
Models and Algorithms for

Telecommunication Network Design

Promotor:

Prof. dr. ir. A.W.J. Kolen

Co-promotor:

Dr. ir. C.P.M. van Hoesel

-.fmÜno^IA bnß elsboM

Beoordelingscommissie: lOW.):-»^ i lOi

Prof. dr. H.J.M. Peters (voorzitter)
Prof. dr. S.H. Tijs
Prof. dr. L.A. Wolsey (Universite Catholique de Louvain)

: •-<::•"<• ••-''•r-iOH'i

Models and Algorithms for Telecommunication Network Design
© Robert van de Leensel, Helenaveen 1999
Proefschrift Universiteit Maastricht
ISBN 90-9012781-X

8T>!aMif:L>u:-:.:v/o/>i

boiraq
i nj ai

(i T i - > ' ! i . : , , / . : - i t ! -• '••• : : • • • : • • • ' ; - ' • ' I • • • i . v l - - / m n i n < » Z M f l O T - - '

•<: -.-:'<' .(jn.t J c d J a o /

Acknowledgements

Apart from it being a challenge, the most important reason for starting a PhD project
was a large list of topics in the field of Operations Research that interested me, but were
beyond the scope of my knowledge at that time. After four years of research I am happy to
conclude that I was able to stand up to the challenge and become acquainted with many
of these issues. Fortunately, each answer was replaced by several new challenges, although
I must admit that the corresponding subjects were far from limited to the scientific field.
Many people have contributed to this process and many more should receive credit for
their friendship and support throughout the years. -i ,• >•. .,..;,;,„, „ i..,,,.^,,.

First of all, I owe a lot to Antoon Kolen. His enthusiasm and desire to solve new scientific
problems that cross his path have often been an inspiring factor. He provided an open
atmosphere that allowed me to explore new areas and undertake several enjoyable trips
to foreign conferences. Stan van Hoesel has been equally important. His door was always
open, even if he was not there, and I have greatly benefited from his wide knowledge.
Sincere apologies are in place for being the stubborn PhD student who on many occasion
thought he new better. Olaf Flippo left Maastricht University during my PhD project
but I am grateful for the time I could spend around such a sincere and happy person.
Joris van de Klundert gave me confidence in my work and was always willing to share his
musical interests with me.

For almost four years, Arie Koster served as my roommate, on-line computer help,
co-traveler and navigator on foreign trips, discussion partner, telephone operator, co-
researcher on several subjects, and above all, as a friend. I have greatly enjoyed our
open discussions on a large variety of subjects, even though we may have had opposite
opinions at times. Thanks to Jos, Rudolf, Jan-Willem, Karin, Yolanda and the other
people from the Department of Quantitative Economics. Special gratitude to Hans van
Kranenburg for being a pleasant neighbor both at the office and at home, our games of
squash, early morning swimming activities, and for his inspiring views on things such as
soccer and politics. Thanks also to the Econometrics students that had the custom of
visiting room 4084 at regular time intervals. In particular, Anton v.d. Kraaij proved to
be the perfect partner during a joint computer programming project.

I am also indebted to many people outside Maastricht University. Frank van der Duyn
Schouten was the first to introduce me to the field of Operations Research, and he should
also be thanked for pointing me to research opportunities in the academic society. Stef
Tijs, Peter Borm, Herbert Hamers and Vincent Feltkamp were cooperative players during

ACKNOWLEDGEMENTS

my game theoretical period prior to this PhD thesis. Karen Aardal repeatedly showed
interest in my progression and invited me to some conferences. Martin Savelsberjh,
Daniel Bienstock, David Williamson, Oktay Günlück, and Raghavan were perfect hosts
during a research trip in the United States. Shell provided financial support that allowed
me to visit an INFORMS conference in Israel, and Bram Verweij did some magnificent
photography work on that trip. The people at KPN Research, Leidschendam are thanked
for their patience in explaining technical telecommunication details and their interest ia
the research progress. This holds especially for Hans van de Berg, Cor Lavrijsen, Jaap
Geerdink, Saskia Vlaar, Bart Klein Obbink, Maurits de Graaf and Jeroen Warmerdam.

Thanks to the players of indoor soccer team Deo Volente in Tilburg for the many taxi
rides in between the central station and some distant sports complex, free accommodation
after late night parties, as well as an immeasurable amount of fun during the actual soccer
matches. I am grateful to Marco Verstappen for his technical support in motorcycle
maintenance and for lending me his red Toyota Starlet during a cold Dutch winter that
happened to coincide with a hot Surinam summer. My friends in Helenaveen are greatly
appreciated for being exactly that. .. , , , . , , , , . . . ,,,

Constant support and love was given by Wendy Beek. Apologies for the numerous times
when I was more interested in mathematical formulas and late night computer program-
ming than in socializing. Hopefully the near future will be a good time to catch up.
Special thanks also to Henk and Marja Beek for their unlimited hospitality. ; ,; .

Mijn grootste dank gaat uit naar mijn ouders, Wim en Gerarda van de Leensel, zonder
wie dit alles niet mogelijk zou zijn geweest.

May 1999
Robert van de Leensel

Contents

()

Acknowledgements i

Contents - .fs^i*;^ '!» ' . ;««;) i..;.S iii

List of Tables vfl
4 - / ' i'A "Tvr": :r:i! ?;-'-'i;i!'. Jitiia'iirc-li;*» l*-' :;nTU-,c! -fG A r

List of Figures ix

1 I n t r o d u c t i o n ••••;,•"! !."f.". 1

1.1 Introduction 1

1.2 The Topology of Telecommunication Networks 2

1.3 ISDN and the Asynchronous Transfer Mode 6

1.4 Telecommunication Network Design Problems 8

1.4.1 Topological Design Problems on Tree Networks 9

1.4.2 Topological Design Problems on General Networks 11

1.5 Outline of the Thesis 14

:• r .

1 Network Design Problems On Trees 17

2 A D y n a m i c P r o g r a m m i n g A l g o r i t h m for L A T N E P ' ^ ̂ ?!.:; ,!> -10

2.1 Introduction V v V ^ U i - P i " , . . . 19

2.2 Problem Description 21

iii

iv CONTENTS

B 2.3 Parameterizations for LATNEP 24
s i . •

p,,.. 2.3.1 Defining Subtrees Tfv, J] of Tree T 24
d u n s : ; •" . • . , : . • • _ • . . . '

2.3.2 Defining Subproblems on Subtrees 24

2.3.3 Downward Compatibility of Solutions < 26
r> T irr c> -f r r s- \ v

2.3.4 Upward Compatibility of Solutions 29

2.3.5 Relations between Family Members 33

2.4 An O(nB*) Algorithm for LATNEP .' / . . V 1 35

2.5 Computational Results 38

us 2.5.1 Generated Problem Instances 38

2.5.2 Real-Life Problem Instances 40

3 A Dynamic Programming Algorithm for ATNIP 41

3.1 Introduction 41

3.2 ATM functionality 42

3.3 Notation and Mathematical Formulation 47

3.4 Defining Subproblems for ATNIP 53

3.4.1 Recursive Relations for ^(v,i,s) 55

3.4.2 Recursive Relations for/i(v,i,r) 57

3.4.3 Starting Point of Dynamic Programming Algorithm 58

3.5 An 0(nß") Algorithm for ATNIP 58

3.6 Computational Results 61

4 The Precedence Constrained Knapsack Problem 03

4.1 Introduction 63

4.2 Notation and Assumptions 66

4.3 Minimal Induced Covers and (l,k)-configurations 67

4.3.1 Generic Sequential Lifting 67

C O N T E N T S

Til 4.3.2 Lifting Predecessor Variables of a Minimal Induced Cover . . T \ .*." 73

IE I 4.3.3 Lifting Non-Predecessor Variables of a Minimal Induced Cover . . . 77

cU'.t 4.3.4 An Example . . i"v"."i 4 ' » . - w v i . i v y v w ^ w - ' , ••.'*• 81

I 4.4 K-covers ^i^-ipm* jWWvX J,8 82

•• 4.5 Computational Results and Concluding Remarks . . 3 ' ^q t f i f l . . J . V . . . 87

II Network Loading Problems ^^«IHe<iüt*jöq»<O .e.dg§

ncil..iiirl.'.tj;i-MSi i>s'tiV-Jtik.U6.Uli1ii(J|'!H 1.0,0

5 Network Loading Problems 91
iii.fi •tii'bi.oJlitn-s.H. !.i;ip"i:.u;.;»fjjHfi.'v.- *A-.D

5.1 Introduction 91

5.2 Models without Reliability Constraints 'i .". . *94

, 5.3 Models with Reliability Constraints . , . . , . . . • 96

5.3.1 Single Secondary Paths 97
• ü j i i V ; : v - , : ' ; [' - : ; - r :•..

5.3.2 Node Dependent Secondary Paths 98

5.4 Complexity Results and Choice of Research Method 99

5.5 UMBRIA: A Decision Support System 109

5.5.1 Input Functionalities of UMBRIA 109

5.5.2 Algorithmic Functionalities of UMBRIA I l l

5.5.3 Output Functionalities of UMBRIA 114

5.6 Conclusions 116

6 Polyhedral Results for Edge Capacity Polytope 119

6.1 Introduction 119

6.2 Models for Network Loading Problems 120

6.3 The Strength of Facets 123

6.3.1 Path Formulation 123

6.3.2 Flow Formulation 125

v i C O N T E N T S

f 6 .4 C h a r a c t e r i s t i c s of t h e E d g e C a p a c i t y P o l y t o p e T . . . " . " 1 2 7

' 6.5 Lower Convex Envelop Inequalities 131

6.6 Integer Lifting of Knapsack Inequalities 136

! 6.7 C-strong Inequalities 138

T" 6.7.1 Properties of C-strong Inequalities 140

6.8 The Directed Edge Capacity Polytope 142

{ 6.9 Computational Issues 145

6.9.1 Separation of Valid inequalities 146

6.9.2 Computational Results and Future Research 147

B i b l i o g r a p h y , , , ••,•; . ; >| , p.

N e d e r l a n d s e S a m e n v a t t i n g w m * : ! ^ , < V W I . , ' ; • . : • • - . !•>:„.:

C u r r i c u l u m V i t a e 1 6 1

ühr

List of Tables

2.1 Computational results for the instances generated by Cho and Shaw. . . . 38

2.2 Computational results for instances with 50 to 200 nodes 39

2.3 Computational results for balanced instances with 25 to 1000 nodes 40

2.4 Computational results for the Balakrishnan, Magnanti and Wong instance
with 41 nodes 40

3.1 Computational results for the instances from KPN (time measured in sec.) 61

3.2 Computational results for the instances from KPN with larger capacity
switch 61

3.3 Computational results for the instances from KPN with only one type of
connection 62

3.4 Computational results for the instances from KPN with larger capacity
switch 62

4.1 A minimal induced cover and (l,k)-configuration for problem instance in
Figure 4.1 82

4.2 Computational results for instance in Figure 4.1 87

4.3 Additional computational results for instance in Figure 4.1 87

6.1 Computational results for KPN network loading instances 148

vü

V1U

6-5 Enwiv-p ij.'-'-Jil-.!:;

^rsS^-Vi'?)l moil

-.•-"*'>il ! . • ' • -

OH . '-..ij.i-.'i onqal sqifT SHNWOI*! c, 5

List of Figures

f:ii . '.vüiiin ;'.' r!::JIiioE l e t - i d

, i wi 4?iTiV/ aoiiifkt? iiowlsV^ (' .'"•

nj.; . . ".-[.iii '// ij/si-TuaH hasmsC! O.I .Tr

1.1 Example Network Topologies *«:>ü.«.Vi JÜ. . . . 2

1.2 Topological Network Hierarchy 4

1.3 ATM Cell Layout 7

1.4 Transfer Modes 8

1.5 Local Access Telecommunication Network with Insufficient Capacity . . . 10

1.6 Local Access Telecommunication Network with Sufficient Capacity 10

1.7 Example Network Loading Problem 13

2.1 The Tree of Problem lanep50a 39

3.1 ATM Functionality: Example Instance 44

3.2 Graphical Representation of Subproblems 54

4.1 Example of MIC and (l,k)-configuration 81

4.2 Example of Ä"-cover 83

4.3 Counterexample 86

5.1 Transformation from MINIMUM COVER to DIRECTED NON-BIFURCATED
NETWORK LOADING 100

5.2 Variable Lobe 104

5.3 Transformation from SATISFIABILITY to TWO COMMODITY DIRECTED NET-
WORK LOADING 104

5.4 Transformation from MAXIMUM 2-SATISFIABILITY to TWO PATH DIRECTED
NETWORK LOADING 108

ix

LIST OF FIGURES

5.5 Problem Type Input Page 110

5.6 Network Input Page I l l

5.7 Create Initial Solution Window 113

5.8 Improve Solution Window . . ? r r .*i , . . j,, . 418

5.9 Network Solution Window 114

5.10 Demand Routing Window 115

^ 5.11 Link Window •;-t^'U.^'V<:•?/-. 'iM 115

6.1 Lower Convex Envelop Inequalities 132

. •? • -;-:iK>!/. -i'.t-:;::i->-'' i 1

K n r i i .) i ; - : : r f ! - . ; ! ' a : i ' > " . - - ! - : T s ; 2 v ; / . i r - . -H ' ! • !

•iwiiis brfjüj«enwid!«d SMife jusvkig-te hsivotq'flji'ft»

'? vT!

Introduction ;
.••• • ' i h s w ^ i.; -iß gö>'ji--f.\V

1.1 Introduction

Telecommunication networks are part of a dynamic environment. Ever since the invention
of telephony the telecommunication markets have registered a continuous growth in the
demand for telecommunication services. This trend is expected to pursue in the near
future. Moreover, rapid progress in telecommunication technology has had an enormous
impact on the design and scope of networks. On the one hand, it has enabled instant
worldwide communication by means of modern communication devices and has triggered
the introduction of other than traditional voice transmission services. Nowadays tele-
phone, computer and data networks are widely present in practically all sectors of the
(inter)national economy. On the other hand these innovations have reduced the costs
of providing telecommunication services, thereby improving its profitability. In addition,
the global deregulation of the telecommunication industry has made the market more
competitive, forcing telecommunication companies to operate more efficiently.

Telecommunication networks are continuously adapted in response to these changing en-
vironments. During this process numerous decisions have to be made which influence
a telecommunication network's performance characteristics such as its speed, capacity,
security, availability, reliability, maintainability, and not at the least, its costs. Each year
the telecommunication industry invests billions of dollars worldwide to maintain and up-
grade their networks. As a result, significant cost savings opportunities arise in the design
of telecommunication networks. The issues that have to be addressed in order to achieve
cost reductions are usually very complex and highly interdependent. Techniques from the
scientific field of combinatorial optimization have proven to be a successful approach in
the modeling and analysis of a variety of telecommunication network design problems.

The aim of the current study is to develop guiding procedures for recent topics in the
telecommunication network design process. This dissertation therefore reports on models
and algorithms for a number of problems in the topological design of telecommunication
networks, in which cost-efficient telecommunication networks satisfying certain perfor-
mance criteria are to be designed. As an important byproduct, new theory in the field of

CHAPTER 1. INTRODUCTION

combinatorial optimization is developed which may lead to a better understanding and
an improved capability of solving related problems in the future.

In this introductory chapter we give a detailed outline of the telecommunication network
design problems studied in this thesis. Since current and future network design issues are
significantly affected by previously made decisions and therefore the state of the telecom-
munication network as it is, Section 1.2 presents a brief overview of the topology of
telecommunication networks, focusing on the topics that are relevant for the problems
in this thesis. At the same time this will lead to a deeper understanding of the variety
of problems arising in the field of telecommunications as well as the commonly accepted
terminology. Section 1.3 treats the development in telecommunication technology in re-
cent years which forms the basis of the majority of problems studied in this thesis. The
background and settings of the specific network design issues considered in our study are
addressed in Section 1.4. Finally, Section 1.5 functions as a guide through the subsequent
chapters of this thesis.

1.2 The Topology of Telecommunication Networks

The first telephone networks connected a number of customers in a small geographical
area via a mesh-network (see Figure l.l(a)). Although fully operational, such networks
can indeed be cumbersome and inconvenient because they require a direct link between
every pair of customers. A significant reduction in the number or required links can be
obtained by using a star topology as illustrated in Figure l.l(b). Here, all customers are
connected to a su/itc/iin<7 center, which has the ability to establish a connection between
two customer lines and thereby enables communication between the corresponding cus-
tomers. Additional link savings can even be implemented by means of a tree network as
depicted in Figure l.l(c). Customers are not necessarily connected directly to the switch-
ing center, but instead, such a connection may pass several other customers. However,
even though customers might be geographically close and interconnected via a direct link,
all switching functionality, i.e. the ability to establish communication between customers
in the network, is still performed by the switching center. Tree networks are currently the
most widely used topology to interconnect a number of customers in a small geographical
area.

(a) mesh topology (b) star topology (c) tree topology

Figure 1.1: Example Network Topologies

1.2. T H E TOPOLOGY OF TELECOMMUNICATION NETWORKS 3

To enable communication between customers located in different geographical areas (the
different tree networks), these local networks have been grouped into regional networks,
which in turn are interconnected into national networks, until finally nationwide commu-
nication between any pair of customers can be established. Although the exact number of
layers may vary from country to country, most existing telecommunication networks are
based on a hierarchical structure, and international networks are designed accordingly.
Consequently, the size of the geographical region and the amount of telecommunication
traffic handled by an individual switch or link in the network decreases as one moves down
to the lower layers in the hierarchy. Next, we discuss this hierarchical network topology
in more detail.

Consider the four-level network depicted in Figure 1.2. The top level of the network is
usually referred to as the fcacfc&one netu/orfc. The high capacity switches in the backbone
serve large regions of a country (typically multiple provinces or states), and these switches
are interconnected via high speed, high capacity links. The overall connectivity (number
of links between the switches) in the backbone is usually high. On the one hand, large
traffic flows which emerge in this part of the network make it economically attractive to
have direct connections between different regions of a country. On the other hand, as
each switch or link serves a large portion of the total telecommunication service provided
by the network, a single backbone network component failure (breakdown of a node or a
link) could cause a significant reduction on the network's performance. By increasing the
connectivity in the backbone network, alternative routing schemes can be employed for
traffic flows affected by a network failure.

In the sw/iic/iini? neiworfc, lower capacity switches are installed which serve (parts of)
individual states, provinces or cities and a typical topology used here is a ring structure,
providing two possible access routes for each switch on this level to the backbone network.
Several of these rings may be connected to a single backbone switch, and the switching
network itself could even consist of multiple hierarchical layers. The switching network
is however the lowest layer in the network hierarchy which can perform the switching
functionality.

Moving to lower layers in the hierarchical structure, the number of customers served
by a node in the network and the amount of telecommunication traffic transmitted on
a link decrease. Prom an economical point of view it is therefore less interesting to
have a high connectivity between nodes in the lower layers of the network. Moreover,
a network failure of a low level network component would only have an impact on a
small group of customers. The topology one often encounters in lower layers of the
network hierarchy is therefore a tree structure, as depicted in the third layer of Figure 1.2.
This /ee<fer network consists of a number of distribution points (typically ranging from
a few dozens to a few hundreds) that are connected via a unique path to a switch in
the switching network. Each of these distribution points serves a collection of customers
(possibly a few hundreds) in an underlying street network which is called the rfisirifcution
netoorfc. The combined distribution and feeder network are usually referred to as the
Loca/ Access Telecommunication A êtoorfc, because they provide the access of customers
to the switching functionality of the higher layers in the hierarchy.

CHAPTER 1. INTRODUCTION

r- r i . • - > ' dflti-i all

Backbone Node

, ; - ,• , '•<•.? '.•-.•!.•;'••••• - ' l i n ! V - i l r r V R f R i ' ! ' - ' E !

• , . , ; • . - ! • : , (1 1 .) , - ' -4- .T. '»- ; i . . f >• :4.~: l i . •.•.!.(<

First Layer:

• *''' ' Backbone Network

Second Layer:

Switching Network

Third Layer:

Feeder Network

Fourth Layer:

Distribution Network

Customers

Figure 1.2: Topological Network Hierarchy

1.2. T H E TOPOLOGY OF TELECOMMUNICATION NETWORKS 5

The above describes an operational hierarchical network structure. In practice, many
components of the network might be subject to breakdown, due to deterioration, mainte-
nance, climatological influences, or human mistakes. Telecommunication companies often
find it desirable to take additional measures in order to prevent a decline of telecommu-
nication service in case of a network failure. This can be achieved by the installation of
so-called backup components in the network, which may function as surrogates of com-
ponents that are subject to failure. In strategically important parts of the network (such
as the backbone network) dedicated backup networks are even encountered in practice.

In the topological design of telecommunication networks as described in the above, nu-
merous decisions have to be made. These include the following: ,! -,. ,> .<. .-.. , ,: . .vi ta

• How many layers should the network hierarchy contain?
5 . . . • - j , j - ä f [

• How should the different layers of the hierarchy be interconnected? " ' "

• How many switches (or other telecommunication devices) should each layer of the
network contain, and where should they be located?

• What network topology (star, tree, mesh, arbitrary) should be used in each layer
of the network hierarchy, that is, how should the switches in the same layer be
interconnected?

• How much capacity should be installed on all the links in the network to accommo-
date all traffic flows?

• What type of routing schemes should be employed to deliver traffic flows from origin
to destination?

• How should network failures be handled?

• How much additional capacity must be installed in order to cope with breakdowns?

All of these issues (and many others) are part of the iopo/o^icaJ ne£wor& design process.
Obviously, telecommunication companies would like to build the optimal network topol-
ogy, but one could evaluate different network topologies by means of several criteria:

• the average delay between admission of the message to the network and the delivery
at the destination, and/or the variability in this delay,

• the capacity of the network measured as the maximal amount of telecommunication
traffic per time unit the network can transmit,

• the availability of service and the probability of information loss during transmission,

• the reliability of the network in case of network component failures,

• the network's information security, i.e. the level of privacy of transmitted data,

• the expected current and discounted future costs of the network.

CHAPTER 1. INTRODUCTION

Of course a combination of these criteria could also be exploited. Unfortunately, some
of these criteria are contradictory. For instance, a high quality of service (small delay,
high reliability) would definitely be achieved by mesh networks containing large capac-
ity network components, but this would be in conflict with economical guidelines which
emphasize the importance of efficient use of capacity. In this thesis we will adopt the eco-
nomic approach: the goal is to build cost-efficient network topologies that satisfy certain
network performance characteristics. Moreover, we will focus primarily on four parts of
the overall topological decision process, namely the location of telecommunication devices
in networks, the routing of telecommunication messages through networks, the capacity
installation on links of the network, and the implementation of spare capacity to handle
network component failures.

1.3 Integrated Services Digital Network (ISDN) and
the Asynchronous Transfer Mode (ATM)

Although the discussion so far has been limited to telephone networks, a similar evolution
and the same type of problems arise in all telecommunication networks (computer net-
works, data networks) or any transportation network in general. Traditionally, telecom-
munication companies implemented separate networks for different telecommunication
applications such as voice and data transmission. Since each individual network requires
dedicated equipment, interfaces and protocols in order to provide the telecommunica-
tion service to customers, the adherence of such a strategy often leads to costly overall
solutions requiring extensive management. In 1984 the ITU (International Telecommu-
nication Union) therefore formalized the idea of a single network capable of providing
multiple services ([49]):

"... an ISDN (Integrated Services Digital Network) is a network . . . that pro-
vides end-to-end digital connectivity to support a wide range of services, in-
cluding voice and non-voice services, to which users have access by a limited
set of standard multi-purpose user-network interfaces."

Ever since, ISDN has been developed to a completely digital network, with a single transfer
mechanism to serve distinct applications such as voice data and image transmission. Dig-
ital information transfer has several advantages over analog information transfer. Firstly,
digital information can be transferred over large distances without the loss of information.
Secondly, digital information can be stored and processed directly by computers, which
enables efficient communication between computers. Thirdly, errors in digital information
can easily be detected and corrected. Finally, digital information transfer can be achieved
at lower costs than its analog variant. Hence, in contrast to several special-purpose net-
works, ISDN-networks can offer significant economic advantages such as in development,
implementation, operation and maintenance.

The development of ISDN has been greatly affected by technological innovations such
as the introduction of fibre optic transmission, which enables the high speed, high ca-

1.3. ISDN AND THE ASYNCHRONOUS TRANSFER MODE 7

pacity transmission of digital data between remote locations. Moreover, fibre cables
have proven to be highly reliable, and easy to install. Inspired by this technological
progress in transmission and switching techniques, many new telecommunication services
have been introduced, including tele-shopping and tele-advertising, remote education and
training, database retrieval, entertainment applications such as video-on-demand and re-
mote games, video surveillance, video-conferencing and electronic publishing. Since many
of these services require high transmission rates in order to achieve high quality image ap-
plications, the concept of Broadband-ISDN (B-ISDN) has been introduced which enables
such high capacity telecommunication traffic streams. One of the key ideas of B-ISDN is
its flexibility in capacity assignment which would enable current and future services to be
incorporated into the same, single network. •

Obviously, several of these services have different characteristics. For instance, traditional
voice transmission requires a small but constant capacity on the connection between sender
and receiver of the message. Moreover, the delay and variance in the delay of the message
need to be small in order to guarantee a high quality of the speech transmission, whereas
a small, marginal loss of information will be imperceptible to users. In contrast, data
transmission may require a variable capacity connection, its delay may be less impor-
tant, but any loss of information will probably be unacceptable. The integration of such
distinct services on a single network therefore asks for strict agreements on matters as
capacity assignment, traffic priorities, delay, and loss of information. Although still under
elaboration, ATM (Asynchronous Transfer Mode) is currently accepted as the transfer
mode to perform the transmission and switching functionalities of B-ISDN networks.

In the Asynchronous Transfer Mode the information of a telecommunication message,
which is sent from an origin to a destination, is stored in a number of cells. Each of
these ATM-cells consists of two parts, namely a header field and an information field (cf.
Figure 1.3). The information field contains a small part of the actual telecommunica-
tion message. The header field contains all information required to route the cells from
origin to destination in such a way that the service is provided at its desired level of per-
formance. Moreover, it contains the necessary data required to reconstruct the original
telecommunication message from the separate data pieces at the point of destination.

Header Field: 5 bytes Information Field: 48 bytes

Figure 1.3: ATM Cell Layout

In traditional synchronous transfer modes (see Figure l-4(a)) information from telecom-
munication messages is transmitted through the network by an identical capacity as-
signment for each message in each periodic frame. Consequently, both the time interval
between two consecutive information parts from a telecommunication message, as well
as the amount of information routed through the network for a message are constant for
each telecommunication message. In contrast, the asj/nc/ironous transfer mode allows for
arbitrary assignments of cells to telecommunication messages in the stream of information
transferred through the network, leading to irregular patterns as depicted in Figure 1.4(b).

8 CHAPTER 1. INTRODUCTION

As such, the asynchronous transfer mode allows for the integration of telecommunication
services with different capacity and service requirements into a single network.

time slot

periodic frame

(a) Synchronous Mode

ATM cell

Message
1

I i ' ! .: li \"

1 Message

1 1

Message 1

' 1

1 Message 1

1 1 1

;: = «.:,

., •• - j j ' ^

Message
4

Message
n

•. v , ; ^

i ; '_>Jfii-

• Message
1 3

• i ; ' i . - ! . . - p - . . ; / ! .

•- v!-,;.,,v.iU

. .". J . i * : ' i V

header field information field

(b) Asynchronous Mode ' '

Figure 1.4: Transfer Modes ':.'•• :-l'»r/!>i'j;i;V'

Eventually, B-ISDN networks are expected to replace existing telecommunication net-
works, although a lot of the existing infrastructure in current networks can be (re)used
in the design of ATM-based B-ISDN networks. Again, many similar topological network
design problems as mentioned in the above arise in the development of ATM-networks.
Decisions regarding the location and inter-connectivity of telecommunication devices have
to be made. In the subsequent section we will discuss some of these problems as discussed
in this thesis in more detail.

1.4 Telecommunication Network Design Problems

Ideally, one would like to solve the overall topological network design problem as a whole,
because the design issues in the distinct layers of the hierarchical structure are heavily
interdependent. Since this problem is by far too complex to analyze given the current
state of computer technology and human knowledge on these problems, they are often
decomposed into smaller problems. Traditionally, network design problems have been
separately analyzed for each layer of the hierarchy, and even within the same layer design
issues such as the location of telecommunication devices, capacity installation on links,
and the routing strategies of traffic flows have been studied independently for reasons of
problem complexity. Gavish [38],[39] schematizes the overall network design problem and
its decomposition techniques, and states useful references to literature on the individual
problems. For a more recent taxonomy on network design problems as well as an extensive
list of references we refer to Chapters 18 and 19 of the Annotated Bibliographies in

1.4. TELECOMMUNICATION NETWORK DESIGN PROBLEMS 9

Combinatorial Optimization [54]. In the subsequent subsections we discuss two areas of
network design which have received a lot of attention in literature and which form the
basis for the problems studied in this thesis.

1.4.1 Topological Design Problems on Tree Networks

An important part of the telecommunication networks existing today is formed by the
Local Access Telecommunication Network, i.e. the part of the network between the cus-
tomers and the lowest level switches in the network (as discussed in Section 1.2). This
access network can again be viewed as a hierarchical structure, as depicted in Figure 1.5.
A switching center is located in the root of the tree which serves a number of distribu-
tion points (typically in the range of a few dozens to a few hundreds). Each of these
distribution points serves an underlying distribution network, consisting of a number of
individual customers (cf. Figure 1.2). Because the only switching functionality is located
in the root of the tree, all communication with customers within the access network is
handled via the switching center in the root of the access network. Moreover, since this
access network has a tree structure there only exists a single path from each distribution
point to the switching center, hence, the routing of these telecommunication messages
through the access network is easy. ,; ; . ••-.-.

Figure 1.5 shows an access network which displays both the estimated future demand for
telecommunication services for each distribution point. This estimated future demand
represents the number of (simultaneous) connections required between the distribution
point and the switching center to obtain the desired level of service. Moreover, the
figure displays the available capacity on each link in the network, in the same unit of
measurement as the demand figures. Because of the unique path from a distribution
point to the switching center, the required capacity on a link is equal to the sum of
demands of all distribution points in the subtree located underneath the link. Links
whose capacity cannot accommodate the total future demand of this subtree are depicted
as an emphasized line. For instance, in Figure 1.5, the link between node 2 and node 1
must be able to route the demand of node 2 to the switching center, hence, this link
has sufficient capacity. However, the link between node 1 and the switching center must
accommodate the cumulative demand of the nodes 1,2 and 3 which equals 120. Since
the current capacity on the link equals 90 the link has insufficient capacity to enable the
estimated future communication.

Traditionally, if an increase in demand for telecommunication services resulted in links
with insufficient capacity, additional capacity installation on the links was the only solu-
tion to satisfy future communication. The introduction of multiplexers and concentrators
changed this situation. Concentrators and multiplexers are electronic devices which can
compress signals from several incoming connections into a combined outgoing signal which
can be transmitted on a single or relatively few high frequency connection(s) (although
there are some technical differences between concentrators and multiplexers, for the pur-
pose of our problem description their behaviour is alike, and we will refer to them as
concentrators henceforth). As a consequence, the installation of a concentrator in the
network can reduce the amount of required capacity on the links in the network. Some

10 s»r>i».qn »»rtwT CHAPTER 1. INTRODUCTION

"*~40 : estimated future demand

8 0 / : cable capacity on link - • v

90 ' : link with insufficient capacity

0 \ : switching center

1J : distribution point

Figure 1.5: Local Access Telecommunication Network with Insufficient Capacity

80 If : direction on sufficient capacity link O>x ' concentrator, compression ratio 40:1

90+30 ^ : direction on expanded capacity link (lCM : concentrator, compression ratio 10:1

i0 / : compressed point-to-point connection 20 / : compressed high frequency lines

Figure 1.6: Local Access Telecommunication Network with Sufficient Capacity

1.4. TELECOMMUNICATION NETWORK DESIGN PROBLEMS 11

of these concentrators may use the same type of connection as already available in the
network to route compressed traffic to the switching center, whereas other concentrators
require dedicated high capacity point-to-point connections between the concentrator and
the switching center.

Reconsider Figure 1.5, then the following measures could be taken in order to enable
all estimated future demand, as illustrated in Figure 1.6. Capacity expansion on links
(3,1) and (1,0) guarantees sufficient capacity to accommodate the demands of nodes 1,2
and 3. Capacity expansion can also be applied on link (7,5) to accommodate all demand
of node 7. Furthermore, a concentrator is installed in node 5. This concentrator serves the
nodes 4 through 8, with a cumulative demand of 400. If the concentrator requires a point-
to-point connection with the switching center and has a compression ratio 40 : 1 (the ratio
between number of incoming connections and required number of outgoing connections),
then the number of outgoing connections on this point-to-point connection equals 10.
Finally, we expand the capacity on link (11,9) install a concentrator with compression
ratio 10 : 1 in node 10 to serve nodes 9 through 11, with a cumulative demand of 200.
The compressed signals are routed from the concentrator to the switching center using
the same connections as already available in the network.

The compressing capability of concentrators yields a reduction in the required capacity
on the links of the network. Such a reduction can also be achieved by installing remote
switches in the network. Customers corresponding to distribution points that are con-
nected to this remote switch can communicate with each other without the interference
of the switching center located in the root of the tree. For instance, suppose that 40
connections of the estimated future demands of nodes 1, 2 and 3 corresponds to mutual
communication. If in Figure 1.5 a remote switch is installed in node 1, then all com-
munication between nodes 1,2 and 3 can be performed by the remote switch in node 1.
As a result, only the remainder of the total demand of nodes 1,2 and 3 (equal to 80)
needs to be routed to the switching center, and therefore the link (1,0) needs no capacity
expansion. Hence, the installation of a remote switch also reduces the required capacity
in other parts of the access network. Moreover, apart from the switching functionality a
switch can usually also perform traffic compression as performed by a concentrator.

Summarizing, an increase in the demand for telecommunication services can now be
treated either by capacity expansion on the links of the network, the installation of con-
centrators and/or remote switches, or by a combination of these measures. Since different
solutions are accompanied by different costs, a topological network design problem arises
in Local Access Telecommunication Networks: the objective is to find the cheapest solu-
tion for the expansion of the capacity of the access network such that all estimated future
demand can be handled by the access network.

1.4.2 Topological Design Problems on General Networks

The second type of problems we discuss in this thesis arises in higher layers of the telecom-
munication network hierarchy. Here, the decision concerning the location of the telecom-
munication devices has often already been made. However, in contrast to tree networks,

3

12 CHAPTER 1. INTRODUCTOJ?

the connectivity in these layers is usually higher, and as a consequence multiple rout-
ing strategies can be exploited for telecommunication traffic flows. Moreover, available
telecommunication technologies often imply that the quantity of installed capacity oa
links of the network is restricted to a discrete set of capacity amounts. Hence, spare
capacity may arise in the networks, which can be exploited to route additional traffic
flows on the link without incurring higher capacity costs. Different routing strategies can
therefore correspond to different capacity installation requirements on the links of the
network, and consequently, different network costs. Network loading problems therefore
aim to solve the combined problem of designing routing strategies for telecommunication
traffic flows and capacity installation on the links of the network.

Consider for instance the four node network depicted in Figure 1.7(a), where each node
represents a switch in the backbone network. The lines in the picture represent the
links that can be used for routing of telecommunication traffic between the backbone
switches and we assume that all possible links are available. The estimated demand for
telecommunication services between the nodes in the network is given by Figure 1.7(b}.
For example, we have to send 13 units on a single path from node 2 to node 4, and vice
versa. In order to enable the transmission of telecommunication traffic flows between the
switches, sufficient capacity has to be installed on the links of the network. Suppose that
capacity on links can only be installed in multiples of ten, and the required capacity on
a link must be greater than or equal to the sum of traffic flows in both directions on the
link. Next we consider some different network configurations.

If all traffic flows are routed directly from their origin to destination (without any inter-
mediate nodes) then capacity installation is needed on each link in the network. Consider
the link between node 2 and node 4. The total flow on the link is 13 + 13 = 26, and since
capacity can only be installed in multiples often, three capacity units must be installed on
this specific link. The same analysis can be applied to the remaining links of the network
and the resulting capacity installations are depicted in Figure 1.7(c). Consequently, this
routing strategy requires the installation of 20 capacity units in the network.

Next, we consider a different routing strategy. First, suppose that all telecommunication
demands with size greater than or equal to ten are routed directly from origin to desti-
nation. This routing strategy is shown in Figure 17(d), where the numbers represent the
resulting flow on the links. Since capacity can only be installed in multiples of ten, on all
of these links we could route some additional traffic without incurring higher costs. For
example, the traffic flow on link (1,4) currently equals 62 which would require 7 capacity
units. Hence, this link can accommodate an additional traffic flow of 8 without incurring
higher costs. This idea may lead to the routing strategy for the remaining traffic flows as
represented in Figure 1.7(e). The combined routing strategy of Figures 1.7(d) and 1.7(e)
thus yields a total capacity requirement of 18 capacity units, as depicted in Figure 1.7(f).
This shows that different routing strategies may correspond to different network costs.

In addition, telecommunication companies often want to protect their networks against
component failure such as the breakdown of a switch or a link. Several measures can
be taken to improve the reliability of a network. Spare capacity could be installed in
the network which can be used to obtain multiple routing opportunities for traffic flows.

1.4. TELECOMMUNICATION NETWORK DESIGN PROBLEMS 13

i» Mr;

to

1

2

3

4

1

0

12

31

3

2

12

0

1

13

3

31

1

0

23

4

3

13

23

0

(a) Network (b) Demands (c) Solution

(d) Partial Routing (e) Partial Routing (f) Solution

Figure 1.7: Example Network Loading Problem

14 CHAPTER 1. INTRODUCTION

Alternatively, separate backup networks could be employed to minimize the consequences
of breakdowns. Instead of designing reliable networks capable of coping with network
failures, one could also suggest routing strategies which limit the amount of traffic äow
through a node or link of the network. That way, the amount of telecommunication traffic
affected by a node or link breakdown is limited accordingly.

Summarizing, given a network, estimated future demand between nodes of the network,
and capacity installation costs, a topological network design problem arises if the esti-
mated demand exceeds current capacity in the network. The objective is to simultaneously
design routing strategies and capacity expansion schemes such that costs are minimized
and certain reliability criteria are satisfied.

1.5 O u t l i n e of t h e Thes i s I M I ••! \ •/

The remainder of this thesis is divided into two parts, each consisting of several chapters.
Each chapter contains an introduction on the specific research topic and contents of the
chapter. In spite of the apparent connection, each chapter is written as a single unit that
can be read independently of the other chapters. Although we have tried to limit the
involved repetition of definitions and models to an absolute minimum, we apologize to
those who please the author by reading multiple chapters. The mathematical techniques
employed throughout this thesis stem from the field of Combinatorial Optimization, for
which we refer to Nemhauser and Wolsey [62] and Schrijver [68] _ ._- _„.

Par t I, consisting of Chapters 2, 3 and 4, treats topological design problems defined
on tree networks, as mentioned in Section 1.4.1. By exploiting the tree structure and
the resulting fact that there is a unique path between any pair of nodes, many of these
problems can be solved significantly faster (both from a theoretical as from a practical
point of view) than similar problems defined on arbitrary graphs.

Chapter 2 treats a network design problem arising in Local Access Telecommunication
Networks (LATN's). In a LATN the only switching functionality is available by means of
the switching center located in the root of the tree and hence all communication messages
pass through the switching center in the root. As demand for telecommunication services
grows, the available capacity in the network might not be sufficient to accommodate all
traffic flows. Given the estimated future demand for telecommunication services and the
current transmission and compression capacity, additional capacity should be installed in
the network such that all traffic demand can be transmitted to the switching center. In
the Locaf Recess Te/ecommunicaiion JVeiworfc ßrpa7wion Pro6/em (LATNEP) capacity in
the network can be expanded by means of capacity expansion on the links, as well as by
concentrator installation. The key issue in LATNEP is therefore to find an efficient trade-
off between cable expansion and concentrator installation costs. Many problems related
to capacity expansion in LATN's have been studied in the literature (see Gavish [38]
and Balakrishnan, Magnanti and Wong [8] for an overview). For some time, the exact
complexity of LATNEP was unknown. Balakrishnan, Magnanti and Wong [9] state that
the problem is NP-hard and use a Lagrangean relaxation incorporating valid inequalities to

1.5. OUTLINE OF THE THESIS 15

obtain solutions for real-life instances within 7% of optimality. Cho and Shaw [22] apply
a limited column generation technique on randomly generated instances of LATNEP.
Flippo, Kolen, Koster and van de Leensel [33] prove that LATNEP is actually weaWy
NP-hard and can be solved by a pseudo-polynomial time algorithm. Chapter 2 reports
on this algorithm and shows how problem instances previously studied in the literature
(as well as significantly larger instances) can be solved efficiently.

Chapter 3 presents the research on the design of an ATM tree overlay network problem
performed in cooperation with KPN Research, Leidschendam, the Netherlands. The idea
is to install ATM switching and transmission functionality on an existing tree network
in such a way that all future demand can be accommodated by the network. In contrast
to chapter 2 where capacity can be expanded only by means of cable or concentrator
installation, Chapter 3 discusses a topological tree network design problem where one can
also install remote switches in the network. Customers connected to a remote switch can
communicate via this nearby switch (instead of the switch located in the root of the tree)
and thereby the overall traffic in the tree network is significantly reduced. We use similar
ideas as exploited for LATNEP to obtain a psuedo-polynomial time algorithm capable of
solving real-life data made available by KPN Research.

Many topological tree network design problems cannot be solved efficiently using a psuedo-
polynomial time dynamic programming algorithm, consequently one is forced to resort
to other solution methods. In Chapter 4 we therefore investigate the polyhedral struc-
ture of the so-called Precedence Constrained Knapsack Problem (PCKP) which arises
frequently as a substructure in mathematical models for topological design problems on
tree networks. This substructure consists of a knapsack constraint and a set of prece-
dence constraints. The knapsack constraint usually represents the limited capacity of a
telecommunication device (switch or concentrator) located in the tree network. Due to
operational restrictions a node in the tree network can often only be served by such a
device if all nodes on the unique path from the node to the device are served by that
device. Such restrictions are modeled by precedence constraints. We study classes of
valid inequalities, the complexity of lifting valid inequalities and the improvements these
inequalities can yield in a computational study.

Par t II, consisting of Chapters 5 and 6 deals with combined routing and capacity in-
stallation problems on general network structures. The common basis for these problems
is as follows. One is given an arbitrary network and a number of traffic demands. Each
of these demands must be routed from its origin to its destination through the network.
In order to accommodate the resulting traffic flows sufficient capacity must be installed
on the links in the network. The goal of these so-called network loading problems is to
simultaneously design routing schemes and capacity installation schemes which minimize
the overall routing and capacity installation costs. In practice, many problem variants
arise, caused by differences in routing restrictions, available capacity types, reliability
conditions and cost functions.

