{ exp{(g-m+a—e(i+a))(tl-t0)/e} -1 }} (A2.13)

To derive this, one has to use that K((”)=exp(g£”)l((0) and:
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0 = ——E+a+1—f - K(0) = {k{7+a¢w}/(1 1/e) } (A2.14)

It can be shown that g+a-e(i+a)=0 implies =1 and them (A2.10) contains no
information. This borderline case is excluded. It is easily seen that if
m=g+a, (AL.10) vyields t =t a8 expected. For m>g-+a, (A2.10) yields

t”<t For (A2.10) to have a non-negative solution for t e must be <1
if g+a-e(i+a)>0, and 7 must be > 1 if g+a-e(i+a)<0. Equatmn (A2.10) can now

be uwsed to perform the analytical and numerical sensitivity analysis.

To perform the sensitivity analysis with regard to t*,‘ an expression for m*
is needed. Note that on path 5 the firm wuses all the ‘accounting cash-flow
to pay out dividends (use (5.6), (5.7), Y=K-X and the fact that I=0 on path
5

= { (1-N{plk-wilk-a) + a } K on path 5 (A2.15)
(A2.15) equals zero if:
p = wi-fak/(1-f) (A2.16)
Definition (5.1) and (A2.14) can now be used to find:
* £ a-+ m ‘
U= g¥awm { _eK =gt + In@}, (A2.17)

where @=(1-1/¢) %’EEQL‘TH% (A2.18)

The value m can be found by setting l*=tl in (AZ2.17).
A2.3 The details of section 5.3.4

1-5-7-5-1

For this string (5.18) and (5.19) are again valid. Although U and t
may differ, the derivation is the same, since I=0 on path 7 as well.

Condition (5.26) can be rephrased as: t”mt*, with tw as in (A2.17). The
second condition {5.27) can be worked out as follows. On path 7 (using

(5.63, {5.7), Y=K-X, and the fact that I=D=0 on path 7):
dYidt = -aK -(1-N{ (plh-wilk-a)K-rY }
= + (1-HrY - (1-H{plk-wlik+fal(1-H)}K (A2.19)
= dY/dt - (1-HrY = - (1-Niplk-wiik+fal(1-NYK (A2.20)

5.1
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= & UMy = - N (p (ki fal(1-9)}K ()

(A2.21)

The procedure is mnow: integrate both sides of (A2.21) over the imterval
-a(t-tu) -m+(a+g)t”

[ts - BE substitute K({t)= K(tn S)= & KO and

K(O) (see (A2.14)) into (A2.21) twice: for K(t) itself and in the fmmula
for p;, imtegrate the resulting expression; use (A2.17) with 1t =t to

57
eliminate t The result is an expression only containing t,and t o

1 ﬁ—(r(l~ﬂ+a)t_,‘.s+ (ghm+a)tsk7fe i cm+m-a)t5'_’m
r(I-f)y¥a
e e-mtl/‘e G-(ﬂ-a)%;le L e e‘w+m)t5‘1/e
B-a F¥m
~(B+m-a)t Je
= - Gy (Fa) © v (A2.22)

where B=e{r(1-i+a}-g.

This expression is nom-linear and it is impossible to reformulate it to get
an expression like t 5=F(t s, 7')

The last condition is (5.30), together with (5.31). To derive (5.31), note
that from equation (4.23):

it = AT A ) = AaT ) (A2.23)
Moreover, lz(t’: 5)=] and on path 7:
St by = GOHNA, (A2.24)

This gives:

+
7.9

t t
Aty = 7 L amar 41 = PO dr 4

5.7 5.7
(A2.25)
Together (A2.23) and (A2.25) yield (5.31).
Now (5.30) can be obtained in the same way as (5.21). Calculating (5.30)

gives a non-linear expression with four unknowns: LI and t st
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-1 ((I-ﬂr-i‘)tu - ((l-j)r"ra)tﬁj . i —(i+a)t5.7
m & ']l‘_—f [+] =
wilk+a+ i /1(1-f) -(i~i—a)1i5 . —wl{i+a)tn s ~(i-s‘<cm)t5 5
= 7¥a) & Y- e Y+ e : -
{wiltk-fa 1(1- £} {{(1-Nr-i} -(i+a)t”
G+al{a F(1-p7) e
wllk+a+r {( l-f)r-i)t_l ‘5-‘((1—j)r+a)m5 ’
“ Ty TEa - Le ' ’
- —(a+g)tule ‘ om 6tole‘
+ e(wllk+a+il(1-He ’ 3(5=m) e +
mt le (d-myt_ _fe ({(I-fr-i(t, -t )
0 R [ 1 1 58,
+oe ¢ T {m T emFae((ThHr+a) © ' ”}
‘ -m(t -t Ye (-B+alt e ((1-fir-iit
t Bram BT ° fe "

. e(”;a:)r_i) e&tml/e . 3]1' { c-m(tl-to)/’e eﬁ‘ts,lle ) cﬁtm/e } }!

where d=g-+a-e(i+a) and § is as before.

The set of conditions (5.19), (A2.17) with rt*=tm, (A2.22) and (A2.26) is
a set of four (partly) nonlinear equations in four unknmowns, from which I
have not been able to derive beautiful analytical results. For the
numerical exercises in section AZ2.6 this set of cquations was solved on a
computer, using procedure COSNBF of the NAG-library.

(A2.26)

Before discussing the remaining strings beginning with path 1, the more
simple strings beginning with path 5 are exemplified.

3-1

As  with 1-5-1 (5.18) and (5.19) are walid, with tm=0. Moreover
AI(WL‘WH(O‘)‘SO (using 4.14). Now substituting Aﬂ(tjul)xﬂ in (A2.9) and
imposing A (0)=<0 leads to the condition: n<1 if g+a-eli+a)<0 and n>1 if
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g+a-e(i+a)>0.

- -‘5“1
Por this string (5.19) and (A2.17) are walid with 0 substituted for ‘tu

and t, for t", and (A2.22) is valid.

3-7-3-1

For strings containing path 3 there is an additional difficulty. On path §
and path 7 I=0 and on path 1 I=(a+g)K. This gives a nice expression for p,
08/0K and d/dt(95/3K) on these paths. But on path 3:

= {(1-filp/k-wilk-a)+a}K. (A2.27)
Substituting this in the formula for d/dt(38/3K) (see (5.3) and
(5.4)) gives a first order ordinary differential equation for 8S/4K:

S5 3SI0K = A(3S/EKY + II(3S/3K), (A2.28)
where
A = e(1-fHi(1-1/e), (A2.29)
IT = (g+(1-Hwllk+a))le. (A2.30)
Rewriting (A2.28):
d 3§/9K = dt.
A(3S/3K)? +IT(38/3K)

Integrating both sides (using that the primitive of 1/’(ax2+bx) equals
(1/b)m.n(x—}m5)) gives:

1t
asiak(y = S yhere ¢ s a constant, (A2.31)
1-Ce

MNow the conditions for the switching points of 5-7-3-1 can be derived.
Three conditions are needed. The first is of course (A2.17) with t 5—0 and
t =t 5.7 The second is (5.27) or (A2.22) with t3 instead of t - Knowing
t” mmphes knowing &SIBK(t”)w Substituting this in (A2. 31) gives the
copstant . Then (A2.31) also gives BS/aK(t ) Equating HSIBK(tM) with
wifk+a-+il/(1-fy gives the third condition.

5-7-4-3-1

Four conditions are needed for this string. The first is similar to (5.18):
from  #8/0K(t 4)-*~*»m'/ld:~l—«a+lf' (see  Table 1 in  Chapter 4) and
381K (0) = wllk+a+zl(]lf) it can be derived that:
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wilk+a-+r
wilk+a+1/(1-f) ]

ba = gma @) + 555 In (A2.32)

14 g+a g+a

Mote that since the secomd term of the right hand side is positive, the
‘zero investment’-period is now longer tham in strings 1-5-1, 1-5-7-5-1,
5-1, and 5-7-3-1.

The second condition is (A2.17) with t 5-—(} and t =t,

The third condition s given by Y(t4.3 =0 Solvmg the differential
equation for Y on path 7 and substituting the values for t and L
gives Y(t ) Next the differential equation for Y on path 4 can be solved
and ﬁmally Y(t 3)-mnﬂt is imposed.

The fourth condition is given by: 6S/BK(t } wilk+a+r and
&l‘SlaK{t ”,u wllk+a+i/(1-f). Equation (A2.31) can be used to work this out.

1-5-7-3-1

Four conditions are needed. The first is (A2.17) with t =t .. Like in the
case of 5-7-5-3-1 t 73 and t,, can be computed, but now as a function of
t .. Finally: }Ll(t )A(t ) 0 Working out these last two conditions

r;‘csluir‘es solving the dlffcrenmm] equation for A on path 5 and path 7,
which was done before (see A2.6-A2.9). Moreover, the magnitude of the jump
has to be computcd which is now very difficult. It requires determming
(i: ) l(t )l(ls 7) = ).(t )}l (see (A2.23)). To compute A(t )
the d1ffcrent1a1 equamm for ﬂ. on path 7 and path 3 must be mtegmted

using A 4t . However, on path 3:

31
d .
I i, = { wllk+a+il/(1-H-3S/8K } (1-f) i, (A2.33)
This, combined with the rather difficult expression for 4S/4K on path 3
(see (A2.31)), seems to be an unsolvable differential equation. So a full
set of conditions for the switching points of the string 1-5-7-3-1 cannot
be obtained.

1-5-7-4-3-1
Five conditions are needed. It is relatively easy to get four of these five
conditions (see the strings 5-7-4~3-1 and 1-5-7-3-1), but again it s

impossible to work out ,’il(t1 5) A{(tq 3) (0. Similar to the case 5-7-4-3-1:

wllk+a+r

€ ¢
t'm = "1,5 + g+a“ ” + g+a]'"( wllk+n+1l(l~f))’ (A2.34)
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‘zero  investment’-pericd (i.e. the imterval

which  implies that the
string than in the strings 1-5-1 and

(tm,tu)) is longer im this
1-5-7-5-1.

A2.4 The details of section 5.3.5

At some rtime during the expansion p/k becomes equal to wl/k-fa/(1-f}
(‘accounting cash-flow’ before interest expenses becomes zero). Let this
timepoint be 7. This v can be calculated as a function of t, using the
differential eguation for p on path 7. The differential eguation for Y on
path 7 can be solved for t>1:

1 A4 {(g+a)le-a}(t-r)
Y@ = { E (gFal e-a-r(I) } e

+ N _ -AWE e a(t-7) (A2.35)

where

4

it

-U-NK(D) {wilk-fal(1-H)}

1 4 4
=YY@ - % E¥ale-a-r1-p * r(I-fy+a

With regard to the question whether Y explodes, the third term in (A2.35)
can be ignored, simce that term will fade out quickly. It can easily be
seen that 4 is megative. The sign of I’ depends on Y(r). The second term in
(A2.35) explodes if I'>0.

If (g+a)e-a-r(1-f) <O, the sign of I" depends on the value of Y(z); if Y(7)
is large, then I" will be positive, thus Y as a whole explodes. If Y(r) is
small and I" is negative, then Y will tend to zero, even if (g+a)e>0. In
the latter case the decrease of the second term in (A2.35) dominates the
increase of the first term.

If (g+a)e-a-r(n>0, el@+alealt o ie but (“‘«Fﬁ)‘/‘?-‘"f??"rftﬁ < o0
so the first term of Y in (A2.35) decreases rapidly. f’r‘ is ﬁow positive, but
since (g+ale-« > (1-fHr, Y as a whole will decrease: the decrease of the
first term dominates the increase of the second term,
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The borderline case where the firm is at one moment on the brink of
bankruptcy but does not go bankrupt is characterised by the fact that the
firm starts with 5-7 and on path 7 Y/X just reaches its mazimum at . The
moment at which this bappens is given by:

dide (YIX)t) = 0 and Y(t) = bX(t) (AZ.36)
Since the differential equations for K an Y on path 5§ and path 7 are easy
to solve, and t equals t in (A2.17) with t,,=0, (A2.36) leads to a
system of two non-linear equations with two wvariables, m and t. This
implicitly gives m*

A2.5 Uniqueness of the solution

As was mentioned in Appendix 1, uniqueness is not guaranteed. So one might
wonder whether it is possible that several strings are optimal for the same
initial conditions. In particular, is it possible that strings beginning
with path 5 are also optimal in cases where we proposed strings beginning
with path 1 as optimal solution. Or, is it possible that 1-5-1 and
1-5-7-5-1 are optimal for the same set of parameter values?

Concerning the first question: the answer seems to be no. In any case, 5-1
and 1-5-1 cannot be optimal for the same set of parameter values. This can
be scen from the conditions on m which were derived above for 1-5-1 and 5-1
(see p.162 and p.165).

It would be nice to make this result more gemeral: 1-5-x and 5-y cannot be
optimal for the same set of parameter values for arbitrary feasible strings
x and y. However, since the equations that determine the ‘switching times’
of strings beginning with 1-5-7-.. are so difficult, this generalisation
can only be conjectured for reasons of analogy, using numerical examples to
corroborate it.

The second question posed was: can 1-5-1 and 1-5-7-5-1 be optimal for the
same set of parameter values? It seems not impossible: on 1-5-7-5-1 the
firm would stop investing later at the cost of having to borrow some time
later on. The benefits of the growth during the first expansion phase would
have to offset the cost of borrowing. Again, it is difficult 1o give a
complete analytical answer. However, it is possible to nmarrow downm the set
of values of m for which 1-5-1 and 1-5-7-5-1 could be optimal for the same
set of parameter values.

In the first place, 1-5-1 cannot be optimal if m>m (where m, can be found
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by setting ¢ =t, and t =0 im (A2.17) and rewriting it), since im that
case the firm wril get mto liquidity problems even if it stops investing
at t=0. .