Chapter 5 introduces a set of network loading problems, the subject of study in a joint
research project with KPN Research, Leidschendam, the Netherlands. We mention the
underlying ideas of these models and the motivation to study these problems. Given the

16 CHAPTER 1. INTRODUCTION

multiplicity, diversity and complexity of these problems, developing fast exact solution
methods for this complete set of network loading problems is expected to be impossi-
ble. Therefore, we report on local search heuristics implemented for the different network
loading problems. Moreover, we describe a decision support system with a graphical in-
terface, based on these heuristics. The use of a graphical interface proves to give several
advantages. Firstly, it makes the analysis and comparison of solutions easier for net-
work planners. This in turn leads to a more intensive usage of the developed algorithms.
Secondly, it helps in the analysis and development of local search heuristics themselves,
because the effect of changes in algorithms can be visualized more effectively. Thirdly,
in real-life applications one is not just interested in the optimal solution on the basis of
a one-dimensional objective function. A graphical interface can give network planners
a way to compare solutions on a set of criteria, yield insight into the robustness of so-
lutions (sensitivity analysis), and even incorporate dynamics by analyzing the evolution
of networks through time, for instance as a function of growing demand. In Chapter 5
we perform a computational study that yields answers to a number of network design
questions.

• • • • . : • . - ' . - . : T : > ' , . r r , -.-: r , w ! , - . \ . • , •• ' ! -^ / i t , ' •. i . . , • • . ' • • - . » > !

In Chapter 6 we look at the most basic version of the network loading problems as dis-
cussed in Chapters 5. These problems contain two types of restrictions. The flow balance
equalities guarantee that traffic flows are routed from origin to destination. The edge
capacity restrictions imply that sufficient capacity is installed on the links of the network
to accommodate the associated flow on the link (edge). We study the model defined by a
single edge constraint and prove that (non-trivial) facet-defining inequalities for the poly-
tope asociated with a single edge capacity constraint are guaranteed to be facet-defining
inequalities for the network loading polytope itself. We derive general characteristics of
facet-defining inequalities for the edge capacity polytope, as well as some new classes
of valid inequalities. We illustrate how valid inequalities for the standard 0-1 knapsack
problem can be transformed into valid inequalities for the edge capacity polytope (and
hence the network loading polytope) by mixed integer lifting. Mixed integer lifting as
a theoretical procedure has been known for a long time (see for instance Wolsey [78]),
however, most attention in the operations research literature on lifting procedures (both
theoretical and in computational studies) has been on 0-1 lifting. Although mixed in-
teger lifting is NP-hard for an arbitrary inequality, valid cover inequalities for knapsack
polytopes can be lifted to valid inequalities for the edge capacity polytope in polynomial
time. As a result of this analysis another characterization of c-strong inequalities as de-
veloped by Brockmüller, Günlück and Wolsey [20] is obtained. In a computational study
we investigate the effect of the developed theory on the solvability of network loading
problems.

:::;nmrmmg Algorithm

Part I

Network Design Problems On Trees

17

IC.

IS-

.. en'
S. Th.i
• tiC äfirt!

i, ._-,-, .

• -iC

Chapter 2 , f

A Dynamic Programming Algorithm
for the Local Access
Telecommunication Network
Expansion Problem

2.1 Introduction

The local access telecommunication network (LATN) is a tree network that connects user
nodes to the switching center located in the root of the tree. Each user node typically
represents a collection of individual users connected by an underlying network. Communi-
cation between user nodes of this and other LATNs is accomplished through the switching
center located in the root of the tree. Traditional voice services require the same capacity
in both directions. Therefore, instead of using directional traffic demand between pairs
of nodes, we can assume that each user node has a demand that must be routed to the
central switching center. The demand of a user node is usually measured in the required
number of circuits needed between the node and the switching center, where each circuit
requires one twisted copper cable in conventional copper networks.

Routing demand may be accomplished in two ways, viz. either by using dedicated cables
from the user node to the switching center (via its unique path in the tree), or by routing
the demand to a compression device called a concentrator, which is (to be) installed
in a node of the network. A concentrator compresses all incoming low frequency signals
(demand) into one outgoing high frequency (or optical) signal, which is then routed to the
switching center. It is assumed that this outgoing signal either requires negligible capacity
in the network, or is routed to the switching center via a dedicated line not belonging to
the network. The costs of constructing such dedicated lines are included in the installation
costs of the concentrators involved. In practice, a large variety of electronic devices are
available to compress signals. For the problem at hand, these different technologies can
simply be treated as concentrators with different capacities and operational costs.

19

20 CHAPTER 2. A DYNAMIC PROGRAMMING ALGORITHM FOR LATNEP

Due to the introduction of new services, the increased intensity in the number of customers
and the continuously growing utilization of telecommunication services, the existing ca-
pacity in the LATN may no longer suffice to accommodate this increasing demand. In
that case, the objective is to expand cable capacity and/or install concentrators, and pos-
sibly reroute traffic demands from user nodes, in such a way that all demand is satisfied,
and the costs of the network expansion plan are minimized. Hence, the key issue in Local
Access Telecommunication Network Expansion Problem (which we will refer to as LAT-
NEP henceforth) is to find an efficient trade-off between cable expansion and concentrator
installation costs.

In Balakrishnan, Magnanti and Wong [9] the LATNEP with a specific cost structure is
introduced. They mention that the problem is NP-hard and use Lagrangian relaxation,
valid inequalities and preprocessing techniques to determine (near-)optimal solutions. For
the special case where existing edge capacities are equal to zero (i.e. the design problem)
and which only involves one uncapacitated concentrator type with a piecewise-linear and
concave cost structure, they show that the problem is solvable in polynomial time (see
also Barany, Edmonds and Wolsey [14]). Cho and Shaw [23] study LATNEP with a fixed
charge cost structure, and solve the problem with a dynamic programming algorithm that
is embedded in a column generation approach. For the design problem (i.e. existing ca-
pacities on edges are zero), their algorithm solves the problem in O(n^ß) time complexity
and storage space, with n referring to the number of nodes in the tree, and ß to an up-
per bound on concentrator capacity. For the more general expansion problem a similar
approach is proposed, but the resulting algorithm is incorrect, since it may fail to find an
optimal solution for certain problem instances.

In this chapter, based on Flippo, Koster, Kolen and van de Leensel [33], we show that.
LATNEP is weakly NP-hard. We present a dynamic programming algorithm for LATNEP
that runs in C(nß^) time and requires 0(nB) storage space. Our algorithm can also
handle more general cost structures for cable expansion and concentrator installation
than previously considered in literature. These structures include non-convex and non-
concave costs, which may be node and edge dependent. This allows us to incorporate
many aspects occurring in practical planning problems, such as the availability of different
electronic devices to perform multiplexing operations, the possibility to install multiple
concentrators in a node, or even the demolition of concentrators, among others. The
only assumption we impose is decomposafci/ity, i.e. total cable expansion (concentrator
installation) costs are the sum of the individual expansion (installation) costs per edge
(node).

Computational experiments indicate that the proposed algorithm is very efficient; net-
works up to 30 nodes (as mentioned in Cho and Shaw [23]) can be solved within fractions
of seconds, whereas significantly larger instances up to 1000 nodes can be solved within
(fractions of) seconds to minutes, depending on network structure and concentrator ca-
pacity B, Balakrishnan, Magnanti and Wong [9] test their method on three realistic
problem instances from industry. The largest problem instance, a 41 node problem, could
not be solved to optimality using their method (they report a 7% optimality gap after 15
minutes of running time). For confidentiality reasons we were not able to obtain the exact
cost functions used by Balakrishnan, Magnanti and Wong [9], but since the running time

2.2. PROBLEM DESCRIPTION

of our algorithm is basically independent of the cost structure (cf. Section 2.4), we could
test our method on this problem instance using a variety of different cost functions. In
all cases our algorithm solves the problem instance to optimality in less than a minute.

The remainder of this chapter is organized as follows. In Section 2.2 we give a detailed
problem description and a mathematical formulation of LATNEP. In Section 2.3 we embed
the problem into two parameterized families of subproblems, and we derive relations
between the members of these families on which the dynamic programming algorithm is
based. The algorithm itself is stated in Section 2.4, together with a proof of its correctness.
Computational results are reported in Section 2.5.

2.2 Problem Description : - . r i > v q A

Let T = (V, 5) be the tree on which LATNEP is defined, with V = {0, . . . , n} and
5 = { 1 , . . . ,n} . We assume that both nodes and edges are numbered in a depth-first-
search order. The predecessor of t> is denoted by p„. Hence, edge e € £ equals {p„,v},
where v S V and e have the same (numerical) label. For t>,u> € V, let V(u,u>) and
iJ(i>, to) denote the nodes (endpoints included) and edges on the path from « to w in T,
respectively. For every node o f V a traffic demand (load) r„ is given, and for every edge
e S £ the existing capacity 6,. is known. We assume that both the traffic demands and
the existing capacities are integral. Next, for each » e V , a real-valued cost function Ä"„
is given, where Ä"„(fc„) specifies the concentrator costs that are involved when fc„ is the
amount of demand to be processed by a concentrator in node t; (also referred to as the
load on node v). Likewise, for every edge e e £ a real-valued cost function L, is given,
where Le(4) specifies the cable costs that are involved when a demand (load) of 4 is to
be transferred over edge e. ,

Due to the generality of these cost structures, a variety of problem characteristics can
be taken into account as special cases. The situation where a concentrator with capacity
&„ is already operational in node t> for instance, can be accounted for by setting /f„(fc„)
equal to the costs of installing and operating a new or supplementary concentrator if the
(planned) load &„ exceeds the current capacity 6„, and zero otherwise. Possible demolition
costs of such an existing concentrator in u could thereby also be included in /f„(fc„).
Similarly, the situation where it is allowed to install multiple concentrators in a node can
be handled by the model. Finally, the fixed charge cost structures that are considered
in Balakrishnan, Magnanti and Wong [9] and Cho and Shaw [23] can be accounted for.
In both studies concentrators are available in different types. Every concentrator of type
£ has a given capacity 6', and (node dependent) fixed and variable installation costs F^
and c{, respectively. (On close inspection, the variable costs in Cho and Shaw [23] are
assumed independent of the concentrator type (). This situation is recovered from our
cost structure by setting Ä„(Ä:„) equal to minj{F^ + fc« • cj, | ft' > fc„} for /:„ > 0, and zero
otherwise. Note that this cost structure therefore incorporates the variety of different
concentrating devices which may be available in practical situations. The edge costs
that are considered in these papers have a similar structure. For every edge e € £ an
existing capacity fte, and (edge dependent) fixed and variable expansion costs F* and c, are

22 CHAPTER 2. A DYNAMIC PROGRAMMING ALGORITHM FOR LATNEP

defined; cable expansion costs are then obtained by setting Le(^e) equal to Fj + (^ — 6,.)-Ce
for ê > 6«, and zero otherwise. For an example of the LATNEP problem, we refer to
Figure:1.5 and its discussion.

The main issue in LATNEP is to decide for each node v € V whether to route its demand
to the switching center (which we refer to as the concentrator in the root node) via its
unique path in the tree, or to route it to a node iu € V \ {0} in which a concentrator must
then be present or installed to transmit all incoming load to the switching center of T
via a dedicated line. If the load of node v is routed to a concentrator in node w, we say
that u "homes on" u; (cf. Balakrishnan, Magnanti and Wong [9]). Note that we do allow
6ocA;/eed, i.e. a node can also home on nodes other than those on the unique path to the
root of the tree.

Apart from routing restrictions due to technical constraints, network planners often im-
pose extra restrictions on the layout of telecommunication networks. Some of these restric-
tions are considered to be economically sensible, while other restrictions are considered
practical for operational convenience regarding maintenance and repair. For LATNEP, the
following restrictions should be incorporated (these restrictions are the same as proposed
by Balakrishnan, Magnanti and Wong [9], Cho and Shaw [23], Shulman and Vachani [71]
and Jack, Kai and Shulman [50]).

1. Single level concentration: demand is concentrated at most once before reaching
the switching center in the root of the tree;

2. Nonbifurcated routing: for each user node its entire demand is processed by a single
concentrator (possibly at the root);

3. Contiguity condition: if a node v homes on a concentrator in node tu, then all nodes
on the path from u t o w home on u>.

Condition 1 reflects guidelines of network planners who, given the current relative costs
of cable expansion and concentrator installation, consider multiple levels of concentration
to be uneconomical. The compressed (high frequency) signal is assumed to be routed
from the concentrator to the switching center using a dedicated line not belonging to the
network. Conditions 2 and 3 are enforced to ensure operational convenience of mainte-
nance and repair (for a detailed description of these conditions, we refer to Balakrishnan,
Magnanti and Wong [9]). Note that due to these routing restrictions, once it is known
for each node v on which node u; it homes, the complete configuration of the network is
known. Therefore, we define

f 1 if node u homes on node u> , ,,.

^ 0 otherwise ^ '

fc„ = the load to be processed by a concentrator in node u (v € V)

£, = the load to be transferred over edge e (ee£)

2.2. PROBLEM DESCRIPTION 23

Then LATNEP reads: S 3 "KITAvl l o i

• s.t.
!

Z

foeaiisb 9f (2.1)

s„^ G {0,1}, fc„ > 0, 4 > 0 ,w G V, Ve G

- i ! - ••" •••" • • • • • ' - • . • • - . M , , , ; c t r i j ? . j ; v ! . J o s T ! S

:• : VU € V : IO^JJL .iinitUiUSTSO :I | (2-3)

-;J Vw, w', to € V : « ' € V(w, w) (2.4)

Vu; G V ,,,,.,.^„o, o*r. :»tn a; (2.5)

Ve € f • • - , u 4 , , \ , ^ ^ , , (2.6)

(2.8)

The objective function in (2.1) defines the total costs that follow from the network ex-
pansion program (1, A;, £). As can be seen from its formulation, it propagates the de-
composability assumption on the costs. As for concentrator costs in node iu, it follows
from the load &„ whether or not a concentrator should be installed in node w, and the
costs Äu,(&u,) can be defined accordingly to describe this situation correctly. Furthermore,
existing edge capacities can be incorporated as indicated before. Constraint (2.2) states
that a concentrator (the switching center) is installed in the root node. Constraint (2.3)
implies that every node homes on exactly one node (and thereby ensures the nonbifur-
cated routing condition), whereas (2.4) enforces the contiguity condition. Note that (2.4)
contains a lot of redundancy. However, since the model is only used to communicate the
problem and prove the validity of our dynamic programming approach, efficiency in the
number of constraints is not an issue here. Constraints (2.5) and (2.6) merely define the
resulting loads on the nodes and edges, respectively. Without loss of generality we assume
in (2.7) that for any given u> € V, a uniform bound ß exists that restricts the sum of the
loads of all nodes homing on tt> to B. In practical situations this upper bound is given by
the maximum of the capacities of the available concentrator types, or in the case of an
uncapacitated concentrator by the sum of all the loads in the tree 7". The integrality and
non-negativity constraints in (2.8) complete the formulation. Although different formula-
tions are presented for LATNEP in the literature (Balakrishnan, Magnanti and Wong [9]
and Cho and Shaw [23] include variables to represent the cable expansion decision as well
as the installation of concentrators) they describe the same problem.

Following standard practice, we define the minimum over an empty set to be 00, and the
summation over an empty set to be zero. The indicator function for a logical expression
.4 is denoted by l^ j , which equals 1 or 0, depending on whether .4 evaluates to true or
false. Finally, we denote the set of feasible solutions by JF, hence

.F= (i , M) satisfies (2.2)-(2.8)}.

24 CHAPTER 2. A DYNAMIC PROGRAMMING ALGORITHM FOR LATNEP

2.3 Parameter izat ions for LATNEP H: M ; VCA f u-.rfi

In this section we introduce two parameterized families of subproblems. These subprob-
lems are defined on certain subtrees of T, which are the subject of Subsection 2.3.1. The
mathematical formulations for the parameterized problems is stated in Subsection 2.3.2,
as well as a motivation for their definition and an intuitive explanation of how the dy-
namic programming algorithm works. In order to rigorously prove the correctness of the
algorithm, we need to state some relevant relationships between the subproblems involved.
These relations are twofold. On the one hand, we prove that solutions to a given sub-
problem are also solutions to the subproblems of which it is composed. This douwiüani
compa£i6i7iti/ o/ so/uiions will be the subject of Section 2.3.3. On the other hand, we
will show that solutions of certain subproblems can be combined to form a solution of
the encapsulating subproblem. This upwarcf compatifti/tij/ o/ so/uiions will be discussed in
Section 2.3.4. Based on these results, the final relations between the various subproblems
that are used by our dynamic programming algorithm, are stated in Section 2.3.5.

2.3.1 Defining Subtrees T[t/, i] of Tree 7" ,

The subtrees we employ were introduced by Johnson and Niemi [51] to efficiently solve
tree knapsack problems and tree partitioning problems. Let d„ be the number of children
(successors) of node t> in T, and £>„ = {s^,,..., s*'} the set of its children, with s|, the i"*
child of i>. For u € V and 0 < z < d„ we define the subtree T[v,z], which is induced by
node v, its first z children {s j , . . . ,s|,} and all successors of these children (see Johnson
and Niemi [51]). For example, in the tree of Figure 1.5, T[4,1] is given by the subtree
defined on the nodes 4,5,6,7, whereas T[4,2] is given by the subtree defined on the nodes
4,5,6,7,8. Note that T[0, do] is the complete tree T, and T[v, 0] is the subtree of T
consisting only of the node u. Also observe, that for t; € V and 1 < i < d„, the tree T[t>, t]
consists of the subtrees T[v, i — 1] and T[sJ,, dj*J, together with the edge {v, sj,}. Finally,
let V[u, i] be the node set of T[v, t].

2.3.2 Defining Subproblems on Subtrees

Given an arbitrary subtree T = (K, E) of T and an arbitrary solution (x,A;,£) € ^ , we
define the costs of subtree T for the solution (x, fc, £) by:

C(*,M|T) = E„ev *-(*»)+ E « = E M ' «) (2-9)

Note that for UJ € V, the variable A:„ also contains the load from nodes that do no£ belong
to T, but that do home on ui. Similarly, ^ may contain load from outside (inside) T that is
transferred over e to a concentrator inside (outside) T. In the first family of subproblems
we restrict ourselves to the case in which the root of the subtree homes on a node inside

2.3. PARAMETERIZATIONS FOR LATNEP _25

the subtree: for (v, z) with v 6 V , 0 < z < a\, and 0 < s < min(ß - r„, Su«v|w,«] *"«) ***

5(u,z,s) = min C(z, it, £ | 7>,z']) (2.10)

^n . ; ^ i : - • : .: s.t. z„„,=0 aoiuikwwiJ VtU g V[ü,t] (2.11)
- i . , - . - - > . • • • • ; • i - : .:'. y « y j r„ • X„„, = S (2-12)

v" V'V ' (!,*,/)€*• „ w (2-13)

So, <7(u, i, s) represents the minimal costs of subtree T[v, z] among all solutions (i , A:, £) € .F
for which v homes within T[D,Z], and the total demand from nodes not in T[t>,z] homing
within T[v, z] equals s. Note that by contiguity, this load s must home on the same
node as node t> does (say node tö), which explains the upper bound on s. Moreover,
in order to determine the concentrator costs in node ti), the complete load which has to
be processed by this concentrator has to be known. Since part of this complete load
may be due to demand from nodes outside T[v,z], the parameter s is incorporated in the
parameterization. Finally, note that g(0, do, 0) is equivalent to LATNEP, hence, this is
the problem we ultimately want to solve. ...-,,,--, •, .,.<, , „ ,

In the second family of subproblems we restrict ourselves to the case in which the root of
the subtree homes on a node outside the subtree: for (u, z) with u € V, 0 < z < d„ and
r„ < r < min(ß, Sueviutj *"«) ™̂ define

A(v,z,r) = min C(i,)k,^ | T[r,i]) (2.14)

s.t. z„u,=0 ' Viu€V[v,i] (2.15)

(l , ü , f) 6 ; • • , . . . •;..; (2.17)

So, /i(v, z, r) represents the minimal costs of subtree T[v, i] among all solutions (i , fc, £) € ^
for which node v does not home within T[v,z] and the total demand of nodes in T[v,z]
homing outside T[i>, z] equals r. Again, note that by contiguity this load r must home on
the same node as node v.

Our dynamic programming algorithm operates in a bottom-to-top kind of fashion as
follows. Suppose that in the example of Figure 1.5 subtree T[4,2] is under consideration
for the calculation of <?(4,2, s). Since T[4,2] is composed of the two subtrees T[4,1] and
T[8,0] (along with edge 8), the general idea is to obtain an optimal solution to the former
by combining optimal solutions of the latter two. Since in </(4,2, s) node 4 must home
within T[4, 2], two situations may arise. On the one hand, it may be optimal to combine
an optimal solution of T[8,0] with node 8 homing on some node in T[8,0] (necessarily
node 8 in this example), with an optimal solution of T[4,1] with node 4 homing on some
node in T[4,1]. In this case the former of the two optimal solutions is an optimal solution
for <7(8,O,O) and the latter is an optimal solution for <?(4, l ,s). On the other hand it may
be optimal to combine optimal solutions of T[8,0] and T[4,1] with nodes 4 and 8 both
homing on the same node to. In case w € V[4,1], the load from T[8,0] is transferred to

26 CHAPTER 2. A DYNAMIC PROGRAMMING ALGORITHM FOR LATNEP

T[4,1] via edge 8. Since the resulting costs depend on the load that is transferred over
edge 8, it is necessary to know how much load is actually involved. Let a denote the
load over edge 8, then the solution for 0.(4,2, s) can be obtained by combining solutions
/i(8,0,a) and g(4, l ,s + a). Similarly, if it) £ V[8,0] then the load is transferred from
T[4,1] to T[8,0] via edge 8, and the solution for (?(4,2, s) can be obtained by combining
solutions <7(8,O, s + a) and /i(4, 1,Q). For the calculation of h(4,2,r) several cases can
be distinguished in a similar manner. These ideas are now formalized in the sequel for
the general case in which we combine solutions of the subtrees T[u,i — 1] and T[s|,,d,j]
to obtain a solution for the subtree T[t>,i].

It is important to note that <;(t;, i, s) and /i(v, i, r) may not have feasible solutions, since
constraints (2.12) and (2.16) may be impossible to satisfy. For example, if the demand
r„ is even for all user nodes v, then <7(t>, i, s) and /i(t;, i, r) are infeasible if the parameters
s and r are odd. We will return to this issue on several occasions in the sequel; firstly
in Subsection 2.3.5, when the recursive relations on which the dynamic programming
algorithm is based, are discussed, and secondly in Section 2.4, when the correctness of
the algorithm is considered. The following lemmas, which are implied by the contiguity
condition, will prove to be helpful in the subsequent analysis. We confine to stating the
proof of the first lemma, as the remaining proofs are similar.

Lemma 2.3.1 Consider (t>, i) tint/i v f V and 1 < i < d„. Let (x, fc, ̂) € .F 6e a solution
/or tu/iic/i x„„, = 0 /or a// u; £ V[s|,, d,jj. 77ien x„„ = 0 /or a// u, u> € V tuit/i v € V(u, w)

Proof. Let u, io€ Vbe such that v € V(u,tu) and to ^ V[sJ,,d,J. Suppose that i„„ = 1.
Since t> 6 V(u, tu) it follows by (2.4) and (2.8) that z„„, = 1, a clear contradiction. •

Lemma 2.3.2 Consider (v,i) witA r € V and 1 < i < d„. Let (i , fc, £) £ .F 6e a solution
/or w/iic/i x„„, = 0 /or a// u> ^ K[v, i — 1]. 77ien i„„ = 0 /or a// u, u; 6 V witA v € V(u, u;)
and to ^ K[v,i - 1].

Lemma 2.3.3 Consider (t>, i) wit/i v € V and 0 < i < d„. ie t (x, fc, ̂) € .F 6e a so/ution
/or w/iic/i x„u, = 0 /or a// tu $ V[u,i]. 77ien x„u, = 0 /or a// u, w € V
and tu £ V[v,i].

Lemma 2.3.4 Consider (r, i) with D E V and 0 < i < d„. Let (x, fc, ̂) € F 6e a solution
/or tü/iic/i x„„, = 0 /or al/ tu € V[r, i]. TTien x„u, = 0 /or a// u,«; € V tuit/i t) € K(u, tu)
and u; € V[u,i].

2.3.3 Downward Compatibility of Solutions

Consider a pair (v, i) with « 6 V and 1 < i < d„. Below we will show that a feasible
solution for p(t),i, s) is feasible for either both g(s|,,d,^, s + a) and /i(u,i - 1,a) for some

2.3. PARAMETERIZATIONS FOR LATNEP 27

Q with r„ < Q < JB - s - r , j , feasible for both /i(s|,, d,.̂ , a) and <?(t>, i - 1, s + a) for some
a with r,j < a < B - s - r„, or feasible for both p(s'„,d^,0) and y(v,i - l ,s) . To not
withdraw the reader's attention from the main results, the proof of Lemma 2.3.5 is listed
at the end of the subsection. The proofs of the other lemmas are analogous.

• • . . : _ . " • ' > . ' J S : . - . - '••• • - . - . i h . i i ' . i ' d .

Lemma 2.3.5 Consider (v, i) wrtA v € V and 1 < i < d„. Let (x, A;,£) € J" &e a /easz'6/e
tion /or #(v, i, s) iwt/i x„„, = 0 /or aZZ w £ V[s|,, d,;J. / / a satis/jes £,« = s + a, Men

(i, fc,^) is/eosib/e/or 6o</i ^(s|,,d,j,s + a)

îiî) - r„ < a < ß - s - r , j .

Lemma 2.3.6 Consider (v,i) urat/i D £ V and 1 < i < a\,. Let (x,fc,£) G ̂ 6e a/easi&Ze
soZution /or ^(v,i, s) wit/i x,ĵ „ = 0 /or aZZ u> ^ V[u,i - 1]. / / a satts/ies f,j = a, tften

Cij. (i,fc,^) is /easi6/e /or 6otn /i(s(,,d.j,a) and g(v,i - 1, s + a) ;

< a < ß - s - r„.

Lemma 2.3.7 Consider (v,i) tyit/i D G V anrf 1 < i < d„. Let (x,fc,^) € 7" 6e a
/easift/e so/ution /or g(u,i,s) twit/i x^, = 0 /or aZZ w £ V[v,i - 1] and x , ^ = 0 /or a/Z
w g V[«i,d.i]. T/ien

fij. (x,fc,£) is/easi6Ze/or

i]) = C (i , M | T[5t,d.i]) + C(x,*,/ | 7>, i - 1]) + L.. (0).

The following lemmas indicate that a feasible solution for ft(i),i,r) is a feasible solution
to either both /i(sj,,d^,a) and h(t>,i - l , r - a) for some a with r,j < a < r - r„, or
feasible for both <7(sJ,,d^,0) and /i(u,i — l ,r) .

Lemma 2.3.8 Consider (v,i) wit/i v € V and 1 < i < d,,. Let (x,fc,^) € ^ 6e a/easifrZe
solution/or /i(u,i,r) u/it/i x^„, = 0 /or aZ/u; 6 V[sj,,</,*]. / / a satis/ies £,j, = a, t/ien

('ij. (x,fe,£) is /easiöZe /or 6ot/i /i(sj,,d,j,a) and /i(u,i - l , r - a) ; -),i ..;

r»;. C(x,M I T[t;,i]) = C(x,fc,£ | T[»t,d.i]) + C(x,fc,£ | T(w,i - 1]) + L . ^ Q) ;

fitî . r,.̂ < Q < r - r„.

28 C H A P T E R 2. A D Y N A M I C P R O G R A M M I N G A L G O R I T H M F O R L A T N E P

Lemma 2.3.9 Consider (v,i) untfi D E V and 1 < t < d„. Let (i , fc,^) e .F 6e a/easifc/e
ao/ufion /or /i(i>, i, r) iwtA I , J „ = 0 /or o/i u; $ V[sJ,, d,*]. TAen

(%). (x , M) is/ea«&/e/or&ot/i0(s;,,d,j,O) andA(t>,t - l , r) ; • ' ' " - sal ki mw-.rit J»

(ii/ C(i,fc,/|T[w,i]) = C(*,Jb,« |T[«i ,^]) + C (* , * , / | T [t ; , i - l]) + L.t(O). ,

Proof, (of Lemma 2.3.5). " ' ^ " - ' •

(i). For u e V[si,,d,j] and tu ^ V[sj,,djj,] it follows directly from Lemma 2.3.1 that
luu, = 0. Moreover, since s + a = ̂ it follows that . . ^ , ^ . •,

S + Q = 2_#u,»€V:«ie£(u,t») *"« ' ^«"« , ft > i i . ' v .'..IM\

«< 4 <), d,<],w

Consequently, (x,A;,£) is feasible for y(sj,,dj^,s + a). To show the feasibility of
/i(t>, i — l ,a) , note that x„„ = 0 follows immediately from the condition in the
lemma. Next,

= 0 + 2 r„ • x„„ - X) r„ •:

/« r̂~* \
"~ * • ~ ^ ueV[j',d ,] ™ '

~ ^ ^ ugV[v,t] *"" ^"*" ~~ ̂ -* ugV[u>] *"" 2-uii))

= (s + a - 0) - (s - 0)

, . - = a. ' •

where the second and fourth equality hold by Lemma 2.3.1.

(ii). Follows directly from £,j = s + Q and the decomposability of the costs,

(iii). Let tD e V[s'„,d,J be the node for which x„,i = 1. Then :•' '

By contiguity, X.JÜ = 1, hence (2.5) and (2.7) yield

D \ V̂ T -7» \™* -r T -i- \ ^ * *• T "> o _L /v J_

This completes the proof.

2.3. PARAMETERIZATIONS FOR LATNEP

2.3.4 Upward Compatibility of Solutions 3 •»»

Consider a pair (t>,i) with v e V and 1 < i < d„. Below we will show that some feasible
solutions for some problems on T[v, t], T[t>, i - 1] and T[sJ,, d.jj can be combined to obtain
solutions which are simultaneously feasible on all three subtrees. Once again the proof
of the first lemma is listed at the end of the subsection; the other lemmas can be proven
similarly.

Lemma 2.3.10 Consider (t;, i) luitn v € V and 1 < i < a\,.

• (x\ fc\ £') fee a /easife/e so/ution /or g(s|,, d^, s + a),

• (x^,Är*,^) fee a/easife/e so/ution/or/i(v,i - l ,a) , and

• (x^.Jfc^,^) fee a/easife/e so/ution/or g(n,i,s). , (_

£!.£,£

;* € V[s|,,d,i] fee suc/i i/io<ij,^. = 1. 5ince t/ie va/ue o / / i (v , t - l , a) does no« depend
on t/ie /i07nin<7 node o/D fw/iic/i is not in T[t>, i — l]j, assume w./.o.j. t/iat x ^ . = 1.
ße/ine <Ae composite so/ution (x'*,fc'',^) fey ; ;• • , ;

t / u € K[s|,,d,J

i / u € V[v, i -1]

i / u ^ F[v,i],u; ^ i

t / u g V[i>,i],tü6'

i/u ^ V[v,i],ui = •

i > V.'.'.i; ^ ,

and (Jfc*, £̂) according to f;2.5;-(2.6; /or x = x*. T/ien (z«, fc*, ̂) is a /easife/e so/u«ion /or
o(sj,,d,j,s + a), / i (u , i - l ,a) and 5(1;,i,s

Lemma 2.3.11 Consider (v,i) urii/i t> € V and 1 < i < d„. Let

fee a/easife/e so/ution/or ft(s|,,d,j,Q),

fee a /easife/e so/ution /or g(r,i - 1,5 + a), and

6e a/eo5t6/e 5o/u<:on/or ^(v,i,s).

30 C H A P T E R 2. A D Y N A M I C P R O G R A M M I N G A L G O R I T H M F O R L A T N E P

Let u>* € V[v,i - 1] fee sucA tAat z ^ . = 1. W./.o.g. assume tAat i j , ^ . = 1. De^ne me
composite so/ution (z*,fc*,£*) as in Lemma 5.5.10 and (A:*,^) according to f2.5j-f2.67
/or i = x^. TAen (z*, Jfc*, £*) is a /easife/e so/ution /o r A(sj,, d , j , a) and 5(11,i - 1, s + a)
and ff(v,i, s) , initA

L e m m a 2.3 .12 Consider (v, i) untA n e V and 1 < i < a\,. Let , s. :̂ ,

• (x\fcV) 6e

• (z*,fc*,^) 6e a/easi6/e so/ut ton/or g(v, i - l , s) , and . . , , : • • - , . • . «

• (1 ' , fc^,^) fee a/easi6/e so/ut ion/or g(v, z ,s) . . . _•->*•,-••.•••. »AV P-O

Let u>* € V[t),i — 1] fee sucA tAat 1 ^ . = 1. De/ine tAe composite so/ution (z*, &*,£*) as
in Lemma 2.5.10 and (JfcV*) according to f2.5J-Y2.6V /or z = z". TAen (z^.fc*,^) is a
/easife/e so/ution /o r 5(sJ,,d,.^,0) and <?(v,i — l , s) and y (v , i , s) , / o r u»AicA tAe same cost
re/attons Ao/d as in Lemma 2.5. l i witA a = 0.

L e m m a 2.3.13 Consider (v, i) untA v g V and 1 < i < d„. Let

• (z ' , f c \ f ') fee a/easife/e so/ution/or A(s|,,d,j,Q), • - :.ji

• (z*,A:*,^) fee a/easife/e so/utton/or A(t;,i — l , r — a) , and

• (z^, fc', ^*) be a /easife/e so/ution /or A(u, i, r) .

Let w* ^ V[v, i] fee sucA tAat z ^ . = 1. H^./.o.y. assume tAat z ^ . = z ^ . = 1. De/ine

tAe composite so/ution (z'V/c^f') feu

and (fc*, f *) according to f2.5^-f2.6"j /or z = z*. TAen (z*, Jfc*, ^) is a /easife/e so/ution /or
A(sJ,,d,j_,a) and A(v,i — l , r — a) and A(r , i , r) , /or wAicA tAe same cost re/ations Ao/d as
in Lemma 2.5.11. .

2.3. PARAMETERIZATIONS FOR LATNEP 31

Lemma 2.3.14 Consider (u, i) u/itA u £ V and 1 < i < d„. Let ^.

*,fc^,^) 6e a/easiWe solution /or A(u,i — l , r) , and *'

Let u>* ^ V[u,i] 6e suc/i t/iat xj„,. = 1. W./.o.p. assume tAat xjj„,. = 1. L>e/ine t/ie
composite so/ution (x*, &*,£*) as in Lemma 2.5.i5 and (fc"*,̂) according to f.S^-f'.g.o^
/or x = x*. TTien (x^A;*,^) is a /easiftle solution /or ^(sJ,,d,j,O) and /i(u,i - l ,r) and
/i(r;,i,r), /or u//iic/i t/ie same cost relations /told as in Lemma 2.5.Ü u;it/i Q = 0.

Proof, (of Lemma 2.3.10) . " ' ' -•:•• -V*'! - *„

To show feasibility, we check the individual constraints.
, , , , T '-

ad (2.2) For v / 0, xgo = xg«, = 1; for v = 0, x^ = xg„ = 1;

ad (2.3) For u e V[v,i] the result follows immediately from the feasibility of the indi-
vidual solutions. For u ^ V[i>, i] : —

y j.4 _ y> j.4 _|_ y^ x* + X* .

— V T3 1 n J. V* ~3 _ 1 ,. -.

ad (2.4) Consider a triple (u, u", u;) with u" £ V(u, ty). If u and u" are both in V[s|,, d.j],
both in V[u, i — 1] or neither in V[t;,i] then x^„„ > x„^ follows directly from the
contiguity of the individual solutions. On the other hand, if u and u" are located in
different subtrees, we can distinguish six cases.

Suppose u ^ V[v, i] and u" £ V[sJ,,djJ. From u" £ V(u,u;) it follows that u; £
V[sJ,, rf*i]- If w 7̂ w*, xj„ = 0 and the result follows immediately. If u> = ty', then
from u"° £ l/(u,w) and u" € V[sJ,,d,J it also follows that u" € V(s(,,iu). Hence,
^U"UJ = ^i"tu — ̂ l*ui ~ >̂ *"^ * ^ result follows. The remaining five cases can be
shown similarly.

ad (2.5)-(2.6) These constraints are satisfied by definition.

ad (2.7) The result immediately follows once we have shown that for all IU € V: A£ = fc£
for j = 1,2,3 depending on whether u> € V[s|,,d,.J, to € V[u,i - 1] or u; £ V[v,i];
the result then follows from the feasibility of fci, in (2.7) (j = 1,2,3). First consider
the case u> = w*. Then

L4 _ V^ 4

32 CHAPTER 2. A DYNAMIC PROGRAMMING ALGORITHM FOR LATNEP

Next, consider the case u; ^ to*. If tu G V[sJ,,d,J, then > >! .£ .

. "• * , 4 _ r-> 4

• : . ; - v = V ,• . ̂ i + y r - x ^ + y r • x*

= y 4 r - x * + y r - x ' + y r • x*

^'•" where the third and fourth equality follow from the contiguity property and the
definition of x*. For tu G V[i>, i — 1] and iw ̂ V[u, i] similar results can be obtained.

ad (2.11) If to £ V[s{,,d,<] then x^,,, = xV „ = 0. If u> g Vfu.i] then x* = xL, = 0.

ad (2.12) It holds that

• • ••• ' - ' •••• • • - ' • ' " > • • _ y r r • x̂ . + y r • x̂

. ^ - ~3 -y I

Moreover, , ,̂, ^

ad (2.15) If to G V>,i - 1] then x ^ = x ^ = 0.

ad (2.16) Eueviv . i - i l . ^v^- i l^ -^ = E»evi„,-il - - . - » - .

This completes the feasibility part of the proof. In order to prove equivalence of the costs,
note that we have shown in the above that fc^, = fcj, with _; = 1,2,3 depending on the
location of u>. Next we show that for all e 6 5: ^ = fj, where j = 1,2,3 depending
on whether e S £[sj,,d,ij U {s|,}, e € £[v,i - 1] or e ^ £[u,i]. Consider the case where
e e £?[sj,, d,.J U {sj,}. Note that, if u, w € V are such that e G £(u, u>) and u ^ ^[si, d,J,
then w € V[sJ,,d,J. Hence,

u,w€V:

e6£(u,w)

2.3. PARAMETERIZATIONS FOR L A T N E P 3 3

,=c 10 + |E„£V|.,i-l| *"" " ^W +

•

In case e 6 £ [u , i - 1] or e ^ S[v,i] similar results hold. ' 'V. • •'•'< ;«^ ••:**% ~- ^

As a consequence, the first two cost statements follow trivially. Furthermore,

C(*Mb*,/« | T[«,t]) = C(*»,fcS^ I T[«t,d^]) + C(*»,*»,^ | T[r,t - 1]) + L.j(/J,)

Moreover, from ad (2.12) it follows that £j, = s + a. This completes the proof. •

2.3.5 Relations between Family Members

Finally, we derive the recursive relations on which our dynamic programming algorithm
is based. The last proof is omitted, for reasons of similarity.

Proposition 2.3.1 CoTisider (r,i) untfi « € V and i = 0. 7/g(v,t,s) < oo t/ien

0(t>,*,«) = .K.(r„ + a) (2.18)

Proof. Since V[r,0] = {u}, it follows from (2.11), (2.3) and (2.8) that x„„ = 1. Further-
more,

= r„ • x„„ + 2Zû v[»,i],t»ev[»,«] *"« ' *«<" = »•» + *

The objective function in (2.10) thus amounts to C(x, fc,f | T[v,i]) = K"„(r + s). •

Proposition 2.3.2 Consider (u,i) u;i</i v £ V ond i = 0. // /i(u, i,r) < oo t/ien f ^ 0,
^ = r„, r < S - min„^v[«,il :{«,»}££ {r«} and

••fc(w,<,r) = if.(0) . ' \ " T . (2-19)

ft CHAPTER 2. A DYNAMIC PROGRAMMING ALGORITHM FOR LATNEP

Proof. From (2.2) and (2.15) it follows directly that v ^ 0. Moreover, V[t/,0] = {v}
and (2.16) imply that r = r„, and since the load r must home on a node w outside
T[v, i], by contiguity the first node on the path from v to w homes on tu. Hence,
r < ß - min„gy[„,j] ;{„.„}££ {r„}. Finally, the objective function in (2.14) amounts to
C(*,M|T[W,*])='A;(0). •

Proposition 2.3.3 Consider (u,i) witfi v € V and 1 < i < d„. De/ine

J4Q = <?(sj,, d,i, s + ct) + /i(v,i — 1,a) + Z/ji (s + a) (r„ < Q < ß — s — r^)(2.20)

C = s(ai, d,j,0) + p(v,i - 1, a) + L^(0) . x V (2.22)

(2.23)

TAen g(v, i, s) > D. Moreover, i/^(t;, i, s) < oo t/ien </(u, i, s) = D. • .-'i , » . • • .

Proof. Let (x,A;,^) € J^ be an optimal solution for <?(t;,i,s) (if such a solution does not
exist then «7(11, i,s) = 00 > Z?). By definition of 5(11,1, s), i> homes in T[D,Z]. If D homes
in T[sj,, d j j then Lemma 2.3.5 implies for £^ = s + Q that r„ < Q < ß - s - r^ and that
(1, Jfc, £) is feasible for both ^(s|,, d,., s + a) and /i(u, i — 1, a). Furthermore,

For both t; and sj, homing in T[D, i — 1] or for v homing in T[t>, i — 1] and s|, homing in
T[sJ,, d,J it can be proven in an analogous manner that g(v, i, s) > ß<, and y(v, i, s) > C,
respectively. This establishes the fact that (/(u, i, s) > D.

In order to prove the second part of the proposition, let p(f, t, s) < 00. From the
aforementioned result it follows that D < 00. Suppose D = J4Q. for some a* with
\> 5: a £ ß ~ * — ^,^. Let (x',fc',£') be an optimal solution to p(sj,,d,^,s + a*),
(i^,fc^,^) be an optimal solution to /i(v,i — l,a*) (the existence of both solutions is
implied by the fact that D = >!<,• < 00), and (x^ ,P ,^) be a feasible solution to g(v,i,s)
(for which the existence is guaranteed by g(f,t, s) < 00). Applying Lemma 2.3.10 yields
a feasible solution (x*,fc*,£*), which is simultaneously optimal for p(sj,,dj^,s + a*) and
/i(i>,i — 1,Q*), and feasible for p(v, i,s). Consequently,

= C(i»,fc>,/» I T[«i,d.i]) + C (x ' , f c V I T[w,t - 1]) + 1-4(5 + a*)

= s(«i,d.i,a + a ') + A (v , t - l . a ') + £.i(« + a*) = 4 , - = £»

If D = ßa- for some a* with r,^ < a* < r — r„, or Z) = C, it can be proven in a similar
manner that (7(1;, i,s) < D. This establishes the result. •

2.4. AN 0(nß*) ALGORITHM FOR LATNEP 35

Proposition 2.3.4 Consider (v,i) luitA v € V ond 1 < » < d„. .De/ine •'

. i - l i l ! » { - » . » S ' U . - . r , ' q - H j J ; J . M ; | - ••.... i •:• ..'; • , , : . ; (, ',: . : < .•...•• . . ' i ; , •: , • •.;:;• ,. i I

**... £?« = Ä (» i , d . j , a) + A C . * - l , » • - < *) + £ . . (a) (r , . < a < r - r„) (2.24)

:, F = p (5 i , d . . , 0) + ft(t;,«-l,r) + L . t (0) • : :> : • - • . . •* - .10 (2.25)
;] ; / G = mm[min^<«<,_,..{£;«},F] ^ . i (2-26)

Then A(r,i,r) > G. A/oreouer, t/A(v,t,r) < oo tAen h(v,i,r) = G.

u ^u ,PI;I. |! ;'HIJ'.<

2.4 An O(n5^) Algorithm for LATNEP ^ , . ,

The relationships between the subproblems derived in the preceding section give rise to
the following dynamic programming algorithm. Recall that p(v, i, s) is only defined for
(u,i) with v G V, 0 < i < d„ and 0 < s < 5 - r„, whereas /i(v,i,r) is defined on the
same (u, z) pairs (excluding f = 0, since a concentrator is always installed in the root)
with r„ < r < ß .

DYNAMIC PROGRAMMING ALGORITHM FOR LATNEP

forall (v, i, s) with v e V, 0 < i < d„ and 0 < s < ß - r„ do
</(u, i, s) = oo; / * initio/üotion </ */

forall (v, i, r) with v € V, 0 < i < <̂ and r, < r < ß do

A(v,i,r) = oo; / * imtio/izotion A*/

forall t; = n downto 0 do begin
forall s with 0 < s < ß — r„ do

if (t; ^ 0) then

forall i = 1 to <4 do begin
forall s with 0 < s < ß — r„ do

p(v,i,s) = I> with D denned as in (2.20)-(2.23);

forall r with r„ < r < ß do

A(u,i,r) = G with G defined as in (2.24)-(2.26);

end;
end; optimal solution: <j(0, do, 0)

36 C H A P T E R 2. A DYNAMIC PROGRAMMING ALGORITHM FOR L A T N E P

Unfortunately, the correctness of the algorithm does not immediately follow from the
results in Section 2.3.5, since Proposition 2.3.3-2.3.4 do not exclude the possibility that
£> < <?(v,i,s) = oo or G < /i(v,i,r) = oo. Indeed, this situation may occur, since we
ignore constraint (2.12) and (2.16) during computations. In Theorem 2.4.1 we give a
mathematical proof of the correctness of the algorithm. In the forthcoming analysis we
will distinguish between the values of ff(v, i, s) and /i(t>, i, r) as defined in Section 2.3 on
the one hand, and the ones that are computed by the aforementioned algorithm on the
other hand, by temporarily providing the latter with a superscript "c" (of "computed").
Roughly speaking, we prove that the computed values <?̂ (i>, i,s) and /i*(u,i,r) may differ
from the true values <?(i>,i, s) and /i(t>,i,r) only if these problems are infeasible, which is
sufficient to prove the main result of this chapter (summarized in Theorem 2.4.2).

T h e o r e m 2.4.1 Consider (u, i) luitA u £ V and 0 < i < d„. £e< r and s 6e suc/i
r„ < r < ß and 0 < s < B — r„. TAen <Ae /o/iou«nj statements Ao/d

i,s) < co t/ien 5'(v, i, s) = g (u , i , s) ; .-.=• u - :

' . . . ' • - • ."- . ; r i t i w
Proof. First consider t = 0. If ^(v,i ,s) < oo then p ' (v , i , s) = (/(u, i, s) follows from
(2.18) and the definition of ^ (u , i , s) in the algorithm. If r < B - minugv[v,«]:{u,u}€£ {r„}
then Proposition 2.3.2 states that /i(t>,i,r) = Ä"„(0) if r = r„, v ^ 0, and A(v, i , r) = co
if r ^ r„ or v = 0. Hence, ^ (v , i, r) = A(r, i , r) follows from (2.19) and the definition of
/i^(v,i,r) in the algorithm.

To complete the proof we use induction on the pairs (u, i), i > 0 in the order as described
by the algorithm. If g(u, z',s) < oo then by Proposition 2.3.3 we have <7(v,i,s) = D. If
the minimum in (2.23) is attained for i4^ for some a with r„ < a < B - s - r ^ , then

tf(t>, * - 1, ä) + L.i(s + a) > 0»(v, i, s)

where the second equality follows from the induction hypothesis, since <7(s|,, d,j_, S + Q) < oo
and Q < ß - s - r^ < B - r.^ < B - min^v[v,>]:{u,«}e£ {^}- If the minimum in (2.23)
is attained for B„ for some ö or for C, then <7(f,i, s) > 3^(u, i,s) follows similarly. Next
we will prove the reverse inequality.

The aforementioned yields ^(v , i , s) < y(v,i,s) < oo. If the minimum for ^(v , i , s) is
attained by (2.20), then

where the second equality is explained as follows. First, since the minimum is attained
by (2.20), <?"(si,d^,s + ä) is actually computed. From the algorithm it then follows that

2.4. AN 0(nB*) ALGORITHM FOR LATNEP 37?

5 + ä < B - r,j which implies that ä < ß - 5 - r , j < ß - min„^v[v,i-il:{u,«}e£ {*"«}• By
the induction hypothesis we can therefore conclude that A"(i;,t - 1,Q) = /i(t>,i - 1,Q).
Secondly, since p(v,t,s) < oo, /i(u,i — l ,ä) < oo, s < B — ä — r,^ and ä > r„ we can
construct a feasible solution for g(s'„,d,j,s + Q) using feasible solutions of g(t;,i,s) and
/i(v,i —l,ä) (see Flippo et al.[33] for the strict mathematical construction of this solution).
From the induction hypothesis it follows that g"(s|,,d^,s + <5) = </(sj,,d^,s + ä), which
justifies the second equality.

If the minimum for <;'(v, i, s) is attained by (2.21) for some ä or by (2.22), then g'(u, i, s) >
g(u,i, s) follows similarly. As a result, g(v, i,s) < oo implies g*(v, i,s) = g(u, i,s). For
/i(t>,i,r), the result follows in a similar way. _ .• . •

Theorem 2.4.2 Suppose Ä"„(fc„) con 6e computed in O(m) time/or every fc„ € (r„, B]flN
and v € V, and .^(f,.) can &£ computed in O(p) time /or euerj/ £. 6 [O.-̂ j ^ N and
e € £, Wiere m and p are parameters depending on pro6/em size. .Furt/iermore, /et eac/i
o/ t/iese computations require O(nB) storage space. T/ien t/ie a/orementioned dynamic
programming a/gorit/im /inds an optima/ so/ution in O(n(m+p)ß + nß^) time and O(nB)
storage space, f/nder mi/d conditions on t/ie cost structure fw/iicn are satis/ied in t/ie rea/-
/i/e app/ications o/ Ba/aAris/man, Magnanti and H ông /P/ and CTio and 5/iaw /25/j, it
/o//ou>s t/iat C(m) = O(£) and O(p) = O(l) , imp/ying an overa// time complexity o/
O(nB').

Proof. Correctness follows directly from g*(0, do,0) = g(0,do,0) (cf. Theorem 2.4.1). As
for time and space complexity, all coefficients AT„(fcv) can be calculated in O(nmß) and all
coefficients Le(4) in O(npB). Storage requirements for these coefficients is O(nB). Since
the number of (v,i)-pairs we consider is O(n), it follows that all remaining computations
can be done in O(nB^). Obviously, the storage requirement for all p and /i coefficients
equals O(nB).

In practical situations it is reasonable to assume that 0(m) = O(B). For instance, in the
cost structure described by Cho and Shaw [23] (cf. Section 2.2), the variable concentrator
costs Ct, do not depend on the concentrator type t. So, if two concentrators ti and tj
have the same capacity 6*' = 6'*, and if F^' < / j ' , then ti will never be more expensive
to use than t2- In other words, for every node u € V there will be at most one non-
dominated concentrator per load figure fc„, implying that mint{F^ + c„Â | 6' > A:„} can
be computed in O(m) = O(B) time. Similarly, in Balakrishnan, Magnanti and Wong [9],
the concentrator cost structure is represented by a piecewise-linear, concave function,
with breakpoints occurring only at integer-valued arguments. Since such a function is
described as the point-wise minimum of at most B affine functions, it follows again that
O(m) =

Now we have established the correctness of the procedure, we will drop the superscript
"c" henceforth. Note that the algorithm in its current form only determines the optimal
solution ua/ue, rather then an optimal so/ution. However, from Propositions 2.3.1-2.3.4 it
follows that an optimal solution can be recovered in the traditional way by keeping track
of the "argmin" (instead of just the "min") in the evaluations of g and /i coefficients, and
by constructing the solution afterwards using backward recursion.

CHAPTER 2. A DYNAMIC PROGRAMMING ALGORITHM FOR LATNEP

2.5 Computational Results

To assess the practical feasibility of the dynamic programming algorithm, we have im-
plemented the algorithm in the programming language C + + on a DEC 2100 A500MP
workstation with 128Mb internal memory. We tested the algorithm both on generated
instances resembling Cho and Shaw's [23] and on the real-life 41 node instance of Balakr-
ishnan, Magnanti and Wong [9].

2.5.1 Generated Problem Instances ^ j . ;•

All generated problem instances have the same cost structure as the one proposed by Cho
and Shaw [23] (cf. Section 2.2). The first set of instances we consider has been made
publicly available by Cho and Shaw. The number of nodes in the tree varies from 5 to
30, whereas the maximum concentrator capacity is in the range of 41 to 951. The results
in Table 2.1 indicate that our algorithm is competitive to Cho and Shaw's algorithm; it
is 43 times as fast on average over all 11 problems, and even up to 76 times as fast on
average over the 5 largest problems. (Note that this may partly be due to differences in
hardware; Cho and Shaw used a SUN SPARC 1000 workstation.)

Table 2.1: Computational results for the
'" ;. , :-. : instances generated by Cho and Shaw. ~ •>>: :• '• ';•• "

problem

exp5a
exp9a
exp9b
exp9c
expl5a
expl5b
exp20a
exp20b
exp20c
exp30a
exp30b

n

5
9
9
9
15
15
20
20
20
30
30

m

1
1
1
1
3
3
1
3
3
1
3

B
41
51
70
340
451
474
140
443
951
340
451

value

559
1305
559

25847
55566
65693
23382
62859
162936
93238
86717

CPU sec.

0.017
0.020
0.020
0.023
0.028
0.039
0.029
0.038
0.059
0.044
0.077

We also tested 10 larger instances of this type using the same generator as Cho and Shaw
(available on Shaw's Web site), with the number of nodes varying from 50 to 200, and
with the maximum concentrator capacity varying from 100 to 1500. Our results for these
instances are listed in Table 2.2, which indicate that much larger instances can still be
solved efficiently: instances with small concentrator capacities are solved within a second,
whereas the running time for larger concentrator capacities is within minutes.

All of the above instances consisted of trees with an unbalanced structure as is illustrated
in Figure 2.1. Due to this structure, the number of coefficients r for which /i(v,i,r) is

2.5. COMPUTATIONAL RESULTS 39

Table 2.2: Computational results for
instances with 50 to 200 nodes. s

problem

lanep50a

lanep50b

lanep50c
laneplOOa

laneplOOb

laneplOOc
lanep200a
lanep200b
lanep200c
lanep200d

n
50
50
50
100
100
100
200
200
200
200

m

3
3
3
3
3
3
3
3
3
3

B
185
392
928
190
280
772
137
192
680
1424

value

247768
197222

127577
632303

443484
342672

1453570
1417313

795365
574739

CPU sec.

0.058
0.363
3.311
0.181
0.539
10.045
0.193
0.450
13.992
80.648

feasible for the (f, t)-pairs with u € {0,16,31,35,45} is very large, which makes this type
of instances relatively hard to solve. Therefore, we slightly modified Cho and Shaw's
problem generator so as to obtain more balanced trees. We generated trees consisting of
25 up to 1000 nodes, and concentrator capacities ranging from 3000 to over 10000. For
each of the problem sizes, we generated five instances with 3 concentrator types. The
best, average and worst CPU times are reported in Table 2.3. The results indicate that
small problem instances can be solved in a second, whereas the larger instances can be
solved in a minute. An implementation of the algorithm as well as the modified generator
with all of the aforementioned instances are publicly available on World Wide Web or by
e-mail to the author.

16

45

A

Figure 2.1: The Tree of Problem lanep50a

CHAPTER 2. A DYNAMIC PROGRAMMING ALGORITHM FOR LATNEP

Table 2.3: Computational results for balanced
instances with 25 to 1000 nodes. «•:;'••![

n

25
50

100
200
500

1000

minß

4408
4169
3761
7708
3800
2907

maxB

4869
4763
5360

10218
4762
3597

best
0.339
0.697
1.161

31.535
8.335
9.873

CPU sec
average

0.507
0.934
1.795

71.680
11.407
13.423

worst
0.665
1.248
2.602

127.619
18.209
16.184

2.5.2 Real-Life Problem Instances

Balakrishnan, Magnanti and Wong [9] propose a solution method which incorporates valid
inequalities in a dynamic program to solve the uncapacitated version of the problem (i.e.
the design problem). For three realistic networks they embed their dynamic program
in a Lagrangian relaxation scheme to obtain solutions for the capacitated version (i.e.
LATNEP) within 1.2-7.0% of optimality and 15 minutes of running time. Unfortunately,
these instances are not publicly available. However, in their article all demands and
existing cable capacities for the largest (41) node instance are given. Since our algorithm is
basically independent of the cost structure (assuming that the concentrator and cable cost
can be calculated in O(ß) and O(l) time), we tested our algorithm on the 41 node instance
with a Cho and Shaw cost structure. In Table 2.4 the computation times for several values
of B are given; the largest B is hereby set equal to the sum of all demands. We also tested
this instance on a Pentium 166 Mhz personal computer with 16 Mb internal memory, on
which we needed 105 seconds to compute the optimal solution (with B = 43,212).

Table 2.4: Computational results
for the Balakrishnan, Magnanti
and Wong instance with 41 nodes.

B
10000
20000
30000
43212

CPU sec.
2.875

13.655
33.993
44.600

< i I K T A H O ' i r i j i r t i i t ; , • ! . ' , - : , , ' . ^ ' . U J U M ' V J ' I ; a < : A H " i " G A f. t r ^ ' - u

V i l i i ^ i i J " J .«<"'< ?*!s>!t t v - j - s ; ;>MäJiTr;v;f:Kji's.J g t l l f U * U a s t M foil* •g (IU ' i ; / i . * ib k>

VTu-'-ifc ".,• '>! '?.. « » • / - . ' •-(..;•.•.,••.•.-;! Us I-.:.,; j ; ; . ; (\ i "jrj.) g i j i h i a j j a

<j.- ' ; .u<-.: ' i-'. . / . iJ*; ; . . * :d^ ' a i - , « ; « ? - M : . u > t i .-.«*i3 /

A Dynamic Programming Algorithm
for the ATM Tree Network t ; J : ^
Installation Problem t Vt

3.1 Introduction

Modern telecommunication networks are capable of processing multiple telecommunica-
tion services on a single physical network. These so-called broadband networks usually
consist of several hierarchical network layers. At the top layer (often referred to as the
Backbone), large capacity nodes serve large geographical areas. These areas are decom-
posed into smaller regions, each of which is served by nodes located in lower layers of
the network. In the Backbone, connectivity between nodes is usually fairly high. This is
due both to high traffic requirements, which make the installation of direct links between
nodes economically attractive, and to reliability considerations, which coerce that in case
of a calamity in the network (the breakdown of a node or a link), alternative routing be-
tween pairs of nodes must be available. In lower levels of the network both the intensity
of traffic and the need for reliability decrease, and the structure commonly used here is
thus a tree.

In order to send information of different types of services over the same broadband net-
work, a structured protocol is required. Nowadays ATM (Asynchronous Transfer Mode)
is widely accepted as the standard protocol for (future) broadband networks. In the ATM
protocol, a message that needs to be sent from its source to its destination is decomposed
into small units of information which are stored in ATM cells. In addition to a part of the
message, an ATM cell also contains certain routing information, which enables the cell to
be routed through the network from source to destination. At the destination node, the
different units are combined to reconstruct the original message. To implement the ATM
protocol on the telecommunication network, certain hardware devices have to be installed,
connections between these devices have to be made, and customers must be connected to
these devices. As such, an ATM network topology is built upon an existing network struc-

41

42 CHAPTER 3. A DYNAMIC PROGRAMMING ALGORITHM FOR ATNIP

ture. The problem of designing and maintaining telecommunication networks typically
involves simultaneous decisions regarding the location of hardware devices, the capacity
of these devices, the capacity installation on connections between devices, and the routing
of messages over these connections. Since these problems are by far too complex to be
handled at once, they are often decomposed.

In this chapter, based on Van de Leensel, Flippo and Koster [75], we discuss the ATM
Tree Network Installation Problem (denoted ATNIP in the sequel) on a given tree, which
consists of all the nodes in the area being served by the same Backbone node. The root
of the tree is thus a node in the Backbone, in which an ATM hardware device is installed
by default. Traffic demand between pairs of nodes in the tree are also given (these are
called commodities). To enable communication between the endpoints of a commodity,
capacity has to be installed on the edges of a watt: in the tree between the nodes involved.
Note that a walk is defined here as a path in which edge repetition is allowed. The reason
for this edge repetition will become clear in Section 3.2. By installing a hardware device
(called an ATM cross connect) in a node, ATM signals can be combined such that the
required capacity on the edges can be reduced. The key issue in ATNIP is thus to find
a trade-off between costs of capacity installation on edges on the one hand, and costs of
installing ATM cross connects in nodes on the other hand, such that all demand is met
and total costs are minimized.

In the sequel, ATNIP is shown to be NP-hard, as it contains SUBSET SUM as a special
case. We state a pseudo-polynomial time dynamic programming algorithm which runs in
O(nß^) and requires O(nß^) storage space. Here, n refers to the number of nodes in the
tree, and B to an upper bound on the capacity of an ATM cross connect. Although the
algorithm can easily be applied when demand is non-symmetric, for ease of exposition
we will assume throughout this paper that demand is indeed symmetric. Computational
experiments indicate that our algorithm runs efficiently on real-life problem instances,
made available to us by KPN Research, Leidschendam, The Netherlands.

The remainder of this chapter is organized as follows. In Section 3.2 we give a detailed
description of different aspects of the functionality of ATM networks and its components,
for as far as they are relevant for the problem at hand. The notation used throughout
this paper and a mathematical formulation of the problem are stated in Section 3.3.
In Section 3.4 two families of subproblems are defined, and the relations between these
subproblems are discussed. The dynamic programming algorithm and its use as an ATM
network planning tool are the subject of Section 3.5. Computational results conclude the
paper in Section 3.6.

3.2 ATM functionality

In this section we give a detailed description of an ATM tree network and the hardware
devices it may contain. We confine ourselves to those functionalities which are important
for the problem at hand. An ATM tree network consists of ATM cross connects (to be re-
ferred to as switches henceforth) that can be installed in the nodes of the tree, and cables

3.2. ATM FUNCTIONALITY 43

between these switches (usually referred to as connections). If a connection is installed be-
tween two switches, it actually requires capacity installation on each edge of the (unique)
path between the end points of the connection. We consider two types of connections,
viz. 34Mb/s and 155Mb/s connections (of course the model can be extended to incorpo-
rate other types of connections as well). The capacity of a connection is bi-directional,
i.e. a 34Mb/s connection can accommodate 34Mb/s in both directions simultaneously.
Connections can be used to transport information between demand nodes (nodes in the
underlying tree structure) and switches on the one hand, and between switches themselves
on the other. We assume that all nodes in the tree are demand nodes, that is each node in
the tree is the source (and by symmetry of demand also the destination) of a commodity.
If necessary, the demand of certain commodities can be set equal to zero.

A switch contains a given number of slots (cf. Figure 3.1(c)). In each of these slots an
interface card of a certain type can be installed. As for connections, we consider two
types of interface cards, viz. 34Mb/s and 155Mb/s interface cards. Each type of card
has a number of input/output gates which equals the number of connections that can be
connected to the interface card. Obviously, 34Mb/s (155Mb/s) connections can only be
connected to 34Mb/s (155Mb/s) cards. Different types of switches are available, which
for our purpose only differ in the number of slots they provide. This number of slots
determines a switch's capacity. Apart from slots a switch also contains a routing table.
An ATM cell that enters a switch via an input/output gate of one of the interface cards
installed, is passed through the routing table, which evaluates the routing information in
the cell to determine on which connection the cell should leave the switch. This gives the
switch the capability to separate two (or more) commodities which enter the switch via
the same connection by sending them out on different connections. Of course the reverse,
i.e. bundling of commodities, is also possible. I

The overall ATM tree network should now be constructed in such a way that each com-
modity is routed from its source node to its destination node. This route may pass several
ATM cross connects on its way. A connection must be installed on this route in any of
three cases : on the unique path between each pair of consecutive ATM cross connects on
this route, between the source of a commodity and its nearest ATM cross connect on the
route, and between the destination of the commodity and its nearest ATM cross connect.
Furthermore, a sufficient number of interface cards should be installed in the ATM cross
connects in order to connect the connections to the ATM cross connects. Since the com-
plete route from source node to destination node for a commodity is thus a concatenation
of connections, the route is often called a virtual path in telecommunication literature.
However, since the concatenation of paths (which itself do not allow for edge repetition)
implies that on the complete route itself edge repetition might occur when a specific edge
occurs in more than one of these paths, from a graph theoretical point of view it should
really be referred to as a walk (which by definition allows for edge repetition). To explain
the above in more detail, consider the illustration in Figure 3.1.

In order to enable communication between demand nodes s, t, u and u, all of these nodes
must be connected to a switch. The switch to which a demand node is connected is
called its "homing node" (or "homing switch"). Suppose that a switch is installed in the
parent node of node s and i, serving as a homing node for nodes s and t, that a switch is

44 CHAPTER 3. A DYNAMIC PROGRAMMING ALGORITHM FOR ATNIP

' • -s-vt- .u-s !••-;'.<•. •-'->"••

Demands in Mb/s

s
i
u

s

—
0
20
20

0
-
20
0

u

20
20
—
10

20
0
10
—

• • ; . ' . ' I ; ' ;

vi, . .h:'r' . ' ' i f"H

A
:rn

(a) problem instance (b) switch installation

ATM cc for s and

V
34Mb/s

ATM cc in root

\/ V
155Mb/s slots

(c) detailed description

ATM cc in u

tt
155Mb/s i/o gates

Figure 3.1: ATM Functionality: Example Instance

3.2. ATM FUNCTIONALITY 45

installed in u which is the homing node for node u, and that a final switch is installed in
the root, which serves as the homing node for node t;. This configuration is depicted in
Figure 3.1(b), where squared boxes indicate the installation of a switch. If the origin and
destination of a commodity have a different homing node, a virtual walk (as explained
in the above) between the two homing nodes must be installed. In general, this walk
may pass other switches. Figure 3.1(c) shows what type of connections may be added to
enable the desired communication between nodes s, t, u and t; (the proposed configuration
is not claimed to be optimal in any sense, it just serves the explanation). Commodities
(s, u) and (s, v) enter the homing switch of s on two 34Mb/s connections, and a single
34Mb/s connection is used for commodity (£, u). Next, the three commodities are bundled
and transferred to the switch in the root on a single 155Mb/s connection. There the two
commodities (5, u) and (£, u) are simply passed on via a 155Mb/s connection, towards the
switch in node u. The commodity (s, u) is transported to node t; via a 34Mb/s connection.
Note that these connections pass two edges in the underlying graph, and therefore require
capacity installation on both edges. The installed connections as described in the above
also leave enough unused capacity to route the commodity (u,i>). This commodity is
routed from u to the switch in node u, then to the switch in the root, and then to node u.
Note that to route the commodities from a demand node to its homing switch, and to
separate/combine commodities at a demand node, some hardware device other than a
switch must be installed at the demand node as well. In general, such hardware devices
must be installed at every demand node. Therefore, these devices do not influence the
design problem, and are left out of consideration. The reverse walks can be used for the
reversed commodities. In the solution described in the above and depicted in Figure 3.1,
edge repetition occurs, since the commodity (u, v) passes an edge in the underlying graph
twice. Next, the reader may note that 34Mb/s (155Mb/s) interface cards have two (one)
input/output gates. We will say more about the influence of the number of input/ouput
gates in Section 3.3.

Network planners often impose certain restrictions on the layout of telecommunication
networks. Some of these restrictions may be due to technical requirements, whereas
others are considered to be economically sensible, or practical for operational convenience
regarding maintenance and repair. For ATNIP, the following restrictions apply.

1. Upward homing of demand nodes: a demand node always homes on the first
switch located on the unique path from the demand node to the root of the tree
(both endpoints including);

2. Upward homing of switches: connections between two switches are only possible
if one switch "homes" on the other, where a switch in node v (other than the root
node) always homes on the first switch located on the path from (but excluding) t;
to the root. For example in Figure 3.1, the switch in node u is said to be homing on
the switch in the root node, and the same holds for the switch located in the parent
node of node s and t.

The reader may observe that the ATM network proposed in the example instance satisfies
both routing restrictions. «

46 CHAPTER 3. A DYNAMIC PROGRAMMING ALGORITHM FOR ATNIP

Next, it needs to be stated that a commodity may not be split over different connections.
This implies that 3 commodities, each with a demand of 20 Mb/s, cannot be routed on
two 34Mb/s connections (although the total capacity seems to suffice), since it would
require one of the commodities to be split over two connections. Hence, the 155Mb/s
connection between the homing switch for node s and t and the switch in the root of
the tree cannot be replaced by two 34Mb/s connections. Define ./„ as the set of possible
connections between a demand node u and its homing switch. For example, if the largest
capacity switch contains 10 slots, and the number of input/ouput gates on a 34Mb/s
and 155Mb/s interface card equals two and one, respectively, then J„ consists of twenty
34Mb/s connections and ten 155Mb/s connections. Furthermore, let £)„ be the set of
commodities which are to be sent from a demand node u to its homing switch (all in the
same direction). Finally, define the following decision variables and parameters.

_ f l if
\ 0 ot

. if commodity i is assigned to connection j

connection j is used ' , . . ^ '" '
otherwise " ",'",'

0 otherwise ^ "

(5J, = demand of commodity i '' (i € A,)

„fj . capi = capacity of connection j r . , (j € Ju) . • --••:•

Then the collection of connections required to route the commodities of demand node u
to its homing switch should satisfy the following restrictions:

£ , e J„ *u = 1 Vi e D„ (3.1)

EieZ). £ • $ < cap£ • mi Vj € J„ (3.2)

- mi e {o, l}, tjf e {o, 1} Vi e A,, Vj e J„ (3.3)

Likewise, for all commodities which must be routed from a switch to its homing switch,
the required collection of connections involved should satisfy a similar set of constraints.
This problem is referred to as the bin-packing problem of commodities on connections.
We will return to this issue in Section 3.3, after we have given a mathematical formulation
of the problem.

The costs of an ATM network structure stem from switches and connections. The follow-
ing assumptions are made regarding to the costs:

• the costs of a switch are fully determined by the number of connections of each type
connected to it, and by the node in which it is installed;

• the costs of a connection equal the sum of the costs on the edges on the connection
(path);

• the costs of the switches are independent of the costs of the connections.

3.3. NOTATION AND MATHEMATICAL FORMULATION 47

Note that these assumptions allow for very general costs structures, and encompass the
typical fixed-charge cost functions observed in practice. Now all ingredients for the ATNIP
are discussed in words, a formal description can be given.

3.3 Notation and Mathematical Formulation

G(V,£) = tree G, where V represents the node set and £ the undirected edge set;
the nodes are numbered in a depth first order with the root numbered 0;
the edges are also numbered in a depth first order such that edge v is
the edge between node v and its unique parent

d„ = the number of children of node v; the children are denoted by s j , . . . , sjj"
T[u, i] = subtree induced by u, its first i children and all successors of these children
V[t>, i] = set of nodes in subtree T[v, i] *'<• > K-T^CTUM- = s
E[w, i] = set of edges in subtree T[u, i]
V(u, w) = set of all nodes on the path from u to w, including both endpoints
i?(u, IÜ) = set of all edges on the path from u to w '
Xu = set of possible homing nodes for a demand node u, i.e. -X« = V(u, 0)
V„ = set of possible homing nodes for a switch in node u, i.e. V^ = V^(u, 0) \{u}
T = set of available capacities (interface cards), e.g. T = {34,155}

let t = |T | denote the cardinality of T " '
Ä"ui(fcto) = costs of a switch located in u; if fc„, represents the number of connections

that are connected to this switch (fc„, € N*); Au,(0) corresponds to the
situation where no switch is installed in node u>

^ e (4) = costs on an edge e € £ if ^ represents the number of connections over
edge e (4 € N*)

7 = number of input /output gates on interface cards (7 € N*)
ß = number of slots available in the largest capacity switch
£>„ = set of commodities with source node u
P„ = set of commodities with its source node located in T[u, <£„]

and with destination node outside T[u, d„]
J„ = set of available connections between demand node u and its homing

switch; let J„ = Urgr-^u
//„ = set of available connections between a switch in u (given that a switch

is installed there) and its homing switch; let //„ = UT6T#U
(5J, = demand of commodity i € A,
cap£ = capacity of connection j € J« or #,,

Note that T[v,i] = T[u,i - 1] UT[s{,,djJ u {sj,.v}- Reconsider Figure 1.5, then it holds
that T[4,2] can be decomposed into T[4,1], T[8,0] and edge {8,4}. This decomposition
will be exploited frequently. Moreover, note that P„ = 0 for u = 0, and define /f„ = 0,
for u = 0. Next we introduce the following decision variables:

1 if demand node u is homing on a
switch in node w (« £ V, w £ X„)

0 otherwise - . . -••

CHAPTER 3. A DYNAMIC PROGRAMMING ALGORITHM FOR ATNIP

{ 1 if a switch in u is homing on a ^ ,>.,̂
switch in u; .ros'\ai (" € V \ {0},w € F„) ,

0 otherwise •,,.•;,.
^ f 1 if connection ?' is used , ., . . .
" [0 otherwise

commodity t is assigned to connection j •
ltt6Vi6^je Jj" ~ \ 0 otherwise

- / 1
~ \ 0 o

f
= \

1 if commodity i is assigned to connection

1 if connection 7 is used rr-" - / >, • , , \
0 otherwise •!» rf«v- ; • J , , . , , (« * V, j € ff.)

ity i is assigned to connection j , . . . „ . „ .,
otherwise ' (« € V. . € P . , , € ff„)

fc^, = number of connections of type r incident to tu (to € V, r = 1 , . . . , t)

£J = number of connections of type r on edge e (e € £, T = 1 , . . . , t)

The ATNIP is now given by the following mathematical formulation :

M<«) • ' (3-4)

. * » = l , , VueV * (3.5)

Zu«, t,ui„,,;q - V t t , u > 6 V : «) e i^.u' S V(u,w)\{u} (3.6)

»»- = ^u« • Vu e V \ {0} (3.7)

I«'» ; , „ Vu, u', W € V : W € F„, u' € V(u, ty)\{tt} (3.8)

tf = i Vuev,vzez?„ (3.9)

„ **« • *!? ^ «»Pi • ™i Vw G V, Vj € J« (3.10)

„ «?" = *«« v« e v, Vi e P„ (3.ii)

ni Vu € V, Vj G /f« (3.12)

+ Ej6»j"i*«~ Vti)6V,r = l t (3.13)

C = Eu,u,eV:«e£(u,u,)(E>gJJ f"ix„^ + E,-e/f^ "iVu«;)

VeG£,T = l , . . . ,* (3.14)

Xuu,S{0,l} , , ; , , . , . - ; VueV,Viy€X„ (3.15)

yu»€{o,i} - •• vuGV\{o},vwGy« (3.16)

fc„„^>0 ' ' ' ' Vu>eV,Vee£ (3.17)

mi, ni, tjf, 2« € {0,1} Vu G V, Vt € U«, P„, Vj € J„, Ä« (3.18)

The objective function in (3.4) defines the total costs for a solution (i, j / , m, t, n, 2, A;, /) and

3.3. NOTATION AND MATHEMATICAL FORMULATION 49

reflects the decomposability of the costs on switches installed in nodes and connections
passing over edges. Constraint (3.5) implies that every demand node has exactly one
homing node, and by the definition of X„, it follows that a switch is installed in the root
node. Constraint (3.6) enforces the upward homing condition of demand nodes, whereas
constraint (3.7) and (3.8) guarantee the upward homing of switches. The bin-packing
problem of commodities on connections is modeled by constraints (3.9) and (3.10) for a
demand node and its homing switch, and by constraints (3.11) and (3.12) for commodities
between a switch and its homing switch, respectively. Constraints (3.13) and (3.14) simply
define the resulting number of connections connected to a switch in a node, and the number
of connections which pass over an edge, respectively. The integrality and non-negativity
constraints in (3.15)-(3.18) complete the formulation. Note that we have not listed a
constraint which restricts the number of connections incident to a switch, which could
have been formulated as

Et=J*i /7H<B Vu,€V . u, • ; - . „ : , ; • (3.19)

For ease of exposition, (3.19) will be stated as i „ <g ß in the sequel, and should be
interpreted as "the number of connections fc„ fits on the largest capacity switch". Note
that if a given number of connections fc„ would require more slots than there are available
in the largest capacity switch, this infeasibility can easily be incorporated in the objective
function by setting the corresponding K „ (^) equal to infinity. Hence, constraint (3.19)
is not part of our model. In Section 3.5 however, the number B will be shown to be an
important determinant for the running time of our algorithm.

The objective function (3.4) may encompass very general costs structures. For the typical
fixed-charge cost structure arising in practice, the objective function can be specified as
follows. Let Ö refer to the different types of switches available, Bg denote its capacity,
and F^(ö) represent the fixed costs of installing a switch of type 0 in node ID, and /x^ be
the costs of an interface card of type r in node IU. Then

a . ^ "W + £=» ̂ ' 1 * ^ * *" * ° (3.20)
0 feu, — U

with the minimum over an empty set defined as infinity. Throughout this chapter, we will
assume that large capacity switches are available (since this is also the case in all real-life
problem instances), which implies that a feasible solution always exists. Moreover, if A£
denotes the costs of installing a connection of type r on an individual edge e, then

The reader may notice that for a given choice of the variables i„„, !/„„,, the remaining vari-
ables tjf, 2^, m{, n{ only interact with the previous mentioned variables via the objective
function, since constraints (3.13) and (3.14) merely define the variables fc„, and £,. For
general objective functions (as well as parameter values), this interaction may of course

50 CHAPTER 3. A DYNAMIC PROGRAMMING ALGORITHM FOR ATNIP

imply that the optimal values of the two classes of decision variables cannot be determined
independently. Next, we derive conditions (which are fulfilled in the practical problem
instances obtained from KPN Research, Leidschendam, The Netherlands), under which
the number of connections used between a demand node and its homing switch (variables
tJJ, m{), as well as the number of connections used between a switch and its homing switch
(variables zj/,n{), can be determined optimally beforehand, that is, independently of the
choice of the remaining variables. Nu ' • ;;:;• ,.•';:•:!* <?bon i.»<!;,r•.;.').'

Lemma 3.3.1 Consider 477V7P unt/i o6jeciive /unction os denned 6j/ f3 .^ , f5.20j and
p.Si^, and wit/i t = 2, i.e. too types o/ connections ('inter/ace cards,), i/iz. 5^M6/s and

:noi

• t/ie inter/ace card costs are positive and independent o/ its type, i.e. /*£, = /*„> 0
/or a// T and /or a// w € V

• t/ie costs o/ instating tu/o 5^M6/s connections on an ed^e are at /east t/ie costs o/
insta//ino one i55M6/s connection on an edge, and positive, i.e. 2 • A^ > A ^ > 0,
/or a// e 6 5

• t/ie numfter o/ input/output yates on a 5^M6/s and ^55M6/s inter/ace card is tu/o
and one, respectiveZj/, i.e. 7 ^ = 2,7^** = 1

t/ien t/iere exists an optima/ solution (x,y,m,f,n, z, A;,/) /or y47W/P in w/iicÄ eac/i de-
mand node is connected to its Ziominp su/itc/i usiny at most one 5^Af6/s connection, i.e.
5^ 734 mi < 1, Vu £ V, and eac/i switc/i is connected wit/i its Aomin^ switcA usin^ at

mosi one 5^M6/s connection, i . e .^ . rj34n{ < 1, Vu € V \ {0}.

Proof. Suppose we are given a solution for ATNIP in which a demand node u is connected
to its homing switch using more than one 34Mb/s connection. Then replacing two of these
34Mb/s connections by one 155Mb/s connection, as well as replacing a 34Mb/s interface
card by a 155Mb/s interface card in the switch, again yields a feasible solution, for which
the costs have not increased. Repeating this argument yields the first part of the result.
The second part of our claim can be verified similarly. •

Lemma 3.3.2 ft/. Consider tAe fcin-pacfcinp pro6/em /or a demand node u as de/ined
6y constraints f3.0j and f5.70^, and iwit/i objective/unction

" " " E,-g J„ -\> • ™i (3-22)

twt/i 2 • A** > A'" > 0. Let (t, m) represent an optima/ so/ution/or t/iis 6in-pacfcinj
pro6/em. //t/ie conditions o/Iemma 5.3.i are satis/ied, t/ien t/iere exists an optima/
soZution (z, y, fc, /, t, m, 2, n) /or J47W/P wit/i t = t, m = m.

3.3. NOTATION AND MATHEMATICAL FORMULATION 51

fit/ Consider t/ie 6tn-pacA»n^ proft/em /or a poientia/ switc/i node u / 0 as denned 6j/
v^ constraints f5.iij and f5.iJ2^, and wit/i objective /unction « • üüp"i .'r rfjjuoiüU.!

min E,e//„A,-ni (3.23)

wt/i 2 • A^ > A'" > 0. Let (5, n) represent an optima/ so/ution /or t/iis bin-pacfctnj
profc/em. //t/ie conditions o/Lemma 5.5./ are satis/ied, and t/iere exists an optima/
so/ution /or .47WLP unt/i a switc/i instated in node u, t/ien t/iere exists an optima/
so/ution (x, j / , fc, T, t, m, z, n) /or .ÄTAf/P wit/i z = 5, n = fi.

Proof. Let (t, m) represent sin optimal solution of the bin-packing problem, and let the
optimal solution for ATNIP be denoted (x,y, fc,T, f, m, z, n). Now suppose that m ^ m.
Define b„ = £ \g JT m£ to be the number of connections of type r used in the optimal

bin-packing solution, and let 6„ be defined similarly to be the number of connections of
type r used in the optimal ATNIP solution. We consider 8 cases.

(0- û* ~ ^ , 0 ^ * > 6^*; then a simple exchange argument makes it is easy to verify
that 77i cannot be an optimal solution for the bin-packing problem.

(ii). b^ = 6^,6i" < &i"; then ?n is not an optimal solution for ATNIP.

(iii). oj* > 6j*,6^ = 6 ^ ; then m is not an optimal solution for the bin packing problem.

(iv). 6̂ 4 < 5*4^155 _ £155. tjjgjj ^ jg JJQJ. jyj optimal solution for ATNIP.

(v). 6j* > 6^, ft^^ > 6„^; then m is not an optimal solution for the bin packing problem.

(vi). ftj* < 6^,6i" < 6i^; then m is not an optimal solution for ATNIP.

(vii). bj* > 6^,6i" < 6^*; from Lemma 3.3.1 it follows that we may assume w.l.o.g. that
£34 = i £34 = o. Next, if 6i« > feiss + 2, then 6„ cannot be optimal for ATNIP, so
assume that 6^^ = &i" + 1. But then it holds that replacing the connections rfi„ by
connections 771̂ yields a feasible solution for ATNIP with lower costs, hence m« is
not optimal for ATNIP.

(viii). 6^ < 6 ^ , 6 ^ > 6^^; from Lemma 3.3.1 it follows that we may assume w.l.o.g. that
i ^ = 0,&Ü* = 1- Next, if &i" < 6^" - 2, then 6„ cannot be optimal for the bin-
packing problem, so assume that 6 ^ = 6J," - 1. But then it holds that replacing
the connections m,, by connections 7n„ yields a feasible solution for the bin-packing
problem with lower costs, hence m„ is not optimal for the bin-packing problem.

This shows that indeed m„ = 771,, must hold. Its also easy to see that f = t, since the
same assignment of the commodities can be used for both problems. Similarly, one can
prove the second part of the Lemma. •

Under the conditions of Lemma 3.3.1, the optimal values of the variables tjf, z^', mj, n{ can
thus be determined independently of the homing and routing decisions, by using the bin-
packing problems as defined in Lemma 3.3.2. Hence, the optimal number of connections

52 CHAPTER 3. A DYNAMIC PROGRAMMING ALGORITHM FOR ATNIP

between a demand node u and its homing switch (denoted 6„) can be obtained beforehand
(although it requires solving a problem which is NP-hard in general, but relatively easy
to solve for most real-life problem instances). Hence, 6„ = £ .̂ JT m£ with m^ the
optimal value of the corresponding bin-packing problem. Similarly, the optimal number
of connections between a switch and its homing switch (denoted p„) can be determined
beforehand: p„ = XI g//* "u with n{ the optimal value of the corresponding bin-packing
problem, and the sum over an empty set defined equal to zero. Thus, under the conditions
of Lemma 3.3.2 ATNIP can be formulated as follows (denoted ATNIP* in the sequel):

6 £ « e e M ' «) (3-24)

s.t. £ « e x . *«« = * VuGV (3.25)

•: !„.„>!„„ - • Vu,u> 6 V : a; € X«,u' 6 K(u,tu)\{u} (3.26)

••• £ .6* .*» = * . . -• " ' V«eV\{0} - . ,: (3.27)

yuu, < I«'«, * ' V u , u > e V : u) € r„,u' e V(u,w)\{u} (3.28)

ti; — 2-/u€V\ u^uw ' PuSA**"/ ~r Ptu^utti;

. >• •, . •,; •,..,-.,. V w € V , T = l , . . . , t • (3 . 2 9)

, _ V e £ f , T = l , . . . , t . (3.30)

z„„ G {0,1} Vu G V, Vu; e Jf„ (3.31)

y„u, € {0,1} ' Vu € V \ {0}, Vt<; G K (3.32)

*;, ^ ; > o • Vwe v, V e e f , r = i , . . . , t (3.33)

Unless stated otherwise, in the sequel we will assume that the conditions of Lemma 3.3.2
are satisfied, hence the latter formulation of ATNIP* will be used.

Now we show that the decision version of ATNIP' is NP-complete, which implies that an
exact algorithm running in pseudo-polynomial time is the best one may expect, unless
P=NP. To do so, we state the following problem definitions:

SUBSET SUM (see Garey and Johnson [37])
INSTANCE: Finite set A, size $(a) € N for every a € A, and a positive integer £).
QUESTION: Is there a subset A' C .4 such that the sum of the sizes of the elements in
A' is equal to D?

ATNIP*
INSTANCE: Tree G = (V,£), an integer ß , a number t € N, a demand 6̂ € N for every
it G V, r = 1 , . . . , t, a number p„ e N for every u € V, r = 1, . . . ,<, and cost functions
K»(fe») : Hr{0,... , 7 ' • ß} -> N, for all w € V and L.(*«) : II,.{0,... ,7* • ß } -> N, for all
e € £, and a positive integer F.
QUESTION: Does there exist a solution (x, Jfc, £) for ATNIP as defined by (3.24)-(3.33)
with objective value at most F?