In the second place, t;, must be smaller than t. L, equals t in
(A2.17) amnd from (A2.17) it can be seen that t, 57 becomes larger if tw
becomes larger. This insight leads to the following observation: if for
‘t’m equal to t R is larger than t, them t 57 will certainly be
larger than t ' for every possible value of tME(O,t c)) and thus [1-5-7-5-1
is not possible in that case. This leads to the condition that a necessary
condition for 1-5-7-5-1 to be optimal is that t,, must be smaller than t

if t1.5=to‘ Substituting t for t in (A2.17) gives:

1 (1-1/1 ey ( wllk-fal/(1-£)) ‘
g+a-m { (3+a)to - omt, + eln wITk +a+ i I{1-F) } < (A2.37)
This is equivalent to:
. (1-1/ ey { wllk-fal(1-f)) ‘
m > m, with m= gta - ﬂ In WITETa ¥ iT(TF) {A2.38)

Summarising: 1-5-1 cannot be optimal if m>m_  and 1-5-7-5-1 cannot be
optimal if m<m. Since m >m., 1-5-1 and 1-5-7-5-1 can only be optimal for
the same set of parameter values if m <m<m. For this region of m it seems
not possible to derive analytically whether 1-5-1 and 1-5-7-5-1 can indeed
be optimal for the same set of parameter values or mot. Numerical exercises
show that 1-5-1 and 1-5-7-5-1 are never optimal for the same set of
parameter values.

A2.6 Numerical illustrations

For a start the following parameter values are used:
a=0.04 f=0.4 £=0.04 i=0.05 t,=10 t,=50
r=0.09 k=6 I=1 w=1/3 e=2 or 3
If m=g-+a=0.08, the optimal policy is simply path 1. For m larger than 0.08,
1-5-1 will be optimal. For instance:
If m=0.1 and e=2, then 1-5-1 is optimal with t 5@7 8 and t ng57‘8‘
If m=0.1 and e=3, then 1-5-1 is optimal with t 5=s7 7 and t 1zS’?’.7

Leban & Lesourne and Nickell claim that for small values of m,g and a, the
‘zero  investment’-period is symmetrical with regard to t-t, that s,
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tot =t Sty Apparently, the walues in this example are already
‘large’, since this symmetry is not found.
Letting m grow further:

If m=0.2 and e=2, then 1-5-1 optimal with t =19 and L, ,=101.9

If m=0.2 and e=3, then 1-5-1 optimal with t ml 4 and t mmm

Letting m grow with steps of 0.01, the outcomes dlffer for ¢=2 and e=3 from
m=0.23 onwards. For e=12, t* gets smaller than tl for m=0.23, wh;ile tm is
still positive.
If m=0.23 and e=2, then 1-5-7-5-1 is optimal with tuzl.ﬂ‘; tmfs48.3;
=519t ‘~1160
If m=0.24 and e=2, then 1-5-7-5-1 is optimal with t 5==0.8; t5.7z46.0;
4, z77 6; tm~1207

Note that t increases very rapidly, that is, the time it takes the firm
to pay back the debt increases rapidly. The reasom is that in this case we
have (g+a)le-a-(1-Hr<0, which means (see (5.35)) that if the firm
accumulates too much debt during the recession, this debt will explode. The
critical wvalue of m im this respect is approximately 0.24, since debt
already explodes for m=0.235.

For e¢=3, a different pfttcm of optimal solutions appears: for m=0.25 ts
becomes negative while t is still larger than t. Therefore:

If m=0.23 or 0.24 and e=3, then 1-5-1 is optimal,

If m=0.25 and e=3, 5-1 is optimal with ts.l=125’

mbmlﬁﬂ, so for m>26.7, 5-1 is no longer possible.
If m=0.27 and e=3, 5-7-5-1 is optimal with l;”=49',4; t”m53.3; and

tm=135,

Of course Y will explode again for larger m. Note that for e¢=3 1-5-1 is
optimal for higher values of m than for e¢=2 and that for e=3 the firm
survives for higher values of m than for e=2.

The chosen values for the parameters may not be realistic. In particular,
the wvalues of m for which 1-5-1 is mo longer optimal are large. For
instance, m=0.25 means that the demand function is decreasing at a rate of
21% (oote that g=0.04). However, these wvalues were chosen only to
demonstrate that strings beginning with 1-5 as well as strings beginning
with 5 can be optimal, but mever for the same set of parameter values. For
e=2, k=2, I=3 and w=2/3 and the same values for the other parameters, 1-5-1
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is no longer optimal if m=0.14. But this set of parameter values has
another ‘onrealistic’ characteristic, namely that in order to be sure that
Y does not explode, g must be such that (g+a)e-a-(1-fir>0 (see (5.34)) and
this means g>0.148, which implies that the economy grows at approximately
15% during the expansion. However, for: e=1.1, g=0.07, k=2, =3, w=2/3, and
the same values as before for the other parameters, Y will not explode. The
optimal policy is (letting m grow with steps of 0.1):

If m=0.11 path 1| is optimal;

If 0.12=m=0.19 string 1-5-1 is optimal

If 0.20=m=<0.22 string 1-5-7-5-1 i3 optimal.
For imstance, for m=0.22:

t1'5w4‘,6‘;‘ t5.7m40.83; t7,5ﬂ=82.9; t5'1z811,2
For m=0.23 debt is still positive if 3S/3K becomes equal to wi/k+a-+r during
the second expansion. So the optimal policy is 1-5-7-4-3-1. For m=0.22
88/0K is smaller than wi/k+a+i/(1-f) when Y reaches zero. For the chosen
parameter valves wllk+a+if{1-f)=1.1233333.. and wllk+a+r=1.13. These values
do nmnot differ much, thus the case that Y is still positive  if
OS/OK =wllk+a~+i/(1-f) and already zero if S5/9K=wllk+a+r will hardly ewver
occur. In fact aiready for m=0.221 the optimal policy is 1-5-7-4-3-1. For
m=0.,2205, the just mentioned situation occurs and thus 1-5-7-3-1 is optimal
in this case.

A2.7 The details of section 5.4

2-6-2

Again (A2.2)-(A2.5) are valid with [2,6 and tm instead of ts and t
This leads to (5.39).

The other condition for this string  is: ll(nm):ll(tﬁ.z):ﬂ and lﬂ(t)(O for
tE(tl s"‘s.z)‘ For path 6 we

have: ,u2‘=,u3=p4=u‘=0, so the optimality conditions (A4.14)-(A4.17) lead to:
A,2=l, v, =(-(1-)r)/(1+4), and thus:

- g _afwl i ., b a8
i = G+an, + (]ﬂ{km *a s T - BK} (A2.39)
Proceeding in the same way as for 1-5-1 (see (A2.6)-(A2.9)) gives (5.41)
and (5.42).

5,1
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To perform the sensitivity analysis for ¢ 5 and tm’ an expression for
is needed. Substituting 5.3%) in (5.41), using
&SMK(O) witk+a+bri(1+b)+i/{(1-NH(1+5)}, and then calculating (5.41) gives:

-{g+a—e(z+‘a)}letz ¢
e o=,

This can be wused to perform the analytical and numerical sensitivity
analysis (see (A2.11) for =m).

To perform the sensitivity analysis for t, an expression for t is derived
. . * . .

in the same way as the expression for t . The result is:

s e a+ m ‘ ‘ ,
t = oo {2£ e gl vl ¥ (A2.40)

g+a-m
wilk +a+bri(1+b) - a/{(1-H{1 +b)}
wlilk +a +bri(T+0)+ i /{{1-H{T +b)}

where ¥=(1-1/¢) *

This can be wused to perform the analytical and numerical sensitivity
analysis.

The value of m can be found by setting t=t in (A2.40).

2-7-6-7-2
The four equations for the switching times of this string are (5.39),
(5.44), (5.45) and the analogue of (5.29).
Equation (5.44) is equivalent to (this can easily be derived from the
properties of path 6):

(1-f){p(tm)/k-wllk—a-rb/(l +&} =-al(1+b). (A2.41)
This leads to:

Lt = g+a“ ) ¥

(1-1/ey {wl lk+a+ rb/ ( 1+ -al((1 - HH{1+b))}
wliik+a+br7T{1 +bY+7 7 {(1-NH(14b}}

&

g+a &

(A2.42)

It can easily be seen that the logarithm is negative so that (5.39) and
(A2.42) automatically imply that <ty Note that tets is larger
if m is larger.

Since 1=0 on path 6 and on path 7, (5.45) is equivalent to:
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Y(tﬁ_-p)z “F?T 5 _ﬂ(‘tsn tzrsj egt'z,& K(0) (A2.43a)
_ b mtms) PP (A2.43b)
Y(tm)w-m € & K(D) .
Moreover, from the differential equation of Y om path 7 it can be derived
that:
. (1)t ¥e, - o (a-Hr, va, ) =
= . [T aperT { () Wy r@} K(r) dr (A2.44)
te.7 ‘
-a(r-t, ) gt
In (A244) p(v), Y( ), Y(t, ) and K(r)=e 26¢" 25K(0) are known.
Moreover, the value of K(0) is known (because

ASIIKOy=wllk+a+bri(1+b)y+i/ {(1-f)(1+b))}. However, it is not kmown whether
t _ is larger or smaller than t This is important to know, since p has

6.7

to be integrated over the interval I[t‘5 - . 6]. Therefore a distinction

must be made between the two cases, o<t and t 672G For each case the
right bhand side of (A2.44) can easily be calculated. After rearranging, for

e, =t (A2.44) amounts to:

{ a~(a+|11‘-f)r)t1y6 e-(a+(l-f)r)t6'7 1-1/¢ ~Mje & +w)”t2,6/e
) p+a ¢ €

cwltk+fal (1-£)-br ((1+b)-bal((l - f)(1+b))
wITk+a+briIF¥ By F i THT-PHUFEY)

-ft. -pt -mt_fe -at -t :
____‘_é{e e 6,7}_e 1 {c 6 o 1}%{_, (A2.45)
where ﬂ=g+a‘-m-e£a+(l-j)r) and o=F+mfe.
For t <t
-mt_/ -t -
"left hand side of (A2.44)" = . ¢ e { e A, -e Be. 1L
I B
) e-ﬁtl~ e—mo 1 c~mtl/e at, oot Ny
B € - e 5 (A2.46)
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Before the analogue of (5.29) is given, it is shown that Al and J.l jump at
Le Suppose path 7 preceeds path 6. From (4.23) and (4.24) and the fact
that ¥=bX in the coupling point (note that the state variables K and X must
be continuous, which implies that Y must be continuous), it follows that
ﬂfﬂ- If n, is also zero, then Al and )12 are continuous. But if this is the
case, then also H, is continwous and this implies that path 7 cannot
preceed path 6 if r(1-f)<i (see the reasoning in Appendix 1, section
A1.2.3). So, if path 7 is to proceed path 6, 11, must be positive and Aﬂ and
A are discontinuous. Now the second part of the ‘jump theorem’ in Appendix
1 states that the entry in the constraint (P+1)X-K=0 must be tangential.
Since 1 is continuous in the coupling point of path 7 and path 6, the entry
can only be tangential if D is also continuous in the coupling point. This
means:

pat

7.6

) = AN { SEI- Y K-aKrKX) + 251 =0 (A2

But the first part of the ‘jump theorem” shows that if the control
variables are continuous and the strong constraint qualification is
satisfied, the costate variables are continnous. Since it was just
concluded that the coupling of path 7 before path 6 is only possible if ).,l
and 4, and the control variables are continuous, the strong constraint
qualification must be violated if path 7 is to proceed path 6. And indeed,
since I=D=0 in the coupling point, the last matrix on p.149 of Appendix 1
shows that the strong constraint qualification is violated. Now the
conclusion finally is: provided the control variables are continuous at the
coupling point and the costate variables are discontinuous, path 7 can be a
predecessor of path 6.

The analogue of (5.29), which can be derived in the same way as (5.29), is:
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) as

0[5k - {#“’HT‘?’E N+rEp Tl_f} ] o

t %—‘(m+a)(1:~ L.

i -1
b e ST L3S - e o ] +
1i6.'l

t -(i+ay(r-t_ ) : ,
o ST a3 [phraniry merky 1)) o
7.6

(i+a)(t
i, t.6) n, = 0 (A2.48)

where

t
§7¢ {i-(1nr} A(n) de (A2.49)
t

L

1
T = T+p

Calculating (A2.48) gives the analogue of (A2.26). Together with (5.39),
(A2.44) and (A2.45) resp. (A2.46) this forms a set of four, partly
non-linear equations, which were again solved numerically using procedure
COSNBF of the NAG-library.

To find r;h, see the derivation of m** on page 169 and replace path 5 by
path 6.

MNumerical exercises

The numerical exercises omnly concern the wvalue of r;zA‘ The first set of
parameters is similar to the last parameter set in the numerical exercises
for the case i<(l1-fir; the only difference is the wvalue of i (and a wvalue
for & must be added):

e=2 a=004 =04 =007 =006 r=009 (=10 (=50
k=2 1=3 w=2/3 b=2

For m=0.22 the string 2-6-2 is no longer possible. Only for very large
values of m t tends to zero. For m=2 (!) t w7.3‘ and ﬁm“ﬂ} ! Values
for the parﬂmeters for which the situation is Kess‘ extreme were not found.
For instance, for the following parameter set:

e=4 a=0.04 f=04 =005 =006 r=0.09 t,=10 1 =50
k=2 =3 w=3 b=2

Already for m=0.15 the string 2-6-2 is no longer feasible. But again, L
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decreases gradually, but very slowly if m grows. For instance, for m=0.15;
t =40 and t_ =353, For m=2: t _=0.45 and t_ =~875.
6,7 1.6 5,7 7.6
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APPENDIX 3
ON THE SHADOW PRICE INTERPRETATION OF THE MULTIPLIERS OF
PURE STATE CONSTRAINTS IN OPTIMAL CONTROL PROBLEMS

A3.1 Introduction

The interpretation of costate variables as shadow prices im Chapter 6 asks
for an inmterpretation of the multipliers of pure state constraints. This
appendix uses rather general Kuhn-Tucker conditions and general sensitivity
results to derive a mathematically precise formulation of a convenient
shadow price interpretation for the multipliers of pure state constraints,
These general results are presemted in sections A3.4, A3.5 and A3.6, the
desired result is derived in section A3.7. Sections A3.2 and A3.3 give the
class of models to be considered and an outline of the proof. The notation
in this appendix is independent of the notation in the rest of this thesis.