3.4. DEFINING SUBPROBLEMS FOR ATNIP 53

Theorem 3.3.1 .47W/P* is iVP-comp/ete ('under t/ie assumption f/iat/or cacA Jfĉ ,, £, and
^/ Z)u> •^u'(^) + S e ̂ «(4) < ^ con 6e i/eri/ied in po/ynomiaZ time/ , -, . -

Proof. It can easily be checked that ATNIP* is in NP (given the mild assumption that
the objective value can be verified in polynomial time). Hence it suffices to show that
SUBSET SUM reduces to ATNIP*. Given an instance for SUBSET SUM, we define an
instance for ATNIP* as follows. Let V = .4 U {0} contain a node for each item in A
and a node which will be the root of the tree. Let £ = {{0,a}|a € A} be the set of
edges where each node in .A is connected to the root. Next, we let t = 1 and 7' = 1
(only one type of connection and the number of slots equals the number of connections
which can be connected to a switch). Define &„ = s(a) for all a € >1 and 60 = 0, p„ = 0
for all o e .4 U {0}, ß = £aex*(a)> and F = 1. Finally, edge costs L<(4) = 0 for all
e £ f, and #„,(£„) = 0 for u> / 0, Ä»(fc») = 1 for w = 0,fc„ = £>, and #„(*„) = 2
for w = 0, A;„, 7̂ Z). Note that this transformation can be done in polynomial time. It
remains to show that the two problem instances are equivalent.

First, assume that there exists a subset >T C yl with an aggregated size equal to D.
By installing a large switch in the nodes corresponding to items in J4 \ J4', as well as
in the root, we obtain a feasible solution for ATNIP* with objective value equal to one.
Conversely, if there exists a solution for ATNIP* with solution value less than or equal
to one, it must be equal to one, since the switch costs in the root are at least one. But
then the load on the switch in the root must equal £>, which in turn implies that the set
of nodes in which no switch is installed has a cumulative demand equal to £>. •

3.4 Defining Subproblems for ATNIP

In this section we introduce two families of subproblems which are defined on subtrees
T[v, i]. These subtrees were introduced by Johnson and Niemi [51] to improve the running
time of a dynamic programming algorithm for partially ordered knapsack problems. The
main idea is that a subtree T[u, i] can be decomposed into two smaller subtrees T[r, i — 1]
and T[sJ,,djiJ (provided i > 1). By combining optimal solutions for problems defined
on the latter subtrees, one may be able to obtain an optimal solution for the former.
The main difficulty (as is the case for all dynamic programming algorithms) is to find an
appropriate parameterization of the problem at hand.

The first family of subproblems we define are denoted by </(«, i,s). They represent the
minimal costs restricted to the subtree T[v, i], among all solutions in which a switch is
installed in node v. Furthermore, the vector s € N* denotes the connections between the
switch in node u and nodes in V[u,d„] \ V[u,i] (see Figure 3.2(a)). More formally, for
(u, i) with !) € V, 0 < i < d„, s > 0 and s + 6, + p , « ß we define p(t>, i, s) to be

#„(** + a) + £«eE[„,i] !«(*«) (3.34)

W € V > , i] (3.35)

54 CHAPTER 3. A DYNAMIC PROGRAMMING ALGORITHM FOR ATNIP

(a) g(v,i,s) (b) h(v,i,r) ' '

Figure 3.2: Graphical Representation of Subproblems

> x„„, W € V[u, z], Vu; e X„ n F[u, i],

[v,t]

^u'ti

{0,1}

(3.36)

VueV[»,»]\{«} ' (3.37)

W e V[w,i],Viy€y„nl>,i],

W e V(ti,tu)\{u} (3.38)

W> e V[u, i], r = 1, . . . , t (3.39)

V« ^ ^I"> *]. T = 1. • • •.* (3-40)

Vu € V[u, t], Vu; € V[w, i] n X„ (3.41)

VtB6V[» , i] ,Vee%i] ,

(3.42)

(3.43)

The second family of subproblems /i(t>, t, r) represents the minimal costs restricted to the
subtree T[u, i], among all solutions for which no switch is installed in node i>. The vector
r represents the connections between nodes in T[u,i] and a switch located outside T[u, t].
In order to have such a homing node for node v (as well as the endpoint outside T[u, t] for
the connections of the vector r), we introduce an artificial node g to be a predecessor of
node t;, in which a switch is installed (see Figure 3.2(b)). More formally, for (t>,i) with
" 6 V, 0 < t < (i, and 6„ < r <!C ß we define /i(r, t, r) to be

:»«» + x«, = 1 W e V[u, i] U

i«, =0

(3-44)

(3.45)

(3.46)

3.4. DEFINING SUBPROBLEMS FOR ATNIP 55

(3.47)

VuSV>, i] - **.» (3.48)

Vu € V[u, t], Viu € (Y„ n V[u, i]) U {?},

Vu'e%w)\{u} ^ (3.49)

Vu>€ V[v , i]U{g} ,T=l , . . . , t (3.50)

Vee%i]u{v},T=l,...,f (3.51)

r- T = l , . . . , t , , , . > • ; : • , ; (3.52)

6 {0,1} Vu e V[«, *], Vti» 6 (V[t>, t] n *„) U {g} (3.53)

U{9} (3.54)

. . . , t (3.55)

During our dynamic programming algorithm, solutions for the subtrees T[u, i — 1] and
T[sJ,,d,J will be combined to obtain a solution for subtree T[v,i]. We will therefore
focus on the relations between the subproblems we have just defined. In Section 3.4.1
we show how the problem y(v, i, s) for i > 0 can be decomposed to problems on subtrees
T[v,i — 1] and T[sJ,,d,J, whereas Section 3.4.2 reports on similar relations for /i(v,i,r).
In Section 3.4.3 it is shown how (?(ti, t, s) and /i(v, i, r) should be determined in case i = 0,
i.e. if the subtree consists of a single node. These relations form the starting point of the
dynamic programming algorithm for ATNIP*.

3.4.1 Recursive Relations for y(u,z,s).

The set of feasible solutions for p(v, i,s) can be partitioned into a set of solutions for
which a:̂ ,̂ = 1 (representing the situation in which a switch is installed in node sj,), and
a set of solutions for which z, .^ = 0 (no switch is installed in node sj,). Let Q G N* denote
the number of connections between a switch in node t» and nodes in V[v,i] \ V[r,i — 1]
in a feasible solution for ATNIP with :r„i, = 1, hence for <?(v,i,s). For a feasible solution
in the case that z , j ^ = 1, Q must equal p^ . The set of feasible solutions in the case
that x , j ^ = 0, can be partitioned into smaller sets by considering all possible values of
Q. Because of the partition, the optimal value for ^(v, i, s) can be determined as the
minimum of the optimal values over all subsets of feasible solutions. Therefore, one can
show that the optimal value for g(v, t, s) can be obtained from the aforementioned subsets
of feasible solutions.

Lemma 3.4.1 Consider (t>,i) tint/i Ü € V and i > 0. let (z,fc,0 6e on optima/ so/ution

56 CHAPTER 3. A DYNAMIC PROGRAMMING ALGORITHM FOR ATNIP

/ o r 5(1;, i, s) luit/i z,i^j = 1. 77ien ,wj •* =? e« , . ,.,.,,.-„

{ ff(v,»,a) = flK,d,.,O)+s(t;,i-l,s + p,i) + L,i(p,i) . / (3.56)

Proof. Prom z , ^ = 1 it follows that i„„ = 0 for all u € V[sJ,,d,.J, and y„„ = 0 for all
u € V[sJ,,d,|J \ {sj,}. But then constraints (3.35)-(3.43) of #(t>,i, s) can be formulated as
follows:

I,-«, > 1«. ,.,', ;, . Vue V[v,i-i],VtueX„nV[t>,i-i]

Vu € V[v, i - 1] \ {u}

• V« € F[sJ,, d,.J \ {sj,}

W e V(u,io)\{u}

I/«. < a:«-» Vu € V[*j,d.*],Vu; E V . n V[«i,d..

Vu'6 V (U , I Ü) \ { U }

*i = Eu6V[»,>-i](^«- + PuJ/uu.) + PL^«.«. ^ ^ € V[u, i - 1] \ {u}, r = 1, . . . , t

i = Euev[.i.d,iltö«<» +PuW«») +?»*«<«> ^ S V[4,d,i],r = 1,. . . ,t

J = Euev[»..-i](^ui« + Piy««,) + Pv̂ v« + P^ r = 1, . . . , t

C = E„,„,ev[v,i-i!:ee£Ku,)C>uZ™ + P^u«,) Ve e £[t>, i - 1], r = 1, . . . , t

C E B(u.«.)(*^«"» + PÜy™) ^ e £[si, d,J, r = 1, . . . , t

i„„ € {0,1} Vu6 V[u, i -1]

Vw 6 V[u, t - l] n X ,

Xu^€{0,l} Vu6 V[«i,d,i]

Vu/e V[«i,d,i]nx,

y«u,e{o,i} VueV|«,t-i)\H

3.4. DEFINING SUBPROBLEMS FOR ATNIP 57

.mi We v[«;,d^]\{*t} ... _ £

V«€fi[t) , i -1]T=1

This shows that the constraints can be separated into two sets, one set containing the
constraints on the subtree T[u,i - 1], and one set containing the constraints on the sub-
tree T[s*,d,J. Since the objective function is also separable, it directly follows that the
problem p(v, t, s) decomposes into the problem g(sj,, d^, 0) on subtree T[sj,, d,J, problem
y(v,i - l,s + p,j) on subtree T[u,t - 1], and the individual edge sj, with £,. =?,;,- •

Lemma 3.4.2 Consider (u,i) wit/i i) 6 V and i > 0. Let (x,fc,^) be an optima/ so/ution
/or g(v,i,s) wit/i x^,j = 0 and ^ = a. TAen

(3.57)

Proof. Similar.

3.4.2 Recursive Relations for /i(t>,z,r). '

In this section we use a similar partition of the set of feasible solutions for /i(v,i,r) to
obtain its optimal value and solution. Since the proofs of the lemmas are similar to the
one in the previous section, they are left to the reader.

Lemma 3.4.3 Consider (u,i) loit/i u € V and i > 0. Let (x,fc,^) 6e an optima/ so/ution
, j ^ = 1. T/ien

(« , * - l , r - p . *) + L.i(p<) .: • (3.58)

Lemma 3.4.4 Consider (v,i) wit/i » e V and i > 0. Let (z,/c,^) 6e an optima/ so/ution
/or/i(t),i,r) «rttÄx.i,* = 0 and ^ = a. T/ien ;

(3.59)

58 CHAPTER 3. A DYNAMIC PROGRAMMING ALGORITHM FOR ATNIP

3.4.3 Starting Point of Dynamic Programming Algorithm.

In this section we show how the coefficients (?(v,i,s) and A(u,t,r) can be determined if
i = 0, i.e. if the tree T[v, i] consists of a single node. Since the parameterizations are
defined in such a way that it is completely clear what the incoming or outgoing load into
the tree is, these coefficients can be determined very easily. Together with the relations as
defined in the above, these relations form the building blocks of our dynamic programming
algorithm.

Proposition 3.4.1 Consider (f,i) witn u € V and i = 0. // s G N* is suc/i that tAe
f S + 6„ + p„ < ß / io /ds , tfien '^ in:;: • • > : • : ! < • =:n:r--::,<••

• j . ' . ' . ! ' • . • ; . : . . ' : • : • , • • ' . - : N - . ^

' . \ , -.'-V '»V:?, :• • . • ! • , . ' • : ; . ' • . ! , : ; ; ; - . : • . • . - . . - •> • - .

Proof. It is easy to see that under the condition posed in the proposition there exists a
solution for j(u,0,s). Since V[v,0] = {r}, it follows that x„„ = 1. Furthermore, •"*!••••

The objective function in (3.34) thus amounts to Ä"„(s + 6„ + p„).

Proposition 3.4.2 Consider (v,i) wit/i u € V and i = 0. T/ien

Ä„(0) i / r = 6„
. (3.61)

00 otnerunse

Proof. From V[v,0] = {r}, i„„ = 0 and (3.52) it follows that r = &„. Finally, the
objective function in (3.44) amounts to K„(0). •

3.5 An (9(nß^) Dynamic Programming Algorithm for
ATNIP

Based on the relations that are derived in the preceding section, we are now able to
formulate a dynamic programming algorithm. Recall that y(v, i, s) is only defined for
(v, t) with n € V, 0 < i < d, and 0 < s and s + 6„ + p„ < ß . Similarly, /i(i>, i, r) is only
defined on (v, i) pairs with 1; ̂ 0 and 6„ < r <S 5 . The dynamic programming algorithm

3.5. AN 0(nß*) ALGORITHM FOR ATNIP 59

as stated here does not keep track of the optimal solution itself, but standard ideas from
dynamic programming can be used to do so. , ,.;•;• -rait g«

DYNAMIC PROGRAMMING ALGORITHM FOR ATNIP

forall (t;, i, s) with t; 6 V, 0 < i < d„ and 0 < s and s + 6 , + p „ « 5 d o

<;(t>,i,s) = oo; / * initialization o*/ "

forall (v, i, r) with i; € V, 0 < i < a\, and 6„ < r < ß do

/i(v, i, r) = oo; / * initialization ft */ V , , ,.'" ,

f o r a l l u = n d o w n t o 0 d o b e g i n , .,., v_ ; ,r,-,.v.-t ><u, '.' >.i
f o r a l l s w i t h 0 < s a n d « + () « + p „ < ß d o ••.? ' iV.;»^»» .:. •.-.̂ i ^v ' i i ^ >:• ;*'.r,

if (u / 0) then
/i(v,0, r„) = /f„(0);

forall i = 1 to a\, do begin : : ;
forall s with 0 < s and s + L + p„ « ß do

forall r with 6„ < r « ß do

/i(i/,i,r) = min{5(sj,,d,j,0) + /i(v,i - 1,r - p . j) + L,i(p,|,),

mina{/i(4,d,j,a) + /i(v, i - 1, r - a) + L,j(a)}};

end;

end;

When determining the coefficients <?(v,i,s) and /i(i>,i,r) for i > 0, one needs to know all
possible values of a which may occur. Weak bounds can be given, such as a > 0, since
obviously ^ must be nonnegative, and Q « B , since all connections which pass the same
edge are connected to the same switch, and hence, must fit the capacity ofthat switch. Of
course, the running time of the algorithm can be improved by exploiting better bounds.
Since a must at least encompass the connections from demand node sj,, a > 6,̂ would be
a valid lower bound. Furthermore, when determining p(v, i, s), all connections on edge s{,
must fit on the switch in node Ü. But the same holds for connections from vector s, the
demand from node u itself, and the connections between the switch in v and its homing
switch. Hence, a + s + 6„+p„ <$; ß yields a valid upper bound on a for this case. Finally,
when determining /i(t>, i ,r), the connections on edge sj, together with the demand from
node v are only a part of the total number of connections r, hence, a + 6„ < r imply a
valid upper bound for a in this case.

In practical applications the number of different types of connections is usually small
(t = 2). Furthermore if the applied cost structure is as indicated in Section 3.2, the

60 CHAPTER 3. A DYNAMIC PROGRAMMING ALGORITHM FOR ATNIP

general cost figures /(„(£„) and L«(4) can be determined easily (that is in small running
time). The overall running time of the algorithm then equals C(nS'*), since the number
of T[v,i] trees we consider is O(n), for each tree we determine O(B^) ^-coefficients and
O(S^) /i-coefficients. Moreover, each of these coefficients can be determined in C?(S^)
time. The required storage space follows directly from the number of coefficients to be
determined and is C(nß^). This is formally stated in the following theorem, which is the
main result of this chapter.

Theorem 3.5.1 Consider yHW//* as denned 6y f3 .^- f3 . i^ , and wit/i ob/ectit/e/unction
de/ined by f3.,20,) and ^3.2J^. 7/t = 2 ftwo types o/connections and inter/ace cards^ and
0 < |V| ft/ie number o/stüitc/ies bounded 6y t/ie number o/nodes in ine treej, t/ien ATAT/P*
can be so/ved by a pseudo-po/ynomiaZ time dynamic programming aZgorit/im t/iat requires

* time, and O(nß^) storage space.

When the algorithm is used as a tool in the planning phase of ATM network layout, there
are several features which may be added to the algorithm. First, if one is interested in
the optimal solution in which certain switches are already (pre)installed, one can easily
incorporate this into the algorithm by adopting the cost function /("„,(£„,) for these specific
nodes. A similar technique can of course be applied to prohibit the installation of switches
in a node. Overall, this gives the possibility to incorporate partial solutions as part of the
input. This can very well help to resolve many sensitivity questions which are extremely
important in the planning of network structures.

Secondly, given a solution, it is easy to show the actual number of slots being used in a
switch, as well as the number of Mb/s flowing over a set of connections. Hence, given a
network structure, one can determine to what extend switches and connections are being
used. This utilization level of the different components of the network may give insight
into the stability of the network structure for future demand.

Thirdly, when one determines the optimal solution for the tree as a whole, but for different
amounts of traffic from outside the tree (i.e. not only zero), this amount of traffic from
outside the tree may be viewed as the number of connections incident to the root node
which are used for routing in the Backbone. If the optimal solution is insensitive for
this amount of traffic, this gives a justification for the approach to solve ATM network
problems for the Backbone and trees separately.

Finally, in practice the number of connections used is, although small (usually equal to
two), of great importance for the running time of the algorithm, as it is proportional to
the number of types available. By only allowing one type of connection (say the largest
capacity), an approximation algorithm can be made which from a theoretical point of view
may have a bad performance, but from a practical point of view can be very useful. By
only considering one type of connection the running time decreases significantly, whereas
the solutions obtained are feasible and usually capable of processing a somewhat larger
demand than the demand which forms the input of the algorithm.

3.6. COMPUTATIONAL RESULTS 61

r«w3.6 Computational Results

To test our algorithm on real-life instances from the Dutch telecommunication company,
we implemented our algorithm in C++ on a DEC 2100 A500MP workstation with 128Mb
of internal memory. All problem instances we consider have a cost structure as the one
proposed in Section 3.2 and Section 3.3. Table 3.1 reports on eight problem instances,
for which three different switches were available, with capacities 3,10 and 20 slots, respec-
tively. Table 3.2 reports on the same instances but with the largest switch capacity being

.-,.•>• " Table 3.1: Computational results • ^. • i -^ i
for the instances from KPN (time
measured in sec.) t • . • - . . . - • • • : •:'

problem

aso_l
aso.2
aso_3
aso_4
as 0.5
aso_6
as o_7
aso_8

n
12
26
29
35
28
12
22
31

dp.aso.1 (s)

0.37
1.14
1.71
1.45
0.96
0.67
1.51
1.15

value

92
141
161
178
151
85
147
146

Table 3.2: Computational results
for the instances from KPN with
larger capacity switch.

problem

aso.l
aso.2
as O.3
as O.4
as O-5
aso-6
as o.7
aso.8

n

12
26
29
35
28
12
22
31

dp.aso.l (s)

11.59
29.57
50.59
37.83
25.14
18.53
42.51
31.68

value

92
141
161
178
151
85
147
146

50 instead of 20 (f? increases). The results show that B is indeed an important deter-
minant for the running time of the algorithm. The optimal solutions have not changed,
which only indicates that capacity on the switches was not a restraining factor.

From the above results it follows that if extremely large trees are considered, together
with even larger capacity switches, the running times of the algorithm might become

62 CHAPTER 3. A DYNAMIC PROGRAMMING ALGORITHM FOR ATNIP

unacceptable. Therefore we have also implemented an algorithm dp.oso.2 in which only
one type of connection (155Mb/s connections) is considered (as explained in Section 3.5).
This relaxation causes the number of p and /i-coefficients which have to be determined to
be reduced significantly. Table 3.3 shows that the running times of the algorithm behave
accordingly. More importantly, although the algorithm does no longer need to provide an
optimal solution, the solutions found by the algorithm proved to be very similar to the
optimal solutions and still useful in practice. Finally, some larger trees were considered.
Table 3.4 states the results for these larger instances, where again three switch capacities
were considered, with capacities 3, 10, 30, respectively.

Table 3.3: Computational results
for the instances from KPN with
only one type of connection.

problem
aso-1
aso_2
aso-3
aso-4
aso.5
aso-6
aso.7
aso_8

n
12
26
29
35
28
12
22
31

dp_aso_2 (s)
0.02
0.03
0.03
0.02
0.02
0.02
0.02
0.03

Table 3.4: Computational results
for the instances from KPN with
larger capacity switch.

problem
aso.17
aso.24
aso_58
aso.68

n
34
61
59
43

dp_aso.l (s)
9.05

12.90
10.74
8.79

In conclusion, the algorithmic ideas presented in this chapter prove to be very useful in
practice. The algorithm yields optimal solutions for real-life problem instances, which are
of significant problem size. Moreover, additional features can be added to the planning
tool if desired, making the tool even more attractive as a decision support system in the
network design planning phase.

Chapter 4

Lifting Valid Inequalities for the
Precedence Constrained Knapsack
Problem

4.1 Introduction

Many situations arise in practice where certain decisions can only be implemented or
performed if specific other measures are taken. In order to analyze such situations by
means of a mathematical model, one needs ways to model these implications. Precedence
constraints are a natural way to do this, and in fact both the mathematical models in
Chapter 2 and Chapter 3 contain precedence constraints to model the restriction that if
a node in the tree network "homes on" a concentrator in another node, then all nodes on
the path between the two nodes must home on that concentrator as well (see Chapter 2
for this terminology).

Apart from precedence constraints many of such telecommunication network design mod-
els also contain knapsack constraints to represent the limited capacity of concentrators (or
any arbitrary telecommunication device) located in the network. For instance, Aghezzaf,
Magnanti and Wolsey [3] consider a problem on a tree network where each node of the
tree has a demand for telecommunication service which can be satisfied by a telecommu-
nication device located in the root of the tree. The goal of the problem is to maximize the
number of nodes whose demand can be satisfied given the limited capacity of the device
(knapsack constraint) and under the restriction that a node's demand can only be satisfied
if the demands of all nodes on the path from that specific node to the telecommunication
device are satisfied as well (precedence constraint). Furthermore Shaw [69] and Cho and
Shaw [23] employ a decomposition technique to tackle certain network design problems,
for which subproblem that remains to be solved consist of a knapsack constraint and
precedence constraints (see Cho and Shaw [22] and Shaw and Cho [70]).

In this chapter, based on Van de Leensel, van Hoesel and van de Klundert [76], we
therefore study the precedence constrained knapsack problem (PCKP) which contains

63

64 CHAPTER 4. THE PRECEDENCE CONSTRAINED KNAPSACK PROBLEM

both a knapsack constraint and a number of precedence constraints. The remainder of
this introductory section discusses PCKP, the literature on its polyhedral structure, and
the contributions of the research presented in this chapter.

Consider the standard 0-1 knapsack problem. In this problem, there is a set V of items,
V = {1,2, ...,n} and a knapsack with capacity 6 € Z+. Each item i £ F has a value
Cj € Z, and a weight IUJ e Z+. The problem is to find a maximum value subset of the set
of items whose total weight does not exceed the knapsack capacity. This is modeled in
the following integer linear programming formulation:

max Ec<Xj . _ , t l i . 8 1 ff?-' ••". ' ; ; ; ! ! - / ;] ! ! „ . (4-1)

' • •"'it ." '" ' EoiX<<6 I K 1 ! >] ; • • • . y ; - - ; - . . ' i f r :) 9 ' - (4 . 2)

x, €{0,1} i = l,...,n i f i C J O (4.3)

The knapsack problem has received considerable attention, not only because it has several
important applications in itself, but also because it arises as a substructure in many
combinatorial optimization problems.

This chapter studies the precedence constrained knapsack problem, which generalizes the
knapsack problem by including a partial order on the items. We say that there is a
precedence constraint /rom item i to item j if item j can be included in the knapsack
only if item t is included. Thus, x< = 0 => x̂ = 0. The set of precedence constraints can
be represented by a directed gTaph Z)(V, A), where the node set V is the set of items,
and each precedence constraint is represented by a directed arc in A The precedence
constraints are thus given by

x, > x ; (U J e A (4.4)

The precedence constrained knapsack problem (PCKP) is now formulated by (4.1)-(4.4).
In this chapter, we are interested in facet defining inequalities for the precedence con-
strained knapsack polytope, and more specifically, the complexity of obtaining these facets
using lifting techniques.

As is the case for the standard 0-1 knapsack problem, PCKP is an interesting problem
in itself, which arises naturally as a substructure in several other combinatorial problems
(apart from the ones in telecommunication network design). Consider for instance a tool
management problem that arises in automated manufacturing, where each part requires
a specific set of tools in order to be processed. Hence, a part can only be processed
on a machine if the required tools are loaded. In our model this would correspond to
a precedence constraint from tool t to job j if tool i is required to process job j . The
knapsack constraint stems from the limited capacity of the tool magazine. Crama [26] and
Stecke and Kim [72] discuss several problems containing both knapsack and precedence
constraints in the context of tool management, and provide pointers to literature on
related combinatorial problems, of which we mention only a few here.

4.1. INTRODUCTION 65

Mamer and Shogan [57] and Hwan and Shogan [47] consider capital constrained repair kit
selection problems, which also have both knapsack and precedence constraints. A similar
formulation arises in strip mining applications (see Johnson and Niemi [51]). Given a
geological report on the expected contents of certain minerals in different layers of the
earth, the mining company would like to develop a digging plan in order to maximize its
profits. If digging in lower layers of the earth seems profitable due to a high concentration
of the minerals, then this is only possible if digging in higher layers is performed as well
(precedence constraints).

Garey and Johnson [37] prove that the decision version of PCKP is NP-complete in the
strong sense, but solvable in pseudo-polynomial time if the underlying precedence graph
is a tree (see Johnson and Niemi [51] for a dynamic programming algorithm). Hence, in
order to solve the general PCKP to optimality, a further understanding of the structure
of the precedence constrained knapsack polytope can be expected to accelerate general
integer programming schemes, as it has led to more powerful exact solution methods for
standard 0-1 knapsack problems (see Crowder, Johnson and Padberg [27]). For polyhedral
results on the standard 0-1 knapsack problem we refer to Balas [10], Balas and Zemel [11]
and Zemel [80]. Hartvigsen and Zemel [46] discuss the complexity of the recognition of
(lifted) valid knapsack inequalities.

As is observed by Boyd [19], problems which are defined entirely by precedence constraints
can be solved using standard LP-techniques, since a set of precedence constraints itself
defines a totally unimodular matrix and hence, a polyhedron with integral vertices. For
the PCKP, Boyd [19] analyzes two classes of valid inequalities arising from K-covers and
(1,^-configurations. He identifies conditions under which these inequalities define facets
of a lower dimensional polytope, in which case lifting may lead to a facet of the precedence
constrained knapsack polytope itself. Park and Park [64] consider a special case of K-
covers which they refer to as minimal induced covers. In general, inequalities arising from
minimal induced covers will not define facets of the precedence constrained knapsack
polytope. Park and Park [64] consider a lifting technique to obtain valid inequalities.
The reader may observe that all of the aforementioned classes of valid inequalities are
natural extensions of classes of inequalities for the ordinary knapsack problem.

In this chapter, we present various new results on facets of the PCKP-polytope. Sec-
tion 4.2 introduces some notation and assumptions used throughout the chapter. In
Section 4.3 we state a class of lifting orders, which guarantees that valid inequalities of
the PCKP-polytope can be lifted to obtain facet defining inequalities for the polytope,
using a standard sequential lifting procedure. For valid inequalities arising from minimal
induced covers and (l,k)-configurations we identify the lower dimensional polytope for
which valid inequalities arising from minimal induced covers and (l,k)-configurations are
facet defining. We specifically consider valid inequalities arising from minimal induced
covers; the variables for which lifting coefficients have yet to be determined are partitioned
into two classes. For one of these classes, we establish a relation between the lifting co-
efficients and the number of components in two related subgraphs of Z). Based on this
characterization, these lifting coefficients can be seen to be computable in polynomial
time. For the second class of lifting coefficients however, we prove that their computation
is strongly NP-hard.

66 CHAPTER 4. THE PRECEDENCE CONSTRAINED KNAPSACK PROBLEM

A special case of the PCKP which has received considerable attention is the tree knap-
sack problem, in which the underlying precedence graph is a tree. Aghezzaf, Magnanti
and Wolsey [3] for instance, study the polyhedral structure of the problem. Our results
allow for more general graph structures and extend their findings. Moreover, our results
easily imply that, for the tree knapsack problem, all lifting coefficients can be obtained in
polynomial time. In Section 4.4 we consider valid inequalities arising from K-covers. For
these valid inequalities standard sequential lifting techniques cannot always be applied.
We show that by applying a related lifting procedure facets of the PCKP-polytope can
still be obtained. To illustrate the effect of lifted inequalities and their applicability in
integer solution procedures, we report our computational results in Section 4.5.

4.2 Notation and Assumptions

Throughout this chapter, the following definitions and notation will turn out to be con-
venient. For (i,j) € J4, item i is called a predecessor of item j and item j is called a
successor of item i. For all W C V, we denote by F(W) = {j € V \ W| 3ij € W : (ii,j) £
.A, 3t2 6 W : (j, 12) € .4} the set of elements in V \ W which are both a successor of
an element in W and a predecessor of an element in VT, by P(W) = {j € V \ W| 3i €
W : (j, i) € J4} \ F(W) the set of predecessors of a set W excluding items in W and
F(W), by T(W) = f f u P(W) U F(W) the set of predecessors of set W including W,
and by fl(W) = V \ T(W) the set of remaining items (variables). For ease of exposition,
^({*}). ̂ ({t}) and fl({i}) will be denoted P(i),T(i) and Ä(z), respectively. Furthermore,
for all W C V define a(W) = Eieiv^- Note that if (i,j) £ A and (j.Jfc) € A, then,
by transitivity of the precedence relations, (i, A;) can be assumed to be an element of A.
Arcs in A induced by transitivity will be omitted in the figures. Moreover, arcs (i,j) are
depicted downward.

The following two assumptions can be made without loss of generality.

Assumption 1. The directed graph D is acyclic.

If D contains a cycle, nodes (variables) in this cycle must either all be included in, or all
be excluded from the knapsack. Hence, the cycle can be contracted into a single node,
with cumulative value and weight coefficient.

Assumption 2. o(T(i)) < 6 , for alH = 1, ...,n.

This simply implies that for every item i there exists a feasible solution in which it
is included in the knapsack. Items violating this assumption can be deleted from the
problem instance.

4.3. MINIMAL INDUCED COVERS AND (1,RECONFIGURATIONS 67

4.3 Minimal Induced Covers and (l,k)-configurations

In the literature on the polyhedral structure of the standard 0-1 knapsack problem, min-
imal cover inequalities have been investigated (see for instance Balas [10], Balas and
Zemel [11]). In order to generalize these concepts to PCKP, we must take into account
that if an item i is included in the knapsack, so must all the items in T(i). In Subsec-
tion 4.3.1 we therefore consider a straightforward generalization of minimal covers, the
so-called minimal induced cover (see Park and Park [64]). We show how valid inequalities
for the precedence constrained knapsack polytope can be strengthened using standard
sequential lifting techniques. Different lifting orders are discussed, and we derive suffi-
cient conditions for classes of valid inequalities under which lifting leads to facet defining
inequalities for the PCKP-polytope. .. >...„,..„.,..._ . , , , „ .

Given a minimal induced cover C C V, we give a combinatorial characterization of the
value of the lifting coefficients for the variables in P(C) in Subsection 4.3.2. This leads to
the conclusion that these values can be computed in polynomial time. Subsection 4.3.3
shows that the computation of lifting coefficients for variables in /?(C) is, in general,
strongly NP-hard, but solvable in polynomial time in the special case where the under-
lying precedence graph is a tree. Finally, Subsection 4.3.4 concludes this section with an
illustrative example.

4.3.1 Generic Sequential Lifting

Item i € V and j € V are called incomparafi/e if both (i, j) $.4 and (j, i) $ A A set
W C V is called incomparable if the elements in W are pairwise incomparable. Note that
if W is incomparable then F(W) = 0.

Definition 4.3.1 C C V is a minima/ induced cover fM/Cj i/

• C is incomparafc/e

• o(T(C)) > ft

• a(T(C)\{i}) < 6 , /or a« i e (7

In words, a minimal induced cover is a set of incomparable items, which together do not
fit in the knapsack, whereas all but one of them do fit in the knapsack together. The
above definition follows the work of Boyd [19]. An alternative definition would be to
replace a(T(C)\{i}) < 6, for all i € C by a(T(C\{i})) < 6 , for all i 6 C. In fact, the
latter inequality appears in the definition of minimal induced covers of Park and Park [64].
However, on close inspection it can be verified that the results of Park and Park [64] are
derived under conditions for which the two definitions coincide. Since our results are only
applicable under the current definition, we follow the original definition of Boyd [19].

68 CHAPTER 4. THE PRECEDENCE CONSTRAINED KNAPSACK PROBLEM

For C C V a MIC, the following inequality is valid: si V

We refer to this inequality as the

We define X to be the set of feasible solutions of the PCKP, and cont;(X) to be the convex
hull of the set A". Furthermore, for any Wo, Wi C V such that Wo nT(Wi) = 0, we define
the subset X(W°|W') = X n { i e { 0 , 1 } " | x< = 0, for i S W°, and ^ = 1, for i e W'}.
For W C V, we denote by e"' the characteristic vector of W, that is, e,^ = 1, if i € W,
and ej*' = 0, otherwise.

Proposition 4.3.1 (see 5oj/d/79/^ 77ie dimension o/conu(X) is |V|.

Proof. The vectors e*W, i = 1,..., |V| together with the zero vector give |V| + 1 affinely
independent vectors in conti(X) (note that we use assumption 2 here). •

Proposition 4.3.2 Ie< C C V te a A//C T/ien <̂ e inegwo/iij/ ^ .5^ is/ocet de/ininj/or

Proof. By Proposition 4.3.1, the dimension of conu(A"(Ä(C)|P(C))) is |C|. We specify
|C| affinely independent vectors in conn(X(fi(C)|P(C))) satisfying (4.5) at equality. Let
#> = c^(^)^», for all j € C It can easily be checked that the vectors # , j e C satisfy the
inequality at equality and are affinely independent. •

Proposition 4.3.2 enables us to lift the variables in P(C) and i?(C) into the MIC-inequality
using the following technique (see Nemhauser and Wolsey [62]). Let B" = {0,1}". For
some j , suppose F C ß " , y » = y n { i g ß"|x, = 0}, and V = y n { i € ß"|x^ = 1}. If
the inequality

jij < ao (4.6)

is facet defining for conii(F') and y" ^ 0, then

is facet defining for conv(V) if

a ,=Qo- max J V a ^ i (4.8)

4.3. MINIMAL INDUCED COVERS AND (1,RECONFIGURATIONS 69

Similarly, if (4.6) defines a facet for conv(Y°) and Y* / 0, then ,; • >o5 -*.:

5 3 ^ X i + Q j I j <Oo .;»i , . ; ;^ :,,-• - 1: U (49)

defines a facet of conu(Y) if

o,- = oo- max i V a ^ l (4.10)

In order to apply this lifting technique repeatedly to MIC-inequalities, we have to be
careful with the order in which the variables are lifted. Otherwise we might, at some
point, violate the condition Y° ^ 0 when applying (4.8) or the condition Y* ^ 0 when
applying (4.10).

Definition 4.3.2 For W C V, 7r is caZ/ed a PFA5-order ('predecessors /irs<, remaining
t/ariaWes second^ /or W i/7r is a one-to-one mapping 7r : P(W)UÄ(W) -> {1,..., |P(W)U

satis/j/in^ t/ie /oMowinp conditions:

r«; ir(x) < TTCJ) i / ie p a n j

('»»y TT(I) < TT(.;) i / i , j € P(H^),j € P(i) /'ret/ersed <opo/ojico/ ordering on

tiij ?r(i) < ?r(j) i / i , j € fl(W),z € P(j) ('«opo/opica/ ordering on

Note that under assumption 1 such an order always exists. Given a MIC C C V and a
PFRS-order TT for C, for all elements j € P(C) U fl(C) we define

p*(j) = {ig P(C) U Pt(C) | TT(I) < 7r(j)} (predecessors of j in order ?r)

s"(j) = {i € P(C) U fi(C) | ?r(i) > TT(J)} (successors of j in order 7r)

During the lifting process, variables in P(C) U i?(C) are lifted sequentially, and hence,
the lifting problem for a variable j e P(C) under a PFRS-order TT is defined as follows:

Given a MIC C C F and its associated partially lifted MIC-inequality

a,(l - a*) < |C| - 1 (4.11)
»ec

which is valid for cont>(X(fi(C)|P(C) n s"(j))), determine Q^, which equals

max {£*•+ E "i(l-^)> (4-12)
[i€P(C)np-0)

70 CHAPTER 4. T H E PRECEDENCE CONSTRAINED KNAPSACK PROBLEM

Likewise, for a variable j € fi(C) the lifting problem is defined as follows: : .VST,-;!;.v: •

Given a MIC C C V and an inequality /

- x«) + X ! **< < 1̂ 1 - 1 (4-13)
«ec) ,

which is valid for coni^-X^/lfC) D s*(j)|0)), determine a,, which equals

i€H(C)np'(j)

Theorem 4.3.1 Let

• C C V Jea Af/C wit/i its corresponding va/id Af/C-ine^ua/ity (^.5J

• 7T 6e a Pi^A5-order /or C.

• /i/finj coe^cients/or t/aria6Zes in P(C) 6e determined according to ^••

• /i/finy coejö?cient5/or varia6/es in ß(C) 6e determined accordinp to ^ .

tnen t/ie resu/tinj tne^ua/tty

5] x, + 5 3 o<(l - xO + 5 1 <***' < ICI - 1 (4-15)
•eC «€P(C) i€fl(C)

de/ines a /ocet o/ t/ie PCÄ"P-poZytope conv(A').

Proof. We construct | V| affinely independent vectors in conv(X), satisfying the inequality
at equality. For j € C, let Ö-* be defined as in the proof of Proposition 4.3.2. For all
j € P(C), let # be the vector for which the maximum in (4.12) is attained. W.I.o.g.
assume that 0J' = 1 for all i e P(C) n s"(j), and ^ = 0, for all i 6 Ä(C). Likewise, for
all j G fi(C), let Ö' be the vector for which the maximum in (4.14) is attained. W.I.o.g.,
assume that <̂ = 0, for ali i e fi(C) n s^(j). Then it is easy to verify that the vectors
#\.7 € V, satisfy the inequality at equality, and moreover, are affinely independent. •

In order for the lifting procedure that consists of repeatedly solving (4.12) and (4.14) to
be applicable, the maximum that is taken in (4.12) and (4.14) has to be well denned.
This is not the case, if the subset over which the maximum is taken is empty. We
conclude that the procedure is only valid if, at each iteration, the subset is nonempty.
In the current framework, of lifting MIC inequalities, this property is ascertained by the
ordering conditions stated in Definition (4.3.2). This result, of course, can be generalized
to wider classes of valid inequalities, which may even be defined on subsets which need
not necessarily be incomparable.

4.3. MINIMAL INDUCED COVERS AND (1,RECONFIGURATIONS 71

Theorem 4.3.2 Let W C V, and fe< a^x < <*o, u//iere a, = 0 /or j ^ W, 6e a /acet
de/inin^ ineguaZity /or conv(X(Ä(W)l^(WO)). 77ien, It/tin^ f/ie varia6/es in P(W) and
Ä(W) as speci/ied in ^ . ^ and ß J ö j in PFÄS-order yte/ds a/ace< o/t/ie PCKP-poZytope
conv(X).

Proof. Let H ' C V. If W = 0, then *(Ä(W)|P(W)) = X, no lifting has to be done,
and hence the theorem obviously holds. So assume W ^ 0. As we are given a facet
defining inequality, X(Ä(W)|P(W)) ^ 0, which implies that the vector e ^ > e A" (i.e.
a(P(W)) < 6). Now it only remains to prove that at every step of the lifting process
the subset on which the maximum in (4.8) and (4.10) is defined is nonempty. Under a
PFRS-order TT, when lifting j G P(W), since a(P(W) ns*(j)) < a(P(H^)) < o, the vector
gP(W)n»"ü) jg JJJ thg corresponding subset. When lifting j € Ä(W), the vector e*"̂) is in
the subset at hand. •

The conditions on the PFRS-order in Definition 4.3.2 are such that at each step of the
lifting process the variables which are fixed do not violate the precedence constraints, and
the variables which are fixed to one do not violate the knapsack constraint. Instead of
considering a PFRS-order in which all elements in P(W) are lifted before elements in
i?(W), we might also allow for more general lifting orders, in which an element in fi(W)
can be lifted before all predecessors in P(W) are lifted. The existence of such an order
is again guaranteed by assumption 1. Next, we derive necessary and sufficient conditions
for which this class of more general orders yields facet defining inequalities.

Definition 4.3.3 .For W C V, 7r is caHed a vaZid order /or W i/ TT is a one-to-one
mapping ?r : P(W) Ufl(W) -> {1,..., |P(W) Uß(W^)|} satis^in^ t/ie /o/Zowiny conditions:

ft/ 7r(i) < TT(J) z/i.J 6 P (W) \ W , j 6 P(i) freuersed topo/ooica/ ordering on

^ 7r(i) < 7r(j) i / i , j € i?(W) \ W, i e P(j) ftopo^ica/ ordering on

Theorem 4.3.3 Lei W C V, and /et a^z < c*o, wnere Qy = 0 /or j ^ W, 6e a /acet
de/ininj inegua/it?/ /or conu(X(fi(iy)|P(VK))). Let 7r 6e a va/id order /or W. Let tfte /i/tinj
coe^cients o/ t/ie variaftZes in P(VK) and fi(W) fte determined as in ^ .S^ and (V./Oj.
T/ien t/ie resuZtiny ineguaZity is /acet de/inin^ /or com>(A") i/ and onZy i/ a((P(W) n s p U
TO)) 6 / / j ß (^)

Proof. Let W c y . If W = 0, then X(Ä(W)|P(W)) = X, no lifting has to be done,
and hence the theorem obviously holds. So assume W / 0. Using inductive argu-
ments, when lifting a variable Xj we are given a facet defining inequality for the polytope
cont;(Ar(i?(Vy) n sJ|P(W) n sp) . If j 6 P(W) then by non-emptiness of the above poly-
tope and the definition of a valid order, the subset on which the maximum as in (4.8)
is defined is nonempty since the vector e^"''"**^' is in the corresponding polytope. If
j € -ft(VV), then the condition on the weights as mentioned in the theorem guarantees
that the subset on which the maximum is defined as in (4.10) is nonempty since the vector

72 CHAPTER 4. THE PRECEDENCE CONSTRAINED KNAPSACK PROBLEM

g(P(W)n«'(j))uT(j) jg jß j.jjg corresponding polytope. Conversely, assume the condition is not
satisfied for a j S fi(H^). When lifting the corresponding variable, the subset on which
the maximum is defined is empty. ' ^. ' • - • •

It is easy to see that conditions (i) and (n) in Definition 4.3.3 cannot be removed since
then immediately the subset on which the maximum is defined in the lifting procedure
will become empty. Hence the class of valid orders in Definition 4.3.3 is the most general
class of orders which can be considered for the standard lifting procedure as defined by
(4.8) and (4.10). Note that the above result paves the way for lifting other classes of valid
inequalities. Here, we mention (1,^-configurations and state the polytope for which the
corresponding valid inequality is facet defining.

Definition 4.3.4 Let '

• C U {*} C V 6e incomparafi/e, i/nt/i £ £ C

• C7u{t} 6e acover anda(T(Cu{t})\{*}) < b

• Q U {t} 6e a minima/ înduced,) cover, VQ C C ii/ii/i |Q| = fc iu/iere 2 < A; < |C|

t/ien C U {<} is ca//ed a (%fcj-con/i<7uration. ,,

For a (l,k)-configuration the following inequalities are valid:

(r - Jfc + l) i , + ^ Z, < r (4.16)

where r is such that fc < r < |C| and Z(r) is any subset of C, with |Z(r)| = r.

Proposition 4.3.3 Let CU {<} C V fee o (^fcj-con/ipurafton, and te< Z(r) 6e any suiset
o/C, unt/i carriina/ity |Z(r)| = r. T/ien i< Ao/ds t/ia< tne ineguaZiir/ f̂ J5^ is /ace<
/or conr(X(ß(C U {<}) U (C \ Z(r))|P(C U {<})))•

Proof. It follows similarly as in Proposition 4.3.1 that the dimension of conv(X(fl(C U
{<}) U (C \ Z(r))|P(C U {<}))) is r + 1. Hence, to prove the proposition, we construct
r + 1 affinely independent vectors in the polytope satisfying the inequality at equality.
We assume without loss of generality that the elements are numbered such that 1, ...,r
denote the elements in Z(r) and r + 1 denotes element t.

For i = 1,..., r - A; + 2, let y* be defined by

1 j e {*,...,i + fc-2}

1 j = r + 1

1 j € P (C U { « })
0 j£Ä(CU{<})U(C\Z(r))

4.3. MINIMAL INDUCED COVERS AND (1,RECONFIGURATIONS 73

For i = r - A; + 3,..., r, let j / ' be defined by ' : . J . ' =

1 j6{ i , . . . , r }U{ l , . . . , t + * - r - 2 } ^ .,',, ; _,

1 j = r + 1

l j e P (C u { t }) •' ' •"

0 i

and define y*""*"̂ as

'•:;!!" '.'I TO

0 j = r + 1

Then it can easily be verified that the vectors j/*,i = l,...,r + l are affinely independent
and satisfy the inequality at equality. I

Applying Theorem 4.3.2 or 4.3.3 now yields that the elements of V \ (Z(r) U {<}) can now
be lifted in PFRS-order or valid order so as to obtain a facet of conv(X).

4.3.2 Lifting Predecessor Variables of a Minimal Induced Cover
using a PFRS-order

In general, calculating ay by (4.8) or (4.10) requires solving a difficult maximization
problem. In fact, for PCKP, the optimization problems in (4.12) and (4.14) are in turn
PCKP problems. In this Subsection we show that the lifting problem of predecessors
under a PFRS-order has a combinatorial interpretation that leads to an algorithm that
solves the lifting problem in polynomial time. In contrast, in Subsection 4.3.3, it is shown
that the lifting problem for the remaining variables is strongly NP-hard.

Definition 4.3.5 L e t C C V t e a M/C. For W C P(C) Ze« / (W) 6e t/ie numier o/ (
components in tAe su6^rap/i o/ G tnducerf 6y W U C.

Lemma 4.3.1 / is supeTTnodw/ar: /or a« ff, C ^ C P(C) and i € P(C)\H^ ^

U {<}) - < /(W, U {i}) -

74 CHAPTER 4. THE PRECEDENCE CONSTRAINED KNAPSACK PROBLEM

Proof. Choose H^ C P(C) and Wi C W2 arbitrarily. Notice first that, since we only
consider Wi C P(C) and VV2 C P(C), each component of a subgraph induced by Wi U C
or W2 U C contains at least one element c € C. Further, since Wj C W ,̂ it must hold
that if Ci € C and C2 € C are in different components of the subgraph induced by W2 U C,
then they ako are in different components of the subgraph induced by Wi U C

Now, consider a component of the graph induced by W2 U C U {z}, containing vertices Q,
and let if = Q \ C. Since this component contains at least one element of C, the subgraph
induced by Q \ {z}, consists of a strictly positive number of say fc components. Let
Kj, j = 1 , . . . , A; be the nodes in the intersection of W2 and the j - th of these components
(the components may be numbered arbitrarily), and similarly, let C,-,j = 1, . . . ,fc be the
nodes in the intersection of C and the j- th of these components. The subgraphs induced
by AT,: U Cj, j = 1 , . . . , fc form the distinct components of W2 U C.

We first consider the case where z € Q. Since for all j = 1 , . . . , fc, the subgraphs induced
by Jfj U Cj contain at least one element of C, and since they are distinct components of
the subgraph induced by Wj U C, there must be distinct e, € Cj, j = 1 , . . . , fc such that
i € P(Cj), j = 1 , . . . , fc. Using that Wi C W î we establish that all Cj, j = 1 , . . . , fc are in
distinct components of the subgraph induced by Ŵi UC. Let Kj be the set of elements of
P(C) that are in the component containing e, in the subgraph induced by Wi UC. Then,
ifj C Jfj, since Wi C H^- Further, since i € P (CJ) , J = l,. . . ,fc, these fc components
/fj are in a single component of the subgraph induced by Wi U C U {i}. Let A"' be the
intersection of the set of nodes in this component and the nodes in P(C), and let C" be
the other nodes in the component. Hence, the component Q of the subgraph induced by
(WiUCU-fi}) containing i, which consists of fc distinct components Ä\ UCi , . . . , AfcUCt
of the subgraph induced by W2 U C, contains as a subgraph a component Ä"' U C" of
the subgraph induced by Wi U C U {t} that contains in turn at least fc components
A"! U CJ, . . . , ^ U i^i of the subgraph induced by Wj U C, such that K] C Ä, for j =
1, . . . , fc. Thus it holds that

/(W, n Q) - /((Wi n Q) u {t}) > / (^ i n (?) - /(W, n Q) u {z})

On the other hand, if i £ Q, Q \ {i} = Q, and hence the subgraph induced by Q \ {i}
consists of one component of the subgraph induced by W2 U C, namely the component
induced by the vertices in Q. Now consider the set Q n C , and observe that i is not a
predecessor of any of the elements in Q PI C. Consider a component Q' in Wi U C for
which it holds that Q' C Q. Since z is not a predecessor of any vertex in Q, it is not a
predecessor of any element of Q', and thus, Q' is a component of Wi U C U {z}. Hence, in
this case we have that

0 = /(Wa n (?) - /((Wi n Q) u {z}) = / (w, n Q) - /((w, n <?) u {z})

Since each component of VFi U {z} is contained in a component of W2 U {i}, and since the
components of W2 U {z} are, by definition, disjoint, this implies that

U {z}) > /(W.) - /(W.) U {z})

4.3. MINIMAL INDUCED COVERS AND (1,RECONFIGURATIONS 75

a s r e q u i r e d . v ~ - V ^ \ - « * . • > ! * • • " • • ? - ? , .>.-, w K U : & ; » * • ' " A U .• • •:'• '•<• " i '••' * i . i . J - n : - = •

Definition 4.3.6 Lei C C l ' de a M/C and Jet P(C) = {1, .. . ,m}. 77ien, /or i € P(C),
Ze£ 7i 6e de/med fty

7.-= / ({ ! , . . . , » - l }) - / ({ l , . . . , t }) . ' (4.17)

Thus, 7< represents the reduction in the number of components by adding node i and
the arcs constituting the precedence relations in which i is involved to the subgraph of
G induced by C u { l , . . . , t - 1}. As node i is in P(C), this automatically implies that

Proposition 4.3.4 Le< C C V 6e a M/C and W C P(C) witfi W = {1, . . . ,m}. Consider
i/ie su6prap/i o/G induced 6y W u C . Por eac/i component K" o/tftw sufc^rap/i it ZioWs t/iat

Proof. We use induction on the elements in W. For i = 1, consider any component A"
of the subgraph induced by C U {i}. If component A" does not contain node i, the result
follows immediately, as both the summation of the coefficients 7i in /£T and |C D Ä"| — 1
equal zero. If component /f does contain node i, this node is connected with |Cn/f | nodes
in the component /£". Hence, |C (~l Ä"| components have been merged into one component,
such that the reduction in the number of components 7< equals |C D /sT| — 1.

Next assume that the result holds for the graph induced b y C u { l , . . . , i - l } . Let Ä" be
any component of the graph induced by C U {1, . . . , i}. If Ä" does not contain node i, the
result follows directly from the induction hypothesis. If K does contain node i, then node
i merges a number of components of the graph induced by Cu{ l , . . . , i — 1} together, say
components /Cj,..., A"/t. Note that this implies 7* = A; - 1. Consequently,

- l = | C n K " | - l

In the sequel we will use a special ordering on the elements from P(C), namely, a reversed
topological ordering, i.e. a one-to-one mapping TT : P(C) —» {1,..., |P(C)|} satisfying
7r(i) < 7r(j) for i, j 6 -P(C) and j € P(i). The following theorem shows that under a
reversed topological ordering 7̂ is exactly the lifting coefficient Qj, as defined in (4.12),
for j G P(C).

76 CHAPTER 4. THE PRECEDENCE CONSTRAINED KNAPSACK PROBLEM

Theorem 4.3.4 Le< C C V 6e a M/C and /ei TT 6e a rei/ersed <opo/o#ica/ ordering on
P(C). // </ie /i/£tn<7 coeö^cients 7< are determined according to ^ . / 7 j under tfie order TT,
t/ien /or eoc/i j = 7i-'(l),..., 7T-'(|P(C)|) tfie ineoua/tty

7i(l - Xi) < |C| - 1 (4.18)
»ec «=T-'(I) • • • • • ' • . ! - . : ; r \

is ftotfi va/id and /ace* de/ininp /or </ie pofytope conv(X(i?(C)|i4)), w/iere </ie sei >1 is
de/ined as >l = {jr-»(j + !) , • • • ,

Proof. To show validity of (4.18) it suffices to show this for j = ?r"'(|P(C)|). For other
values of j validity then follows from the fact that we restrict the set of feasible solutions
by setting the variables in {7r~'(j + 1), ...,7r~*(|P(C)|)} to 1. Let x be an arbitrary
feasible solution with i ; = 0 for all i 6 Ä(C). Define C = {i € C|XJ = 1}, and
IV = {i 6 P(C)|ii = 0}. Then obviously C / C since C is a MIC: |C"| < |C| - 1 < |C|.
Hence,

i€C

The first inequality follows from the supermodularity of / , where the 7; are obtained
using the sequence of P(C) = 7r~'(l),..., 7r~'(|P(C)|) and the 7̂ are obtained using the
subsequence of 7T-'(l),...,7r-'(|P(C)|) defined by W. Using (4.17), observe that EigvvTi
equals /(0) — /(W) = |C| — /(W). Finally, /(VT) equals the number of components in
the graph induced by C U W. If W = 0, then /(W) = |C|, and the result follows from
C C C since C is a MIC. If W / 0, it follows from solution vector 1 that nodes in C"
are not successors of nodes in W. Hence, in the graph induced by C U W the nodes in C"
are |C"| individual components. As there is at least one component containing elements
in W, it follows that /(W) > |C"| + 1, which completes the proof of the validity of (4.18).

To show that (4.18) is facet defining, we use induction on the lifting elements j in the
order 7r"'(l), ...,7r"'(|P(C)|). It suffices to display a feasible solution # with 0j = 0,
0J = 1, i € { T " ' 0 + l)----.T~'(|f(C)|)}, and of = 0 for i € fi(C), satisfying (4.18) at
equality (see Nemhauser and Wolsey [62] proposition 1.1., page 261). To construct this
vector consider the graph induced by C U {7r~'(l), ...,7r"'(_/')}. Let AT be the component
containing node j . Define the vector # as follows:

•{
1 i e T (C) \ Ä -

0 otherwise

4.3. MINIMAL INDUCED COVERS AND (1,RECONFIGURATIONS 77

To show that # satisfies (4.18) at equality, note that

«EC t=rr-»(l) i6/>(C)nÄ-

|/"l\ ü'l I i n n Jt'l 1
= |O \ A | -r |O I I A | — 1

= I C I - 1

where the second equality follows from Proposition 4.3.4.

Hence, for j = TT~*(1) the vector 0̂ ' satisfies the requirements. Next assume that the result
holds for all i S {TT~'(1), ..., TT~^(J — 1)}. Hence, we are given G + j — 1 affinely independent
vectors which all have their i"* component equal to 1 for i € P(C) \{TT~*(1) , ..., 7r~'(j — 1)}.
By defining 0-* as in the above and following the same reasoning, 0* satisfies (4.18) at
equality and is affinely independent from the foregoing vectors, as 0j = 0. •

Theorem 4.3.4 shows that / can be used in a lifting process to obtain facet defining
inequalities. The coefficients 7J represent the reduction in the number of components by
adding node f and the arcs constituting the precedence relations in which i is involved to
the subgraph of G induced byCU{l , . . . , i — 1}. This reduction number can be determined
using a set union algorithm such as developed by Tarjan [73]. If n is the number of nodes
in the graph, and m is the number of arcs, the algorithm runs in O((n + m)Q((n + m),n)),
where a((n + m),n) is a functional inverse of Ackerman's function [2].

4.3.3 Lifting Non-Predecessor Variables of a Minimal Induced
Cover

Although the maximization problem in (4.8) is NP-hard in general, for PCKP the resulting
problem in (4.12) can be solved in polynomial time when lifting predecessors of a MIC
C. For variables in fl(C), the maximization problem in equality (4.14) is also essentially
a PCKP, but will turn out to be strongly NP-hard in general. To give a formal proof of
this statement, we introduce the following problem definitions:

Clique (see Garey and Johnson [37])
INSTANCE: Graph G = (£/, £) , and a positive integer A", with 3 < A" < |£/|.
QUESTION: Does G contain a clique of size A" or more?

Note that the assumption A" > 3 does not change the complexity of the problem.

PCKP-MIC-R(C)-lifting
INSTANCE:

• Instance / of PGA"P, consisting of a directed acyclic graph D ' = (V', J4 ') , a knap-
sack capacity B ' e Z + , and for all i € V' a value cf € Z and a weight of € Z+.

78 CHAPTER 4. THE PRECEDENCE CONSTRAINED KNAPSACK PROBLEM

• A PFRS-order TT' on V ' \C"

• A facet defining inequality •' '

tec'

obtained by applying the lifting procedure as defined in (4.12) to the variables in
P(C') under PFRS-order TT'. , , . . , .

QUESTION: Is the lifting coefficient for the first variable in fl(C') under order TT', as
defined in (4.14), less than or equal to a/?

Theorem 4.3.5 PCA'P-M/C-fi^Cj-^mj is TVP-compfete in t/ie siron^ sense.

Proof. It can easily be checked that PCKP-MIC-R(C)-lifting is in NP. Hence it suffices
to show that Clique reduces to PCKP-MIC-R(C)-lifting. To this purpose, the graph
G = ([/, E) will be transformed into an instance D ' = (V ' , 4 ') , in which there is a
node for each u € [/ and for each e € i?. The nodes corresponding to (7 will function
as predecessors of nodes corresponding to £. As shown in Subsection 4.3.2, a lifting
coefficient of a predecessor is equal to the reduction in the number of components. Under
the assumption that, for all u g (/, the degree |(J(u)| > 2, this reduction, and hence the
lifting coefficients, are enforced to be 1. Since we are looking for cliques of size at least 3,
this assumption causes no loss of generality.

Let G = (f/, J57) be an instance of Clique, let /C be any integer satisfying 3 < AT < |J7|,
and let TT be any order on the nodes in £/, i.e., £/ = {7T~'(l),...,7r~i(n)}. We define an
index set J, consisting of nodes u € £/ which are currently not adjacent to a node with
higher index. Hence, J = {u € i/| ^io € t/ : 7r(w) > 7r(u), {u,tu} € £ } . Extend the
graph G to G = (J7, £) , where

Furthermore, let Ä" = if, and TT an order on £/ such that 7r(u) = ?i"(u), for u G [/. Then,
since nodes in {/ have degree 1, G contains a clique of size A" > 3 if and only if G contains
a clique of size if.

Next, we determine a subset i C £ whose elements share a common predecessor in the
directed graph to be introduced shortly. Let <5(u) be the set of edges incident to node
u in graph G. Then, the set L is determined by the following algorithm, which is to be
explained shortly:

4.3. MINIMAL INDUCED COVERS AND (1,RECONFIGURATIONS 79

L = 0; W = £; / * tnt i ta /uatton * / .x.m.utr-i ; ; ' t ^ i ,$n

for K = 71—1(1) tO * - l (| f |) d o •' : - - : r , p : :

b e g i n .•«. • . -. . < ^ 7 - ;_••. ;) :'i - j a : ; f ,r.

let e e W D (J(u); •'"'

Z, = L U (W n <5(u)\{e});

This algorithm processes the vertices u € £/ in increasing order of their indices, and
considers the intersection of <5(u) and W, where W initially consist of all edges in £ . In
each iteration, the algorithm selects an arbitrary edge e in the intersection of <5(u) and
W, and eliminates all edges in J(u) from W. Except for e, the thus eliminated edges are
added to a set L which is initially empty. Notice that such an e always exists since each
vertex u e (7 is adjacent to a higher index vertex in {7. Notice also that all edges in
W H <5(u) \ {e} are in £ since vertices in £/ only contain edges to {/, and hence in £ \ £,
if they are not adjacent to a higher index vertex in [/, and should this be the case, then
they contain only one such edge (which per force is chosen to be e).

Now, we are able to define the instance / with directed graph Z)' = (V^,.<4') where
V' = f / U £ u { Q , g } and A' = {(u,e)|u e t/,e € £ ,e £ J(u)} U (Q,g) U

6

To complete the instance 7 of PCKP-MIC-R(C)-lifting, let ĉ € Z for all v € V , and

a^ G Z+. Further, let S ' = |[/| • ̂ + |t/ \ l/| • [^» + (*)] + | £ | - 1 + a^ and define

weights for nodes in V^ as follows:

Now consider £ . In order to include all e € £ in the knapsack, we must also include all
items in P(i?), which means in this case that all u € f/ and Q must be in the knapsack.
Since the nodes in u G £/ and Q already account for a weight of |{/| • Ä^ + |t/\f/| •

ÄT̂ + (^) + ap it follows that only |£ | - 1 elements from i? can be included in the

knapsack. This yields that £ is a MIC. Now, let 7r' be a PFRS-order on £/ U {Q, 9}
defined by:

80 CHAPTER 4. T H E PRECEDENCE CONSTRAINED KNAPSACK PROBLEM

and the corresponding facet defining inequality after lifting Q and £/ be given by

XQ) + £ (l - : r i) < | £ | - l ^ - ' (4.19)

The lifting coefficients can be explained as follows. Notice that by the construction of
>4', Q connects |L| elements of £ , and thus adding Q yields a reduction in the number
of components of |L| - 1. Further, by the construction of £>', there are |C| edges not
connected to Q. Now, using our assumption all vertices u € £/ have |<5(u)| > 2, each
vertex u g [/ connects the edge e selected in the ir(u) — £/i iteration of the previously
described algorithm to the component which became connected when XQ was lifted. Hence
Q„ = 1 for all u € £/• Finally, the vertices ü € (7 can be seen not to cause a reduction
in the number of components at all, and hence have coefficient a„ = 0. Finally, let
o/ = | £ | - 1 - [(f) + |f/| - A".]. We leave it to the reader to verify that the above
transformation from G, via G, to instance / is polynomial.

Next let us consider the problem (4.14) that arises when lifting x,, the only variable in
/?(C'). When lifting variable x, according to (4.14), nodes g and <j must be included in
the knapsack.

We are now going to show that G contains a clique of size A" > 3 if and only if the
maximal" value of the lifting coefficient for variable z, is less than or equal to a ' .

(=>) If G contains a clique of size A", then by including the nodes u in {/ U £ corresponding

to the vertices and edges in the clique in the knapsack together with Q and g, we have

a cumulative weight Ä^ + (*) + a£ + B ' - [Ä* + (*) + o^j = B ' . Thus this set of

items is feasible. Furthermore, together these items yield a value for a/ of |i?| — 1 —

[(*) + 1 ^ 1 - Ä] , as required.

(•*=) Let the value of the lifting coefficient for x, (being a, < a ') be obtained by a solution
in which i items (say) corresponding to nodes u € (/ in the graph G are included in the
knapsack. Let us first assume i > Ä'. Then the weight in the knapsack amounts to at least
£3 + £2 + a£ + B ' - [Ä * + (f) + a£,j > £ ' , which yields a contradiction. Hence i < A\

Assume i < A\ Then, a, > | £ | - 1 - [(') + |C/| - t] > | £ | - 1 - [(*) + |tf| - Ä"] = a ' ,

for Ä" > 3. Again a contradiction. Let us finally consider the case where t = A\ Then by
the above reasoning we find a , > a ' which together with a , < o/ implies that Q, = o/

and hence the remaining knapsack capacity £?' - Ä^ - OQ - B ' + A^ + (^) + aM = (^)
must account for an increase in the solution of the maximization problem in (4.14) of at
least (£). Hence, at least (£) vertices from E must be included in the knapsack, and
moreover, these vertices must have their predecessors in the graph in the knapsack. This
can only be achieved if these vertices are in iJ, and hence we have found a clique of size
A" = A in the graph G. •

Although lifting variables for a PCKP is strongly NP-hard in general, in the special

4.3. MINIMAL INDUCED COVERS AND (1,RECONFIGURATIONS 81

case where the precedence graph is a tree and the size of the coefficients in the given valid
inequality is polynomially bounded, then lifting coefficients can be obtained in polynomial
time.

Theorem 4.3.6 Given a PC/fP /or iu/iic/i tne precedence prap/i is o tree, and a tia/id
inegua/iit/ luii/i coej^cienis w/iose size t5 bounded 6j/ a po/ynomia/ in t/ie «tze o/ tAe tree,
i/ien a// /t/ttng coejQSciente can 6e determined in po/ynomia/ time.

Proof. Lifting a variable requires solving a tree knapsack problem on a subtree of the
original tree. Tree knapsack problems with possibly negative objective coefficients can
be solved in pseudo-polynomial time C(nQ^) by an extension of a standard dynamic
programming algorithm for tree knapsacks (see for instance Johnson and Niemi ([51]),
where Q is an upper bound on the maximum value that can be achieved in the optimization
problem. If all coefficients of the inequality are polynomially bounded in the size of the
original tree, then Q is polynomially bounded, and therefore the tree knapsack problem
can be solved in polynomial time. •

4.3.4 An Example

a, = 4, i e { l 7}

Oi = 5, i € { 8 , . . . , l l }

Oj = 7, i € {12}

6 = 37

Figure 4.1: Example of MIC and (l,k)-configuration

Consider the example in Figure 4.1. Table 4.1 gives an example of both a minimal
induced cover for which two different PFRS-orders are stated and a (l,k)-configuration
for which only two valid inequalities out of the total set as defined by (4.16) are listed.
The resulting facet defining inequalities are listed below. The combinatorial interpretation
of the predecessors of a minimal induced cover can be seen from this table, which also
illustrates that different PFRS-orders can lead to different facets. The reader may note

82 CHAPTER 4. THE PRECEDENCE CONSTRAINED KNAPSACK PROBLEM

that many more covers and (l,k)-configurations are present in the problem instance (see
also Section 4.5).

Table 4.1: A minimal induced cover and (l ,k)-
•r.-k. . •• configuration for problem instance in Figure 4.1. <:•: > ;; ^;i i

c
U
{i
{i
{i

,2,5,6,7}
,2,5,6,7}
,2,5}
,2,5}

<
-
-

12
12

type

MIC
MIC

(l,2)-conf
(l,2)-conf

-
-

{1
{1

,2}
,2,5}

lifting order

8,9,10,11,3,4,12
8,10,9,11,3,4,12

7,8,9,10,11,3,4,6
7,8,9,10,11,3,4,6

The resulting facet defining inequalities for Table 4.1 are as follows:

Xl + X2 + X5 + Xe + X7 + (1 - Xg) + 2(1 - Xg) + (1 - Xn) + Zl2 < 4
Xi + X2 + X5 + X6 + X7 + (1 - Xg) + 2(1 - Xio) + (1 — I n) + Xi2 < 4
Xi + X2 + (1 — Xg) + (1 — Xn) + X12 < 2
Xl + X2 + X5 + (1 - X g) + (1 - X g) + (1 - Xu) +2Xi2 < 3

4.4 K-covers

In this section, we discuss valid inequalities arising from K-covers. Although this class
of inequalities is a direct generalization of minimal induced covers, it is not always im-
mediately clear for which subset of the polytope the corresponding valid-inequalities are
facet defining. One way to obtain facets for the PCKP-polytope would be to follow two
steps: first, the exact polytope for which the valid inequality is facet defining could be
determined and next, the same lifting procedure as mentioned in Section 4.3 could be
applied. In this section, we show that if the first step is skipped, and a different lifting
procedure is applied, again facets for the PCKP-polytope are obtained.

Definition 4.4.1 C C V is a /f-ccwer i/

• C is mcomparafc/e

• V5 C C, tint/1 |S| = /C i< /10/ds t/10« o(T(S)) > 6, 6u« o(T(S)\{i}) < 6,Vi € 5.

Let C C V be a K-cover, then PCKP-polytope reads:

x, < /r - 1 (4.20)
i€C

4.4. K-COVERS 83

is a valid inequality for the PCKP-polytope. ...-'-.• i, . .- ;jwi

Figure 4.2 shows that if C C V is a K-cover the subset X(P(C)|.R(C)) can be empty, in
which case the aforementioned lifting procedure cannot directly be applied to the variables
in P(C) U Ä(C). In this example C = {1,2,3,4} is a 3-cover, but X(P(C)|Ä(C)) = 0. In
fact, the corresponding valid inequality is facet defining for convpf (Ä(C)|{9,10,11})).

« i

6 =

= 2,

= 7,

= 1,

= 3,

= 30

i G

i G

i G

i G

{1,2,3,4}

{5,6,7,8}

{9,10}

{11}
."iotn'i

Figure 4.2: Example of Ä"-cover

Below we define a different lifting procedure which is still defined on P(C) U i?(C) and
generates facet defining inequalities. Note that the only difference between the two lifting
procedures consists of the polytope over which the maximization problem is defined.

Definition 4.4.2 Let C f c a Ä"-couer and ?r 6e a PFÄS-order /or C Wiic/i represents t/ie
order o/ ft/£in<7 üaria&ies. Ze£ t/ie /i/tmj eoejö?cien(/or a uariaWe j S P(C) 6e determined
by

= /f — 1 — max
I6X:

(4.21)

ond /or a t;ana6/e j €

Qj = A!" — 1 — m a x (4.22)

84 CHAPTER 4. T H E PRECEDENCE CONSTRAINED KNAPSACK PROBLEM

Theorem 4.4.1 Let

* . C C V 6e a

« • 7T 6e a PFA5-onier/or C '- , : ;<;• >i>\ f'">;H IH

• t/ie /i/£tn<7 coejö'icients /or uan'o6/e5 in P(C) 6e (feterromed occordmj io ^.2^j

• t/ie /t/^inp coe^icients /or uariaft/es in ß(C) 6e determined according to (^.22j

£/ien t/ie resuming tnegua/tty

Oi(l- iO+ XI a , -n<Ä' - l (4.23)

a) is Wid, and Q^ > 0, /or a// z 6 P(C) U

b) de/ines a /acet o/ tAe PCATP-po/j/tope coni)(A').

Proof. Both validity and nonnegativity of the lifting coefficients can be proved easily
using inductive arguments. We will prove the remainder of our claim by constructing
|V| — 1 linearly independent vectors (directions) in the face described by the inequality.
These vectors are constructed as the difference of two vectors, both with the following
properties:

(i) the vector satisfies the knapsack constraint;

(ii) the vector satisfies the precedence constraints;

(iii) the vector satisfies the lifted inequality at equality.

Properties (i) and (ii) imply that the vector is in conv(X), whereas property (iii) guar-
antees that the vector is in the face described by the inequality. For ease of notation,
let P°(C) = {j € P(C)|Qj = 0} and P>(C) = {j € P(C)|o,- > 0}. Note that for each
i e P^(C) the number of items in C which are not successors of i is less than or equal to
if — 2. If there were more than Ä" — 2 items in C which are not successors of i, say set
S C C consisting of if — 1 items, then the maximization problem in (4.21) for variable
i i would have value at least if — 1 since the items in T(5) could be set to one. In other
words, if 5 C C contains if — 1 elements, then i is a predecessor of at least one element
from 5. This property is used at several occasions in the remainder of the proof.

LetC = {l , . . . , |C|}. For j = 1,.. . , |C|-1 let C C C\{ j , j +1} with |C>| = i f - 2 . Next,
define

4.4. K-COVERS 85

Then the vectors j / -* , . ; = 1,...,|C7| — 1 are clearly linearly independent. Moreover, 0*
satisfies properties (i) and (ii) by definition: we take if items from C and all their pre-
decessors; after that we remove one of the items from the if items chosen. Clearly, the
vector <̂ also satisfies property (iii): we have if — 1 elements from C, and thus the first
term of the left-hand side of (4.23) equals if - 1. Since the other terms are nonnegative
and the equation is valid, we must have that equality holds. For vector V ,̂ (i), (ii), and
(iii) can be shown similarly.

For j e P°(C), let # be the vector for which the maximum in (4.21) is attained. Let
C-* = {t € C|0J = 1}. Thus, V«=T-(C>)0? = 1- Moreover, we may assume that V ^ c i) ^ = 0:
Clearly, this maintains feasibility with regard to both the knapsack constraint, and the
precedence constraints. It remains to show that the maximum in (4.21) is not decreased.
If i e C \ C> then 0? = 0 by definition of C*. If t € P(C) \ T(C>), setting 0? = 0 can not
have a decreasing effect on the maximum in (4.21), since (1 — ij) becomes positive, and
the objective coefficient of (1 - x<) in (4.21) is nonnegative. If i € fi(C), the objective
coefficient of ij is zero in (4.21).

We define •, "

w ^ f 1 t € T(C') U T(j) U T(P>(C) n a-(j))
1 0 o t h e r w i s e , •. .. .

^ \ 0 o
e T (C O u P ü) u T (P > (C) n « * ü)) •'--•• ' •"• " • . . " • • ' • •

o t h e r w i s e • . .••.•,!,,-,i / U > ^ , ,'

Note that ^ - V' is the j- th unit vector, since j € T(j) but j £ T(C^)UP(j)UT(P>(C)n
s*(j)) (Note that 0j = 0, see (4.21)). It remains to show that ^ and ^ satisfy (i), (ii),
and (iii). To show that the knapsack constraint is satisfied, we construct an extension of
^ that does so. Let C^ be an extension of C^ with if - 1 elements from C. If j € T(C-')
take an arbitrary i 6 C \ C ' . Otherwise choose i s C \ C ' such that j is a predecessor of
t. By definition of if-covers, the set T ^ U {i}) \ {i} satisfies the knapsack constraint.
Clearly, T(C>) and T(j) are subsets of T(C> U {t}) \ {i}. Furthermore, P>(C) C T(C'),
since r(C^) contains if - 1 elements from C. Thus, P>(C) n s"(j) C T(C->), and thus
T(P>(C) n s-(j)) c T(C>), and T(C>) C T(C> U {z}) \ {i}.

The precedence constraints hold by construction of 0*. ' ;

To show that (iii) is satisfied by </•>, we show that 0* obtains the same value in the
maximum of (4.21) as ö-', i.e., if - 1. This is true because 0> is an extension of ̂ with
elements from s*(j) U {j}. This trivially holds for P>(j) f~l s'(j) and {j}. It also holds
for the predecessors of both sets, i.e., T(P>(j) n s"(j)) and T(j) by the definition of TT.
Since elements from s"(j) have no contribution to the maximum of (4.21) 0> and # have
the same value. Next, the terms in the maximum of (4.21) are a subset of the terms in
(4.23) with a value of if — 1. The remaining terms are nonnegative, and hence, by validity
of the inequality, therefore zero. Thus, (4.23) is satisfied at equality. Similar arguments
show that (i), (ii), and (iii) hold for V*.

86 CHAPTER 4. THE PRECEDENCE CONSTRAINED KNAPSACK PROBLEM

Next, let j € P^(C), and let #*' be the vector for which the maximum in (4.21) is attained.
W.I.o.g. assume that 0̂ = 0 for i € -R(C) and for i 6 •£*((?) such that i is not a predecessor
of an element in C which is set to one. As indicated in the above, we can again extend
the solution #? to a solution V ,̂ in which all variables in T(P>(C) n s^(j)) are included
in the knapsack. Next, let <̂ be any vector with Ä" — 1 elements in C equal to one, and
0j = 0, for i S /?(C). Analogously as in the above, one can verify that V'' and (^ satisfy
properties (i)-(iii). Define j ^ = 0* - ^ , then y j = 1 and j/f = 0, for i € P>(C) n s*(j)
and i € Ä(C).

Finally, for j € -R(C), let ^ be the vector for which the maximum in (4.22) is attained.
W.l.o.g., assume that ^ = 0, for i 6 Ä(C) Da"(j). Let C' C C with |C ' | = AT - 1. Next,
define • " ' ' = '•'•. i - - ' - ' n i i ' . ! i i n ' i i : < . - ; m * » i ! 7 ' h s r i s • • ' • < ! • ••••..••••• ' •:••.!: - . . - a i ' - o • • > ! ! • ' ! • . ') • . • v i ' - i

Then both </̂ and ^ satisfy properties (i)-(iii). Finally, j/j• = 1 and j/^ = 0 for i € s"(j).

We leave it to the reader to verify that the |V| — 1 vectors as defined in the above are
linearly independent. •

Example 4.4.1 77ii,s ezamp/e s/iows t/ia< T/ieorem ^.^.^ does no< necessan/y ZioZd i/we
a//ow /or more genera/ /i/£m<? orders.

' ' I ' - . ' ; :

* i ; -- *

< = 2, » € {5}

Figure 4.3: Counterexample

t/ie set {1,2,3,4} is a 3-couer and nence X)i=i «̂ — 2 w a fa/id inegua/i<j/. / / we /irst
/»/(variable X6 according to (^.22^ and t/ien X5 according to (^.2./^ we obtain t/ie inegua/ity
5^i_i Xj + 2i6 5: 2 w/iic/i is va/id 6ut not /acet de/ining /or conti(X).

4.5. COMPUTATIONAL RESULTS AND CONCLUDING REMARKS 87

4.5 Computational Results and Concluding Remarks
as «mb'io sniri aiooi lol gntwoüß y_d fwbubni »d aso btLsv oio/n

To gain insight in the effectiveness of the proposed facets in this chapter, reconsider
the example of Subsection 4.3.4. In this small example 36 covers were found, which by
applying different PFRS-orders led to a total of 63 different facet denning inequalities.
Furthermore seven /("-covers were found (11 different facets), and 24 (l,k)-configurations
(leading to 100 different facets).

In the five problem instances in Table 4.2 nodes in the same "layer" of the graph are
given the same, but randomly chosen, objective function coefficient. For each of these
5 problem instances, the value of the LP-relaxation, the IP-value and the value of the
LP-relaxation after adding all 174 facets to the description were computed.

, , ,
! yd Ln

Table 4.2: Computational results for instance in Figure 4.1.

problem
objl
objla
objlb
objlc
objld

LP-value
49.3
57.0

104.0
242.0
270.6

LP + facets
47.8
51.8

104.0
235.9
244.6

IP-value
46
48

100
227
225

%gap closed

45%
58%
0%

41%
57%

bi

These results indicate that the effect of the valid inequalities may be significant. Problem
instance objlb represents a situation where nodes in layer three (i.e. nodes 1 through 7)
have a low objective coefficient compared to the other nodes.

Next, 9 objective functions in which each node is given a random objective coefficient
were generated. Different ranges of objective coefficients were tested. Table 4.3 reports
on the computational results for these problem instances.

Table 4.3: Additional computational results for instance in Figure 4.1.

problem
obj2
obj3
obj4
obj5
obj6
obj7
obj8
obj9
objlO

LP-value
124.0
116.0
104.6
179.8
231.7
233.7
274.0
53.5
43.2

LP + facets
119.1
110.3
97.0

176.0
228.3
223.7
251.4
51.5
41.0

IP-value
119
110
97

176
226
222
248
51
41

%gap closed
97%
95%

100%
100%
60%
85%
87%
80%

100%

The results show that a large proportion of the gap can be closed by including the facets

88 CHAPTER 4. THE PRECEDENCE CONSTRAINED KNAPSACK PROBLEM

proposed in this chapter. In fact, only PFRS-orders were considered in the tests, hence
more valid inequalities can be included by allowing for more general lifting orders as
indicated in this chapter. Finally we state some remarks on possible future research
directions.

l ib ;:s >.£...$\;qw.':'-*'

Firstly, note that problem instance objlb shows that for certain problem instances the
facet defining inequalities discussed in this chapter are not very useful. Direct generaliza-
tions of other well-known classes of valid inequalities for regular knapsack problems could
of course form a fruitful area for future research. Next, to incorporate such inequalities
into a branch-and-cut procedure, the separation problem must be addressed. Again, gen-
eralizations of separation heuristics for ordinary cover inequalities can be investigated.
Thirdly, the difference in the definition of a minimal induced cover used in this chapter
and by Boyd ([19]), and the definition employed by Park and Park ([64]) deserves more
research. Finally, the lifting procedure as proposed in Section 4.4 is only proven to be a
valid procedure for valid inequalities arising from K-covers. In fact, in the proof detailed
information from the definition of a K-cover is used. The question arises whether these
lifting ideas can also be used for different and/or more general classes of valid inequalities.

i j > -,..'

Part II

Network Loading Problems

89

-:€E CONSTRAINED KNAS'SjU.'-

..- : . ;i thi: ' •'?:

'iassfis of va'J:! i ' - ' i : ;

< t f i . f , i : • • • • " • • , ! J ; S f o r , : , • • . : > , . ; •

• : ; : • " •"" : , f r i ' M " - ; , : • , - . . ; • • . 1 -

giiifaso

Chapter 5 h ^

Models and Algorithms for Network
Loading Problems

5.1 Introduction

Many network design problems share the following general problem description. Consider
a telecommunication network and a set of telecommunication traffic demands (referred
to as commodities) which must be routed between designated nodes in the network.
To enable traffic flow through the network sufficient capacity should be installed on the
edges of the network. Given routing and capacity installation cost functions, the goal is to
design a minimum cost network, that is to design routing schemes for the commodities and
capacity installations on the edges, such that all traffic demands can be routed from origin
to destination simultaneously. JVetoorfc /oadtnp pro6/ems (NLP) form a subset of such
network design problems and are characterized by two specific properties (cf. [54], which
also contains a description of network loading problems). Firstly, a set T of capacity types
is available for capacity installation on the edges of the network, and for each type one
can install an miegra/ number of units on an edge. Secondly, if A' < . . . < A'*"' represent
the capacity amounts per unit for the different capacity types, then these amounts are
modular, i.e. A''*' is a multiple of A''. Consequently, the amount of capacity installed on
an edge of the network is limited to a discrete set of possibilities. Dedicated studies related
to these two properties include Pochet and Wolsey [67], and Gabrel and Minoux [35], [36].

Apart from this general problem description, each individual application has its specific
characteristics. In some applications traffic flow from individual commodities can be
bifurcated on several paths through the network (see for instance Magnanti, Mirchandani
and Vachani [55], [56]), whereas other applications require the demand of a commodity
to be routed on a single path (see Gavish and Altinkemer [40]). Sometimes the routing of
a commodity is even further restricted to a set of so-called hub nodes (see Brockmüller,
Günlück and Wolsey [20]). Most of these models assume that capacity installation on an
edge is undirected, that is, the capacity on an edge should be greater than or equal to the
«urn of the flow in both directions. On the other hand, Bienstock and Günlück [16] and

91

92 CHAPTER 5. NETWORK LOADING PROBLEMS

Bienstock et al. [15] discuss directed capacity problems, where the capacity on an edge
should be greater than or equal to the maximum of the flow in both directions. Although
many models use flow variables on individual edges to represent the flow of a commodity
through the network, other authors employ path variables (see for instance Clarke and
Gong [25]). Related work can be found in Dahl, Martin and Stoer [28].

Due to the large traffic flows in telecommunication networks, especially in higher layers of
the network hierarchy, the possible breakdown of a network component may have a signif-
icant impact on a network's performance. Therefore, telecommunication companies often
want to design networks that can cope with the breakdown of critical components. For
instance, the implementation of alternative routing schemes for commodities could make
the network (partially) insensitive for network component failures. Alternative routing
schemes can only be made available if multiple disjoint paths exist between nodes in the
graph. We refer to Monma and Shallcross [61], Monma, Munson and Pulleyblank [60],
Grotschel and Monma [42] Grotschel, Monma and Stoer [43], [44] for design issues that
require a certain degree of connectivity between pairs of nodes in the network. But even
if the underlying graph supports multiple routing strategies by the existence of multiple
paths between pairs of nodes, sufficient capacity should be available in the network in
order to cope with network component failures. Usually, only stride simultaneous com-
ponent breakdowns are considered since these are most common. Hence, the protection
against multiple simultaneous failures in the network is considered to be too costly. As
for the basic network loading problems mentioned in the above, reliability of a network
can be defined in many ways (see for instance Alevras, Grotschel and Wessaly [4], Balakr-
ishnan et al [7]). Some applications require the network to be insensitive for edge failures
(see Lisser, Sarkissian and Vial [53]) whereas other applications require the network to
be insensitive for node failures (see Amiri and Pirkul [5]). Dahl and Stoer [29] consider
models where the amount of demand of a single commodity which flows through a network
component is restricted, in order to limit the immediate loss of information in case of a
network component breakdown. Related models can be found in Paul et al [65], Bienstock
and Muratore [17], Bienstock and Saniee [18].

This chapter reports on a joint research project with KPN Research, Leidschendam, the
Netherlands. The objective of the project is to gain insight in the various alternatives
that are available for non-bifurcated network design, and to design a decision support tool
that enables network planners to analyze these distinct network designs. Several specific
research topics are defined. The first major topic involves the optimal network layout,
that is routing strategies and capacity installation, for non-bifurcated network problems
in case the network is not required to cope with failures. Moreover, we are interested in
the influence of additional side restrictions which may be imposed by network planners
on the network layout and its costs. Therefore, we compare orftitrarT/ routing strategies
(for which traffic flows can be routed on any path through the network) with so-called
symmetric routing strategies, for which symmetric traffic flows (that is, pairs of traffic
flows for which the origin of the first traffic flow is the destination of the second traffic
flow, and vice versa) are routed on the reversed path through the network. Next, routing
a traffic flow from its origin to destination via a large number of intermediate nodes could
cause a larger delay for traffic flows, which in general is considered to be undesirable.
Moreover, due to the larger number of traffic flows that pass through a node in such

5.1. I N T R O D U C T I O N 93

routing strategies one could also expect that in case of a network component breakdown
a larger set of traffic flows will be affected. Hence, we study the influence of a restriction
on the number of nodes on the paths used for routing strategies.