A3.2 The class of models to be considered

The following class of models will be considered:
Model or problem II

Max | el'Fexu,ndt + e TSx(T),T) (A3.1)
u 0

X1 = f(x,u,0), x©0)=x, (A3.2)

h(x,)=0 (A3.3)

u(t) € U for a.e. t€ [0,T] (A3.4)

The functions FR™ x&™ x®sr, £:7% x8™ xR-R", SR xR-R and h®® x®&> are (for
the time being) assumed to be continuously differentiable. U is a closed
convex set in BT with nonmempty interior. It is assumed that U can be
written as: U={uer™: gu)=<0}, g:mmemk. The control variable is to be chosen
from Lg [0,T], the space of &™-valued measurable, essentially bounded
functions om [0,T], which is a Bamach space with norm (c.g. Luenberger
[1969], p.37):

lufl o, = sup Ju()|] = infimum [sup |v(t)|] (A3.5)

ess
0=<t=<T vi{t)y=u(t) a.e.
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A3.3 An outline of the proof

One could generalise model II by letting the functions F, f, 5, and b
depend on another variable a, where a belongs to some Banach space. For
a=0, this generalised problem equals model II. Next one could examine how
the wvalue of the objective fumction changes when a+0. In other words, onme
could look at the sensitivity of the optimal value function to changes
(perturbations) in onme or more of the functions appearing in the problem. A
well known semsitivity result concerns a relaxation or tightening of an
inequality constraint in linear programming problems. That sensitivity
result is derived using the Kuhn-Tucker conditions. Since ome expects that
an interpretation of the multipliers of the pure state constraints has got
something to do with the effect of perturbations of those constraints,
something similar might work for the problem at hand.

Therefore the optimal control problem I will be formulated as an
optimisation problem on some Banach space and then the gemeral Kuhn-Tucker
conditions for such a problem will be wused to derive the desired
sensitivity result. The biggest problem is to translate these results back
to the familiar optimal control terminology.

A3.4 A general sensitivity result

This section closely follows Lempio & Maurer [1980].
Let X,Y,A be real Banach spaces and let H:X x A5R and G:X X A»Y be mappings.
For each fixed a€ A, consider the problem P pe

minimise H(x,a)

subject to x& C and G(x,a)e K, (A3.6)

where C in X and K in Y are nonempty closed convex sets. Assume that K is a
closed convex come with vertex at the origin. For a=0, problem Pa is called
the unperturbed problem. For each a, define the feasible set

Z(@) = {x& C| Gix,a) € K} (A3.7)
and the optimal value function
V() = inf {H(x,a) | x€ Z(@)} (A3.8)

Assume that H is diffferentiable and G is continuously differentiable in
the semse of Frechet at (X,@), where X is a solution of P, for a=d. X is

called regular if 0O€ int {G(X,a) + Gx("i',ﬁ)(C-i)-K}. If X is regular, there

exists a Lagrange multiplier | € Y’ (Y’ denotes the dual space of Y)
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satisfying the Kuhn-Tucker conditions:
LX(E,E,H(X-?{) = 0 for all x& C {A3.9)
UG, ®) = 0, I(y) =< O for all y€ X (A3.10)

where L(x,a,l) = Hx,a) + NG(x,a)).
For the senmsitivity result another condition is needed, the strong
stability condition:
Let d& A be fixed. The strong stability condition holds, if for every
£>0 there exist X optimal, §>0, ¢z 0 and a curve x:[0,5]+X with
- x(t) € Zla+td)
- x| s et
- H(x(t),a+td) < V(ig+td)+te
for all t€ [0,5]. The strong stability condition holds
at X if X can be chosen above independently of ¢
The sensitivity result which will be wused is (Lempio & Maurer [1980],
Corollary 3.5):
Theorem 1
Let X, be a solution of the unperturbed problem. If:
- X, is regular
- the set of all Lagrange multipliers associated with X, is a
singleton
- the strong stability condition holds at X, for all ac A
Then the Gateaux-differential 8V(0;5) of V at point zero with
increment b exists and equals the Gateaux-differential of the function
a—»L(xo,a,I) at zero with increment b:
V(b)) = L, (x,,0,8). (A3.11)

A3.5 Problem II written as a problem P a

There are many ways to write an optimal control problem as an optimisation
problem P o (cf. Jacobson, Lele and Speyer [1971], Maurer [1979], Machielsen
[1987], Luenberger [1969], Kirsch, Warth and Werner [1978]). The method
wsed here is similar to Kirsch, Warth and Werner, Maurer, and Machielsen,
The symbols in the previous section are now specified as follows:
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Let X = [O'T}XL [0, T}
Y = L2 [0,T]xC° (0,T]
C={(@xwe X| sme UV € 0T]}
K = {0}xC*0,T],

Wgo (0,17 = {x| x:[0,T]5&™ absolute continuous and X € L® oo [0:T1}
L’g 0,71 = {x| x:[0,TI®™, x measurable and essentially bounded}

c¥0,1) + = ix | x:{ﬂ,'][‘]ams, x contingous and x(t)=0 for all t& [0,T]}
Now X and Y are Banach spaces with the following morms (e.g. Kirsch, Warth
and Werner, p.91-92): .
fxoufly o= max {lIxll,, %[l o, el &
Iv.wlly = max {livll, . Iwl o}
Furthermore, let
Hix,u,a)
G(x,u,a)

i

T . N
of eMExutad + ¢ Ts(x(T), T,a)
(,.((t) - f(x,u,t,a), h(x,t,ﬂ))‘

it

For the time being, A is not specified.

With these definitions, problem P is almost problem II. The only
difference is that problem II is a mammlsdtmn problem, whereas P was
formulated as a minimisation problem. For a maximisation pmbkam the
inequalities in (A3.9) and (A3.10) are reversed. Note that the differential
equation (A3.2) is written as an "=0" constraint. This makes it possible to
treat x and u as independent variables.

A3.6 The Kuhn-Tucker conditions and Theorem 1 for problem IX

Let (X,0) be an optimal solution of problem II. In other words, (X,u) is an
optimal solution of problem II, written as a problem P with a=0 (problem
Il is the ‘unperturbed’ problem). To apply the Kuhn-Tucker conditions it is
necessary that (X,u) is regular. This also implies that problem II is a
so-called “normal” (see, for instance, Feichtinger and Hartl [1986], p.24)
optimal control problem. Maurer ([1979], Assumption 3.1} and Machielsen
([1987] , Theorem 3.6) give sufficient conditions for regularity. Here it
is assumed that all conditions of Theorem 1 are satisfied. Now the function
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L in the Kuha-Tucker conditions looks as follows:
T . .
Lxual ) = of eMFerutadt + ¢ TS, Ta) +

ll(i(t)-f(x,u,t,a)) + L(h(x,t.a)) (A3.12)

In general it is hard to find representations for the Lagrange multipliers
ln and 1'1. Especially the representation for 11 is  extremely complicated.
It turns out that the wery fact that ll is a Lagrange multiplier makes it
possible to find a representation. In other words, writing out the first
Kuhn-Tucker condition (A3.9) leads to such a representation. The details
can be found in Kirsch, Warth and Werper and Machielsen. The result is
{from now on Greek symbols stand for row vectors):

1) = - {7 Aydt  for every y € LY, [0T], (A3.13)

where A is a function of bounded variation.

The representation of I, is much easier, since it is well known that the
dual space of the space of continuous functions on an interval is the space
of functions of bounded variation on that interval, normalised in one
point. So:

L) = - f7 yO'db®" for every y € C[0,T], (A3.14)

where :[0,T]-R% is a function of bounded variation, normalised by H(T)=0.
The Kuhn-Tucker condition (A3.10) states that Iz(y)a() for all non-negative

continuous functions and that Iz(h(i,lt,(l))r-(). It is easily seem that this
leads to the conclusion that ¥ is non-increasing and ’i)i is constant on
intervals where hi(i ,6,0)>0. In most applications one can say even more

about », namely that » is continuously differentiable om the interior of
boundary intervals of h (a boundary interval of h,L is an interval on which
ht is active; a boundary interval of h is an interval on which all hi are
active). Maurer and Machielsen give sufficient conditions for this:

Let p, be the lowest number for which 8 ‘d_'ﬁ,,‘hi z 0, P, is called the order
du dth

of the constraint hj.
Let p=max p,

Let I be the set of active points of the state constraint hi,
i
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Py
. h‘ {x,u,t}
Let BP(x,u,t) 1=

hx” {(x,u,t)

Let [tl,tl]! be an inmterval om which all constraints lmi are active.
Assume that:

- rank ﬁﬁ (X,5,t) = s almost everywhere on I U...... VL.

- F,f,S and b" are C*** functions with respect to all arguments and 120
- T is a CP*" function on [t,t,] and n(t)ye int U for all te (t,t)
Then A and b are C**! functions on (t,:t,).

Note that this theorem applies to boundary intervals of h, that Iis,
imtervals where all pure state constraints are active. However, as
Machielsen notes (p.50), cases where some but not all state constraints are
active are similar. In those cases all assumptions and results correspond
to the case that all inactive components of h are omitted completely. It
can easily be seen that this statement can be applied to model IT at least
for r=0, so that v, is & C' function on intervals where hl,L is active, and
we define:

o) = - g;ﬁ(t)w for all t where  is differentiable. (A3.15)
Mow v is piecewise continuous and, since ¥ is non-increasing, v s
non-negative.
The Lagrangian function L (see (A3.12)) can now be written as:

~ T it 4T
Lixwad, B) = of e 'Fxutadt + el Sx(T),T.a) +
T T .
o  AOfxutaat - of AOXMd +

T
o) vOh(andt + X gt)b(x a.L), (A3.16)

where the summation is over all entry- and exit points of boundaries and
contact points' and m() = () - D(t+) 20. For completeness sake 1 give

'For a definition of entry and exit points, see Appendix I, p.151. A
contact point of a constraint h is a timepoint v with the following

property: there is an £>0 such that hi(r)'——-O and hﬂ(t)#ﬂ for te(r-¢,7+€),
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the well known differential equation for the costate vector, which follows
directly from the representation of 11 (which I have mot given; cof.
Machielsem or Kirsch, Warth and Werner): 4 is piecewise continuously
differentiable and

in = <R 5L - A F5,6,0) - ()b, (,1.0) (A3.17)

for points where 1 is differentiable. Jumps of A may occur at eatry- or
exit points of boundaries or contact points, and for these jumps:

AT - AW = n(Oh,F®,L0) (A3.18)
A3.7 The shadow price interpretation of »

The central result of Theorem 1 (section A3.4) is: BVw(O;b)r—La(xw,‘O,l;b).

Maurer applies this result to an optimal control problem to find the shadow
price interpretation for A and to analyse a perturbation of the form:
hi:(x,t)s‘a, Yt, a€ R, He finds: Laﬁ,ﬁ,ﬂ,l} = p(0). To find a shadow
interpretation for vi(t), hi should be perturbed Jlocally in the following
way:

Let A=LL[0,T]. A momentary perturbation of hi can be mimicked as follows
{this tric is borrowed from Léonard [1987]):

Let hxt.a) = B(x(.La(0) = hx().0-a()

b=0 for O<t<rt
Let b A be: b=ye! for txt<t+e, y<0 (A3.19)
b=0 for t+est=<T

For &0 the perturbation hi(x,t,b)aﬂ resembles a momentary relaxation of
the state constraint hi(x,t)‘aﬂ (see figure 3 of chapter 6).

From Theorem 1: dV(0;b) = La:(i,ﬁ,ﬂ,l,ﬁ;b),

where the right hand side is the Gateaux differential of the function
asL(X,U,a,4,0) at zero with increment b&. Since a only appears, by
assumption, in hﬁ(x,t,a), to find 4V(0,b) just compute the Gateaux
differential at zero with increment b of the function (see (A3.16)):

T
as Df p(Oh(x.ta)dt + Z nt)h(x,La) (A3.20)

property: there is an &>0 such that hh(r)=0 and hi(t)qﬁO for te(1-€,7+E),
LT,
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This Gateaux differential is just what one expects it to be. It is allowed
to change the order of differemtiation and imtegration resp. summation and
then to apply ‘ordinary’ differentiation. A formal justification for this
can be found in Luenberger [1969], p.173, example 2. Things go well because
h.a is continuous and b and v, are piecewise continuous. The result is:

i

T,
O’[ — hi(x,a,t)vi(ﬁ)b(t)dm + X ”(tﬁ)

3V(0;) 2
da(t) da(

hi(x,a ,tj)b\(mj)
t : )

It

T
of v OBM - X ni)bt)

T+E
J  wola-x q(tj)g (A3.21)

i

where the last summation is over the entry-, exit- and coatact points in
the interval [r,r-+&£]. Now assume that T is not an entry-, exit-, or contact
point. Then for small € one can say that there are no exit- or entry points
in [7,7+¢€]. Therefore (A3.21) is equivalent to:

T+E
VOB = -y I pe a (A3.22)
Define K () = f' v(s) ds. Then

Lim av(0:0) = Lip -»{K(r+e)-K(D}/e = -yf(i(r)w = -pu(7) (A3.23)

Remember that for &0 the perturbation hi(x,t,b)a() mimics a momentary
relaxation of hi(x,t)‘a() at time . Now (A3.23) state that ui(r) can be seen
as the rate at a which gain ( in terms of contributions to the objective
function) could be made if the pure state constraint hﬂ(x,t)ao would be
momentarily relaxed at time 1. In this sense, v can be seen as the shadow
price of the constraint hi(x,‘t)ao. l
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APPENDIX 4
NECESSARY AND SUFFICIENT CONDITIONS FOR AN OPTIMAL CONTROL
PROBLEM WITH AN ENDOGENEQUSLY DETERMINED "LAG-STRUCTURE"

Ad.1 Imtroduction

This appendix derives a variant of the ‘Maximum Principle’, which can be
used to solve the vintage models of chapters 7 and 8. The model presented
in the next section is intended to be as gemeral as possible. The notation
in this appendix is not related to the notation in the rest of this thesis,

Section A4.2 gives the model which is the basis for this appendix and which
includes the models of chapters 7 and 8 as special cases. Section A4.3
discusses the tric which is essential in the heuristic derivation of the
necessary conditions in section Ad4.4. In section A4.5 these ‘necessary
conditions’ are augmented with some comcavity conditions and it is proved
that this augmented set of conditions is sufficient for optimality.

Ad4.2 The model

[» .
max i e F{Q.x),u(),t) dt (A4.1)
u,s O

t

Q) = {  Glu(r),t,7) dr (A4.2)

v l(t)‘
X0 = F{Q(),x(®,u(t),t}, for all t=0 (A4.3)
v(t) = s(t), for all t=n, (Ad.4)
gl{Q(t),x(t)w,vw(t),u(t),s(t),t} = 0 for all t=0 (A4.5)
gb{v(t),s‘(t)}‘ = 0 for all n =t<0 (A4.6)
hl{Q(t),x(t),w(l)} = 0, for all t=0 (Ad4.T)
hb{v(t]} z 0 for all n =t<0 (A4.8)
x(0) is given and v(n0)=0 (A4.92)
the values of the components of u explicitly appearing
in (A4.2) are given for all t with n05m<0 (A4.9b)
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where B: ®x#? 2P xram, £ RxXREXRT xR2", G R X XRR,

g xR xR x & xR % RRP, g RXRsR® are assumed to be continuously
differentiable in all their argoments and h_:mxm“xm&tq, hb:ﬁ‘-ﬂﬂ are assomed
to be twice continwously differentiable in all their arguments.

Constraints of type (A4.2) are the reason to develop a variant of the
Maximum Principle. The standard Maximum Principle can not cope with such
constraints, The fact that Q appears as an argument of g and hm
complicates the matter considerably.

The state variables of the problem are Q, v , and x, where x is a
n-dimensional vector. This wvector of state wvariables is denoted by X, (the
extended state vector):

X = (Q.x,v) (A4.10)
The control wvariables are s (the first derivative of v), and u, where u is
an m-dimensional vector. The vector of control variables is denoted by:

u_ = (u,5) (A4.11)

Now Q, x, and u are defined on the interval [0,o) and v and s are defined
on the interval [no,m), where n <0 .
Since the monotonicity of v is required later on, the restriction s>0 is
needed. But for notational simplicity only ’greater than or equal
to’-constraints are considered. However, adding ‘strictly greater
than’-constraints would not change the arguments. Note that s and v do mot
appear as arguments of F, f and G, and that the constraints g, and hb only
involve s and v.

A4.3 The tric

The central feature of the approach in this appendix, which makes it
possible to use ‘calculus of wvariations’ to derive necessary conditions and
which is also the reason why the monotonicity of v is crucial, is as
follows:

Consider v' as an arbitrary function (so not as the inverse function of
some fumction v). An essential part of the tric is to append the
constraint (A4.2) to the integrand in (A4.1) and then to change the order

'lete that v in this appendix corresponds to V in chapters 7 and 8 and thus
s in this appendix corresponds to B in chapters 7 and 8.
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of inmtegration in the double integral. To be more precise, multiply (A4.2)
with a multiplier }Li(t) and then integrate the result with regard to
this gives the following double integral®:
® it r t N
i e A «l . i Glu(n)r,1} dr j dt (A4.12)
0 v o(t)
Changing the order of integration yields:
Lo}
r

v(T) .
i )e'ltll(t)G{u(r),t,r} dt f dt (A4.13)
T

if
G{u(r),t,t}=0 for t,00€ { 1,0 | n0<r<t<0 1. (Ad.14)
as can be seen in the figure below:
T
T
yd

yd /

—_— 1
n-/

Figure 1: The area of integration

It depends on the problem whether the restriction on G is a serious ome. In
chapters 7 and 8, G{u(®),t,t} stands for the number of capital goods
installed at time 7 or the number of employees working on capital goods
installed at time 7. The number of capital goods installed at time 1<0 is
fixed by (A4.9b) and it is consequently not a part of the optimisation
problem. So (A4.14) is a harmless restriction. Another crucial and possibly
serious assumption concerning G is needed:

G{u(n),t,7} = Gﬂ{u(r)}GZ{t,t} (A4.15)

The reasom for this assumption is that I want to be able to ‘pull u out of
the imner imtegral’ in (A4.13). This will enable me to differentiate the

In  this appendix Greek letters denote row vectors, Latin letters denote
column vectors.
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double integral with regard to w:

f Wi .
—y § ® e'“,t[u)c}{u(r),:,r} dt f dr =
MD T

o vity
G fum) { g ¢, 06, fur} at JQ dr =

2y

L o vy 3

§ G, {uw} t § e A (G {7t} dr } dt, (A4.16)

n t
where the last equality is the result of the interchanging of t and t. Now
one sees that the last double integral in (A4.16) can easily be
differentiated with regard to wu(t), whereas (A4.12) could not. This will be
crucial in the mnext section. Note that it is enough to know }': on the
interval [0,00) (and nét om [v% ,o}) because of assumption (A4.14).
Assumption (A4.15) might be serious. In chapters 7 and 8 it rules out
certain  types of production functions, but it seems that for the usual
production functions, (A4.15) is satisfied.

A4.4 Derivation of the neccessary conditions for optimality for a special
case

This section gives a heuristic derivation of the mnecessary conditions wusing
a caloulus of  variations approach for the model consisting of
(A4.1)-(A4.4), (A4.9) and the following control constraints:

s =g=<s , for all tz=n, withs >0 (A4.17)
min mEX 0 min
u_ =<us<u _, for all t=0, component-wise (A4.18)
min max h
Define
(=] 'lt
Jx u) = Oj e F{Q),x(),ut),t} dt (A4.19)

Now for each (xa,ua) satisfying (A4.2)-(A4.4), (A4.9), and (A4.17)-(A4.18)
and for all comtinuous functions A“n’;‘z: [0,00)+& and )3: [q],m)—m:
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Radge )
) = &t [F{Q(t),x,(t),u(t),t} +

t
+ A0 { 1 t)j Glu(n),1,7} dr - Q(t)} ¥

v
+ 4,0 { femamum.y - ko } ] a +
* it r sy ol
+§ et A0 {50 -0 fa (A4.20)
"0

Integrating by parts the terms involving x and v and rearranging yields
(o=}

Soxu) = § o™ [ FQOA000 - 4,000

+ A OQWOM} + ADS©® + X0 - Lo

{
+ VOL® - 4,0V + A0 { , t)@ G{u(v),t.7) dr} ] dt
v

(

n

0o .
+ e’“[ L8O + vOh, ) - A Ov() } dt
Q
. ~it] ) ! )
- i;r; e’ 4|1 x(t)lz(t) + v(t)]ta(t) E + x(O)km(O‘) + V("o)‘la‘(”o)

(A4.21)

Mow using the ‘tric’ to rewrite the double integral gives:

*Mote that for t<0, we are actually compounding instead of discounting.
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oo .
sy = fe [ Flamxwem.a - 4,000

+ AOFQWXOuW} + A0s) + xOLM - A Ox)
+ 'v(t)ij(t) - 1A (Ov()

(t .
+ Gl(u(t)){ tgv ) 03 (16 {11} dr} ] dt

0 .
+ e'“[ A,@s) + vl (1 - i V)

n
0

it N
+ Gl(u(t)){ t;v( ) Y1 (096, fr.1) dr“ dt

- lim e'“{L XA (1) + VOA ) 1} + x(OL,0) + v(n )i (n)

00
{A4.22)
Next assume that (x:,u:): is an optimal solution for our problem. Define

QW) = Q" ®+5QW.x (1) +8x() for all 120,

v(t) = v*(t)‘+‘§v(t) for all tzn,
u(t) = u'(©+du() for all t=0 (A4.23)
s(t) = s (©)+ds(t) for all t=n,,

where (xw,ub) = (QUt),x(t),v{t),ult),s(t)) satisfies (A4.2)-(Ad.4), (A4.9),
(A4.17)-(A4.18).
Then the following inequality must hold:

Jxu) S I u) (A4.24)
Now make a Taylor expansion of J(xt,ug) in the neighbourhood of (xt,ut) and
ignore the terms of second and higher order (mote that at this point

assumption (A4.15) and the subsequent argument are crucial). The result is
(use (A4.9b) to conclude that du vanishes on [no‘,‘O)):
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L
8] = J‘(Xg“) - J(xﬁ,ue) =

® T ® k% * x %
i e [ FolQ x ' 6Q + F {Q"x"u" t}ax(o)

1]

* % % » x ok %
+ F,{Q x u .t}du(t) - i (1oQe) + lm(t)fQ{Q X LU L URQUL)

+

LOLLQ K W gk + A0f{Q x" u s + L mss©

e

A, (0Ix(t) - il ()Ix(D)+ J'La(t)dv(t) - il (06v()

E 3
v (1) .
Gm(u*(t)){ LE e"l(T"t)}.l(t)Gz{r,t} dr}&u(t)

+

+

L F
G, e O Fane (v, teve ] dt

o .
+ e‘“[ A3 + 4, O3V - i DV

n‘ﬂ

+

L, &
G,@ @ O ¢"ye e | @

dim e"it{&z‘(t]}cﬁx(t) + AE(:)aw(:ﬂt + A_(0)0x(0)+ 4 (n )ov(n ) (A4.25)

100

Note that (A4.9a) gives: ‘6x(0)=5v(n‘0)=0. Using this in (A4.25) and
rearranging terms gives:
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o= 5 et [{Fot@ w20 + 1,0fg Q" 0" 13500
(1]

+ {Fxm*,x*,u*,t} + 2o Q7" w0+ 4o - U.z(t)}&x(t)

. * \
+ (Lo - o + 6" O 106, 0.0 v
+ [Ft@a" W + 2,06,Q7x "

*
v (1) i
+ Gw‘(u*m){ N D)L (G {71} dx}] Su(t)

+ 2,0850) } at

o .
+ c“”[ 1,(08s(t) + {Agm TG
n'l)
R
+ G @ @ ("f)-t)j;n(v*:(t))(}z{v*(t),t}}ﬁv(t) ] dt

dim 2 mex) + 2.©dvn} (A4.26)
tyoo 2 3 J

For every feasible w(xu,uﬂ), the right hand side of (A4.26) must be

non-positive according to (A4.24). Now choose the functions AL, A, and 1,

in such a way that the coefficients of JQ(t),dx(t) and Jv(t) are zero. Next

observe that Ju, and Js can be chosen independently, but not completely

free because of (A4.17) and (A4.18). This implies that to ensure that the

right hand side of (A4.26) is non-positive for all feasible modifications

(du,ds) (that is, modifications that maintain (A4.17) (resp. (A4.18)), u

and s* must be chosen in such a way that:

u*=umm if the coefficient of du is negative;

H

uo=u if the coefficient of Ju is positive; {A4.27)
E S

U =u <u if the coefficient of du is zero,

min TEX

" a F] ® » v . -
and a similar condition for s . To write all these conditions dJdown in a
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“Maximum Principle’-like way, define:

Hx v A0 = F{Qxut + AMHQxut} + 4 mst) +

YO
‘Gl{u(t)} § Alﬁr)e ‘ ‘Gl(t,t) dt, for all t=0.(A4.28)
t

vit) .
HsAD) = 00 + G {u®) 1,0 G (1,0 dr,

for n <t<0 (A4.29)"
Moreover, define:
a‘n(xc’“c’)"’”’t) = [Hl * ul(u-umin) +
uz(umx-u) + uj(s~smm) + ,uq(slm-s), for all t=0 {A4.30)

&b(v,s,l,u,t) =N + uafs-smin) + .u4(sm“-s)\, nostd) (A4.31)

Now the condition that ‘lm"ﬂ‘z and }.3 are chosen in such a way that the

coefficients of 4Q, dx and Jdv are zero can be rephrased as:

A0 = 3/6Q L (xu Au), for all t=0 (Ad.32)
L = i - 8/8x 1 (x u,Adu), for all 120 (A4.33)
L) = QA0 - /v L (x u A0, for all 120 (A4.34)
A = A - aev L s A, nst<0 (A4.35)
lim 1 ot + 2 wav} = 0 (A4.36)
| Y] (8 J

Condition (A4.27) and its analogue for s can now be rephrased as:

uj(vz) maximises ml(xj,ue,l,t) subject to (A4.18) for all t=0 (A4.37)
s* (1) maximises Mn(v*,s,l,t) and Mh(v*,&,i{,[) subject to (A4.17),

for all tzn, (A4.38)

And so:

“Note that for t<0, the lower bound of the integral is O instead of t. This
is correct because of assumption (A4.14).
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8/3u L0 u At = 0 for all t=0

u‘ﬁ(u-umm)»zﬁ’), ulaﬂ, ,uz(‘umu-u}——*ﬂ, ‘,41220‘ for all t=0 (A4.39)
ads € (x-u Agt) = O for all 120
ua(s-s‘mm):(),‘ ,1‘13{20, ﬂ“(s‘m“l-s):(), u,=0 for all t=0 (Ad.40)
a1ds L (x s Aut) = 0, n St<O

(Ad.41)

a(s-s_ )=0, p =0, (s -8)=0, u 20, n =st<0

Of course this derivation is far from rigorous. I will not try to make it
more rigorous. Instead I ‘guess’, assuming that for a more general problem
the necessary conditions will be similar to (A4.32)-(A4.41), the necessary
conditions for the original problem (A4.1)-(A4.9), and then prove that
under some  additional concavity  assumptions, these conditions are

sufficient.
A4.5 Sufficient conditions for the general model

For the general problem the Hamiltonian functions are the same as in
(A4.28)-(A4.29), but the Lagrangian functions are different, because of the
restrictions (A4.5)-(A4.8). So define:

Ln(xe,uu,k,u‘,u_,t) =H + uu(t)‘gaw(x‘a,ue,t) + un(t.)hl(xt,t) (A4.42)

Lv,s, A0, = Ho o+ 4 (Dg (v.s,1) + v (0h(v.01) (A4.43)

To prove the sufficiency result a constraint qualification is needed. In
fact two constraint qualifications are needed, one for t=0 and one for
n st<0. The constraint qualification for t=0 is:
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The matrix

1 dg fou_ g, — 0 ]
: } (A4.44)
3g‘mn’6‘ue 0 g,
has maximal row rank.
The constraint qualification for n =t<0 is:
The matrix
f‘agb . /95 gbl.,,‘...m,.‘,o
: | ‘ (A4.45)

ﬁgbklas 0 B

has maximal row rank.