The second major topic of our study involves reliability issues. More precisely we axe
interested in the design of networks which are capable of routing traffic demands both in
fully operational state and in case of a single node breakdown. This can be achieved by .
using both primary routing schemes (to be used if no node failure occurs) and secondary
routing schemes (used if primary routing is not feasible due to node failure), where the
two routing schemes are required to be node-disjoint. Again, several questions arise. On i
the one hand, one could employ two separate networks for primary and secondary traffic
flows. On the other hand, perhaps cost reductions could be achieved by integrating these
traffic flows into a single network. ' ••••••• ••• M ,::.,.>,

The above reliability description is based on a single secondary routing scheme for each
commodity, which is to be used in case the primary path is no longer feasible in case of a
node failure. Instead, one could also allow for a more general secondary routing scheme
where the secondary path for a commodity may depend on the actual node failure. Again,
one is interested in the differences in network layout and the impact on costs for the
different scenarios.

The third goal of the research project is to incorporate the acquired knowledge and al-
gorithms for the various network loading problems into a decision support system. The
primary reason for building a software tool with a user-friendly interface is to make al-
gorithms more accessible to network planners, which allows for more intensive use of the
ideas presented in this chapter. Secondly, we aim to reduce the existing gap between
theory and practice. In theory, one is often interested in the optimal solution for a math-
ematical description of a real-life problem, where optimal is usually defined in terms of a
single objective function. In practice, network planners want to analyze several network
scenarios and solution alternatives, and make a comparison on the basis of multiple crite-
ria. Hence, to efficiently exploit theoretical knowledge in the practical network planning
process one needs both easy problem input facilities and algorithm invocation, as well
as efficient access to network design solutions. Therefore, we describe some important
characteristics of a software tool which supports these requirements.

In Section 5.2 we state several models for basic network loading problems without reli-
ability considerations, whereas network loading problems with reliability constraints are
the subject of Section 5.3. Given this set of problems and the research questions as
mentioned in the above, the choice of research methodology is motivated in Section 5.4.
Section 5.5 reports on a decision support tool which facilitates the network design process
for network planners using the developed algorithms. Finally, in Section 5.6 we report on
a computational study and address the research questions as posed in the above.

94 CHAPTER 5. NETWORK LOADING PROBLEMS

5.2 Network Loading Problems without Reliability
Constraints

Let G = (V, £?) be an undirected connected graph with node set V and edge set i?, and let
.4 be the arc set which is obtained by replacing each edge e = {i, j } € i? by two directed
arcs (i, j) and (j, i). Let Q be a set of commodities, where each g € <5 is a triple (s', £', d')
representing a telecommunication demand of size d' € Q+ that must be routed through
the graph on a single path from origin (or source) 5' S V to destination (or sink) £* £ V.
In order to enable traffic in the network sufficient capacity must be installed on the edges
of the network. Different types of capacity are available, but only an integral amount of
capacity units of each type can be installed on an edge of the network. Let T represent
the set of available capacity types, ĉ - denote the costs per installed unit capacity of type
r 6 T on edge {i, j } , and let A*" e Q+ be the associated base capacity per unit for type
r € T. The goal is to minimize the costs of installed capacity in the network under the
restriction that a feasible simultaneous routing for all commodities exists. To formulate
this problem as an integer program, define an integer variable i £ £ N to measure the
number of capacity units of type r installed on edge {i, j } , and let /,*• be a binary variable
that indicates whether the commodity 9 £ Q is routed on arc (i,j) € .4 or not. The
model then reads :

{
- 1 t = f V 9 e Q , i € F (5.2)(5.3)

Vg G Q, {i, j } € £, r 6 T (5.4)

The objective function (5.1) measures the total cost of capacity installation on the edges
of the network. The flow balance constraints (5.2) guarantee that the demand of a com-
modity g is routed on a single path from origin s* to destination £*. The edge capacity
constraints (5.3) imply that sufficient capacity is installed to accommodate the resulting
flow on the edges of the network. This model is called the undirected non-bifurcated
flow model [/NFM. It is called undirected since capacity on an edge is undirected, that
is capacity can be used for traffic in both directions on the edge. The model is called
non-&t/urai<ed as the demand of a commodity has to be routed on a single path (i.e.
the demand cannot be bifurcated). Finally, flow variables on individual arcs are used
to model the flow of a commodity from origin node to destination node. Brockmüller,
Günlück and Wolsey [20], [21] employ a polyhedral approach to tackle these problems.
Amiri and Pirkul [6] consider nonlinear versions of the problem incorporating queueing
and delay costs and use Lagrangean techniques. The bifurcated version of the problem
is obtained if the flow variables are not required to be integral, consequently, flow can
be split among several paths. This bifurcated version is studied by Barahona [12] and
Magnanti, Mirchandani and Vachani [55], [56].

5.2. MODELS WITHOUT RELIABILITY CONSTRAINTS

Instead of using flow variables on individual edges to model routing restrictions, one can
also use path variables to represent the flow of telecommunication traffic through the
network. Although in general such models can have a large (exponential) number of
variables, the advantage is that certain undesirable paths can easily be excluded from the
formulation. For instance, network planners often consider long paths to be unattractive
since this might lead to unacceptable delays. Path formulations are considered in for
instance Gavish and Altinkemer [40] and Pirkul and Narasimhan [66]. Let V* denote the
total set of available paths for commodity g, and let the binary variables $/* represent
whether a certain path p € V is used to route the commodity g from source node s* to
sink node £*. If Y/ C V* denotes the set of paths for commodity 9 that contain arc (i, j)
or arc (j, t) (where e = {i, j}), then this leads to the following undirected non-bifurcated
path model

min 2.

s t . Epgy, !/? = ! V g € Q (5.6)

E,gQ Epen' * # ^ E.gT A'*y Ve = {i, j } € £ (5.7)

»J € {0,1}, ir. e N VgeQ,pey,{t,j}e£,r6T (5.8)

Depending on the exact application, capacity on edges in the network can also be directed,
i.e. each unit of capacity of type r installed on an edge {i, j } gives a capacity of A*" on
both corresponding arcs (i,j) and (j, t), and capacity consumption is directed as well.
This leads to the directed non-bifurcated flow model (IWFM) .

I ,bn-,,.!-»,- (5-9)

st. E ^ - E , / £ = { - i t = «« ^ e Q . i e V • - ' " • " - (gig)

iT. V{i, j } 6 £ ' (5.11)

i,r. V{t , j}eJ5 (5.12)

The bifurcated version of DA^FAf has been studied in Bienstock and Günlück [16] and
Bienstock et al. [15]. Similar as for the undirected case, one can model the directed case
using path variables. If Yj* C Y* denotes the set of paths for commodity g which contain
arc (i, j) , then the directed non-bifurcated path model (Z?A^PM) reads:

(5.15)

y« G {0,1}, ir . 6 N V9 € Q,p € Y*. {i, j } € Ä , T e T (5.18)

96 • CHAPTER 5. NETWORK LOADING PROBLEMS

One of the research issues mentioned in the introductory section is the comparison of
arbitrary versus symmetric routing. Here, we state a definition and the equalities that
can be added to the models to impose the symmetric routing restriction. ' •-;•'•••••" •

Definition 5.2.1 Let g.\g/* € Q, t/ien (g\<^) is a symmetric commodity pair i / s ' ' = £**
and s ' ' = t*'. A/oreover, Q* C Q x Q denotes t/ie set o/ ai/ symmetric commodity pairs.

Given the set of symmetric commodity pairs Q^, the restrictions /,*• = /£ for all (<?', g)̂ €
Q^, for all {i, j } € .4 can be added to the flow formulation. Indeed, these equalities imply
that symmetric commodity pairs are routed on reversed paths, and they also imply that
the number of commodities (hence the number of variables) used in the formulation can
be decreased. In the path formulations, if (<j\<^) € Q^ one would require that for each
path p ' € P* there exists a reversed path p^ € P ' (and vice versa). Similarly, the
restrictions p ' = p^ can be added to the formulation for such reversed paths and again,
the number commodities (variables) can be decreased.

Finally, we address the upper bound on the number of nodes or arcs on the selected path
for a commodity. If ^ denotes the maximum number of nodes on a path from the source
to the sink of a commodity (endpoints included, hence 2 < £ < |V|), then in the flow
formulation we can add the restriction Z){ij}e/i/o - (̂ ~ *)• f°* all g € Q. In the path
formulation we simply impose that all paths in the set P* contain at most £ nodes.

5.3 Network Loading Problems with Reliability Con-
straints

In this section we consider non-bifurcated network loading problems with reliability con-
straints, which guarantee that in the case of a node breakdown in the network, all com-
modities (except the commodities for which the failure node is the source or sink node)
can still be routed through the network from origin to destination. We consider two types
of models. Subsection 5.3.1 discusses reliable network loading models with a primary and
a single secondary path for each commodity. When the network is in fully operational
state, the primary path is chosen for each commodity. In case of a node failure some of
these primary paths are no longer feasible. We say that a commodity is /ost by a node
failure on node A; if the source node or sink node of the commodity is node /c. Moreover,
a commodity is said to be Oj(fected if it is not lost, but the failure node is on the primary
path for the commodity. In case of a node failure, all affected commodities are routed via
their secondary path.

Instead of having a single secondary path, one could also employ a set of secondary paths
for a commodity, such that in case a commodity is affected by a node failure, the selected
secondary path is dependent on the actual failure node. In Subsection 5.3.2 we therefore
discuss models that allow for node-dependent secondary paths. Note that the models that
are described in these subsections are only used to communicate the problems. Efficiency

5.3. MODELS WITH RELIABILITY CONSTRAINTS 97

or computational tractability, and the fact that multiple models can be employed for
reliability models is therefore not an issue in this section.

5.3.1 Network Loading Models with Single Secondary Paths

Here, we choose two node-disjoint paths in the network for each commodity, which are
referred to as primary and secondary path. These paths are required to be node disjoint,
except for the first node (source) and and last node (sink) on the path for the commodity.
If the network is completely intact, the primary path is chosen for each commodity. Let Ä"
denote the set of nodes that are subject to failure and for which we want to incorporate
reliability measures. In case of a failure of node fc e /C, affected commodities will be
routed via their secondary path. Let V* denote the set of all possible primary paths
for commodity g g Q , and Y^ C V« denote the set of paths that contain the arc (t,j).
Similarly, let Z* be the set of all possible secondary paths for the commodity, and Z£ C Z«
the set of all paths that contain the arc (z,j). For all p e U,g(j(Y* U Z»), for all Jfc € Ä"
define a parameter

A* _ / 1 if node fc is on path p <W.
* \ 0 otherwise

We introduce the following additional decision variables:

_ J

2« =

1 if commodity g uses primary path p € Y*
0 otherwise

1 if commodity g uses secondary path p € Z '
0 otherwise

If a node A: € A" fails, commodities with origin or destination node A; will be lost. Let
Q* denote the set of commodities with both source and sink node not equal to node A;,
hence Q* denotes the set of commodities that are not lost in failure state A;. Moreover,
only affected traffic (i.e. traffic for which node A: is on the primary path, but not as source
node or sink node) will be rerouted via the secondary path. Therefore, in case of such
a failure, an edge in the network will possibly accommodate both flow originating from
primary paths, and flow originating from secondary paths. To be able to measure the
total flow on an edge in case of a failure at node A;, we introduce the following decision
variables for all A: € A", g € Q*, p € Z«:

if commodity g uses secondary path p and A; is on the primary path
I otherwise

In words, in case of a failure at node fc, the variable r** is used to measure the flow
originating from secondary paths. Next, we state the directed version of the problem, the

98 CHAPTER 5. NETWORK LOADING PROBLEMS

undi rec ted version is s imilar . -*-JW n*:-*tn•;••*.•; -ri-ii:,p- .+••< :=uî K>-Kiisffra<y. »

mi« E{u}e«Er€T<

s.t. "~~

> ^ + Epgy.Aj»J - 1

V?€Q ;;;,,.,..: Ji,,,V.J*)i

VgeQ

VA:eAT,geQ* ' =

V { M } ^ . : ^ . ; ,

vlVwg'.vpez.
vJbGA",VgeQ*,Vpez«

Vfce tf,Vge <?*,Vpe z*

(5.19)

(5.20)

(5.21)

(5.22)

(5.23)

(5.25)

(5.26)

(5-27)

(5.28)

V { i , i } 6 £ , V f c € / T : M « , ; (5.29)

y«,z«e{0,l},r«*e[0,l] Vfl€Q,Vp€y«UZ«,Vfce"Ä- (5.30)

x.^eN V { i , ; } e £ , V T 6 T (5.31)

Constraints (5.20)-(5.21) state that for each commodity one should choose both a primary
and a secondary path. The primary and secondary path are enforced to be node-disjoint
(except for source and sink node) by constraint (5.22). If no failure occurs, then the
capacity on all the edges should be sufficient to accommodate all primary flow, as stated
in restrictions (5.23)-(5.24). Constraints (5.25)-(5.27) set the variable r** equal to one
if and only if two conditions are satisfied: secondary path p is used and node A; is on
the primary path. Note that these constraints also imply that, although the variables
are binary variables, they can be relaxed to [0,1] variables, since the integrality will be
enforced by the model. Finally, restrictions (5.28)-(5.29) guarantee that sufficient capacity
is available on the edges in the network in case a failure occurs at node fc.

5.3.2 Network Loading Models with Node Dependent Secondary
Paths

In this section we assume that the secondary path that a commodity will use if it is
affected by a failure at node fc may depend on the failure node A;. Let .ft" denote the set of
possible network states, where fc" € Ä" represents the fully operational state, i.e. no node
failure occurs, and fc € K" \ {fc°} represents a failure of node A:. Let y*(V^*) denote the
set of all feasible paths for commodity g in case of failure state A: (that contain arc (i, j)).

5.4. COMPLEXITY RESULTS AND CHOICE OF RESEARCH METHOD 99

For all A; e Ä\g e Q*,p € 5"*, define r-fT;..';;i'jn<u-i'»o*

_ f 1 if
~ 1 0 o

commodity 9 uses path p in network state A;
otherwise • / - > • • . ^ ; ; 1 . 0 1

The directed version of the model then reads: * " " ' , •

vfce /i

VfcGÜ

VfcG/i

Vfceü

V{U}

r.VgGCS

',V{i,j}

f,V{t,i}

: ,?€<? '

G E,VT

,VpGr«*

G T

(5.32)

(5.33)

(5.34)

(5.35)

(5.37)

(5.38)

y** 6 {0,1}

Constraints (5.33) enforce that for each possible network state all commodities that can
be routed are routed on a single path. Edge capacity constraints (5.34)-(5.35) should be
self-explanatory, and finally restriction (5.36) guarantees that the primary path is chosen
for a commodity g if it is not affected in network state fc.

5.4 Complexity Results and the Choice of Research
Method

In this section we prove some complexity results, both on the non-bifurcated network
loading problems and on related problems that could be part of the solution approach for
these problems. We will restrict our discussion to one of the most basic network loading
problems (without reliability restrictions), but the same results and ideas can be applied
to all problem variants described in the above. We use the following problem definitions:

MINIMUM COVER (see Garey and Johnson [37])
INSTANCE: 5 = {si, «2, • • •, «n} and a family C of subsets of 5, and an integer £ < |C|.
QUESTION: Does there exist a family C of C of at most ^ sets, such that U^ec'c' = S ?

DIRECTED NON-BIFURCATED NETWORK LOADING

INSTANCE: Graph G = (V,£), a set Q of commodities (s«,<*,d») with s»,t« e V and
d* € N for each g 6 Q, a set of capacity types T, integer capacities A'', cost coefficients
c[j 6 N for every {i, j } e £ , r g r , and a nonnegative integer L.
QUESTION: Does there exist a feasible solution for problem £ W F M (5.9)-(5.13) with
solution value less than or equal to L ?

100 CHAPTER 5. NETWORK LOADING PROBLEMS

Proposi t ion 5.4.1 DIRECTED NON-BIFURCATED NETWORK LOADING M Ätronj/j/ MP-
comp/ete.

V , , "A l - j f l H i >\ i i . ' f i q - . ' ' - i i v . : : ; !>• : • . • . : . : . • : . : . . 1 ^ .

Proof. It is easy to see that the DIRECTED NON-BIFURCATED NETWORK LOADING is in
NP. Next, given an instance of MINIMUM COVER, construct a graph G as follows. Let
V = 5 UC U {stnfc}. Let C, be an element in C. Introduce an edge {si,Cj} if Sj e Cj, and
an edge {Cy,smfc} for all C, € C (see Figure 5.1). Next define a commodity (s^sinfc, 1)

5 = {1,2,3} . - ,

C = {{1,2}, {2,3}, {3}}

Figure 5.1: Transformation from MINIMUM COVER to DIRECTED NON-BIFURCATED NET-

WORK LOADING

for each s< € 5, and define only a single capacity type with A = n. The capacity costs
are defined by q,,,c,} = |C| + 1 for all i and j and qc,,«,,*} = 1 for all j . Finally let
L = ^ + |5|(|C| + 1). This is clearly a polynomial transformation.

Given an instance of MINIMUM COVER with affirmative answer, attained for subset C",
define a feasible solution for DIRECTED NON-BIFURCATED NETWORK LOADING as follows.
For all s< € 5 there exists a cj S C" such that Sj € cj. Let the commodity (s<,sm/c, 1) be
routed along the path Sj, cj, sinfc for all S{ € S. Moreover, install a single unit of capacity
on the edges {si.c',} for all s< € 5 and on edges {cj,sinfc} for all ĉ € C . The total
capacity costs then equal |5|(|C| + 1) + £ = L.

Conversely, assume there exists a feasible solution for DIRECTED NON-BIFURCATED NET-

WORK LOADING with capacity costs less than or equal to L. Since each commodity must
be routed away from its origin, the capacity costs are at least |5|(|C| + 1). Hence, the
capacity costs on the edges Uj-{C,-,smfc} are less than or equal to ^. But then C" corre-
sponding to the set of nodes cj for which edge {cJ,sinA:} has positive capacity yields the
required subset. •

Given this result, one can opt for several approaches to solve network loading problems.
Firstly, one could try to develop approximation algorithms which guarantee that the
obtained solutions are within a specified range of the optimal solutions (see Epstein [31]
for some interesting approximation results for network loading problems). Secondly, one
can use enumeration methods such as Branch-and-Bound or Branch-and-Cut which are

5.4. COMPLEXITY RESULTS AND CHOICE OF RESEARCH METHOD 101

guaranteed to obtain optimal solutions. For bifurcated network loading problems this
approach has proven to be quite successful (see for instance Magnanti, Mirchandani,
Vachani [56], Bienstock and Günlück [16], Barahona [12]). For non-bifurcated versions,
enumeration methods have also been applied (see for instance Brockmüller, Günlück and
Wolsey [20] [21]) but the additional number of integer variables (due to non-bifurcation)
is obviously a complicating factor. In Chapter 6 we report on a polyhedral study for
the most basic versions of non-bifurcated network loading problem and the corresponding
computational experience for an enumeration approach. /••'^:!' ai- • :• •

In this chapter we resort to a third possible approach, namely heuristic methods. In gen-
eral, heuristics can be used as a robust procedure for problems of large problem size, they
require less insight in problem structure, and are relatively easy to implement (cf. [1]).
Moreover, the time required to obtain good solutions is usually limited and falls within
the control of the designer of the heuristic algorithm. Given the diversity of the network
loading problems in the current study and the limited polyhedral knowledge on the corre-
sponding polytopes, in our opinion heuristic methods are currently the best approach to
answer the research questions as mentioned in the introductory section within a reason-
able amount of time. For a detailed introduction into the field of local search heuristics as
well as numerous references on its applicability we refer to [1] and [63]. Here, we will con-
fine ourselves to a brief overview of the most important concepts, using similar notation
as in [1].

An instance of a network loading problem (or any combinatorial optimization problem in
general) can be represented as a pair (5, /) where 5 denotes the set of feasible solutions
for the problem and / : 5 —> R is a value function that for each solution z € <S expresses
its value /(z). For network loading problems the function / represents the costs of a
solution. Hence, we are interested in the globally optimal solution, that is the solution
z* € 5 that satisfies /(z*) < /(z) for all z € <S. A netj/i&or/iooii/unction is now defined as
a mapping A/": S -> 2^, which for each solution z € 5 defines a set of solutions -A/"(z) C 5
that are in some sense close to z. The set A/"(z) is called the neighborhood of solution
z, and each element y S A/"(z) is called a neighbor of z. We will assume that z € -A/"(z).
The idea of (basic) local search methods is to start with an initial solution z € 5 for the
problem. Next, one tries to find a better solution for the problem by searching whether
an improvement can be found among the set of neighboring solutions A/"(z). If such an
improvement is found and 1/ € A/"(z) is the solution that yields an improvement, then one
can search for a new improvement in the neighborhood A/"(y). Repeating this process until
no improvement can be found yields a locally optimal solution z € 5 , that is a solution
z e 5 for which /(z) < /(z), for all z e A/"(z). Given this description, it follows that
the key challenge in the development of good local search method is to find neighborhood
functions that can be searched efficiently and yield high quality solutions.

Consider the directed non-bifurcated network loading problem without reliability restric-
tions J C W F M (5.9)-(5.13), as introduced in Section 5.2. A solution for this problem is
determined by both a routing scheme and a capacity assignment. Due to the cost struc-
ture of capacity installation, which we assume to be positively correlated to the required
capacity on an edge, it is clear that the (minimal) costs of a solution are completely de-
termined by a routing strategy. Stated differently, if the path from origin to destination

102 „~,.„.*.»./ ,.-,.«.„-. CHAPTER 5. NETWORK LOADING PROBLEMS

is fixed for each commodity and the resulting flow on arc (i, j) equals 7(1, j) , then the
costs of this solution (more precisely, the costs of the cheapest solution with this rout-
ing scheme) are given by E{ij}e£r(i, j)(7(*. J).7O',*)). where F(i, j)(7(*.i).7(j.O) de-
notes the optimal value of the integer knapsack problem min{£^gj. c^-î - | S ^ T - -V"Z^ >
max{7(i, j) ,7(j , i)},zj"j- G N, T G T}. Although integer knapsack problems are NP-hard
in general, the limited number of capacity types available in practical applications, the
modularity in capacities for the different types, and relations for the cost-capacity ratio
c£/A among the various capacity types r give that these knapsack problems can usually
be solved efficiently.

Using this idea, it follows that a solution for the directed non-bifurcated network loading
problem can simply be represented by the path that is selected for each commodity.
Therefore, the first idea that comes to mind is to define a neighborhood function that
allows for the replacement of the selected path for a subset of the commodities. Next, we
give a formal definition of this idea. • •

Definition 5.4.1 Let 5 de/ine tne set o//easi6/e so/utions/or t/ie directed non-6i/urcated
network Joadmi? proMem D7VFM, Wiere a so/ution itse// 15 de/med 6y a sm^/e pat/i /or
eac/i commodity. For all z £ 5 and a// fc 6 N, «ni/i 1 < A; < |Q|, tAe fc-ezc/iaruje
neij/i&or/iood A/"* (2) is de/ined 6y t/ie set 0/ so/utions 5 C 5 t/iat can 6e ofctatned /rom
2 ftj/ se/ecttnp A; commodities and rep/acin<? the pat/i /or a/f 0/ t/iese & commodities 63/ an
arbitrary patn in tne set o//easii/e pains.

Note that 7V*(z) C ^*+'(«) for Jb = 1 , . . . , |Q| - 1, for all 2 € 5 , and ^1«l(z) is an exact
neighborhood, that is, the optimal solution 2 S A/''*'(2). This fc-exchange neighborhood
will also be referred to as fc-opt in the sequel. Given this definition of a neighborhood, one
is interested in its time complexity, that is the time required to find the best solution in the
neighborhood of a solution 2 G <S. First consider the k-opt neighborhood for A: = 1. Then
for a solution 2 € 5 we want to find the best solution among all solutions for which at least
IQI — 1 commodities are routed on the same path as in solution z. Let 9 € <5, consider
the routing of the commodities g € Q \ {<j} through the network fixed as in solution 2,
and let 7(1, j) represent the resulting flow of these |Q| - 1 commodities on arc (i,j) € A
Then the costs of additional capacity requirement on arc (i, j) if commodity g is routed
on that arc are equal to F(i, j)(7(i, j) + d*,7(j, i)) — F(i, j)(7(i, j),7(j,i))- Therefore,
finding the optimal path for commodity g (i.e. the path that yields minimal costs, given
the fixed routing of the remaining commodities) is a shortest path problem in which the
costs on an arc in the graph are defined as the minimal costs of additional capacity if the
commodity is routed on the arc. Let /(n, m) denote the time complexity of a shortest
path algorithm on a graph with n nodes, m arcs and nonnegative arc distances, and let
g(T, c, d) denote the time complexity of the integer knapsack problem F with capacity
types set T, cost coefficients c 6 N'^', and right hand side d. Then finding the best
solution in a 1-opt neighborhood of a solution requires O(|Q| • / (n, m) • ^(T, c, $2,gg d'))
time. Shortest path problems can of course be solved in polynomial time by for instance
Dijkstra's algorithm [30]. Consequently, if the calculation of the cost coefficients on the
arcs of the network can be done fast in practice, this yields an efficient neighborhood
structure.

5.4. COMPLEXITY RESULTS AND CHOICE OF RESEARCH METHOD 103

Next, consider the fc-exchange neighborhood for fc = 2. Then the neighborhood .A/"*(z) of
a solution 2 6 <S is defined as the set of solutions for which at most two commodities may
have a different path than in solution 2. Let g\g* € Q, <? = Q \ {9' ,? '}, and let 7(1,;)
denote the resulting flow of the fixed routing of commodities in Q on arc (z, j) . Then
finding the optimal routing for commodities 9', g* in the network can be described by the
following integer program:

Eft,-)e«EreT« s (5-39)

{ 1 i = s«
-1 » = * V9e{gV},V*€V (5.40)

0 i^s« , t«

<**'/£ + **/£ + 7(M) < Erer * X ; V{i, j} € £ (5.41)

**#+*7?+7Ü\0<EreT^*y V{i,j}eB (5.42)
/£ , /£ , /£>/£ e {0,1}, ir. e N v{t,j} e £ , V r e T (5.43)

Unfortunately, solving this problem is NP-hard, even under the assumption that for a
given flow on the arcs the costs of the solution can be determined in polynomial time.
The proof of this claim employs similar techniques as Even, Itai and Shamir [32], and
uses the following problem definitions.

SATISFIABILITY (see Garey and Johnson [37])
INSTANCE: A set of variables f/ = {xi , . . . ,x„} and a set of clauses C = {£>i,..., ö|c|}
over the variables in (7.
QUESTION: Does there exist a truth assignment for the variables such that all clauses are
satisfied simultaneously?

TWO COMMODITY DIRECTED NETWORK LOADING INSTANCE: A graph G = (V, £) , two
commodities (s«\t«',d«'),(s«\t«\d»') with s«\t»' € V and d«' 6 N, i = 1,2, existing
flow coefficients 7(1, j) ,7(j , t) e N for all {i, j } € £. A set of capacity types T, integer
capacities A'', cost coefficients c,̂ S N for every {i,j} £ £ , r € 7\ and a nonnegative
integer K\
QUESTION: Does there exist a feasible solution for the integer program (5.39)-(5.43) with
value less than or equal to Ä" ?

Proposition 5.4.2 TWO COMMODITY DIRECTED NETWORK LOADING W Stron^/y W -
comp/ete.

Proof. It is easy to see that TWO COMMODITY DIRECTED NETWORK LOADING is in NP.
Next, given an instance of SATISFIABILITY, construct an instance of TWO COMMODITY
DIRECTED NETWORK LOADING as follows. For each variable x< construct a lobe as de-
picted in Figure 5.2, where fc< is the number of occurrences of the literal x< in the clauses
and £j the number of occurrences of the negated literal ->Xj in the clauses (hence, w.l.o.g.,

104 CHAPTER 5. NETWORK LOADING PROBLEMS

riüjii i «v/t,<{.

Figure 5.2: Variable Lobe

If Jfc, = 0 (or /< = 0) then the upper (lower) part of the lobe is replaced by the edge
{ij . i j}. These lobes are connected in series, that is, there exist edges {si,Xi}, {XJ,XJ+I}

for i = l , . . . , n - 1, and {x„,*i}. Next, we introduce an additional set of nodes
{52,Di,D'i,...,D|c|,Dfc|,«2}, and edges {s2, # i } , {A', A+i} for i = l , . . . , m - l and
{DL|,<2}- Finally, introduce edges {.D,-,Ui„,} and {.D ,̂ D,'^} if the assignment "x* is true"
guarantees the satisfaction of clause £)_, and m refers to clause Z?j. Similarly, introduce
edges {Dj, u>i„,} ^uid {.D ,̂ tfj^} if the assignment "ij is false" guarantees the satisfaction of
clause Dj and m refers to clause .D,. This completes the definition of the graph G, and Fig-
ure 5.3 illustrates the graph that is obtained in this way for the clauses
on the variable set {XI,X2,X3}.

Figure 5.3: Transformation from SATISFIABILITY to TWO COMMODITY DIRECTED NET-
WORK LOADING

The two commodities are defined as g' = (s i , t i , l) , ^ = (s2,<2,2). The existing flow
coefficients on the arcs (if the corresponding edges exist) are defined as 7(si,Xi) =
2,7(Zi ,^ i) = 7(xj,u>ji) = 2, f o r t = l , . . . , n , 7 (i J , i j+ i) = 2, for i = l , . . . , n - l ,
7(x'„,ti) = 2 , 7 (t > | „ „ t w i) = 2, for all i , m = l , . . . , fci - 1, 7 (I Ü < „ , U ; J „ + I) = 2, for all
i ,m = 1 A - 1, 7(«2 ,ß i) = l , 7 (Ö J . A + i) = 1 for i = l , . . . , n - l , 7(ßfc|.*a) =
l,7(ß>,wtm) = l,7(£>;,f,'m) = 1,7(0,-,«'».) = 1 , 7 (O J , « O = 1,7(*,J) = 3 for all re-
versed arcs of aforementioned arcs, and 7(1, j) = 0, otherwise.

5.4. COMPLEXITY RESULTS AND CHOICE OF RESEARCH METHOD 105

The set of capacity types T satisfies |T| = 1, with A = 3. The costs c^ for capacity
installation (if the edges exist) are defined as c„j„,„; = 1 for i = l , . . . , n and m =
1,.. . ,fcj, c^,u,<^ = 1 for i = 1,.. . ,n and m = 1,.. .,£,-. Next, c^.,*; = |C| -fcj if fcj > 0,
else C:,,*; = |C|, for t = 1, . . . ,n. Similarly, c ^ ^ j = |C| - 4 if A > 0, else c , ,^ = |C|,
for i = 1 , . . . , n. For all remaining edges we let Cj, = n|C| + 1. Finally, let if = n|C|.

If there exists a truth assignment for the variables Xi, . . . ,x„ that simultaneously sat-
isfies all clauses, then define the path for commodity g' as follows. If z< is given the
assignment true let N< = (vii.uJi,..., v<jt,,u,'̂); if x< is given the assignment false, define
N; = (wji>u','i,---,Wt*i,w,'fci)- Then (si,Zi,7Vi,x'i,a;2,iV2,x'2,...,i„,A^„,x^,ti) defines the
path for commodity 9'. For commodity g ,̂ the path is defined by the sequence of nodes
(s2,öii A/i,£>i, 02 ,^2 , Z?2'- • •, -D|C7|, Af|c|, -Dfcp *a) where A/, is defined as follows. Let
x(j) be the variable that occurs in clause D^ (either as literal x(j) or ->x(j)) and guaran-
tees the satisfaction of clause i>, under the given truth assignment. Then M, = tWit4„
if TO refers to clause £>_, and the clause contains literal x(j), and M, = ti)j„,,ui^ if m
refers to clause Z>, and the clause contains literal -'x(j'). The total (minimal) costs of this
routing strategy equal n|C| since in each lobe i the total costs are exactly |C|.

Conversely, assume there exists a solution for TWO COMMODITY DIRECTED NETWORK

LOADING with costs less than or equal to K" = n|C|. Then the path for commodity ĝ must
be of the form (s2,2?i,Mi, DJ, £>2, A^, !^ , • • • i^|C|> Af|c|>£|c|>*2) with M, either equal to
"•m, '̂,'m or uw, w,'„, for some i and m referring to clause .D,, since otherwise capacity must
be installed on one of the edges for which Cj, = n|C| + 1 > Ä\ As a consequence, the
path for commodity g' must be of the form (si.Xi, ./Vi,x'i,X2, A^x^, . . . , x„, Af„,xJ,,<i)
with Â j equal to either t\i,i>,'i,... ,Vit,,f^, or Wii, wj , , . . . , w^,, wj^ since again, otherwise
capacity must be installed on an edge for which Cy=n |C | + l> . / f .

Consider only the costs that are required to route commodity g', then it follows that these
costs already account for the total amount Ä", since each lobe i requires capacity costs |C|.
Hence, the commodity <̂ requires no additional capacity installation. But this implies
that the paths for commodity g' and ĝ are such that Af, consists of two nodes on the path
for commodity g*. Hence, the truth assignment "x̂ is true" if Â = v^, vJi, . . . , 1^., i>,'̂
and "Xi is false" if Â = u\i,tx^[,... , u^ ,u ;^ . yields the desired truth assignment that
satisfies all clauses simultaneously. •

Note that in a 2-opt neighborhood search one would need to solve O(|Q|*) of such prob-
lems, since this represents the number of possible commodity pairs whose routing may be
different from the routing in the current solution. This result therefore implies that per-
forming a 2-opt neighborhood search may be a difficult, time-consuming task. However,
since A/"'(2) C A/^(z) it follows that 2-opt may yield better solutions than 1-opt. To limit
the calculation time of a 2-opt neighborhood search one could restrict the neighborhood
using the following idea. Suppose we are given a (restricted) set of possible paths P* for
each commodity g € Q that can be used for the routing of the commodity. The number
of different solutions that can be considered for an individual commodity pair (g',g*),
while keeping the routing of other commodities fixed, then equals |P* | x |P* |. Hence, by
imposing a limit on the set of paths for each commodity we can decrease the amount of
time required to perform a restricted version of 2-opt. Apart from just imposing an upper

106 * ' CHAPTER 5. NETWORK LOADING PROBLEMS

bound P on the number of paths considered for a commodity g (implying |P*| < P) one
can pose an upper bound ^ on the number of nodes on a path in the set P«. This leads
to a restricted 2-opt neighborhood function, denoted as A/**'^(z).

Sometimes network planners are interested in symmetric routing strategies. These routing
strategies imply that symmetric commodity pairs (i.e. commodities with opposite source
and sink nodes) are routed on reversed paths in the graph. On the one hand, such routing
strategies may be preferred for their simplicity in operation. On the other hand, although
counterexamples do exist, one might expect that the additional symmetric routing restric-
tion has little impact on the network costs if the demand data are somewhat symmetrical
as well. Therefore, one can also employ a symmetric version of restricted fc-opt, in which
symmetric commodity pairs are routed via reversed paths. ,

Note that to perform a restricted (symmetric) 2-opt neighborhood search we need a
method that, given a graph G = (V, £) (or its directed variant G = (V, A)) and positive
integers P and ^, generates a set of at most |P | paths between a pair of nodes, where
each path visits at most ^ nodes. This can be done via an iterative method as follows.
Let P"(s,t) denote the set of simple paths (i.e. without node repetition) from s to t with
exactly n nodes on the path (including the endpoints). For initialization we let P^(s,t)
be equal to the path s, t if arc (s, t) 6 J4, and P^(s, t) = 0, otherwise. Next, for 3 < n < £
the set P"(s, t) can be obtained as follows. For all u S V such that arc (u, t) € J4, and all
paths p € P"~i(s,u) with £ $ p, a simple path from s to £ is obtained by extending path
p with the arc (u, t). This iterative process can now be used until for each commodity
g = (s«,t«,cf) we have obtained the set P'(s«,<«) or a set P"(s«,t«) with cardinality |P |
for some n < ^, whichever stopping criteria is reached first. Although this procedure may
have an exponential running time in its worst case performance, in practice it yields a fast
path generating method. Moreover, these path sets only have to be generated once and
can then be reused in each iteration of the restricted 2-opt neighborhood search. Given
the control on the amount of time needed for a neighborhood search by user defined values
of P and £, we prefer the usage of this restricted neighborhood function, and this is used
in our current implementations, as reported in the sequel.

Finally, we mention genetic algorithms (see [41]) as a possible local search method. Ge-
netic local search algorithms consist of a number of phases. In the initia/ization phase one
constructs a set of initial solutions, referred to as the population of solutions. Next, an
improvement phase is performed to guarantee that each individual solution in the popula-
tion is locally optimal for a certain neighborhood function. In the combination phase one
expands the population size by combining characteristics of solutions in the population to
create new solutions. Consequently, an improvement phase is applied to guarantee that
the new solutions are locally optimal as well. A se/ection phase reduces the population
size to its original size according to some selection criteria. Finally, the process of com-
bination, improvement and selection can be repeated a number of times to finally obtain
high quality solutions for the combinatorial optimization problem. This method is called
"genetic" since the global idea of the algorithm is to combine characteristics of solutions
(so-called genetic material) to obtain new (child or offspring) solutions. The key issue
that must be addressed in the development of genetic algorithms is how new offspring
solutions can be created by combining the genetic material of existing (parent) solutions.

5.4. COMPLEXITY RESULTS AND CHOICE OF RESEARCH METHOD fflT

Exploiting the fact that a solution for the problem DAFFM or DA^PM is completely
determined by the selected paths for the commodities (as indicated in the above), the
following idea for "genetic" combination of solution arises immediately. Given two parent
solutions, one could define an offspring solution as the optimal solution for the network
loading problem in which the routing of each commodity is restricted to the set of paths
used by either of the two parent solutions. Stated differently, the optimization problem is
a directed non-bifurcated network loading problem (5.14)-(5.18) in which the cardinality
of the set P« of feasible paths for each commodity satisfies |P*| < 2. As for the original
network loading problem, this is again a strongly NP-hard problem, We use the following
problem definitions to prove this claim. ^

MAXIMUM 2-SATISFIABILITY (see Garey and Johnson [37])
INSTANCE: Set [/ = {j/i,... ,y„} of variables, collection C of clauses over £/ such that
each clause c € C satisfies |c| = 2, and a positive integer ß < |C|.
QUESTION: Does there exist a truth assignment for the variables in £/ that simultaneously
satisfies at least ß clauses in C ?

TWO PATH DIRECTED NETWORK LOADING

INSTANCE: Graph G = (V, £) , a set Q of commodities (s«,««,d«), with s«,t* e V and
d* € N for each g € <?, two paths p«(0),p«(l) from s« to t» in the graph G for each
commodity, a set of capacity types T, integer capacities Â" € N, cost coefficients c£ € N
for every {i,j} G £ , r € T , and a nonnegative integer B.
QUESTION: Does there exist a feasible solution for problem £WPM (5.14)-(5.18), with
path set P* = {p*(0),p*(l)} for each commodity 5 6 Q, with solution value less than or
equal to ß ?

Proposition 5.4.3 TWO PATH DIRECTED NETWORK LOADING is «tronj/y JVP-comp/ete.

Proof. It is easy to see that TWO PATH DIRECTED NETWORK LOADING is in NP. Next,
given an instance of MAXIMUM 2-SATISFIABILITY, define an instance of TWO PATH DI-
RECTED NETWORK LOADING as follows. Let f/° = C/' = £/, and let the node set
V = {« \^} U C U t/° U £/' U [/ (where [/" implies that there is a node for each vari-
able with negation, I/' implies that there is a node for each variable without negation,
and [/ implies that there is a node for each variable in general). Moreover, define the edge
set £ = U ^ i ^ , with

£3 = {{c ,u} ,VceC ,Vue(/ ' : - i / „ ec}

£4 = {{u,ü},Vu€C/°U£/\Vü€t/}

The resulting graph is depicted in Figure 5.4 for a problem instance of MAXIMUM 2-
SATISFIABILITY (xi V X2) A (-1I2 V -1I3) on the variable set { z i , ^ , ^ } - Define the com-
modity set <? = Qi UQ* UQ3, where Q* = {(u,*\n),Vu € £/}, Q* = {(^,u,n),Vu € (/},

108 "'»••niM u.-,oA.=o- CHAPTER 5. NETWORK LOADING PROBLEMS

<?3 = {(c,t*, l),Vc € C}. Furthermore, for j e Q ' the paths p«(0),p*(l) are defined as
p«(0) = (u,fc,t») and p«(l) = (u,i*,,t')- For g € Q' let p'(0) = p»(l) = (t ' .u). Next,
for 9 € Q^ let a(6) denote the first (second) variable in clause c and let u(a)(u(6)) denote
the way it occurs in the clause (either without or with negation). Then for <? € Q'' define
p«(0) = (c,u(o),a,^) and p«(l) = (c,u(6),6,t*)- Next, define T as a set of two capacity
types, A' = 1,A* = n, c?,- = c* = 2,c?- = c* = 2n - 1, for all {t, j } € E. Finally, let
B = 3|C/|c* + nc' + (n - fl)c'. This is clearly a polynomial transformation. It remains
to show that an instance for MAXIMUM 2-SATISFIABILITY with affirmative answer yields
an instance for TWO PATH DIRECTED NETWORK LOADING with affirmative answer, and
vice versa.

4 >*•.:•

Figure 5.4: Transformation from MAXIMUM 2-SATISFIABILITY to TWO PATH DIRECTED

NETWORK LOADING

Consider an instance for MAXIMUM 2-SATISFIABILITY with affirmative answer, that is
there exists a truth assignment for the variables in £/ that satisfies at least i? clauses
simultaneously. Then define a solution for TWO PATH DIRECTED NETWORK LOADING as
follows. For g € Q \ if the variable y„ is assigned the value true (j/„ = 1) then choose
path p '(l) , else the variable is assigned the value false (t/„ = 0) and choose path p'(0).
For g e <?*, there is no real choice, since both paths p*(0),p'(l) are equivalent. Finally,
for q € <?̂ , if clause c is satisfied by the first literal u(a), then choose path p'(0), else
choose path p '(l) . Given this choice of routing, let £i C .£< denote the set of edges in
Ej with positive flow. Then we define the capacity variables on the edges as follows. For
{i,j} e F j U f i j let xj; = l,z?,. = 0. For {i, j } € £?, U £5 let x}; = 0,x? = 1. Finally,
for {i,j} S £4, if {i,j} is on a path for a commodity q € Q \ then let x}̂ = 0,x?, = 1,
else let x^ = 1, x^ = 0 . Then it follows easily that the total costs of this solution are less
than or equal to ß .

Conversely, if there exists a solution (routing and capacity assignment) for TWO PATH
DIRECTED NETWORK LOADING with costs less than or equal to £?, then, independent
of the routing choices for g € Q' U Q^, the minimal costs on edges in £1 U £4 U £5

5.5. UMBRIA: A DECISION SUPPORT SYSTEM 109

required to make this routing feasible equals 3|[/|c*. Similarly, independent of the choice
of routing for { £ Q ' the capacity requirement on edges {t,j} € ^ U ^ equals nc*.
In conclusion, at most (n - fl)c' is spent on capacity assignment on the edges. Since,
c* = 2n — 1 > c'(n — 2?) (w.l.o.g. assume that i? > 1) it follows that at most n — fl units
capacity of type 1 are installed on edges {i, j } € £4 in the solution. But this implies that
at most n - fl commodities from the set Q^ are routed on edges which are not used for
the routing of commodities in <5'. Hence, at least Ä commodities from Q^ are routed on
edges {t, j } S £4 U £5 which are also used for the routing of commodities in Q'. As a
result, the truth assignment such that y„ = 1 if p'(l) is chosen for <j € Q \ and j/„ = 0 if
p'(0) is chosen for 5 6 Q ' yields the desired truth assignment. •

The fact that this is an NP-hard problem does not immediately imply that a genetic
algorithm that uses optimization in its combination phase is computationally infeasible
(see Kolen [52] for a counterexample). Still, we have chosen to perform our research with
the implementation of the restricted fc-opt neighborhood structures.