Now combining our knowledge of the special case and our knowledge about
‘standard” problems with pure and mixed state constraints is sufficient to
formulate a sufficiency theorem for the general model.

Theorem one

Let (<) be a feasible solution of (A4.2)-(A49) and let constraint
qualification (A4.44) be satisfied for all t=0 and constraint qualification
(A4.45) for all t with nost<‘0. Moreover, let there be piecewise
continuously  differentiable functions ll,lz: [0,00)s% and a plecewise

continuously  differentiable  function }”.1: [n,, )-8, piecewise  continuous
functions 4 : [0,00)- , Q:[O,w)wﬁ} e n o)k p: oIy J0)ok , for each
point =0 where A is discontinuous a vector nm(r)t':‘m“ and for each point 7<0
where ,2.3 is discontinuous a wvector nb(r}ewi, such that for all points where

* >
u and A are continuous:
&
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u*(t) = Hl(x:,u$7/‘fk,¢), for all t=0 (A4.46a)

argmax
{u_|g,(x,u)=0}

‘sk(t) = argmax mb(v',s,i,t), nost(() (A4.46b)
{s |g,0v s )20}

dldu_ v (x u. Au,v,t) = 0 for all t=0 (Ad.472)
| . 4

aids L (v 8" A, w0 = 0, m<t<0 (A4.47b)

A0 = 3/0Q L (x.u_ A b1, for all t=0 (A4.48)

Q) = iAQ) - 8/3x LGk u A0, for all t=0 (A4.49)

A = i) - 3lov L x u w0, for all t=0 (A4.50)

*®

L = A0 - 8/8v L v ,s Au,o,0, n<t<0 (A4.51)

‘umzﬂ, ,ungl=0, ulzCl, ulhnzﬂ, t=0 (A4.52a)

#,20, pg =0, v =0, ph =0, n <t<0 (A4.52b)

lim e'iq&z(t){x(t)-x*(t}} + 2,000~ 0} = 0 (A4.53)

t-y o0 J

At points 7€ [0,00) where b is active, )2 and 13 may jump:
L, = a0t + g {aex b}

A = aah) + n@{aev h} (Ad.542)
At points 7€ [n‘O,O) where hb is active, 13 may jump:

@) = 46T + nm{av h) (A4.54b)

7020, n(Dh(x,7) =0 (A4.552)

7,020, n(Dh("0) =0 (A4.55b)
Finally, let N‘:(xe,l,t):: max Ml(xc,ue,;l,t) be concave in X, for

{u, lg,(x,u)=0)

every (4,t), t=0; let ﬁHg(v,Aa,yt)m max [Hb(v,s,/l,t,) be concave in
{s |g,(v,9)=0} ‘
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v for every (1 3,t), n st< 0; et gl(xb,ue,t) be quasi-concave in (xﬁ,u@) for
every t=0; let gb(v,s,t) be quasi-concave in (v,5) for every t in [n C~,C)});
let ha(xagm) be quasi-concave in X for every t=0; let hb(v 1 be

» " m * * » »
quasi-concave in v for every t in [n 0,‘0). Then (x@ ,ua) is an optimal
solution,

The proof of this theorem follows wvery closely the proof of theorem 7.1 of
Feichtinger and Hartl [1986], which is based on Seierstadt and Sydsaeter
[1977]. For that reason I will now formulate a theorem which is similar to
theorem 7.2 of Feichtinger and Hartl.

Theorem 2

Let (x.u) be a feasible solution of (A4.2)-(A4.9) and let there be
piecewise  continuously  differentiable functions A 1?,1.2: [0,00}® and a
piecewise continuously differentiable function /13: *[no,oo‘)am, so that for
every feasible solution (xe,ue):

DG A0 (X U, = -1,0{QW-Q )} -
{iz(t)—mz(t)}{‘x(t‘;)-x*(t)} + {iz(t)-ma(m)}{v(m)w-v*(t)}, t=0 (A4.56a)
1 L0 LD 2 (A O-ALOHYO O}, st<0 (A4.56b)

for almost every t.
) A EAEH O @) + (4,04 GOV @) 20, for every

point >0 where (‘/12,)13) is discontinuous. (A4.57a)

3) {Aa‘(r')w-la‘w(r_'_)}{v(r)‘-v*w(r)}2‘0, for every point T € (n,0] where A

is discontinuous.’ (A4.5Tb)
. -it * *

4) lim e {A O{x()-x (O} + A (O{v()-v (L)}]ff = 0 (A4.58)
{500 L2 3 h

*
Then (xe‘,uo)‘ is optimal.

SMote that this may include 7=0
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Proof
Let (xﬁﬁuw) be an arbitrary feasible solution. Define:

Sl * it
A =§ e"F{Q .,x u.,t)dt- § e F{Qx,ut} d (A4.59)
| 0
Since (x‘:,u:) and (xe,uﬂ) are feasible solutions, if follows that:

“‘m_it‘ﬁ_##* ‘ r ‘It * A
4 Of e [FLQ JX Lt} dt +4,(1) t v'“(t)j G{u (7),t,7} dr }

+ A, { f{‘Q*(t),x*(t),u*(t),t}} J de + jm ety 3(t).s"‘(:) dt
i

0

) jme'i‘t[F{qut} dt +i (0 { i Glue de §
o X4, , «'L P {u(r),t,r} dr }

OO0 .
+ 4,0 { f{Q(t),x(t),u(t),t}} ] dt - § ™ A (Vs(ty dt

R
[

00 .
4 oI 00w + Lo ©Rw)] a

it I
nj & lj(t){v (t)-v(t)} dt (A4.60)
(]
After performing the ‘tric’ of section A4.3, and using the definition of
H and H, this is equal to:

[e ] «
A = 0‘[ e'm[[H_‘(xj,u:,l,m)—m!(xe,ue,l,t)] dt

0 .
-it * ]
+M£ el [‘“b” 5 ,A,tmb(w,s,,l,t)} dt
@ it * ko
R 0y + 406 0] a

L -it . .
- § e Aj(t){v t)-v(r)} dt (Ad.61)

n
[}

Using (A4.56) gives:
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4 = SAamoQe)  + (Lo o) xox"v)

+ {ia‘(t)—ua(t)}{v(t)—v*(ﬂ}} dt

n
(¥

0 -it *
+ & {iact)-ua(t)}{v(t)w ®} dt
- 20" w-aw} + LOKE O} &

o -il" . & -
- e Aj(t){v (t)-v(t)} dt (A4.62)
"y
Mow the terms involving Q and Q* cancel in the right hand side of (A4.62)

and the remaining part can be rewritten to arrive at:

bl N .
4 = @E gﬁ;'luzw(t){x(t)m*(t)} J{" dt

@9 et * 3
+ TR (Ov(D-v dt A4,63
nf ER L XCICRAOH (A4.63)

Taking inte account possible jumps of i and 13, the right hand side of
(A4.63) equals:

lim Y1 00"} + LoV O} +
{200 L 3 J
I e @O ix@x" @) - L0x0-x )
>0
+ T @A () - A {vin)v () (A4.64)
T>6N‘
Using x(0)=x"(0) and v(n)=v'(n), (A4.57) and (A4.58) gives: 420, o
This theorem as well as the lemmas 7.3 and 7.4 of Feichtinger and Hartl

[1986] will be wused to prove theorem 1. For convenience the lemmas are

given here without proof as lemmas 1 and 2.
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Lemma 1
Leét ¢ be a quasi-comcave and differentiable function om a comvex set Di{¢).

Let there be a vector z‘“x and a scalar p such that
&
$@")=0, p=0, pd(z )=0
Then for all 2€ Di(¢) with ¢(z)=0;

pé )22 )20

Lemima 2
Let ¢ be a concave function on a comvex set D(d).
® &
Then there is for every z € D(¢) a row vector a=a(z ), such that for all
ze D(¢):
& *
$(z)-¢(z )<a(z-z ).
a is called a supergradient of ¢.

Proof of theorem 1

Define
A‘(t) = {stEJuo with gn(xe,ue,‘t)z()}, for every t=0 {A4.65a)
Ab(t) = {VIQS with gb(v,s,t)z()}, for every t in [no,ﬂ) (A4.65b)

From the quasi-concavity of g and g, it follows that A (1) and A (1) are

convex sets. Now [Hg is concave on A (t) and Hg is concave on A‘b(t), 50
a 1

n+2

there are (by Lemma 2) supergradients (row vectors) wn(t)ER ,t=0 and
wb(t)wem, nﬂst<ﬂ, such that:
o o, * * 042
Hl(xa,ﬂl,t)-ﬂi-(xb,ﬂ.,t) = wﬂ(t)[xb-xa(n)], for all X ER {Ad.66a)
o o, * \ * )
Hh(v,l,rz)-mb(v A = wbw(m)[v-v (t)], for all vERr (A4.66b)

From the definition of H® this implies:
L *®
N!u(xo,‘uu,i,t)-|H.(x0,ue,‘l,t) = W_U)‘.[Xe‘xﬁ“)]‘» for all (x ,u) that
satisfy gm(xo,‘rua,t)zﬂ (A4.67a)
L L
:Hh(v,s,}.,t)-mb(v B8 LAL s wb\(w)i[v_v ()], for all (v,s) that satisfy

gb(v,s,t) =0 (A4.67b)

* *®
Therefore, for every =0, (xc(t)wue(t)) is an optimal solution for the
static optimisation problem
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max Mn{xe,ue,,l,t)—w‘(t)xe, subject to gnw(xc,‘uﬁ,t)a(},
X ,u
e ® * *
and. for every t, nostcﬂ, (v (1),8 () is an optimal solution for the
static optirnisation problem

max H (v,5,4,0-w {t)v, subject to gh(v,s,t)zﬂ.
v,s ° b
And thus, because constraint qualifications (A4.44) and (A4.45) are

satisfied, there exists for every t=0 a multiplier B (1), and for every t,
nﬂst<0, a multiplier ,ub‘(ﬂ, such that we have the following Kuhn-Tucker
conditions:

* ES -~ e £
B (xe (t),ue (t),)&,t)—wa‘(t) + un‘(t)gax (xe N g =0 (A4.68a)

* * ~ ESK. )
B (v (0,5 (0,A,0-% (1) + 4 (g (v .5 1) =0 (A4.68b)

£ L3 » * *

Ho &, @ @40 + u g (x u.t) =0 (Ad.69a)
M (0.8 A + i 0g (s ) = 0 (A4.69b)
4020, u g’ =0 (A4.70a)
5,020, 4 (0~ s = 0 (A4.70b)

The constraint qualification ensures that ,un‘(t) and _uh(t) are uniquely
determined.  Therefore it follows form (A4.47a) and (A4.69a) that

ﬂl(t)zu!(m) for all t=0 and from (A4.47b) and (A4.69b) that ,ub(t)zub(t)

for all tE[no,O).
Combining this with (A4.68) and the adjoint equations (A4.48)-(A4.51)

gives:
w0 = [(@,0-0 b o0, 40,00 b &0,
ua(t)-ijm_u_(m)hw(xc*,t) , for all t=0 (Ad.T1a)

wb(t) = iAg(t)-iy[m)-vb(t)hw(v*,t), for all t in [nﬂ,(}) (A4.71b)
Substituting (A4.71a) in (A4.67a) and (A4.71b) in (A4.67b) gives:
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i ¥
00004 (50 A1) = ,0{QW-Q 1)
5 , " - ‘ 1 *
+ A O-LOHxWx O} + {A0-LOHO~ O
L *® * *
- v, (Oh 5(x ,0{QMW)-Q (1)} - (Ob_ (x_0{x(0)-x (0}
- v Wb & 0 {vE-v @)}, for all t=0 (Ad.72a)
* ® X *
W, (8,04 (v 8 4,0 = {1ﬂ13(t)-ig(t)}{v(t)-v W}
- v, (b 0LV (), 7 st<0 (A4.72b)
The quasi-concavity of h_ and hb and (A4.52) ensure that the terms
involving the partial derivatives of ‘hl and hb are non-negative (Lemma 1).
And thus (A4.72) implies (A4.56) of Theorem 2. Condition (A4.57) of Theorem
2 follows from (A4.54) and amother application of Lemma 1, using (A4.55)
and the quasi-concavity of ha and h . Finally, since (A4.53) is equal to

(A4.58), all assumptions of Theorem 2 are satisfied and it can be concluded
£
that (x‘a ,uc) is optimal, which concludes the proof of Theorem 1. a

-204-



APPENDIX §
VARIOUS DERIVATIONS

Appendix AS.1 The details of section 7.4
AS5.1.1 Existence of a steady state solution in section 7.4.1

Substituting the walues of }.ﬂ, AZ, ,14 and 'ls in (7.26), and using Mﬁﬂ,
i=1,..,6, and v =0 gives:

c)y | 4 _ t+v i(T-ty g
T-F { 1 f tﬁ e d(T-t) dr}

= YO ST 820 - aomw) Jdr (AS.1)
d
Substituting (7.40) into (AS.1) gives:

c(t) - t+v “i(T=t) 4o
1F { v - f ti e d(r-t) dr}

=t§V(‘) DDy IN@)-I ) dr (A5.2)

Substituting the steady state values for w, V, N, ¢ and [ gives:
*:

S { 1 -7 Y e dr}
‘ t

* . % 3 N w* 4
- SHT e‘“W)(”)a(o)w*/k)‘e’” { e-h(r-’l‘ ) e-ht Y dr (A5.3)
t
Changing the integration variable in both integrals, this equals:
* «
¢ L-f ¥ e dr }
-5 { 0
" * 4 " *
=T DT el [T ) D1y ae (A5.4)
0

The right hand side of (AS5.4) is easily imtegrable. The result is equation
{7.57) in chapter 7.
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AS5.1.2 Derivation of (7.64)

Given the assumptions concerning the final path in section 7.4.2 it is
clear that on the final path (7.26) amounts to:

C.(-t)! 1 - f ]:t-i-‘v c_i(r‘m)d(I—t) d‘t}
t

j"’“) a2 - twlw) Yar (AS.5)

leferemmtmg both sides and using the scrapping condition (7.44) gives:

S v -iT P .
) = 41 - d(t) dr} {(i+a)c(t)-c(t)}/(1-f) +
RO ={1-7 7 & dw o} (Eraco-E0iap

tw() - T (VO ~G+aT oty dar (A5.6)
t

With assumptions (7.50) and  (7.51) in mind, substituting I(t)=[(0)e ht

* ht , _ e, —
w(t)= w ¢ , and c(t}=c into (AS5.6) gives:
3SIBK (1) = {11 ' 05" ¢ d(r) dr} {+a)c V1-p +

(W HOVR) - (8 1OYK) s iy { UFaRVO0 (AS.7)
Using the scrapping condition (7.54) gives:
{1 - foj" T d(n) dr} {G+ae HA-H + w KOk -
W IO i (DO gy o 0 1oy N
{1 - f 05" ¢ iT d(r) de} {Gra)e Y ia-p =
Ut

0" 10) ,,k)‘{ N o (VO } J—

N *
1 - 1% ST ey d i+a +a- c k -
{ foj e (1) r} =7 (i+a-h) ‘TF_I(O) + it+a

(i+a-h)e"ENO) o~ Fa-hyV(-0 (A5.8)
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The last equality in (A5.8) is identical to (7.64).
AS5.1.3 Convergence of the upper and lower bounds on M and T

The following equations (equations (7.64)-(7.71)) are available:
o = ghTW 4 e BM()

(A5.9)
M) = T(t+M() (A5.10)
M@ = -1/8 In{ (p-pe"TOyh ) (AS.11)
1h 1n—ﬁ’—’ < TO < Uh nf (AS.12)
o-h = B(1+8) with >0 (A5.13)
1k m%ﬁ < M® < U Inf (AS.14)
T() = 1/h In{ (@-hePMOyp 3 (A5.15)

From (AS5.15) it follows:
dTIAM = Bi(p-he PM)y AMQ) (A5.16)

From (AS5.13) it follows that the right hand side of (A5.16) is
positive.Combining (AS5.15) and (AS5.16) gives new bounds on T():

(U In [%, [w—hcxp{—(ﬂ/h)ln(%’]} ] ]< TM) <

(1/h) 1n { [w Imxp{~w(ﬁ/}n)1n(ﬁ)}] ] -
(/R In H}, [w {*‘” "} ﬂ”“] ] < T <
(/) In [ % [ o-h { }ﬂ”’ ] } (A5.17)

Using (AS.10), it is clear that M(t) must also satisfy (AS5.17) and using
{A5.15) this gives mew bounds on T(t). Comparing (AS5.12) and (A5.17) and
writing out the next upper and lower bound reveals that it is possible to
characterise the sequence of lower and upper bounds on T(t) and M(1), for
t+o0, as follows:

Lower bounds }i ln(xu): X,= Q‘E}Il, X n{ w-h(xn)"ﬂ”’ }/ﬂ

EES

Upper bounds ]11 lnw(yn): ¥, = %, y +1={ (a_h(yn)'ﬁlh }/ﬁ (AS.18)

n
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Note that the recursive formula is the same for the Jower and upper bounds,
Only the initial values differ. Define:

w =1, wn+l=(xn)'ﬂ/h, n=0,1,... (A5.19)
Combining (A5.18) and (A5.19) gives:

X = (m—hwﬂ)lﬁ (A5.20)

w =1, ‘W‘m+l={(m-hwu‘)lﬂ}'ﬂ/h, n=0,1,... {A5.21)
Similarly define (zm)‘:

2,=0. 2, ={@hz )i} P*, n=0,1,... (A5.22)

y, = (g-hz )/ (A5.23)

The question is whether the sequences of lower and upper bounds converge.
Sufficient condition for an affirmative answer is the convergence of the
Sequences (w“)\ and (zm).

Using (AS5.13), it can be seen that both rows lie in the interval [0,1]. It is
then easily seen that, for all m:

LAE A {w-hwn)‘/ﬂ}'ﬁ”‘ > {(qo—hwu_l)/ﬂ}'ﬂ”' —

(qn-hwn)/ﬂ < u(‘qa_hwn_ l)/ﬂ E= W W e = W >W (A5.24)
Similarly:
Z L == 2>z, (AS5.25)

Thus the row (wu) is monotonically decreasing amd the row (z) is
n
monotonically increasing. Since each bounded monotonic row has a limit, it

follows:

W W, z> z {A3.28)
Define:

gx) = {(w-hm/ﬁ}'ﬁ i (AS.27)
Then wwl:g(wﬂ) and zwlzg(zﬂ). Since g is a continuous function, (AS5.26)
implies:

gw)=w, gz)=t (A5.28)

w and Z must lie in [0,1]. From (AS5.27) it is easily seen that g(0)=0 and
g(l)#1. So w and z must lie inm (0,1). In other words, w and Z are solutions
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of the equation h(y)=g(y)}-y=0 in the interval (0,1). Using (AS.13) it is
casily seen that h is strictly decreasing om the imterval (0,1), so the
equation h(y)=0 will have at most one solution in the interval (0,1). This
implies W = Z.

So now it follows from (AS5.18) that the sequence of lower bounds as well as
the sequence of upper bounds on M(i) and T(t), t>c0, converges to:

i m{ ﬂﬁ@ } with g(W)=W. (A5.29)

This implies that M(t) and T(t) must equal (A§5.29), for tseo. Moreover,
&
(A5.29) must equal the stcady state value T . This can be checked with
(A5.9). For M(t)=T(t)= T (AS5.9) is:
*

¢ = ﬂe"T + hePT (A5.30)
Substituting (AS5.29) for T* in the right hand side of (AS5.30) gives:

{‘” h? + hexp{ - {(p -hW } }

i + b { O A0

It

g-hw + hg(W) = g-hw + hw = ¢
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Appendix AS5.2 The optimal policy of section 8.2.2

The optimal poliey in section 8.2.2 is: )
use It) to close the gap between d5/6K(t) and (BS/&K)' as quickly as

possible (A3 31a)
use B(N()) to close the gap between dS/6K(t) and w(I(N(1)Wk as
quickly as possible (AS5.31b)

This rule is examined for the same imitial situations as in section 8.2.2,
but now more precisely, and the difficulties in case the initial capital
goods stock is large are illustrated.

It is assumed in this appendix that I(t)>0 for teln ,0).

1) Suppose ES/BK:(0)>(&S/8K)‘* and 4S/K(0) > w(0)M(N@0))/%.
For this initial sitvation the optimal policy was described im section
8.2.2. However, a few points need some clarification.
In section 8.2.2 it is implicitly assumed that the capital goods stock
grows if the firms invests as much as possible. Using (8.19) this implies
that I must be, at least, larger than «K. Therefore the following
reasonable assumption is made :
if the capital goods stock is below the ‘desired’ level K*, then:
S(K(t))-wL(t)—ac*K(t) >0, (A5.32)
irrespective of the vintage structure of K and thus irrespective of L.
Bquation (AS5.32) implies that if I is on its upper bound (see (B.8)),
then 1> ak.
Part of the optimal policy is "maintain &S/6K=(&S/6K)* and continue B=B

until  w(I(N())/k reaches ‘(aS/aK)*". It is not obvious that this 1s
*

possible, Maintaining JdS/0K=(d5/8K) implies keeping K constant. Using

(8.19) this means:

)= ak)+e NN, (A5.33)

In the first place this implies that I(t) and N(t) cannot be chosen
independently. In the second place it has to be checked whether I(t) in
(A5.33) lies inside the control region. It is clear that Y(1)=0, since N s
always positive, Moreover, the upper bound on B, B . is arbitrarily high,
which implies that the lower bound on N, ”Bmu is arbitrarily low. If the
optimal policy is to scrap as little as possible, implying N(m)r—l/Bm“,
then the right hand side of (A5.33) is arbitrarily close to aK(t). Now
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assumption (A5.32) guarantees that I(t)= {S(K)-wL}/c .
Another part of the optimal policy is “maintain AS/OK =w()I(N()Wk  and
continue to invest as much as possible untill A3S/JK  reaches (&S/&K)*”‘.
Maintaining ‘GSIB‘K(L)":W(@)I(N(t)):Ik implies  (differentiating  both  sides):
(-He)3S/3KY(K(1)/K(1)) =h(1-N(©))(35/3K). And thus, using (8.19):

1(0)-aK () NN O =-eh(1-ROK@D) ==

r‘qm{ehm)+e‘“(’~"“(‘)‘)lmm} = () + (eh-a)K(). (A5.34)

The right hand side of (AS5.34) must to positive, to guarantee that N s
positive. Since the firm is investing as much as possible and K is still
lower than K*, assumption (AS5.32) guarantees that the right hand side of
(AS5.34) is positive. For the proposed policy to be feasible, it must be
assumed that the boundaries on Nw(t) (l/Emax and llem) are such that N(t)
in (AS5.34) lies in the control region.

2) Suppose: 65/3K(0)>(6*S/6K)* and 35/8K(0) < w(O)(N(OY)/k.

It is now demonstrated that the proposed optimal policy fulfils the
optimality conditions. Firstly note that )Lﬂ is  continuous. Secondly,
suppose that u - and 4, are zero on some interval starting at t=n_. Equation
(8.12) then implies that 13 and 1.3 equal zero on this interval. In
particular, Aa(z)=,&3(no)=0, Together with (8.15) and the assumption that
I(z)>0, this gives; OS/0KO)=w(O} MO /k. So it can be concluded that if
3S/IK(0) = w{OYI(N(0)) /&, u5¢0 or _uﬁ:x:@ on the path starting at t=n . In other
words, on the path starting at t=n, B equals Bmm or an'

Now suppose the firm decides not to scrap the unprofitable vintages, in
order to grow as quickly as possible: B(t)=B_ . x>0 on some interval
beginning at n,. If the firm invests as much as possible for t close to
zero (implying, according to assumption (A5.32), that K increases and J4S/9K
decreases), then this leads to a contradictiom: as before, B‘“)‘:Bm“ for
tzn implies that w()I(N(t))/k  will increase for t=0. Since a85/9K
decreases for tz=0, JS/OK()-w(t)(N()/k will be negative for on some
interval beginning at t=0. From (8.15) it follows:

ardue™a ) =

e VO La8/3K (W O-w(V OO {1+, (V (1)} (A5.35)
Since I()>0 and and 3S/OK(V()<w(V()I(t)/k on some interval beginning at
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Wﬁ,
for tzn, A,=p >0, and thus e'nlai(t) is positive and increasing. At a
certain point of time the path with B::Bm will have to end; on the path
that follows, pu " will be zero. Since 1,3 is continuous, this implies that" in
the coupling poimt with the mnext path ‘A'a has to be zero, and thus e"tlj
has to be zero. But we saw that om the path with B=B__ e'”ﬂxs is positive
and increasing! This leads to a contradiction.

An alternative solution is to adhere to the decision rule (8.21) even
though the aims in (B.21) are conflicting for the given initial conditions.
So the firm will start scrapping at a maximal rate, even though this slows
down the growth of K. As in the first example, the optimal policy is to
close the gaps between 8S/6K and (&S/&K)* and  w(OI(N()Vk respectivily,
and, if a gap is closed, to keep it closed.

Checking if this policy satisfies the optimality conditions in particular
implies verifying if ,ui(‘t)zl) for all i and all t. However, this involves
solving the integral equation (8.11) and the differemtial equation (8.15),
and this is in general mot possible. However, for specific solutions we can

e'nia(t) increases on this interval. Moreover, as long as B{(1) =Bm

try to circumvent the problem of solving these equations. For instance, in
Figure 8.1 it is assumed that the initial conditions are as in the second
example above. Furthermore it is assumed that a4S/8K(t) reaches w{t)[(N(t)/k
for t=t'. This implies, according to the decision rule, that B()=B__,
s =l for :t<:N(tl)ﬂ Define T=N(tl). It is clear from Figure 8.1 th{at tt:e
right hand side of (A5.35) is positive for t<t. This implies that e'u,la is
increasing. Imposing the boundary condition ).3(1'):‘0, this yields that lg is
negative for t <tv. Consequently, ug(t)=-13(t)>0 for t<t and ,uj(t)=0 for t=1.

Next it must be verified whether p220 for all t=0. It is assumed that 85/0K

¥
reaches (9S/8K) at t=t>. Note that for t=0 (see Figure 8.1):

w(BIN(Y k=10 ke T 2 85/3K (1) = (38/0K) " = 10)w " Tke"T

This implies that T(rc)aT* for t=0. Consequently, M(t)zT* for t=0 (use
(7.71)). Moreover, since (8.11) must be satisfied on the final path:

*
o =t5t+’r oli+a)(r-t) { BSIIKCE) - wHIO/k } 0t for (2 om
o
* -( P
‘ =05T T @51910" - Wik ) (A5.36)
For t=0 :
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uz(t)c*=0§M(0 e DT ¢ a5k t+1) - wiOkT ) ar - & (A5.37)

Since M(=T  for all t=0 and 3S/3K(t+1)= (38/9K)" for all t=0 and v20, the
integral in the right hand side of (A5.37) is larger than the integral in
the right hand side ot; (A5.36). And thus, ‘ug(t)wz() for all t=0. Moreover,
since 8SIAK()=(3S/8K) for all t=t* and M is continuous, u, is contimuous
in %,

In section 8.2.2 it has been stated that the ‘decision rule’ does not apply
to initial conditions which involve a high capital goods stock.