5.5 UMBRIA: A Decision Support System for Net-
work Loading Problems

In this section we introduce UMBRIA: a decision support system for network loading
problems. This software tool is developed to guide network planners in the network design
phase. Currently, it supports the analysis of network loading problems as described in
Sections 5.2 and 5.3, and employs local search algorithms based on the restricted fc-opt
neighborhood functions.

Prom a developer's point of view, the most important requirement is the fact that the
software must be easily accessible for network planners, since otherwise it will not be used.
We have tried to satisfy this restriction by the development of a user-friendly interface
that uses standard windows functionalities, thereby increasing its self-explanatory value
and restricting its learning curve. Prom a user's point of view, the functionalities of
UMBRIA can be partitioned into three categories, namely into input, algorithmic, and
output functionalities, each of which form the basis for one of the subsequent subsections.

5.5.1 Input Functionalities of UMBRIA

Due to the variety in network loading problems that can be analyzed with UMBRIA a
lot of input data are required. In total, seven different input categories are distinguished,
and, depending on the exact problem type at hand, all data for the corresponding subset
of categories must be made available. UMBRIA contains a dedicated input sheet for
each individual category which allows the user to enter the required data. The first input
category consists of the problem characteristics that define the exact problem type that
should be analyzed, and Figure 5.5 shows the associated input sheet.

110 CHAPTER 5. NETWORK LOADING PROBLEMS

1'ioblcm Type

-Problem Type Source—

Read Fiom Fie: |

Ed»

-Detign Setting«

Primay Network

Piimaiy and Secondly Nelwoik

-Secondaiy Netwoik Settings

Single Backup Schema

Node Dependent Backup Scheme

-Bifurcation Settingr

<~ Non-Bifuicated Flow

C Bifurcated Flow

-Capacity Settings

Dkectional Capacity (Max)

Undiiectional Capacity [Sum)

-Routing Settings

Symnnetric Routing

Aibkiaiy Routing

fPathlength Settings

Unbounded pathlength

Bounded pathlength (Ni 01 Nodes): |2 ^ j

| [J j { CanceTgl •< - Previous | Next

Figure 5.5: Problem Type Input Page
O i l

As can be seen from the figure, the user can select whether a primary network or both
primary and secondary network should be constructed, in which case the user can also
select whether a single backup scheme (single secondary path, as in Subsection 5.3.1) or a
node dependent backup scheme (multiple secondary paths, as in Subsection 5.3.2) should
be adapted. The capacity settings allow the user to specify whether the network loading
problem under analysis is directed or undirected. Finally some additional restrictions
on solutions for the network loading problem can be imposed. The routing settings
indicate whether any commodity can be routed arbitrarily through the graph, or instead,
symmetric commodity pairs (that is, commodity from s to i and the commodity from t
to s) should be routed on reversed paths through the network. The path length settings
allow the user to restrict the number of nodes on the selected path for a commodity.

The second input category describes the graph on which the problem is defined, and Fig-
ure 5.6 depicts the corresponding input sheet on which the user can specify the nodes and
edges. Similar input sheets are available for the remaining input categories, which include
the demand data, the different capacity types, cost data, possible routing restrictions on
primary or secondary paths, and a specification of the set of failure states. All of these
input data can be stored in and retrieved from files, such that data can be reused for
future purpose. To simplify reuseability, input categories of distinct problem instances
can be combined to obtain new problem definitions, provided that these partial input
data match. UMBRIA contains a module to perform a data consistency verification.

5.5. UMBRIA: A DECISION SUPPORT SYSTEM 111

pNetwork Source

-UtOfNoder-

Read From Fie. I

Edt

Emdhoven (80.20)
Rotterdam (20. 20)
Zwok (80.80)

rL idOIEdqer-
(Amsterdam. Eindhoven): 0
(Amsterdam. Rotterdam): 0
(Amsterdam. Zwolel 0

indhoven. Rotterdam): 0

Node Description:

X-Coordinste (1.100):

Y-Coord"rnate(1..100):

Left Node: |

Right Node: |~~

Capacity: [Ö~

X Cancel | •< - Previous |

l . ' i i i •

V sl-S

L . ••". t]

:;!.v

Figure 5.6: Network Input Page

5.5.2 Algorithmic Functionalities of UMBRIA

Currently, UMBRIA uses an iterative improvement local search. First an initial solu-
tion is created. Next, we perform a neighborhood search based on the restricted A:-opt
neighborhood function described in Section 5.4 to find the best solution in the neighbor-
hood. If an improvement (i.e. a better solution) is found, we search in the neighborhood
of this new solution. This process is repeated until a locally optimal solution is found,
i.e. no improvements can be found in the neighborhood of the solution. However, we
have also provided a so-called kick operation. Instead of starting a new search with a
completely new solution from scratch, this kick operation replaces the selected paths for
a user-defined number of commodities by random paths. Thereby it allows for a small
disturbance of a locally optimal solution, which may then function as input for iterative
improvement.

The definition of improvement as used in the local search method leaves room for discus-
sion. The most simple variant of improvement is based on the idea that for any pair of
solutions zi,22 in the solution space 5, it holds that solution zj is better than solution
22 if the costs of solution Zi are less than the costs of solution Z2- However, apart from
the cost criteria one could also judge a network solution on the amount of spare capac-
ity which is available in the network. This spare capacity is a measure for the amount
of extra telecommunication traffic flow that the network can handle without additional
capacity installation, hence, it can be seen as a measure for the network stability under
future demand growth. Therefore, instead of using a one-dimensional function for the
evaluation and comparison of solutions we propose a two-dimensional function, that in-
corporates both the costs of capacity installation of a solution and the amount of spare

112 CHAPTER 5. NETWORK LOADING PROBLEMS

capacity in the network for a solution. More precisely, for i € 5 , let / ' (i) denote the costs
of solution i and let /^(i) denote the amount of spare capacity in solution i, where spare
capacity is defined as the sum of spare capacity over all edges/arcs in the network. Then
for any pair of solutions 21,22 in the solution space 5, we say that solution Zi is better
than solution 22 if the costs of the solution are less, / ' (z i) < /'(^2)> or if the costs of
the solutions are equal but the amount of spare capacity in the network is larger, hence,
/ ' (z i) = /'(*2), and /^(zi) > /^(z2)- On the one hand, this two-dimensional function will
find network solutions that are preferred by network planners, since, as indicated in the
above, additional spare capacity yields more stable solutions. On the other hand, consider
two network solutions with the same capacity installation on the edges, but where the
first solution has less spare capacity in the network, due to different routing strategies.
Then it may occur that routing a certain commodity on a different path does not yield
a cost reduction in the first solution, but does yield a cost reduction in case more spare
capacity was available in the network. Hence, the two-dimensional evaluation of solutions
may also prevent the local search algorithm from stopping too fast and therefore help the
algorithm in its primary goal to yield cost reductions.

For the creation of an initial solution, four methods are available (see Figure 5.7 for a visu-
alization of the options as incorporated in UMBRIA). The shortest path method selects
a shortest path in the graph for each commodity, where the length of a path is defined as
the number of arcs (or nodes) on the path. This method is based on the following idea.
Consider a commodity <? € Q and a path p E i " . Then the commodity uses a certain
amount of capacity on each edge/arc of the path. Let the capacity consumption of the
commodity for the selected path therefore be defined as the demand of the commodity
times the number of arcs on path p. Similarly, we can define the total capacity con-
sumption in the network by accumulating the individual commodity consumption values.
Although no perfect relation holds in general, one does expect that network solutions with
lower capacity consumption require less capacity installation, and are therefore cheaper.
The shortest path method is based on this idea since a shortest path for a commodity
yields the lowest possible capacity consumption for a commodity.

The second method as indicated in Figure 5.7 is a random method that selects an arbitrary
path for each commodity. This may be particularly helpful if the local search algorithm is
performed multiple times to have different starting solutions for the search process. The
third method and fourth method are more constructive in the following sense. Suppose
that a subset of commodities is routed in the network then the resulting flow on the
edges/arcs already require a certain capacity installation. Because capacity can only be
installed in certain discrete amounts this implies that there may exist some spare capacity
for this partial solution. A commodity that is not yet routed could take advantage of
this spare capacity. Hence, given the routing of a subset of the commodities one wants
to find the best routing for the next commodity in the order. This one commodity
network loading problem is a shortest path problem, where the costs on an arc are defined
as the costs of additionally routing the commodity on the arc. The third and fourth
method therefore add the commodities one by one, each time finding the cheapest routing
for the new commodity given the partial solution. The third method (LOCI: Largest
commodity Order Cheapest Insert) orders the commodity according to non-increasing
demand, whereas the fourth method (ROCI: Random commodity Order Cheapest Insert)

5.5. UMBRIA: A DECISION SUPPORT SYSTEM 113

«si i * ' • • ' i ; • - ; ; j - :-T i •

/ > ! . - . I - K ' :••- " ' ; " . . '

i . ' ' !.' : : ; . V, . . ' -M; .

tuqiuO E.d.3
| -Ssbd S o U o i Method-

<~ Shortest Pain:

ASokionnihShoteslPelh
for each cornmodry it created.

A Solution ™th Random P«h
far each commodfey is created
LCD:

A coluban b created umg (he Largest
comnaSy f r t Olds Chew«) Insertion
MKhod

A takjäan it created using the
Random convrodty Old« Cheapest
I b n Motnod

•-b o

Figure 5.7: Create Initial Solution Window

uses a random order on the commodities.

Figure 5.8 visualizes the neighborhood functions that are supported by UMBRIA. Given
user-defined values for the parameters P (maximum number of generated paths per com-
modity) and ^ (maximum number of nodes on generated paths) the fc-opt (Jfc = 1,2)
selection perform an iterative improvement search based on the restricted neighborhood
function A/"*'^'(z). Note that 1-opt and 2-opt are not available to the user if the routing
of commodities is required to be symmetric. Instead, the symmetric versions of these
neighborhood functions are always available.

-Solect Invrovwnort Method

T 1-Opt

Createt a solution which cannot
be impioved by rerouting a tingle
coRvnodty

T SymmetnclOpt

1 -Opt but symmetric touting t>

IU ^| Mannuni ntviaDOt of path$ gi

r 2-opi

Deates a sotubon whch
cannot be improved by
tor outng two commodbe*

f~ 5ynvi«tnc 2-Opt

2-Opt but lymmetnc routing o
ntpoted on tynvnetic

rwated psr conmxSty p.,100).

[0 ^ j Maxinun number of nods« on path (2..4J.

PflKh uonoi*xion i^oojcm

lleratnn Progren

Nunbar of üaatiora.

0

Nunöw of mpfowiMrts:

Figure 5.8: Improve Solution Window

114 CHAPTER 5. NETWORK LOADING PROBLEMS

5.5.3 Output Functionalities of UMBRIA

The output functionalities of UMBRIA are divided into three different visualizations of
the generated solutions. Figure 5.9 shows the network solution window, which allows
the user to view global solution statistics such as total network costs, total capacity
installation, total traffic flow and total spare capacity. Moreover, a visualization of the
network allows the user to view the network topology of a solution and inspect such data
per individual edge as well. All of these data can be displayed or hidden, according to
the user's specific needs. Moreover, since the visualization of large, dense networks may
become troublesome, zooming functionalities are incorporated, as well as the possibility
to display any subset of the edges.

> iW^<k j F2Ö '•

I Ftow I I Ids O j « J f ^ „ j Edgo.

Figure 5.9: Network Solution Window

The demand routing window, depicted in Figure 5.10, allows the user to inspect the pri-
mary (and secondary, if available) routing of a commodity through the network. Finally,
the link window (see Figure 5.11) gives edge specific information to the user. This in-
cludes data such as the costs and capacity on the edge, as well as a specification of these
numbers per capacity type, and the flow and spare capacity on the edge. Next, one can
monitor the different commodities that visit the edge in both directions. These solution
statistics may help network planners in the comparison of different network solutions.

5.5. UMBRIA: A DECISION SUPPORT SYSTEM 115

" . < / . * <)><y

V. De*and Routing Solution I to]

Prmny | Flo» [Id« | * t J * > J Nam«) Edg«

Figure 5.10: Demand Routing Window

000

no

«00

wo

100

n

•• «

1• 1
dFiow| [B K

II

-wwdFtow|_

^ |

1- Jecü

900C-P-C*.
USFvwwtfFtow
8 3 S B K > W > I) F O M

D n Forwwd S«ar*

FonMraFbw rif> Wlinim ForwtrflSo»« BKIwlrtS

| Gtob* Co* | Co«c*y I Flw

Figure 5.11: Link Window

116 CHAPTER 5. NETWORK LOADING PROBLEMS

5.6 Conclusions

The research questions as posed in the introduction were part of a planning project for
ATM-backbone networks at KPN Research, Leidschendam, and they provided us with a
number of real-life problem instances. First we explain the structure of these instances (see
also Figure 5.10 for an example graph). For historical reasons, the existing hierarchical
network topology contains two identical, separate backbone networks. These networks
are cliques and are referred to as the A-net and B-net. For each node in the A-net that
serves some geographical area there exists a "brother" node in the B-net that serves the
same geographical area . Moreover, the lower layers of the network hierarchy in a certain
geographical area are both connected to the corresponding backbone switch in the A-net
and B-net, and these lower layers are represented by a single node in the example figure
(S-nodes). Historically, if a traffic demand generated in a lower layer of the network should
be routed from an origin area to a destination area then the following network routing
strategy was typically used. In case no network component breakdown occurred in the
A-net backbone, the traffic demands was routed directly from the lower layer (switching
network) to a backbone switch of the A-net that corresponds to the origin area. Next,
it was routed via the A-net to a backbone node of the destination area, after which it
was routed to the switching network in the destination area. In case this routing was no
longer feasible due to a network component failure in the A-net the corresponding traffic
demand would be routed via the B-net.

The network design issues discussed in this chapter are based on this underlying network
topology. Hence, the node set of a graph G = (V, £) corresponding to a problem instance
can be partitioned into three parts V = Vs U V^ U Vß, with |Vs| = |V^| = |VB|. The
set Vs denotes the set of demand nodes that are source or sink of a commodity. Each
of these nodes is connected to exactly one node in V,» and one node in V^. Moreover,
the nodes in V^ axe connected via a clique graph, and the same holds for the nodes in
Vs. The instances we obtained were defined on graphs in the range |Vs| = 4 , . . . , 8. The
commodity set Q in the instances consist of a commodity for every pair of nodes (s, t)
with s,t € Vs, s / <. Instances with two or three different capacity types arising from
ATM-technology were considered. The costs cĵ of capacity installation are equal for all
edges {i, j } in the network, hence cĵ = c"" for all {i, j } € £. Moreover, the costs of
capacity installation exhibits economies of scale, i.e. the costs per capacity ratio c /̂A'"
decreases for larger capacity types T.

To analyze non-bifurcated network loading problems without reliability considerations
(Section 5.2) we eliminated the B-net from the graph and solved the corresponding prob-
lems using the local search heuristics. Typically, symmetric commodity pairs had com-
parable demand sizes in the problem instances. In directed network loading problems
capacity installation yields the same amount of capacity on both directions on an edge.
This might lead to the idea that symmetric routing strategies are sensible since if a com-
modity is routed on an arc it requires a certain capacity installation on the edge, hence
that same capacity is available in the other direction on the edge and this might as well
be used by the reversed commodity with comparable demand size. From a theoretical
point of view, even if symmetric commodity pairs have exactly the same demand size, the

5.6. CONCLUSIONS 117

optimal routing strategy does not necessarily have to be a symmetric routing strategy,
and counterexamples for this idea do exist. However, these counterexamples may well be
somewhat artificial, thus in practical applications this routing strategy may be a good
choice. In fact, in all the instances considered in our study with directional capacity
we could find no reduction in costs by allowing arbitrary routing strategies instead of
symmetric routing strategies. In case of an undirected capacity problem the argument in
favor of symmetric routing is less apparent, and in fact, the example problem instance
discussed in Chapter 1 is an example for which arbitrary routing strategies may yield cost
reductions as compared to symmetric cost reductions. However, in the real-life problem
instances cost reductions could hardly ever be obtained by allowing arbitrary as opposed
to symmetric routing strategies. Moreover, in the rare cases where such a cost reduction
was possible, the resulting routing strategies were not very stable under growing demand
sizes of the commodities. Therefore, we conclude that symmetric routing yields good
network topologies in practice in case the demand sizes of symmetric commodity pairs
are comparable.

Another research topic involves the influence of an upper bound on the number of nodes
on the selected path from the source of a commodity to the sink of a commodity. Without
the incorporation of such an upper bound, the paths used in the solutions found by our
heuristics usually already contained a small number of nodes. This can well be explained
by the fact that short paths lead to less capacity consumption of a commodity in a net-
work and this tends to lead to a lower capacity requirement. In fact, the definition of
improvement in our local search heuristics supports this idea, hence, for different solu-
tions with equivalent capacity costs the solution that uses shorter paths for commodities
is preferred. Therefore, adding an upper bound on the path length used in a routing
strategy was expected to have little impact on the network costs, and this conclusion is
supported by our computations. Since one or two additional intermediate nodes on a
path as compared to the shortest possible path is usually acceptable, this leads to the
conclusion that realistic upper bounds on the path length in routing strategies cause no
significant higher network costs.

Next we analyzed network loading problems with reliability considerations, where the set
of failure states was equivalent to the set of nodes in the A-net. The primary paths were
restricted to the A-net and secondary paths to the B-net. We compared two situations,
namely models with a single secondary path for each commodity versus models with
multiple secondary paths for each commodity. Since, the set of commodities that needs
to be routed via the B-net obviously depends on the node in the A-net that is subject
to failure and multiple secondary paths yield more flexibility, one might expect that the
second situation yields cost reductions as compared to the first situation. However, again
such cost reduction were hardly ever found in our computational experiments, leading to
the conclusion that multiple secondary paths as opposed to single secondary paths yields
no network cost reductions. There are some arguments that might explain this empirical
result. Firstly, direct routing (routing via the shortest path in the graph) is often applied
for the primary paths. Hence, these paths often contain a small number of nodes from the
A-net. This implies that the extra flexibility that can be obtained in the second model
is limited since secondary paths are only required for each potential failure node on the
primary path. Secondly, the capacity required in the B-net for the secondary path for a

118 CHAPTER 5. NETWORK LOADING PROBLEMS

certain failure state might as well be used for a secondary path of the same commodity
for a different failure state. • •

' ; . . ' ; ; . ' , - ? ; . . ? « ' ' - . K r . ' " . H i • • • : : • • ; : • ; . : • • i •• ••;

r J . • . • - • . . : • • . - ;

Chapter 6

Polyhedral Results for the Edge
Capacity Polytope

6.1 Introduction

This chapter, based on Van Hoesel, Koster, van de Leensel and Savelsbergh [77], considers
the edge capacity polytope. This polytope arises as an important substructure in all of the
network loading models described in Chapter 5. These models contain capacity constraints
on the edges of the network, which guarantee that the amount of capacity installed on
an edge of the network suffices to accommodate the amount of flow on the edge for a
possible network state, i.e. failure or non-failure state. Although the different models
contain somewhat different edge capacity constraints, from a mathematical point of view
these restrictions are the same. In all cases one is given a set of capacity types, whose
cumulative integer capacity must be greater than or equal to the cumulative demand of
the commodities that are routed on the edge. In this chapter we focus on this general
model, and study the polyhedral structure of the associated edge capacity polytope. We
restrict ourselves to a single capacity type, although many of the ideas presented in this
chapter can be extended in case multiple capacity types are available.

The edge capacity polytope with a single capacity type can be viewed as a 0-1 knapsack
problem with a single integer variable representing the capacity of the knapsack. The
closely related knapsack problem with a single continuous capacity variable is studied by
Marchand and Wolsey [58]. They employ valid inequalities of the standard 0-1 knapsack
problem (see Balas [10], Hammer, Johnson and Peled [45], Wolsey [79]) to obtain valid
inequalities for the extended model by projection and lifting. The edge capacity polytope
itself has also been studied by Brockmüller, Günlück and Wolsey [20],[21], who derive valid
and facet defining inequalities for the edge capacity polytope. Magnanti, Mirchandani and
Vachani [55] study the version of the polytope in which the binary variables are relaxed
to real variables and derive a complete description of the corresponding polytope.

In this chapter we derive various new results for the edge capacity polytope. In Section 6.2
we recall the non-bifurcated network loading problems as stated in Chapter 5, and formu-

119

120 CHAPTER 6. POLYHEDRAL RESULTS FOR EDGE CAPACITY POLYTOPE

late the associated edge capacity models corresponding to individual capacity constraints.
Although valid inequalities for individual constraint models obviously yield valid inequal-
ities for the overall model, in Section 6.3 we derive a much stronger result, which implies
that facet defining inequalities for the edge capacity polytope (often) correspond to facet
defining inequalities for the network loading problem. In Section 6.4 we derive some basic
results on facet defining inequalities for the edge capacity polytope, which facilitate the
subsequent analysis. Section 6.5 introduces lower convex envelop inequalities as a general
framework for valid inequalities for the edge capacity polytope.

Given the interpretation of the edge capacity polytope as a knapsack polytope with vari-
able capacity, Section 6.6 shows how any valid inequality for related knapsack polytopes
can be transformed into a valid inequality for the edge capacity polytope by integer lifting.
Integer lifting is usually a complicated process, but in Section 6.7 we show that for cover
inequalities, this lifting process can be done efficiently, and moreover, that the resulting
inequalities include the so-called c-strong inequalities developed by Brockmüller, Günlück
and Wolsey [20]. Some new properties that indicate the importance of c-strong inequal-
ities in the description of the edge capacity polytope are also mentioned. In Section 6.8
we discuss the directed edge capacity polytope, that is the edge capacity polytope with
a capacity constraint for both arcs corresponding to a single edge in the network. New
valid inequalities and lifting results are obtained. Finally, the computational importance
of the developed theory is the subject of Section 6.9.

6.2 Models for Network Loading Problems

Let G = (V, £) be an undirected connected graph with node set V and edge set £ . Given
the graph G we define the arc set .A, which contains two directed arcs (i,j) and (j, i) for
all edges e = {i, j } 6 £. Let Q be a set of demands (commodities). Each element g € (?
is a triple (s*,t ' ,d'), with s*,t' 6 V, s* ^ t*, representing a commodity with demand
size d* € N that must be routed from source node s* to sink node t* on a single path
through the network. To route a set of commodities on an arc, sufficient capacity must
be available on the corresponding edge. The capacity on an edge is determined by the
number of capacity units installed on the edge, where each unit has a base capacity A € N.
The goal is to minimize the costs of the installed capacity in the network while ensuring
that all commodities can be routed from source to sink simultaneously.

We assume that for each commodity g € Q there exist at least two node-disjoint paths
from source node to sink node (node-disjoint, except for the nodes s ' and t ') . If this
assumption is not satisfied, the graph G contains a separating vertex, hence the problem
can be decomposed into smaller problems that do satisfy the assumption.

To formulate this problem as an integer program, let x^ € N be the number of capacity
units installed on edge {i, j } , and let /,* be a binary variable indicating whether the
commodity g € Q is routed via arc (i, j) € .A or not. If Cy represents the costs per base

6.2. MODELS FOR NETWORK LOADING PROBLEMS 121

capacity unit on edge {i, j} € £\ then the model reads: ^ . v -

(6.1)

geQ.Vze V , . u : : (6.2){
- l if i = t«

0 otherwise

V { i , j } € £ (6.3)

/£, # e {0,1}, iy G N V<7 e Q, V{i,j} G £ (6.4)

This model is called the undirected non-bifurcated flow model, and the corresponding set
of feasible solutions is denoted f/NFM. The capacity on an edge is undirected because
installed capacity can be used by traffic in both directions, i.e. the required capacity on
an edge is determined by the sum of forward and backward flow on the edge. It is called
non-fti/urcated since the demand of a commodity has to be routed on a single path (i.e.
the demand cannot be bifurcated). Finally, /Jot« variables on individual arcs are used to
model the routing of a commodity from source node to sink node.

Instead of using flow variables on individual edges to model routing restrictions, one can
also use binary variables 2« representing whether a certain path p € P* (the set of all
possible paths for the commodity g) is used to route the commodity <j from source node
s' to sink node £*. We assume that P* only contains simple paths, that is paths that
visit each node at most once. If P? C P« denotes the set of paths for commodity <j that
contain arc (i, j) , then this leads to the following undirected non-bifurcated path model
with feasible solution set /7./VPM.

(6-5)

V{t, j} € £ (6.7)

z« G {0,1}, *y € N VgeQ, VpeP», V{ i , j }€£ (6.8)

Depending on the exact application and level of aggregation, capacity that is installed
on edges in the network can also be directed, i.e. each unit of capacity installed on an
edge {i, j} gives a capacity of A on both corresponding arcs (i,j) and (j, i), and capacity
consumption is directed as well. This leads to the following directed non-bifurcated flow
model, with feasible solution set

min E{u>6«cy*tf (6.9)

{ 1 if i = s«
- 1 if * = £« V g e Q . V i e V (6.10)

0 otherwise
A * ö > E , e Q * / y V{ i , j }€£ (6.11)

122 CHAPTER 6. POLYHEDRAL RESULTS FOR EDGE CAPACITY POLYTOPE

Axy>E,<=Q<*V£ V{t , j}G£ .. (6.12)

"' /* , / / , G {0,1}, xy GN VgG Q, Vfi,;} € £ (6.13)

Similar to the undirected case, one can model the directed case using path variables. This
directed non-bifurcated path model, with feasible solution set D^VPAf reads: : ,

•';>?'. min E{ij}e£Cy*'> : (6-14)

s-t- EpeP,2 | = l VgGQ (6.15)

V { I , . J } G £ (6.16)

V { i , j } € £ (6.17)

z« G {0,1}, xy G N Vg G g, Vp G P«, V{t, j } G £ (6.18)

Both the directed and the undirected version of the problem are strongly NP-hard (see
Chapter 5). In this chapter we focus on the polyhedral structure of the associated poly-
topes. More precisely, we study the convex hull of sets related to individual edge capacity
constraints in the formulations. Hence, we define the following sets, which are defined by
a single (denoted with AT) or double (denoted with K) edge capacity constraint.

= {(*, /) G N x {0,1}»™ : Axy > E,<=<? d<(/y + /*)}

= {(x,/)GNx{0,l}WI : A x y > i ; * Q t f / y }

= {(x,/) G N x {0,1}^! : Axy > E, ,QdVy, Axy >

= {(x, ^) € N x {0,1}S*« '̂ 1+1^.1 : Axy >

E p ^

= {(*, *) G N x {0, l}Sf« 1̂ 1 : Axy >

= {(x, z) € N x {0,1}S,

Obviously any valid inequality for these polytopes is valid for the corresponding original
problem. In Section 6.3 we prove the stronger result that for the undirected models any
non-trivial facet defining inequality for these polytopes is also a facet defining inequality
for the corresponding original problem. For the directed models the same result holds for
the edge models that incorporate capacity constraints in both directions on the edge.

6.3. THE STRENGTH OF FACETS 123

6.3 The Strength of Facets of the Edge Capacity Poly-
tope for Network Loading Problems

In this section we state some basic results about the dimension of polytopes related to the
problems introduced in the previous section. More importantly, we show that non-trivial
facet defining inequalities for the polytopes related to a single edge constraint are non-
trivial facet defining inequalities for the polytopes corresponding to the original problem.

6.3.1 Path Formulation

Proposition 6.3.1 77ie dimension o/ 6ot/i conv(i/7VPAf) and com;(Z)./VPM) are egua/

Proof. The number of edge capacity variables equals l^l and the number of path variables
equals 5Z,gg |P*|- Since the number of linearly independent equality constraints equals
|<5|, this leads to an upper bound on the dimension of |£ | + £] , £ Q (| P * | - 1) - Next, we state
l + |Z?| + £\gQ(|.P*| —1) affinely independent feasible solutions, which proves our claim. In
the first solution each commodity g € <5 is routed via an arbitrarily chosen path p € P ' ,
and the capacity equals the total flow on an edge rounded up to the nearest multiple of
A. Given this solution we can install an extra capacity unit on each edge, which yields
another |i?| affinely independent solutions. Finally, for each commodity g G Q and each
path p g P ' \ {p} we construct a solution by keeping the routing of all other commodities
fixed as in the first solution, but replacing path p by path p for commodity g, and installing
additional capacity if needed. The 5^ ,£Q(|P* | — 1) vectors that are obtained are affinely
independent since each solution contains a path variable that is not used in any other
solution vector. •

The following lemma indicates that the number of path variables in the formulation, and
therefore the dimension of the corresponding polytope, can become exponentially large in
terms of the size of the graph.

Lemma 6.3.1 77ie numier o/ distinct simp/e pat/is fa path «nt/iout node repetition^ 6e-
tween any pair o/ nodes in a complete ffrap/i on |V| nodes egua/s [(|V| - 2)!eJ, i/1 V| > 3.

Proof. Let u,v € V, then there remain |V| — 2 nodes that may function as intermediate
nodes on a path from u to v. Since for a given number of A; intermediate nodes, the
number of possible orders equals /:!, the total number of paths between nodes u and u in
a complete graph equals

,HV|-2 /|V|-2\ -, _ v-|V|-

To analyze this sum, note that

I
i=n+l t!

124 CHAPTER 6. POLYHEDRAL RESULTS FOR EDGE CAPACITY POLYTOPE

Moreover, since l o gJ' . (l i^ i fMi 5 ' ' f i l < I)

I «r-ioo 2. n! • nl • n!
"* Z-,«=n+l »! ~ (n+1)! ~*~ "•"

+ ^Ti

it holds that

This completes the proof. ' '.'.'"* •

Proposition 6.3.2 Let g G (?,p S P*. T/ie triwai inegua/ihes z£ > 0 are t;o/id and/acet
/or coni)(J/A^PM) and cont)(.DiVPM).

Proof. Let g 6 Q and p € P*. W.I.o.g. we assume that the path p for commodity g as
chosen in the first solution vector of the proof of Proposition 6.3.1 satisfies p / p . But
then all of the vectors but one as constructed in the proof of Proposition 6.3.1 satisfy
z? = 0. Hence, we have identified |£ | + X),eg(|P*| - 1) affinely independent vectors in the
convex hull of feasible solutions that satisfy the inequality at equality, which completes
the proof. •

Theorem 6.3.1 4ny non-fritna/ /oce< de/ininp ineguaWj/ /or conv(X,^) is a non-tnwai
/ace* de/imnj megua/ity /or conu(C/AfPM).

Proof. Let a„zy > S,gg EpeP'uP« ''P^P ~ c be a non-trivial facet defining inequality for
com;(X,f). If * denotes the dimension of conu(X^) then Jfc = 1 + £,6«j(|P*l + |P/J),
since the polytope conr(X,^) is full dimensional. For each g £ Q, let p* ^ P? U P,-j be a
path that does not visit arc (i,j) nor (j,i). Now consider the polytope

r = conu({(i ,z)e £WPM:z« = O,VgeQ,Vpg(P?. uP*U{p*})}).

This polytope is the convex hull of the set of solutions for the restricted network loading
problem where a commodity g € Q can only be routed on path p* or on a path that visits
edge {i, j } . Using Proposition 6.3.1 the dimension of T thus is |£ | + £,e<j(|Pj*| + I^/J) =
A; + |£ | — 1. First we show that the inequality ayZy > XLgo SpsP'uP' ^ p ~ c is also
a facet defining inequality for T by constructing A; + |£ | — 1 solution vectors in T that
satisfy the inequality at equality. Note that there exist A; affinely independent vectors
(z, z) € X , ^ that satisfy the inequality at equality. Given such a vector (i, z) we define
a vector (z, z) € T as follows. For all g e Q, let z« = z« for all p € P? U P^, z| = 1 if

6.3. T H E STRENGTH OF FACETS 125

Epe/"uP« •*£ = 0, z | = 0 otherwise, and z* = 0 for all p £ (P? U P£ U {p«}). Moreover,
define i y = Xy and £„„ = [£,£(? *̂1> for all {u, v} ^ {*,j}- Then these A; vectors
(x, £) € T are also affinely independent. Moreover, for any of these given vectors, we can
install one additional unit of capacity on any of the edges {u, u} ^ {i, j } , which leads
to |£ | — 1 additional vectors. All of these A + |.E| — 1 vectors are affinely independent
and satisfy the inequality at equality, hence, the inequality is also facet defining for the
polytope T\

Next, we prove that maximal sequential lifting applied to a variable that is fixed to zero
in the polytope T yields a lifting coefficient zero, which implies that the inequality is
also facet defining for the conv(f/A^PM). Thus, let g e Q and let p £ (Py U P£ U
{p*}). If we apply maximal lifting on the variable z? to obtain a valid inequality OyXy >

! J ~ *•> ^ e n the lifting coefficient 6̂ is determined by

Since the facet defining inequality under consideration is non-trivial, there exists a solution
(i, z) € T with zj = 1 that satisfies the inequality at equality. Now consider the solution
vector that is obtained by replacing path p by p for commodity g. This yields a solution
vector that is feasible for the minimization lifting problem and has objective value zero
since the coefficient of the variable z| is zero in the facet defining inequality. Since the
lifting coefficient is nonnegative it then follows that it must be zero.. Repeating this
argument for all remaining variables that are currently fixed to zero yields the desired
result. •

Theorem 6.3.2 j4ny non-tfriviaZ /acei de/ininy ineguaZity /or cont>(Yy) is a non-triwiaZ

Proof. Similar to the proof of Theorem 6.3.1. •

6.3.2 Flow Formulation

Proposition 6.3.3 77ie dimension o/ 6ot/i conv(f/AfFM) and conv(Z?AfFM) are eguaZ

Proof. The number of edge capacity variables equals | £ | and the number of flow vari-
ables equals |Q| * |J4|. Furthermore, since for each commodity there are |V| flow balance
constraints, of which |V| — 1 are linearly independent, an upper bound on the dimension
is given by |E| + |<5| * (|A| - |V| + 1). To prove that this bound is tight we show that
there exist no other implicit equalities in the model. Stated differently, if

126 CHAPTER 6. POLYHEDRAL RESULTS FOR EDGE CAPACITY POLYTOPE

is satisfied by each solution in [/JVFM, we prove that this equality is a linear combination
of the model equalities. : i .".* . ;, • ;, , ^ .»

Let {u, t>} € £, and let (x, /) € C/A^FM. Next, define a solution (x, /) as / = / ,
Xu« = x„„ + 1 and x^ = x^ for all {i, j } ^ {u,f}- Because both solutions satisfy the
equality, it holds that a„„ = 0, and since the edge was chosen arbitrarily it follows that
Qy = Ofor all {t,j} e £.

Next we show that for all g € Q and for all cycles C in the graph it holds that Xl(ij)ec $ j =
0. Since any cycle in the graph can be decomposed into a collection of simple cycles (i.e.
cycles that visit each node at most once) it follows that we only have to prove this claim
for simple cycles.

Let j 6 Q and C a simple cycle in the graph. First we consider the case that C is a
2-cycle (a cycle of two arcs, say (u, Ü) and (i>, u) for some u, v € V). Since there exist two
node disjoint paths from s* to t* in the graph, there exists a path from s' to £* that does
not contain edge {u,i>}. Let (x, /) € [/A^FM be a solution that uses this specific path
for the routing of commodity <j. Given this solution, let (x, /) € (/iVFM be a solution
that employs exactly the same routing strategy for all commodities g € Q, except that
commodity g is additionally routed on arcs (u, i>) and (v,u). Since both solutions satisfy
the equality and a^ = 0 for all {i, j } e £ it follows that /?«„ + /?*„ = 0.

Now we consider the case that C is not a 2-cycle. Let p be a simple path from s' to t* in
the graph. If the number of nodes on the path p that are also on the cycle C is less than
or equal to one, then we use similar arguments as before to show that 5Z(ij)gcA'y ~ 0.
Let solution (x, /) £ C/JVFM use path p for the routing of commodity 9. Next, define
solution (x, /) to be a solution that employs exactly the same routing for all commodities
<7 G Q, except that commodity 9 is also routed on cycle C. Comparing the two solutions,
and using the fact that Q^ = 0 for all {i, _/} € £", it follows that]j[V)£<?/?,' ~ 0.

If the number of nodes on path p that are also on the cycle C is greater than or equal
to 2, then define t>i as the first, and «2 to be the last node on the path that is also on
the cycle. As a result, path p can be decomposed into three parts Pi,P2,P3, where pi is a
path from s' to Uj, P2 is a path from «i to «2, and P3 is a path from V2 to t*. Similarly,
the cycle C can be decomposed into a path Ci from uj to 2̂ and a path C2 from i>2 to
«i. Given these definitions, we can construct two new paths from s' to t* in the graph.
The first path can be represented as pi,C\,p3 and the second path as pi,C2,P3, where
CJ is the reversed path of C2- Let (x, /) € t/A^FM be a solution that uses the first path
for the routing of commodity g. Given this solution, define a solution (x, /) € f/A^FM
that employs the same routing strategy for all commodities g € Q \ {g}, but uses the
second path for commodity <J. Since both solutions satisfy the equality it follows that
£(«)ec , 0y - £(M)ec; 0y = °- Exploiting the fact that /% = -/?» for all 4 € Q and for

all {t, j } G £, it follows that E (y) e c ^ = E w) e C 4 + £<u)ec, 4 = 0' "»»ich proves
our intermediate claim.

Next, for all <? € Q, for all i € V and a path p from s* to t in the graph, let fi* = £(o)ep /JJ-
We claim that the value of /i ' is independent of the selected path p. To verify this claim,

6.4. CHARACTERISTICS OF THE EDGE CAPACITY POLYTOPE 127

let pi,P2 be two paths from s* to i in the graph, and let Pi,p£ be the reversed paths. Then
p, U $ forms a cycle, hence, £(i_,)epiup; /% = 0. Using /?*. = -/?£ it then follows that
£«epi ^0 ~ S,gpj /?*>! thus indeed, the value of /i* is independent of the selected path
from s' to i.

If we multiply the flow conservation equalities of the model t/7VFM by these multipliers
and add them all up, we obtain the following expression:

This implies that the equality is indeed a linear combination of the model equalities.

Proposition 6.3.4 Let g € Q and (i,j) € A TAe trivia/ megua/ities /,?• > 0 are t/a/id
and/acet de/tninj/or coni)(C/^VFM) and conv(Z)7VFM).

Proof. Analogous to the proof of Proposition 6.3.3.

Theorem 6.3.3 ^4nj/ non-triwa/ /acet de/ming inegua/iiy/or conv(J\r,^) is a non-<rivia/
/acet de/ininp inegua/ity/or cont;(t/AfFM).

Proof. Analogous to the proof of Proposition 6.3.3.

Theorem 6.3.4 >lny non-trivia/ /ace/ de/min<7 inegua/i<y /or conv(Y^^) is a non-<riina/
/ace< de/ininj inegua/ity/or

Proof. Analogous to the proof of Proposition 6.3.3.

6.4 Characteristics of the Edge Capacity Polytope

In Section 6.2 we introduced six different polytopes restricted to a single edge of the
original model. The edge models X#*\ X#*\ *£*", X£* are similar. They describe a
knapsack with variable integer capacity. Since the associated polyhedra are the same, in
this and the following sections we use easier notation and a redefinition of the edge capacity
model that captures all of the aforementioned edge models. We show that optimizing a
linear function over the polytope is an NP-hard problem in general. Next, we state the
dimension of the polytope, discuss its trivial facets and derive a general form of a facet
defining inequality. The main result in this section is a shifting theorem, which indicates
that the complete set of facet defining inequalities for the edge capacity polytope can be

128 CHAPTER 6. POLYHEDRAL RESULTS FOR EDGE CAPACITY POLYTOPE

obtained from a related edge capacity polytope in which the demands satisfy d' € (0,1] for
all g € Q. Moreover, we provide bounds on the coefficients in a facet defining inequality,
and derive necessary and sufficient conditions under which the model inequality yields the
complete description of the edge capacity polytope.

Consider a set Q of items (commodities) and let d' € Q+ represent the size (demand) for
an item g € Q (normalized to the base capacity A). Let the integer variable x denote the
number of capacity units selected and let the binary variables / ' indicate whether or not
an individual item g is selected. The edge capacity set is then defined as

= {(x, /) 6 N x {0, l p : x > E,eQ * /«} (6-19)

Given an arbitrary objective function (<5,7) G Z x Z'^', the problem of minimizing the
objective over the set X is NP-hard in general. To formalize this statement, we define
the following decision problems.

EDGE CAPACITY PROBLEM

INSTANCE: Set of items Q, demand size d' € N, for all g € Q, objective coefficients
7 ' £ Z, for all g € Q, objective coefficient <$ € Z, capacity coefficient A G N, and an
integer /C € Z.
QUESTION: Does there exist a vector (x, /) € N x {0 ,1}^ such that Ax > S,gQ <**/*

PARTITION (see Garey and Johnson [37])
INSTANCE: Set of items 4, size s» e N, for all g € 4 , with £,6X s* even.
QUESTION: Does there exist a subset .4 C 4 such that £ , ^ s« =

Theorem 6.4.1 EDGE CAPACITY PROBLEM is

Proof. It is easy to verify that EDGE CAPACITY PROBLEM is in NP. Next, we show
that PARTITION reduces to EDGE CAPACITY PROBLEM. Given an instance of PARTITION,

define an instance of EDGE CAPACITY PROBLEM as follows. Let Q = .Au{g}, d' = s', for
all g € .4, and d« = 1. Next define 7« = -d«, for all g g i , and 7« = - 2 . Finally, let A =
5 2,6/4 *' + 1, (5 = A and if = — 1. This is obviously a polynomial transformation. Next
it remains to show that an instance of PARTITION yields an affirmative answer if and only
if the corresponding instance of EDGE CAPACITY PROBLEM yields an affirmative answer.
If .Ä C X is a set of items satisfying 2 ^ s* = 5Z,g \̂̂ } s*, then the solution (x, /) defined
as x = 1, /* = l,g € .Ä U {<j}, /* = 0 otherwise, gives a vector satisfying the required
conditions. Conversely, if there exists a vector (x, /) which satisfies Ax >]C,<=Q <**/* **"*
<5x+E,6Q 7 ' / ' < - I , then it is easy to see that x > 0, since x = 0 would imply that /« = 0
for all g 6 Q, a contradiction with the fact that <5x + 7^ / has negative value. Moreover,
if x > 2, then fa + 7*7 > 2A + 7^ / > 2A - E ^ T * = £ , e ^ < + 2 - £ * * * ' - 2 = 0.
Hence, x = 1. Next, from <Sx + 7 ^ / < — 1 it follows that 7 ^ / < — A — 1 which implies
17*71 > A + 1. From Ax > d*7 it follows that E,eQ^*/* ^ *• Since for each element in

6.4. CHARACTERISTICS OF THE EDGE CAPACITY POLYTOPE 129

J4 it holds that tf = —7*, the only way that |7*"/| can be greater than J^eQ ^V* '^ if
/« = 1. But then it follows that both £ ^ 7 ' /* < -A + 1 and £ ^ <**/* < •* - 1 which
is equivalent to £) ^ d*/* = A - 1 = 5 ̂ , e / i **• Hence, let 4 = {9 € .4 : /« = 1}, then
.4 is the required subset. •

Let Z)' = fd'] be the smallest integer greater than or equal to d*, and let r* = d* + 1 —
D' € (0,1] be the 'fractional' part of the demand. Similarly, for a subset S C (J, let
<*(S) = E,€S <*', -D(5) = fd(5)l and r(5) = d(S) + 1 - D(5). Finally, define e* € {0,1}«
as the characteristic vector of a set 5, i.e. ef = 1 if i € 5 and zero otherwise.