Suppose 3S/3K(0) < (3S/3K)

This implies that the initial capital goods stock is ‘too large’. The
‘decision rule’ requires I(t)=0, from t=0 onwards. Suppose that at a
certain point of time 8S/3K(t) becomes equal to w((N())k, while 88/9K
is still smaller than (‘BS/aK)*.‘ Mow the decision rule requires: maintain
AS/OK() =w(I(N(t))/k and use I to close the gap between aS/AK(t) and
(8S/6K)". As before, this implies (see (AS.34)):

M(t}{ehmt)+e'“('~'N(‘))‘I(N(t)} = I() + (eh-a)K(1).

To guarantee that N(t) is positive, I{t)+{eh-@)K(t) has to be positive.
Closing the gap between 8S/0K(t) and (aS/aK)* as quickly as possible asks
for 1=0. However, if eh-a<0, this would lead to a negative N(t). Now there
are three possibilities:

1) setting N(t) on its lower bound and maintaining (AS5.34) gives an I in
the interior on the control region; moreover, K decreases. This way the
firm could reach the final path. However, this policy implies that at the
moment that J5/dK(t) reaches w()IN())/k, ,ul(t) must reach zero, or IR
and "‘r jump. I did not succeed in checking whether the necessary conditions
are satisfied in this case.

2} setting N(t) on its lower bound and maintaining (AS5.34) gives an [ in
the interior on the control region; however, K increases.

3) setting I:\"(w) on its lower bound and maintaining (A5.34) gives an !
which is larger than the upper bound on I

In cases 2) and 3) I do not know how to derive the optimal solution.

The comclusion is that I am not able to find the optimal solution if
the initial capital goods stock is large. The main problem is that the
decision rule, which applies to a small capital goods stock, cannot be
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applied in all cases. Especially, if one of the two ‘gaps’ in rtule (8.21)
is closed, it is often Impossible to keep it closed, while closing the
remaining ‘gap’.
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Appendix AS5.3 The pattern of investments in section 8.4.2

For t=t;:

aswm::(t)=(1-1/@-{@'@‘%(0&}‘”‘f (A5.38)
This implies for the steady state value of K(t):

K(t) = kem{(awam*/u-w)}‘“ (A5.39)
Define:

K = k{(asmm*/m-ue)}‘e‘ (A5.40)
Remember (8.19):

K@) = -aK() + I(1) - N@ON@e N (A5.41)

Substituting N()=t-T", N(t)=1 and (A5.38) in (A5.41) gives:
£
1) = (g+a)K e8' + 1T for all te[o.r) (A5.42)

Given I(t),t <0, this determines I(t) for all tE[@,to). It is easily seen
&
that if ¢ =co, I(g+a)K & /(1-68TDT ) If it is assumed that 1=

X *
(g+a)K 8 (1-" 8T y for all t<0, then:

*

10 = (g+a)K Y1 ETIT ) for all tefor) (A5.43)

Define:
£

I = (g+aK /(1-e @ TOT (A5.44)
Note that IT is positive.
Then:

1) = Ie$' for all te[0,t) (A5.45)

For tE(tG,tl)s

{m-g)t -mt R
£ OK(t)/k} e (A5.46)

ayaxm=(ﬂ_1/m{e e

Suppose that (AS5.46) would be valid for all t. Then we could try to find
the steady state value for I(t). Analogous to (A5.43), this would be:

-

) = (g+a-mK e& MY @TamTy (AS.47)
Define:

* e, —(g+a—m)’][‘* ,

12 = (g+a-m)e K /(l-e b] (A5.48)
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Then (AS.47) is:
1y = &MY (A5.49)
Note that I: is positive.
For t<t {AS5.45) is walid. Together with (AS.41), (AS5.46), and the fact
g * # *
that 38/9K(t)=(08/8K) and N()=t-T , this determines I(t) for tE[to,to-{-‘T ¥

* £ 2
0 = [eETT 8y PaeleramT ) emt for 1eqe 0 +T5
(A5.50)
Define the mumber A such that:
(AT <t < tHA+DT (AS.51)
Note that, given the steady state values for a8/dK and N, (A5.50)
determines I(t) for tE[m0+T*,t0+2T*), etcetera, Careful calculation shows:

* s
i) = I’re-(m+ﬂ)(g+a)’l“ L I;"(l_e-(n+1)(g+a-m)'1’ )e(g-m)t
for t +0T  <t<t +@+1)T", n=0,1,...,4-1 and t+AT <t<t (AS.52)

Here we used that 1+x+x"+..... +x"=(1-x"*"/(1-x).

Substitution of (AS5.44) and (AS5.48) in (AS5.52) reveals that I{t) is
positive if a+g>m and that the right hand side of (A5.52) is increasing if
atg<m. Also from (AS5.52) (and (A5.43)) it can be derived that I jumps
downward for t=t0+nT*, n=0,1,..,/4-1 and that the magnitude of the jump

equals
*
&, -naT *
e e mK (AS5.53)
Finally, from (AS5.52) it can be derived that lim « I(t) is a decreasing
t¥t +nT
0

function of n,

(A3.52) gives the values for I(t) for t<t,. For t=t:

381K (1) = (1-1/e)(e 8™ R 1y ey e (A5.54)
For t=t we still have 3S/8K(0)=(38/9K)" and N()=t-T . Consequently:
K@ = 0K S for all 12t (A5.55)
ke
It) = (g+aK®) + @1 10T (AS.56)

Combining (AS5.55), (A5.56) and (A5.52) gives:
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o = I‘:‘@gt{ ot ) “~B~1(g+a)'l‘*) + DT } .

* *
* (g-m)t] -(g+a-m)T - -
Ize(g m){ ggra-mT (| ~Alg+a-m)T )}* for t£<t<t.n‘+(A+ﬁ)T*

(AS.5T)
™
1 = I‘:‘egt{ Y (AT ) | (4 +2)(g+a)T" } .
I:&(g-m)‘t{ e-(g-i«a-m)T* (Ine'M +1)g +a-m)T*)}g
for t +(A+DT <t<t +T" (A5.58)

We can use (AS.57) and (A5.58) to calculate I(t) for tl+T*<t<t]+2T*,
etcetera. This gives:

o = I’:‘egt{ M) (G DEHIT) |, A+ 14k g+a)T } N

el { R+ D(g+a-m)T (16 (g—%raﬂn)‘T*)}’

for t +kT" <t<t +(A+1+K)T", k=0,1,.... (AS5.59)

1o = I*egt{ M) (K DEFaT ) | (4 +2+k)(g+ayr*} .
1 ]

I:‘e(g-m)t{ o+ Dig+a-m)T" (1A + e +a—m)‘T*)}y

for 1 +(A +]l+k)T*<t<tl+(k+l)‘T*, k=0,1,.... (A5.60)

Using (AS.59) and (AS5.60) it can be shown that I(t) increases for t>1 whemn
g+a-m<0, and that I(t) >0 for t>1 when g+a>m. Using*(AS.SQ), ({A5.60) and
{A5.52) it can be seen that I jumps upward for L=tl+k'l‘ , k=0,1,... and that
the magnitude of the jump equals

W
gt]K* -kaT "’”‘(’:x‘to)

e e e m (A5.61)
Using (A5.59) and (A5.60) it can be seen that 1 jumps downward for
t=t0+(A+l+k)T‘*, k==0,1,.... and that the magnitude of the jump equals
£
gt AA+14+k)aT
e % mK” (AS5.62)
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Finally, from (AS5.50), (A5.44) and (AS5.48) it follows that:

gt * W ¥
lim I(t) = ¢ "K' {g-f—a—m + (g+a)ye @+ (g+a)T )} (A5.63)

£ t‘o
So:
* ¥*
lim I(t) 20 &= m > g + a + (g+a)e-(g+a)T /(1-6'(5""“)1‘) ==
R4 ‘to .
m > (g+ay(1-eEFIT (AS.64)
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Appendix AS.4 Discussion of ‘zero investment'-periods

‘This appendix discusses the problems that arise if there are ‘zero
investment’-periods. Suppose I{1)=0 for 1€(x,f) and ()0 for t&(xf). I
is no restriction to assume that V(o) >, since otherwise the firm would no
lomger exist at t=f ({all capital goods would be scrapped). For
tE(V(x),V(B)] the oldest existing vintage is the wvintage installed at time
B. So holding on to the given interpretation of N implies that N(t)=§ for
tE(V(e),V()]. According to the same interpretation, N{V(x)) equals «. Thus
maintaining our interpretation of N for ‘zero investment’-periods implies
that N is discontinuous at t=V{x).

To apply the Maximum Principle of Appendix 4, continuity of N is required.
Fortunately there seems to be a way out of this problem. Note that V(1) for
t<(a,f) has no interpretation. Let us assume that we simply require that ¥V
is stricly increasing on («,§) and coatinuous on [e,f]. This implies that
V"l(t)w exists for te(V(a),V(S)) and that v!' s a strictly  increasing
function on (V{a),V(#)) and continucus on [V{«},V(8)] (note that now v!' no
longer equals N on (V(o),V(BNH.

Of course it has to be checked whether this does violate the statement in
section 7.2.3 that replacing N by v' does not affect the model. If
I{N(t) > 0, it is clear that N(t) = v, If  there are ‘zero
imvestment’-periods, one can reason as follows:

Above it was noted that for all t€(V(a),V(§)], N(t)=F. And thus:

K@) = [ ey ar = §t D) dr (A5.65)
N(t) B

Since V is required to be continuous and strictly increasing on («,f), it
follows that V(t)E€(a,B) for tE(V(), V(). Also I1=0 on (), so in
particular I=0 on V''(0),8), for each t&(V(a),V($)). This implies:

it 9Dy dr = D1y dr = KO (AS5.66)

v s

for all te(V{(x),V(#)), where the second equality in (A5.66) follows from
{45.65). So indeed it does not affect the model if N(1) is replaced by
Wity even if there are ‘zero investment’-periods.
It is important to nole once again that: V(t) has no interpretation for
te€(e,B); MN(t) is defined, for all ¢, as the birth date of the oldest
capital goods still in wuse at time t; N(t} does nét equal vy for
tE(V(a), VB
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It has been established that N can be replaced by V', even if there are
‘zerc  investment’-periods. The above analysis revealed that im fact it does
not matter which wvaloes V takes om during these ‘zero investment’-periods.
This is confirmed by the fact that, at first glance, the optimality
conditions do nst determine V  during ‘zero  investment’-periods (see
(8.15)). Does a second glance confirm this first glance?

As in section 8.4.3 define:

5, =tf"“) ¢ FaNTY) aeiak () -wnIOk} dr -c (A5.67)
It s clear that: s(a)=s(f)=0. Define s(=¢C* ). Thea
s)=5,5)=0 = 5 ) at =0. It is clear thar:

0 = e,"("*“)‘{éﬂ(t)-(wa);slm} (A5.68)

After substitution of the derivative of s, in (AS5.68), it can be easily

seen that ajﬂ éz(t) dt =0 is equivalent to:

St +a)t{aS/BK(t)-w(t)l(t)/k—(‘a +i)e -3SIAK (VD) +w(V OOk

(VO (+a)(e-y w(v:)i(t)lk}dr} dt= 0 (AS.69)
t

Note that (A5.69) is derived without using the scrapping condition.
Now suppose that we are investigating the optimal string consisting of the
steady state path for t&(w,f) and a ‘zero investment'-period («,f) (as we

did in section 8.4.3). This implies for instance:
Ed
3S/IK () =0S/8KA(B) =(3S/0K) . Equivalently:
S Sasier( at = o (A5.70)

On («,8), (8.15) implies (since N(t)<o for all t&€(w,f) and the scrapping
condition is valid for t<a):

ASIBK () = w{H(N()k (A5.71)

j ¥ Dypyar
N(t)

= kn(t){p)} ¢

it

Kty = kQ(1)

I

kr(t){k/(1-1/€)} €{3SIaK (1)} ¢ (AS.72)
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where  m(t)=ef'  for 1< L () =l Mt +mi,

gt-mi(t l-t

for <<t and
)=

o for t=t.
Assuming that 1I(t‘y=cs~,*"m13:c for tsa (see Appendix 5.3), (AS.7T1) and (AS.72)
constitute two (integral) equations with two unknowns, 8S/3K(t) and N(1).
Differentiating (AS5.71) and (AS5.72) and eliminating N()
following differential equation for 4S/9K:

k() {kI(1-1/e)} "¢ (3S19K) " { {a+r®In(t)}(BS/IK) - e(d/df)(@SIIK) } =

gives the

* -] + )/’
=1 oS {(1m)(d/dt,)(aS/aK):-(aSIam} {?1’(‘%‘(0"“’*)(&8’3‘@} @*a)in (A5.73)

It is clear that, although 1 cannot solve this differential equation for
38/8K, after substitution of the solution of (A5.73), (AS5.70) only has two
unknowns, o and f£. So we now have two inmtegral equations, (AS5.69) and
{A5.70), with the unknowns «,8 and the function V on (a,f). The question is
whether (A5.69) and (AS5.70) have only one solution for «,f and V or not, If
there is only ome solution, them my ‘first glance’ was not correct:
Wty tE(e,f) is determined by the optimality conditions, as well as the
length of the ‘zero investment’-period, withowr wusing the scrapping
condition for V{t),t&(a,B). If « can be chosen freely and (A5.69) and
(AS5.70) can then be solved for § and V(t)t€(w,f), then my first glance was
correct.

Unfortunately, I do mot knew how to decide on the number of solutions of
(A5.69) and (AS5.70). There exist a number of theorems on the solutions of
integral equations, but these theorems do not apply, as far as I know, to
(A5.69) and (A5.70).
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NEDERLANDSTALIGE SAMENVATTING

Het onderzoeksproject dat geleid heeft tot dit proefschrift, maakt deel wuit
van het VF-onderzoeksprogramma "Arbeidsmarkt en Arbeidsorganisaties”. Het
doel wvan het project is ma te gaan wat de gevolgen zijn van heterogeniteit
van arbeid en kapitaal binnen een onderneming wvoor de optimale
investerings- en dividendpolitiek van deze omderneming in eem veranderende
omgeving (groei, conjunctuurcycli e.d.). De analyse vindt plaats “met
behulp wvan een dynamisch ‘optimal control’-model, eem veelbelovend
instrument dat binnem de bedrijfseconomische theorie steeds meer aandacht
krijgt" .

Om precies te zijn: er worden wiskundige modellen ontwikkeld die de activa
en de passiva beschrijven van een onderneming die geconfronteerd wordt met
technologische vooruitgang (leidend tot heterogeniteit van kapitaal) en een
fluctuerende vraag (een  conjunctuurcyclus). Vervelgens wordt ‘optimal
control’ theorie {i.c. het Maxinum Principe) gebruikt om het
ondernemingsbeleid op te sporen dat, gezien de gekozen doelstelling van de
onderpeming, optimaal is. De modellen zijn deterministisch. De keuze om te
werken met deterministische optimalisering is vooral ingegeven  door
enerzijds de wens om relatief veel aspecten in én model op te nemen en
anderzijds de eis om  tot analytische,  economisch interpreteerbare,
oplossingen te komen.

De ontwikkelde modellen geven slechts een ruwe schets van het bedrijf. Toch
zijn de wiskundige problemen die het vinden van de optimale oplossing met
zich mee brengt groot. Dit geeft het dilemma weer dat inherent is aan het
beschrijven van ondernemingsgedrag met behulp VAT ‘optimal
control’-modellen. Enerzijds dreigt het gevaar dat men zich met economisch
oninteressante problemen bezig houdt (omdat de modellen zo rudimentair zijn
en dus ver van de werkelijkheid afstaan), anderzijds zijn modellen die de
werkelijkheid dichter benaderen vaak onoplosbaar. Hen bijkomend gevaar is
dat men zich, doordat de optimaliseringswiskunde 2o gecompliceerd  is,
vooral bezighoudt met technische, wiskundige problemen, die vanuit de
economische wetenschap bezien oninteressant zijn. Dat neemt niet Wweg dat

'Onderzoeksprogramma Arbeidsmarkt en Arbeidsorganisaties,
Wetenschapscommissie FAEW, 25 april 1985, blz. 15.
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het de doelstelling van dit proefschrift is om economisch interessanie
problemen te behandelen op een wiskundig adeguate manier.

Hoofdstuk 3 gaat dieper in op het zojuist genoemde dilemma. De
probleemstelling is  tweeledig: 1) wat is het not wvan theoretische
optimaliseringsmodellen, zoals besproken in  hoofdstuk 2, bimnen cen
empirische wetenschap als de economie in het algemeen en binnen de
bedrijfseconomie in het Dbijzonder; 2) welke eisen stelt het adequaat
gebruik van wiskunde in dit soort modellen.

Wat betreft het eerste deel wvan deze probleemstelling luidt de conclusie
dat  dergelijke modellen gezien kumnen wordem als  ‘zuivere  theorie’.
“Zuivere theorie’ wordt door Klant beschreven als een theorie die gebaseerd
is op aanpames van empirische aard, maar alleen formele relaties
beschrijft. Klant beschouwt ‘zuivere theorie’ als een gereedschapskist wvoor
economen: het levert imstrumenten die gebruikt kunnen worden bij het
bestuderen van concrete economische problemen. Het probleem is echter dat
het moeilijk is “vast te stellen in hoeverre louter formele theorie€n ooit
bij de opstelling van theorieén met empirische inhoud zullen kunmen worden
aangewend”?, Dit wordt, in hoofdstuk 3, geillustreerd aan de hand van (het
(nog?) ontbreken van) ‘management science’ toepassingen van ‘optimal
control’-modellen.

Met betrekking tot het tweede deel van de probleemstelling worden een
drietal richtlijnen afgeleid tem aanzien van het gebruik vam de wiskunde.
Deze richtlijnen zijn: a) geef de achtergrond vam de aannames van het model
weer (met name of ze ecomomisch of wiskundig gemotiveerd zijn); b) probeer
zoveel mogelilk een economische imterpretatic te geven van de gebruikte
wiskundige techniek; c¢) bestudeer niet alleen de stationaire eindtoestand
van het model (de ‘steady state’), maar ook de optimale weg daar naar toe,
met behulp van de door Van Loon ontwikkelde ‘koppelingsprocedure’. In de
resterende  hoofdstukken van dit proefschrift is getracht deze richtlijnen
in praktijk te brengen.

Hoofdstuk 4 behandelt het model dat de basis vormt voor de modellen in de
volgende hoofdstukken. De omgeving van de onderneming is stationair: de
parameters van het model zijn niet van de tijd afhankelijk. De doelstelling

13, Klant, Spelregels voor economen, Leiden, 1979, blz. 262.

-232-



van de onderneming is het maximaliseren van de gediscomteerde stroom
dividenden. De toestandsvariabelen, die alle relevamte informatie wuit het
verleden bevatten, zijn de omvang van de kapitaalgoederenvoorrasd en de
hocveelheid eigen vermogen. De besturingsvariabelen, dat wil zeggen de
instrumenten die de onderneming tot haar beschikking heeft om het gestelde
doel mna te streven, zijn de omvang van de investeringem em de omvang van
het dividend. Uit de optimale oplossing wordt een beslissingsregel
gedestilleerd die, gegeven de waarden wvan de toestandsvariabelem, de
optimale waarden van de besturingsvariabelen oplevert. Richtlijn a) speelt
een belangrijke rol in dit hoofdstuk.

In  hoofdstuk 5 wordt de onderneming geconfronteerd met een
conjunctuurcyclus. De omgeving is dus niet langer stationair: de prijs per
eenheid produkt (die exogeen is) stijgt tijdens expansieperiodes en daalt
gedurende een recessie. Bovendien wordt aangenomen dat de onderneming niet
kan desinvesteren. Dit impliceert een zekere traagheid met betrekking tot
het veranderen van de omvang van de kapitaalgoederenvoorraad. Het niet
stationair  zijn van de omgeving bemoeilifkt de toecpassing wvan de
‘koppelingsprocedure” en daarmee de toepassing van richtlijn ¢). Desondanks
blijkt het mogelijk te zijn om de optimale politiek voor de onderneming af
te leiden, ook al is de beslissingsregel wit hoofdstuk 4 niet lamger van
toepassing. De conclusies zijn dat de onderneming bij een gematigde
recessie al voor het begin van die recessie stopt met investeringen en pas
enige tijd ma afloop van de recessie de investeringen hervat. Bij een zware
recessie zal de onderneming bovendien gedurende enige tijd haar gewensie
verhouding vreemd-eigen vermogen verlaten, teneinde het hoofd te bieden aan
liquididteitsproblemen. Indien deze liquiditeitsproblemen groot zijn, wordt
de periode waarin de onderneming niet investeert langer. De wiskundige
condities die de lengte en de positie van die periode bepalen, worden
economisch geinterpreteerd: de contante waarde van de tockomstige marginale
opbrengsten minus kosten van een investering zijn negatief gedurende de
periode waarin de onderneming niet investeert.

In hoofdstuk 6 wordt richtlijm b) in praktijk gebracht. De zogeheten
‘geadjungeerde variabelen’ (costate variables), die in het Maximum Principe
een grote rol spelen, kunmen in het algemeen geinterpreteerd worden als de
schaduwprijzen van de toestandsvariabelen. Echter, in modellen met zuivere
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toestandsbeperkingen (zoals de modellen in dit proefschrift), kunnen deze
geadjungeerde variabelen discontinu zijn. Met behulp van een in appendix 3
afgeleide  schaduwprijsinterpretatic  van de multipliers van de  zuivere
toestandsbeperkingen wordt inm  hoofdstuk 6 een economische verklaring
gegeven voor het optreden van dergelijke ‘sprongen’ in de waarden van de
geadjungeerde variabelen.

Bovendien wordt eem interpretatic gegeven van de waarden die die
geadjungeerde wvariabelen aannemen, door de onmiddellijke bijdrage aan de
doelstelling van een extra eenheid van een toestand te vergelijken met de
mogelijke toekomstige bijdragen. Een onmiddellijke bijdrage onstaat wanneer
zo'n extra cenheid meteen ongedaan gemaakt wordt, bijvoorbeeld wanneer een
extra eenheid eigen vermogen wordt uitgekeerd als dividend; toekomstige
bijdragen ontstaan wanneer de extra cenheid produktief wordt aangewend
binnen de onderneming (bijv. een extra eepheid eigen vermogen wordt
ingehonden en gebruikt om te investeren of schuld af te lossen). De waarde
van de onmiddellijke bijdrage is wvaak eenvoudig te bepalen, de waarde van
toekomstige bijdragen wordt gemeten door de geadjungeerde variabele (de
schaduwprijs).

In hoofdstuk 7 komt een andere vorm van niet-stationariteit van de omgeving
aan bod: in dit hoofdstuk wordt aangemomen dat er sprake is van (voor de
onderneming exogene) belichaamde arbeidsbesparende technologische
vooruitgang. Dat wil zeggen dat de arbeidsproductiviteit hoger is naarmate
de kapitaalgoederen waarmee gewerkt wordt nieuwer zijn. Als gevolg hiervan
is kapitaal heterogeen. Dit wordt in het model vormgegeven door middel van
een jaargangenmodel: de kapitaalgoederenvoorraad bestaat uit jaargangen,
waarbij de arbeidsproduktiviteit per jaargang verschilt. Er is gekozem voor
een zogeheten “clay-clay’ productietechnologie, hetgeen wil zeggen dat er
zowel voor als ma  installatie vam de  kapitaalgoederen  geen
substitutiemogelijkheden tussen arbeid en kapitaal zijn. De redenen voor
deze keuze zijn dat in veel jaargangenmodellen (o.a. van het Centraal Plan
Bureau) dezelfde keuze wordt gemaakt en omdat het vanuit wiskundig oogpumt
het eenvoudigst is. BEen belangrifk probleem in de optimaliseringswiskunde
is namelijk de ‘curse of dimensionality’: het aantal (toestands-)variabelen
mag niet te groot zijn, omdat anders het oplossen van  het
optimaliseringsprobleem te  gecompliceerd wordt. Dit is eem vam de
voorbeelden waar er zowel economische als wiskundige motieven zijn voor het
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hanteren van een bepaalde aanpame. Tevens

illustreert  dit  het esrder
geschetste dilemma.

In hoofdstuk 7 wordt voor een jaargangenmodel de zogeheten ‘afkapconditie’
en de ‘steady state’ oplossing gepresenteerd. Daartoe wordt in appendix 4
een  variant van het Maximum Principe afgeleid, asangeziem het
Maximum  Principe geen raad weet met de jaargangemstructuur. De
‘afkapconditie” bepaalt de economische levemsduur wvam een  jaargang
kapitaalgoederen. Anders dan in de voorgaande hoofdstukken kan de
onderneming nu desinvesteren door het afstoten van oude jaargangen. Als
gevolg wan de technologische vooruitgang (nieuwe machines zijn beter dan
oude) kan het optimaal zijn om oude jaargangen te vervangen door nieuwe. Er
wordt een algemene afkapconditie afgeleid in termen van
Deze afkapconditie luidt: een machine wordt

standaard

schaduwprijzen.
gebruikt zolang de marginale

bijdrage aan de doelstellingsfunctie vam het produceren met die machine
positief is. Enige uwit de literatuur bekende afkapcondities zijn speciale
gevallen van deze afkapeonditie. Cruciaal bij de interpretatie van de

afkapconditie is (weer) de interpretatie van schaduwprijzen, die de inhoud
vastlegt van het begrip ‘marginale bijdrage aan de doelstellingsfunctie’.
Die marginale bijdrage wordt beinvioed door het al dan niet bindend zijn
van Trestricties op de kapitaalgoederenvoorraad. In het algemene model van
dit hoofdstuk kunnen er bindende financieringsrestricties zijn, zodat de
afkapconditie niet los gezien kan worden wvan de financiering van de
onderneming.

Verder wordt in hoofdstuk 7 niet alleen aangetoond dat, onder bepaalde
aannames voor de exogenen, een umicke ‘steady state’ oplossing bestaat,
maar ook dat de optimale oplossing convergeert naar die ‘steady state’, die
gekarakteriseerd wordt door een constante levemsduur van kapitaalgoederen
en een constante marginale opbrengst van kapitaal.

In hoofdstuk 8 wordt richtlijn ¢) in praktijk gebracht met betrekking tot
de modellen van hoofdstuk 7. Voor een vereenvoudigde versie van het model
in hoofdstuk 7 blijkt het mogelijk een soort beslissingsregel te geven die
de optimale politiek vastlegt. Deze beslissingsregel  verschilt  van  de
beslissingsregel in hoofdstuk 4, aamgezien er nu geen ‘togstand”  voorhanden
is in de gebruikelijke betekenis van het woord., Voor het algemene model van
hoofdstuk 7 kan alleen een karakterisering van de optimale politiek in
termen van schaduwprijzen worden gegeven. wanuit wiskundig oogpunt is deze
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karakrerisering niets anders dan een herformulering van de noodzakelijke
voorwaarden voor optimaliteit. Dankzij de beschikbare
schaduwprijsinterpretaties kan deze karakterisering wel ecomomisch
geinterpreteerd worden. In hoofdstuk B wordt tevens een poging gedaan de
modellen wvit de hoofdstukken 5 en 7 te integreren. Dat leidt tot een model
waarin  zowel  technologische  vooruitgang als  eem  conjunctuurcyclus
voorkomen. In vergelijking tot hoofdstuk 5 wordt de onderneming nu minder
snel gedwongen tot het stopzetten van de investeringen, dankzij de
mogelijkheid om oude jaargangen buiten gebruik te stellen. Wanneer de
onderneming wel tijdelijk stopt met investeren, blijkt, onder bepaalde
aannames, de cyclische beweging van de marginale opbremgst van kapitaal
(bekend uit hoofdstuk $5) gepaard te gaan met een cyclische beweging van de
levensduur van kapitaalgoederen,
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