Lemma 6.4.1 7%e dimension o/com^.Y) is |Q| + 1.

Proof. The vectors (x, /) = (0,0), (x, /) = (1,0) and (1, /) = (D«,eW) for all g €
yield |Q| + 2 affinely independent vectors in X.

Proposition 6.4.1 For a// <? € <3, tAe <riuia/ ineguaZitaes /* > 0 and /* < 1 de/ine /acets

Proof. For /* > 0, |Q| + 1 affinely independent solutions (x, /) € A" are given by (0,0),
(1,0) and (£>',e<) for all i 6 Q \ {?}• For /« < 1, |Q| + 1 affinely independent solutions
(x, /) € X are given by (£>«, e«), (£>« 4-1, e«) and (£>({i, g}), e^«>) for alii € <? \ {?}. •

Proposition 6.4.2 fc/. /20/j .ßac/i non-trivia/ /ace< 0/ conupfj can 6e imtten in
/orm ax > ^ ^ ^ 6»/* - c, wii/i a, c € N, fc« e N, /or a/Z 0. € (?.

Proof. A non-trivial facet defining inequality is of the form ax > S,<=Q &*/* ~ c. The
fact that c > 0 follows from the fact that the all zero solution (x, /) = (0,0) does not
satisfy the inequality if c < 0. Next, since for any solution (x, /) € -V we can increase
the value of the capacity variable to an arbitrarily large integer number without violating
its feasibility, it follows that a < 0 cannot be the case. Furthermore, if a = 0 then the
resulting inequality 53 gQ 6*/* < c is a linear combination of the trivial inequalities and
the inequality 0 < 1. Hence, a > 0. Now suppose there exists a g' € Q with 6'' < 0.
Since the facet defining inequality is non-trivial there exists a solution (x, /) g X with
/*' = 1 that satisfies the inequality at equality, ax = S,eQ ^ / * ~ ^ Define the solution
(x, /) as x = x, /»' = 0, /* = /« for all g € Q \ {g*}. Then (x, /) € A" but ax = ax =

which is in contradiction with the validity of the inequality. Hence, 6' > 0 for all 9 6 Q .
Finally, the fact that any non-trivial facet defining inequality has rational coefficients (and
can therefore be written with integer coefficients) follows from the fact that all extreme
points of the set are rational. •

130 CHAPTER 6. POLYHEDRAL RESULTS FOR EDGE CAPACITY POLYTOPE

T h e o r e m 6 .4 .2 fS/ii/finp Theorem,) "' ->•;?.>? •st.WjvfSiij- «hiiir ^
Let i g Q and / / £ Z SMC/I £/sa< d* + /j > 0, and de/me „-.5 , ^ -.:: 3 n-wtf- i-.iff i '->

(6.20)

77ien <Ae tneguaZify - • ' ' • ^ » ~ ^ ''•*• • •'"'•• r i •;;••-.;; ••;-. • > , ;'

i > E , 6 Q & * / ' - c •'" • * ' • • • - • " (6 . 2 1)

is a non-iriviaZ /ace< de/inin^ ineguaZiiy /or cont;(A') if and onZ?/ i/ ' ^ •;

x > (6' + /i)/< + E,eo\{i} **/* - c (6.22)

is a non-frwiaZ /acet de/ininj ineguaZity /or i

Proof. Note that we only need to prove that any facet defining inequality for cont;(X)
can be converted as indicated to a facet defining inequality for conv(J\!"(i,^)), since the
converse then directly follows for a suitable choice ^i' = — /1. First, we prove validity.
Let (a , /) G AT(i,M), then (x - /z/*,/) € X, hence x - / i / ' > E ^ Q & V - c which
implies that x > (ft* + /x)/" + E,eo\{i} &*/* - c- Next, let (xj, / 1) , . . . , (x|Q|+i, / ,Q|+,)

be IQI + 1 affinely independent solutions of X that satisfy (6.21) at equality. Then
(xi + M/I ' . / I) . - - ->(Z |Q|+I + W|Q|+i>/|<3l+i) satisfy (6.22) at equality, and they are also
affinely independent. •

Theorem 6.4.3 Lei ax > X^eQ &*/* — c 6e a non-<riwaZ /acei de^ninj na/id
/or conv(X) wi</i a,c € N, and 6« € N /or aM ? 6 Q . T/ien 6« = ad« i/d« is inie^er and
6* € {a(D« - 1) , . . . ,aD«} i/d« is no« integer, /or a/Z g € Q.

Proof. Let g e <5 and let (xo,/o) S X be a solution with /« = 0 that satisfies the
facet defining inequality at equality. Moreover, let Qo = {? S Q : /J = 1}. Then

£,eQo 6* - c and since <j £ Qo it follows from validity that a£>(<5o U {g}) >
— c) + 6* = a£)(<5o) + &*• This yields an upper bound on 6« since we conclude

U

Similarly, let (i j , / ,) e X be a solution with /f = 1 that satisfies the facet defining
inequality at equality, and define Qi = {g 6 Q : /* = 1}. Again, aZ?(Qi) =]C,e<?i *̂ ~ ^
and since g € Qi it follows from validity that aZ)(Qi \ {g}) > (X),g<j, 6« - c) - 6«" =

- 6«. This implies a lower bound on 6«, namely 6« > aD(Qi) - a£>(<?i \ {g}).

If d« is integer, then both the lower and upper bound are equal to ad« which proves the
first part of our claim. If d« is not integer, then ft« < aD(<5o U {<?}) - aß(<5o) < aD« and
* \ {g}) > o(Z?« - 1). , •

6.5. LOWER CONVEX ENVELOP INEQUALITIES 131

Theorem 6.4.4 77ie mode/ inegua/ity is t/ie unique /acet de/irani? ineguality /or t/ie po/y-
Ziedron com;(X) i/and oniy i/d* € N,/or aZ/g € <? , ,.

Proof. If d« £ N, for some g £ Q, then the fractional solution (i , /) = (d«,e<«>) is an
extreme point of the LP-relaxation that satisfies all the model inequalities. If d* € N for
all g € Q, then by Theorem 6.4.3 we have that in every inequality z > ^,£<j&V ~ c
that defines a non-trivial facet of conv(X), 6* = d' for all g € Q. If c > 0, then the
resulting inequality is dominated by the model inequality. Hence, the model inequality
x > 2,gQ ^ ' /* defines the only non-trivial facet in this case. ,. •

6.5 Lower Convex Envelop Inequalities

Using the results of Section 6.4, the analysis of the edge capacity polytope can be greatly
facilitated. By Theorem 6.4.3, commodities with an integer demand can be dealt with eas-
ily given a valid inequality on the remaining commodities. Furthermore, for the remaining
commodities one can concentrate on the fractional part of the demand of a commodity,
i.e. first assume all demands d' € (0,1), generate facets, and use Theorem 6.4.2 to ob-
tain facets for the problem with the actual demand sizes. Stated differently, one could
view the demand value as the sum of two parts, namely the integral part D* — 1 and
the 'fractional part' r* £ (0,1]. Likewise, the value of a coefficient of a commodity in a
facet defining inequality can be viewed as the sum of two parts. Theorem 6.4.2 explains
the part of the coefficient that originates from the integral part D* — 1 of a commodity's
demand. The other part of the coefficient in a facet defining inequality which needs to be
explained stems from the "fractional" part of a commodity's demand, that is r*. Much
of the analysis in this section therefore considers demand values d' = r* € (0,1] for all
g € Q. Still, all propositions and theorems are stated such that the results are also valid
for arbitrary demand values d*.

Since the values r« are somewhat comparable in size for the different g G Q (r ' e (0,1]
for all g), one could expect this second part of a commodity's coefficient in a facet defin-
ing inequality to be somewhat comparable in size as well. In this section we therefore
introduce a class of valid inequalities called lower convex envelop inequalities, which are
based on this idea. This class of valid inequalities is defined on a projection of the set
X. We show two different types of facet defining inequalities that may arise in the class
of lower convex envelop inequalities. Moreover, we show that lifting lower convex envelop
inequalities to obtain valid inequalities for X itself can be performed in polynomial time.
We start with the definition of a projection of the edge capacity polytope.

Definition 6.5.1 Ie< Q°,Q' C Q 6e disjoin« subsets o/Q. TAen X(<?°,<?') de/med 6y

is t/ie projection o/X on </ie space wit/i / ' = 0 /or a/Z g S <5° and /* = 1 /or a// g € Q'.

132 CHAPTER 6. POLYHEDRAL RESULTS FOR EDGE CAPACITY POLYTOPE

This projected edge set can be seen as a set of vectors in (|Q| + l)-dimensional space.
Instead of representing the set X(Q°,Q') in (|Q| + l)-dimensional space, one can also
plot all vectors in X(Q", Q') in two-dimensional space, as in the example Figure 6.1. Let
S = Q \ (Q° U Q'). The horizontal axis of this figure measures E , e s /* ^ ^ the vertical
axis measures the value of the capacity variable z. Hence, a solution (x, /) € ^(<?°, Q')
is represented by a point with coordinates (£,es/*,aO in the two-dimensional figure.
Similarly as in (|Q| + l)-dimensional space, an inequality ax > 6 £ , £ 5 / * ~ c that is
satisfied by all solutions in this two-dimensional space yields a valid inequality for the
set -X"((?°,Q*). Note that these inequalities have the same coefficient for all g G S in
the inequality. We consider the strongest possible valid inequalities arising from the two-
dimensional space. These inequalities describe the lower convex envelop of the set of
solutions in X(Q°,Q'), as indicated in Figure 6.1.

Q = {1,2,3,4}

d« = 0.6 for all g G

Q° = 0,Q* = {4}

5 = {1,2,3} ,. •.;

Figure 6.1: Lower Convex Envelop Inequalities

Assume that the commodities in 5 are ordered such that d' < d̂ < . . . < d'*', and
for fc = 1 , . . . , |S|, let 5* = { 1 , . . . , A;}. Then the set of lower convex envelop inequalities
basically describes the lower convex envelop of the points (/c, Z)(Q'uSfc)) for A; = 1 , . . . , |5 |
in two-dimensional space. The following proposition states bounds on the slope of a lower
convex envelop inequality.

Proposition 6.5.1 / / ax > ö^Z^gs/* - c is a Zower convex enve/op i
*(Q°><?') ««*A demand va/ues d« = r« S (0,1] /or a/I 9 e Q, </ien
/oiwer convex enve/op tne^ua/tty satis^es 0 < 6/a < 1.

i//or t/ie set
s/ope 6/a 0/ t/ie

Proof. Consider a lower convex envelop inequality ax > 6 2 ,g5 /* — c for X(Q", Q'). The
slope 6/a of the lower convex envelop inequality is determined by two distinct points in
the two-dimensional picture that satisfy the inequality at equality. Let (fci,£>(Q' U5j,))
and (/C2,£>(Q' U 5*,)) be two such points with fci < /C2. Then 6/a = (ß (Q ' U 5*,) -
D((?' U 5it,))/(fc2 — fci). Since S*, C 5*, it follows that the numerator is nonnegative,
which together with fci < fo implies that 6/a > 0. Furthermore, 5t; C 5 ^ together with

6.5. LOWER CONVEX ENVELOP INEQUALITIES 133

d« € (0,1] for all g € S implies that £>(<?' US*,) - £>(<?' US*,) < £2 - * i - Hence, 6/a < 1.

Next we derive necessary and sufficient conditions under which there exists a lower convex
envelop inequality ax > 6 Eggs /* ~ ^ with slope ft/a = 1 that is also facet defining for

2°,Qi)). We use the following definition.

Definition 6.5.2 Let <?* C <? and S C Q wttA S D <?* = 0. 77ien

' - 1 ' ;••• •• u . 1

In words, n (Q\ 5) measures the surplus in capacity for the set of items Q' U S if
units of capacity have already been 'installed' for the set of items (?' and an additional
Z)* units of capacity are installed for each item g G S. Note that the value of n(Q',S)
does not change if demand data r* S (0,1] are considered instead of the real demand data
d«, for all g € Q.

Theorem 6.5.1 7/ tAere exists o fower convex ent/e/op meguaZify ax > 6 E gs /* ~
«Zope 6/a = 1 /or t/ie edge capacity set wtt/i demand na/ues d* = r* € (0,1], </ien (/ie

, - n (Q \ 5) (6.24)

is fa/id /or conv(X(<2°,<2')) twit/i arfiitrary demand data d' /or aZ/ a € Q. Moreover,
i/its is a /acet de^nino Zower convex eni;e/op inegua/ity /or cont/(X(<5", Q')) i/ and on/y i/

» U 5 \ {g}) = £>(Qi U 5) - D « /or a// ? € S .

Proof. First consider d* = r* € (0,1] for all g e 5. If there exists a lower convex envelop
inequality ax > E ,es /* ~ ^ " '*" slope 6/a = 1, then the point (|S|, £>((?' U 5)) satisfies
that inequality at equality. Hence, for a = 6 = 1 it follows that c = E ,es / * - •D(CuS) =
E,gs £" + Ö(Q') - D(<?') - £>(<?»US) = n(Q\ S) - D(Q'). This yields the lower convex
envelop inequality x > £ , e s /« + £>(<?') - n(<?\ S) for demand values d« € (0,1], for all
g € S. Applying Shifting Theorem 6.4.2 for elements g 6 S to obtain a valid inequality
for the real demand data yields the desired inequality (6.24).

Now we prove that the remaining conditions are sufficient to guarantee that the inequality
is facet defining for conv(X(Q°, <?')), which has dimension |S| + 1. This follows from the
fact that the vectors (D(Q»uS),e«'^) and (£>(<?'uS\{g}),e«'^\<*>) for all g € S yield
|S| + 1 affinely independent vectors in A"(Q°,Q') that satisfy that inequality at equality.

Conversely, let g € S. If £>(<?* U 5 \ {g}) ^ Z?(Q* U S) - £>« then the solution (x, /) =
(£>(Qi U S \ {g}),e«'^\{«>) is not on the face of the valid inequality x > £ , e s £>«/» +
ß(Q') - "(QSS). For any set T C S \ {g} it holds that D(Q' U S \ {g}) < D(Q' U
^) + E,eS\(Tu{*}) ^*- Hence, the vector (D(Q'uT),e*'^") does not satisfy the inequality

134 CHAPTER 6. POLYHEDRAL RESULTS FOR EDGE CAPACITY POLYTOPE

at equality, since D(Qi U T) > D(Q> U 5 \ {g}) - E,6S\(ru{*>) Ö* > £ ,es \«} ß ' - c -
E,€S\(ru{^}) ^* = E , 6 T ^ " - c. Thus there exists no solution (i , /) € Jt(Q°,Q*) with
/* = 0 that satisfies the inequality at equality. As a result, the face of the inequality is a
subset of the face defined by the inequality /* < 1, which implies that the inequality is
not facet defining. •

Under the conditions of the above theorem, there exists a facet defining lower convex
envelop inequality with slope equal to one for coni>(X(<3°, Q')). In this case one can also
identify conditions such that there exists a second facet defining lower convex envelop
inequality for this polytope. This is the subject of the following theorem.

Theorem 6.5.2 Consider A"(<?°,Q') /or demand data d» = r« € (0,1]. yissume t/iat
D(Q* U 5 \ {g}) = £>(<?' U S) - £>« /or a// g € S suc/i t/iat tfiere exis<5 a /oiuer convex
ent/eZop inegua/itj/ wit/i s/ope egua/ <o one. // Z?(Q' U S|s|_i) = Ö(Q' U 5|5|_2), t/ien

^i/ t/iere exists a second /ower convex enve/op inegua/ity ax > ,es
(|5| — 1,Z)(Q' U S|s|-i)) in t/ie two-dimensiona//ipure /or demand data d' = r* £
(0,1]-

('iij. t/ie sZope I / a o/ t/iis iou/er convex enveZop

*=0 JSI-2 \ |S|-l-fc

/or demand data d« = r« S (0,1] /or a// <j e 5.

«̂**̂ - t/ie constant <J o/ t/iis /ower convex enve/op inegua/ify egua/s 5 = QZJ(Q*US') — (|S| +
Q - l)

('iv/ t/ie tn

(| 5 | + a - l) (6.25)

is a/acet de/ininc; /ower convex enve/op inegua/itj//orconr(A'(Q'',Q')) wit/i ariifraru
' demand data d' /or a// g € Q.

Proof. The lower convex envelop inequality as discussed in Theorem 6.5.1 is the most right
lower convex envelop inequality of the lower convex envelop, with slope equal to one. This
first inequality is guaranteed to exists due to the conditions of the theorem and the point
(|5| - 1, £>(<?' U5|S|-i)) = (|S| - 1, £>(<?' US) - 1) is on the corresponding line. Because of
the second condition £>(Q* U S|s|-i) = Ö(Q' U S|S|-a), the point (|S| - 2, D(Q' U S|s|-2))
is not on this line. Hence, there exists a second lower convex envelop inequality ax >
S,eS-f4"0" through the point (| S | - 1 , D(Q'uS|s|-i))- Apart from this point, there exists
a second point (fc, £>(Q' U S*)) on this second lower convex envelop inequality, for some
fc 6 {0, . . . , |S| — 2}. Since the lower convex envelop inequality must be valid, it follows
that that its slope is equal to the maximal slope between point (|S| - 1,£>(Q' U S) - 1)
and (fc, £>(Qi U S*)), over all fc € {0, . . . , |S| - 2}.

6.5. L O W E R C O N V E X E N V E L O P INEQUALITIES " • ' ' " •' ••••*"•"*••"* 135

Since the point (|5| — 1, ß (Q ' U S|s|_i)) is on the line of this new lower convex envelop
inequality and d« = r« e (0,1] for all g £ S, it holds that <$ = Q£>(Q' U S|S|-I) -
E^s, , , .x/* = « P W ' u 5) - l) - | 5 | + l = a D (Q ' u 5) - (| S | + Q - l) . Finally, if we apply
Shifting Theorem 6.4.2 to the items g € S then the desired inequality is obtained. The
fact that this is facet defining for coni;(X((5'', Q')) follows from the fact that the solution
vectors (£>(<?' U 5 \ {g}),e^^\{?}) for all g € S all satisfy the inequality at equality.
Moreover, the vector (z, /) = (£>(<?' U S*), e^s») for the value of Jfc e {0,. . . , |S| - 2},
such that the point (/c, £>(<3* U S*)) is also on the line, also satisfies the inequality at
equality. This yields |5 | + 1 affinely independent vectors in Jf(Q°,Q^) on the face of the
inequality, hence it is facet defining.

; - : . ' < • • . . . i • t) . ; > - O r - - j i i i . - T

, . • • • = • : . , i . , . . • ; • - . • • : i i . - . . . • . • . : . ' ' •• • • , • . ! . • ! ' ! • ' • . ! ' ' . i i *

Theorem 6.5.3 Xny Zoiuer coni/ei em/eiop ineguo/ity/or conv(X(Q°,(2')) wi£n demand
data d* = r* G (0,1] /or a/Z g G S can 6e tmtien in t/ie /or7n ax > ^ X ^ e s / ' ~~ <- A""
certain a,6,c € N, and wii/i & < a < |S|). A/aximai /i/tinj o/ </iis inegua/tty (o o&tain a
va/id inegua/ity /or A" can fte done in potynomia/ <ime.

Proof. Each lower convex envelop inequality is defined by two points, say (&i,
and (&2, Ö(Q' U 5 t J) in the two-dimensional figure, for some Ai, Afc € {0, . . . , |5 |}, with
i < Jfcj. The slope 6/a of such a line is then the quotient of D(<?' U S,) - !>(<?' U S*,)
and Ai2 — fci, and both the numerator and denominator are bounded by |5 | . Hence, the
inequality can be written in a form with a,6, c € N and a < |S|. The fact that 6 < a is
already shown in Proposition 6.5.1.

Using inductive arguments, one can show that the lifting coefficients ft* obtained by max-
imal sequential lifting of variables in g € Q" U <5' also satisfy 6* < a < |S|. Now consider
the lifting process for a variable /*, g € Q", then the value of the lifting coefficient 6* is
given by

6« = mi

Note that the optimal value of the variable x in this minimization problem is bounded by
|Q|. Moreover, for a fixed value of x, the problem simplifies to a knapsack problem. There-
fore, the problem can be solved by computing at most |Q| knapsack problems. Moreover,
each of these knapsack problems has an objective function in which each coefficient 6 is
bounded by |S|. This implies that an upper bound on the optimal value of each individual
knapsack problem is given by O(|Q|*), hence, they can be solved in O(|Q|') time. The
lifting coefficient can thus be determined in O(|Q|*) time, since it involves at most |Q|
knapsack problems. A similar argument holds for the lifting of a variable in Q'. Since
the total number of variables to be lifted is bounded by |Q|, the complete lifting process
can be performed in OflQf) time. •

136 CHAPTER 6. POLYHEDRAL RESULTS FOR EDGE CAPACITY POLYTOPE

6.6 Integer Lifting of Knapsack Inequalities -q ^

In this section we state a different approach to obtain the two types of valid lower convex
envelop inequalities for the edge capacity polytope as mentioned in the previous section.
We show that they can be obtained from valid inequalities for a related 0-1 knapsack
polytope by integer lifting techniques. Two observations can be made regarding this
integer lifting procedure. First of all, the computation of these inequalities, i.e. the
computation of the lifting coefficients is NP-hard in general. Secondly, any valid inequality
for the knapsack polytope will in general lead to zero, one or two valid inequalities for the
edge capacity polytope. For the special case of valid cover inequalities for the knapsack
polytope, we show that the lifting process can be done in polynomial time. Moreover,
at least one valid inequality for the edge capacity polytope will be obtained from each
cover inequality. Finally, we identify necessary and sufficient conditions under which two
distinct valid inequalities for the edge capacity polytope are obtained from a single cover
inequality for the 0-1 knapsack polytope. ' > .

"tsn'ii ' l i i l v v ::•.•,:;•. •

Definition 6.6.1 let Q°, Q \ 5 6e a partition o/Q, and Ze< x € N witfi x > D((?' U {g})
/or a// g € 5. Let 6 = x - d(Q'), tnen X(Q°, Q*, x) is a ifcnapsacifc set de/ined 6y

°, Q \ x) is the projection of AT on the space with /« = 0 for all g € <?°, /« = 1 for all
g € Q \ and x = x. Note that the condition x > Ö(Q' U {<?}) for all g € 5 implies that
dim(conu(A'(Q'',Q',x))) = |S|, that is, the knapsack polytope is fully dimensional.

Theorem 6.6.1 (c/. /75/; Let Q°,Q' ,S 6e o portition o/ f/ie se« Q, and /et x € N 6e an
inteyer tutt/i x > D(C?' U {g}) /or a// g G 5. // £ , g s T*/* < 7r° is a va/id inegua/ity /or
X(Q°, Q \ x) «Aen ^ ^ TT«/" < TT" + Q(X - x) is a va/id inegua/ity /or X(Q", Q*) i/ and
on/y i/

^ ^ < Q < min ^ — r — — ^ =: a^
- X J l6N:D(<5>)<Ki [X - X J

:= max ^ -̂ —^
x€N:l>i (X

{ '),/« € {0,l},Vg €

Afoneover, >/S^e5 ""*/* — """ ** a/acet de/ininj inegua/ity /or com>(X(Q°, Q \ x)) and
a*- < Q" , t/»en ^ ^ ^ TT«/* < TT° + a^(x - x) and £ , g s TT«/« < TT° + Q^(X - x) arc /acet
de/ininy ineguaiities/or

6.6. INTEGER LIFTING OF KNAPSACK INEQUALITIES 137

To determine Q^ and a^ we can solve the knapsack problem 7?(x^) by dynamic pro-
gramming where x^ is an appropriately chosen upper bound on the value of the capacity
variable x, for instance x^ = D(Q'u5) . In general, Q^ < a^ does not necessarily hold, in
which case integer lifting is not possible. Next we describe the main result of this section.

Theorem 6.6.2 Lei £J°, <?\ 5 6e a partition o/ me set Q suc/i t/iat S / 0, and /et i € N
x > £>(<?' U {g}) /or a// g € S. 7/5 is a minima/ couer/or me fcnapsacfc po/ytope

fij. integer Zi/tinj o/ me minima/ cover ineguaZify can 6e done in poZynomiaZ time,

Ci»;. i/d« e (0,1] /or a// g € 5, men 1 = a^ < a",

*̂*î - t/d* € (0,l] /ora//g € <?, (Aena" > 1 t/ond on/yi/£>(Q'u%|-i) = £>(Q*U%|_a),

(iv/ me resu/ting /acet de/tnin^ inegua/ities /or com^^Q" , Q')) are:

(6.26)

Q ^ - l) . (6.27)

Proof. The knapsack problem that needs to be solved in order to determine the lifting
coefficients has the same objective coefficients for all items. Hence, a sorting algorithm can
solve the knapsack problem in polynomial time. To prove the remainder of the theorem,
assume that d' € (0,1] for all g e 5. Since 5 is a minimal cover, Soes\m d* < S - d(Q')
for all i € 5. Hence, from d* G (0,1] for all g € Q it follows that in the special case of a
minimal cover inequality 77(1) = |S| for all x > x, and hence, the maximum value for Q^
is attained for x = x + 1, which yields a^ = 1. For x < x, it is easy to see that r/(x) <
n(i + 1) - 1. Therefore, for x < x it holds that (jr° - »?(x))/(x - x) > (x - x)/(x - x) = 1,
such that a^ > Q^.

Next, if £>(Qi U S|s|-i) > -D((?' U 5|s|-a) then there exist i, j € S such that n (Q \ S \
{i, j}) = n(<?\ S \ {i}), which implies r?(x - 1) = |S| - 2, and hence Q^ < 1. Together
with Q^ > 1 this yields Q^ = 1. Conversely, if n (Q\ 5 \ {i, j}) ^ n(Q>, S \ {i}) for all
i, j € 5, then T?(X - 1) < |5 | - 3. Hence, for x = x - 1 the quotient (TT° - »?(x))/(x - x)
is strictly greater than 1. Moreover, again using 77(1) < 77(1 4- 1) - 1 it follows that the
quotient can never attain the value 1, for x < x.

Finally, since 5 is a minimal cover and d' € (0,1] for all g € 5, it follows that x =
£*((?' US) - 1. Substitution of this value in the inequalities as described in Theorem 6.6.1
and applying the Shifting Theorem 6.4.2 yields the required inequalities. •

Example 6.6.1 Consider an instance 0/ me ed</e capacity po/ytope «nm tAree items, and
/et d' = 0.4, d̂ = 0.4, d* = 1.4. First we trans/orm me data suc/i mat rf» £ (0,1] /or a//
9 € Q Zience we consider me data r ' = r^ = r^ = 0.4. Let Q° = Q' = 0,5 = {1,2,3} and
de/ine x = 1. /fence, we are ana/yzin«/ me set A"(Q°,<3\x) wim me JknapsocJk inegua/ity

0.4/' + 0.4/* + 0.4/ ' < 1 .

138 CHAPTER 6. POLYHEDRAL RESULTS FOR EDGE CAPACITY POLYTOPE

/or ui/iic/i S is a minima/ cover, ylppfyim; integer /i/(in<? io <ne cover ineguaZity /* + /^ +
/ ' < 2 leads to li/hng coe^cients a^ = l ,a^ = 2, and t/ie resu/tin^ we^ua/iheÄ read

2x

are /acet de^ntn^ /or t/ie ed^e capacity polytope on t/ie trans/ormed data r^,r
/4pp/yinp the s/ii/tin<? t/ieorem to ofctain inegua/tties w/itc/i are /acet de/inino /or X
t/ie ori^ino/ data leads to t/ie /ocet de/ininj meguo/ities • ! : i.^in;; v, w

• ^ ' 2 x > / > + / » + 3 / » . • - - • * : " - • • • • • • • • • • • ^ - • • • • ' • • '•

./Vote t/iat i/ we nod applied t/ie some tec/inigue to tne on^ina/ demand data direct/y, and
/or the va/ue x = 2, again t/ie set S is a minimal cover /or tne associated ifcnapsacJt
po/ytope. /fowever, i/ integer li/ting is applied to tne cover inequality / ' + / * + /^ < 2
in tnis case, tnen tne li/ting coe^cients are a^ = l,ar" = 0, implying fnat integer /i/fin^
would not 6e possifcle. •••-• ••••• • • . .

6.7 C-strong Inequalities

This section analyzes lifted cover inequalities for the value Q^ = 1. We will show that the
lifting of fixed 0-1 variables in the sets Q° and Q' can be done efficiently and that the
resulting inequalities are equivalent to c-strong inequalities as described by Brockmüller,
Günlück and Wolsey [20]. Subsection 6.7.1 states some new properties of c-strong inequal-
ities, which indicate the importance of this class of valid inequalities in the polyhedral
description of the edge capacity polytope.

4 - 5 . • - t ' . • • ; • • : . • • • • • - • " . . ••' . - • .

Theorem 6.7.1 Let Q°, Q', S,T 6e a partition o/ tne set Q. //

i > £ £>«/< + ^ (D « - 1)/« - c
«es «er

jt-

is a /acet de/ining inequality /or conv(X((?°, Q*)) tnen

ft»/ i/ maximal li/Cing is applied to g € Q° to ofttain a /acet de/ining inequality

E E - 1)/' *

6.7. C-STRONG INEQUALITIES 139

<?*)) t/ien

i / r ' > l - r (5 u Q ') vr̂ m,
\ - 1 otÄerunäe : i

f • • ! . . i . - - . * ' l . I ;

fiit/ i/ maxima/ Zi/h'n(7 is appZted to g € Q' £o ofctatn a /acet de/imnj meyua/ity • •/•#*(• 7/

£>« i/r«>l-r(SuQi\{g})
D* — 1 ot/ierwise

t/ie /i/tint/ can 6e done in poZj/nomiaZ time and Zeods tne /acet de/imn(7 ineguaZify /or
conv(X), /or a certain partition Q, Q \ Q o/ t/ie set Q:

- 1) / ' - "(0, Q)

Proof. If the inequality is facet defining then it must be tight for some solutions. Hence,

c =

Next, if 9 € Q° is lifted, then the lifting problem reads

tt),Qiu<«}) {x - E ,g

and the minimum for this problem is attained for /* = 1 if g € S and /* = 0 if g € T,
and z = £>(Q' U 5 U {g}). This implies that

* U5U{?})-D(Q' US)

which yields the required result. If g e Q' is lifted, a similar reasoning holds. The fact
that lifting can be done in polynomial time now follows directly. •

These lower convex envelope inequalities with slope 1 are the so-called c-strong inequalities
as developed by Brockmüller, Giinlück and Wolsey [20], which we will redefine in the next
subsection. . <„• .; ; : . •; -•:•. -

140 CHAPTER 6. POLYHEDRAL RESULTS FOR EDGE CAPACITY POLYTOPE

6.7.1 Properties of C-strong Inequalities {,>};,%»}/.] tj«o^\ , ^

In this section we list some properties of c-strong inequalities which indicate the impor-
tance of this class of valid inequalities in order to get a good approximation of conv(.X').
Before we do so, we repeat some definitions and results from Brockmüller, Günlük and
Wolsey [20]. O B \ P nwWo ,>•• v;, ;-.. •,- ;->, i ^ v i ^ c ?» ««u«.;! i!>sr'tw>~'. V *.«»)

Definition 6.7.1 (c/. /20/; .4 set S C Q w ca/ied c-stron^ i/c = £ , g s £>« - £>(S). 77ie
set is maxima/ c-strong i/ 5 \ {i} is c-strong, /or a//1 € S, and 5 U {i} is not c-stronj
/or a// i e Q \ S. TVote t/iat o set 5 is c-strong i/ and on/j/ i/c < Eoes(l ~~ *"*) < (c + 1).
Moreover, c = n(0, S).

1
Proposition 6.7.1 (c/. /20/^ let 5 C Q 6e a c-s<ronff set. T/ien

C ^ iUüTl:-,;> Ü v V ., '. (6 . 2 8)

«es »eO\S

»a a /acet de/inini? inegua/itj/ /or com;(X) i/ and on/y i/ 5 is maxima/ c-strono.

Lemma 6.7.1 Let 5 C Q 6e a c-stronp su&set, wit/i 5u{i} (c+l)-strono/or a//i € Q \ 5 .
// 5 \ {<?} is (c - 1) strong /or g e S, t/ien (5 \ {g}) U {i} is c-strono, /or a/Z i € Q \ S.

Proof. Let i € <? \ 5. The fact that 5 U {i} is (c + l)-strong implies that (c + 1) <
E,eSu{i}(l ~ *"*) < (c + 2). Similarly, since S \ {<j} is (c - l)-strong implies that
(c - 1) < £,es \{«(l - ^*) < c. Suppose that £,e(s\{,-})u{i}(l - r*) < c, then a con-
tradiction is obtained since (1 - r«) € [0,1) and £,gsu{i}U ~ *"«) > (c + 1). Suppose that
^<ie(s\{«})u{i}(l ~ *"*) - (c + 1)> *^n a contradiction is obtained since (1 - r*) S [0,1)
^ d £,g5\^}(l - r«) < c. Hence, c < E,e(S\{«})u{<}(l ~ »"*) < (c + 1), which proves our
claim. •

Proposition 6.7.2 Let x > E,gQfc*/* - c, fc € N, 6« € N /or a// g 6 Qj Je a /acet
de/inino ine^ua/itt/ /or cont/^X/ TÄen t/its inegua/itj/ is a c-strono ineoua/ity.

Proof. Follows directly from Theorem 6.7.1 and Theorem 6.4.3. ,̂ •

Proposition 6.7.3 i?ac/» vertex o/ conu(X) is on a /ace de/ined 6y a /acet de/ininj c-
stronp ifi

Proof. Let (i , /) be a vertex of coni^X), and let 5 :_= {g € Q : /« = 1}. Let c =
E,eS ^* ~ £K^)> such that S is c-strong. Then (x, /) is on the face denned by the
inequality x > E,e5 £>V + E,eQ\s(^** ~ 1)/* ~ ̂ . If there exists a g £ Q \ 5 such that

6.7. C-STRONG INEQUALITIES 141

5 U {g} is c-strong, add 9 to the set S. Repeat this process until no items can be added
to the set S without violating the fact that the set remains c-strong. Let Si represent
this new set of commodities. Note that (x, /) is also on the face defined by the inequality
1 > £ , e s , £>V + E,6Q\s,(^* ~ 1)/* ~ c Next, if there exists a 9 € Sj such that
Si \ {g} is not c-strong but (c - l)-strong, then remove g from Si. After this removal,
(x, /) is on the face defined by the inequality x > £,es,\{«} #*/* + E , e«? \ s ,) u{«^ ~
1)/* - (c - 1)- Again, repeat this process until one obtains a set S2 which is C2-strong
and such that 52 \ {9} is C2-strong, for all g £ S2. Lemma 6.7.1 implies that Sj U {g}
is more than C2-strong, such that S2 is indeed maximal C2-strong. Hence the inequality

2 > £ , e s , #*/* + £,€Q\s, (^ ' - 1) / ' - C2 defines a facet of corwpf). •

Moreover, in several special cases each facet of the edge capacity polytope is either a
model inequality or a c-strong inequality.

Proposition 6.7.4 / / Me sei Q is 0-s<ron<7, tAen cont^A") is comp/e<eiy rfescri6e^f 6y ffte
and </ie

Proof. Given an arbitrary objective function (<5,7) € Z x Z'^' which is to be minimized
over all solutions in X, let M(<5,7) be the corresponding set of optimal solutions. We will
show that for each possible vector (<5,7), the set M(<5,7) is a subset of a face described by
either one of the trivial inequalities or the 0-strong inequality. We distinguish a number
of cases.

• 5 < 0, then the primal solution is unbounded, hence M(<5,7) = 0.

• J > 0 , 7 « > 0 , fo r somegeQ. ThenM(<5,7) C {(1,/) : /« = 0}. .

• 5 = 0,7« < 0, for some g € Q, then M((5,7) C {(x, /) : / « = 1}.

• J = 0,7« = 0, for all g € <?, then M(J, 7) equals the set X itself.

• <5 > 0,7« = 0, for all g € Q. Then M((5,7) C {(x, /) : / « = 0} for all g e Q.

• <5 > 0,7« = 0 for all g € T, 7 ' < Ofor all g € Q \ T. Let (x, /) € M(<J, 7) be an
arbitrary optimal solution, and let S := {g £ Q : / ' = 1}. Since Q is 0-strong, the
same holds for the set S. Moreover, since <5 > 0, x = ß(S) = £ ^ 3 /?*• Hence, the
solution (x, /) satisfies the 0-strong inequality at equality.

Proposition 6.7.5 7/ t/ie set Q is |Q| — 1-stronp, then cont)(A') is comp/etefy descri&ed
6y t/ie trii/iai ineguaZities and i/ie 0-s<ronp ineguaZihes x > £)*/', /or a// g € Q.

Proof. Given an arbitrary objective function (<$, 7) e R x R ^ which is to be minimized
over all solutions in AT, let M(<5,7) be the corresponding set of optimal solutions. We will

142 CHAPTER 6. POLYHEDRAL RESULTS FOR EDGE CAPACITY POLYTOPB

show that for each possible vector ((5,7), the set M(<5, 7) is a subset of a face described
by either one of the trivial inequalities or one of the 0-strong inequalities. We distinguish
the same cases as in the proof of Proposition 6.7.4. The first 5 cases are analogous, so
we restrict ourselves to the last case. Hence, <$ > 0, 7* = 0, for all g € T and 7* < 0 for
all 5 6 Q \ T. Let (x, /) be an arbitrary optimal solution in M(J, 7). Note that x < 1,
since the set is |Q| — 1-strong and <5 > 0. Let <j = argmin,gg 7 ' (hence 7* < 0). If x = 1
holds in an optimal solution, then surely /* = 1, and if x = 0 in an optimal solution, then
/« = 0. Hence, M(<$, 7) C {(x, /) : x > £>«/*}- •

Corollary 6.7.1 / / |Q| < 2 <nen tne pofyiope coni»(X) i« compZete/y <fescn'6ed 6y tÄe
trivia/ meoua/ities and c-s£rt>n(7 inegua/ifaes.

Proof. If IQI < 2, then the set Q is either 0-strong or |Q| — 1-strong, hence, the previous
propositions prove our claim. •

.'. • . ' • • ; • " . A - • • • • • • ' , ! r •:'• •., y - •':. \ ' \ i - . T . r t M t n J i ^ o c

. - , . s ' ^ ^ . , j C "- • v . i i j . ^ y ' ' ' - - - • • • • • * - • ' , ; . , ' 0 . v . > . , v " ^ v ^ , ! , ^ . . , . ; - . : .

6.8 The Directed Edge Capacity Polytope

This section reports on the directed edge capacity polytopes y^"" and VJj"*, as described
in Section 6.2. We derive a class of valid inequalities and identify conditions under which
the valid inequalities are facet defining. Next, we show that sequential lifting for the
directed edge capacity polytope is NP-hard in general, even for lifting orders which first
lift all flow variables in the same direction.

Define the directed edge capacity polytope V, where /* is a binary variable that de-
notes whether commodity g is routed on the forward arc and /i* represents whether the
commodity g is routed on the backward arc, as follows: >

V = {(*, / , ft) € N x { 0 , , Q , o

Proposition 6.8.1 Let g € Q and /e< a € N suc/i <na« 1 < a < D«. T/ien

x > a/« + E,€(?(^ ' - «)* ' • • :: ' (6-29)

is a ra/td inegua/ity/or V. • ~

Sä

Proof. Consider an arbitrary feasible solution (x, / , /i) € V and let Q = {g € Q : /i* = 1}.
If IQI = 0, then x > £>«/« > a/« = a/« + E ,eq(ö* ~ ") ^ - ^ IQI > 1.

6.8. T H E D I R E C T E D E D G E C A P A C I T Y P O L Y T O P E 143

which proves our claim. ; "*:, :u>an;iLu » a ; v.,r--'.- !•> ,.' - . i B

Proposition 6.8.2 Let g € Q. //

fiij. Vg € Q :£>«>£>« - T • ; ,

r»n/ Vg e Q \ {g} : 3g C Q, wifA |Q| = 2, [E,6Ö^1 = *' ""^ ^ ^ ^ -

i/ien ('fi.^P^ is /ace< de/inin^/or

Proof. The dimension of conv(F) is 2|Q| + 1. We give 2|Q| affinely independent vectors
in y satisfying the inequality at equality. These vectors are ,...•..

• (i , / , ft) = (o,o,o) " " " • '

• (i , / , ^ = (£>«, e«, e«), for all 9 G Q

. (x, / , ft) = (I>(Q), e«^ , e«), for all 9 € Q \ {?}

Example 6.8.1 Consider an instance 0/ <fte set y t/ntft |Q| = 4 and tfte demands ane
d' = 1.8, d* = 2.1, d̂ = 2.6, d* = 3.2. 7/g = 1, tften tfte in

x > / ' + ft' + 2ft̂ + 2ft̂ + 3ft"

1 > ft' + / ' + 2/* + 2 / ' + 3 / "

are ua/id and /acet de/ininp /or

As follows from Section 6.7, 0-strong inequalities which are facet defining for
can be obtained by starting with the valid inequality x > 0 for coni;(X(<3,0)) (i.e. the
polytope in which all / variables are set equal to zero), and then applying sequential
lifting to the set of commodities Q. This lifting can be done in polynomial time as a
result of Theorem 6.7.1. A similar approach could be employed to obtain facet defining
inequalities for the directed polytope conv(y). First one could fix all variables (both / and
ft variables) to zero, and next one could apply sequential lifting on the valid inequality
1 > 0. However, we show that lifting under an arbitrary lifting order is an NP-hard
problem in general.

144 CHAPTER 6. POLYHEDRAL RESULTS FOR EDGE CAPACITY POLYTOPE

SUBSET SUM (cf. Garey and Johnson [37]) ~>öto*i
I N S T A N C E : A set of items A, a size s* 6 N for all g € .A, and a positive integer B . ;•
Q U E S T I O N : Does there exist a subset Ä C y l such tha t X) ^ ** = # ? •

LIFTING FOR DIRECTED EDGE CAPACITY MODEL

INSTANCE: A set of commodities Q, a demand size d' 6 N for all g € Q, and a capacity A €
N (this defines an instance of y , using the inequalities x > 2,eQ ^*/* ^ ^ ^ - S,eQ ^ * >
where d» = d*/A). A complete order i rona set of variables T = U,eQ(/* U /i*), a specific
variable 2 € T and an integer /f S N.
QUESTION: If maximal lifting is applied to the inequality x > 0 in the lifting order 7r to
obtain a facet defining inequality for V, is the lifting coefficient of variable 2 less than or
equal to Ä7

Proposition 6.8.3 LIFTING FOR DIRECTED EDGE CAPACITY MODEL is TVP-comp/ete.
: i u ! - f > . ' : ! . - ' ! • : ! > . , • • ! > ! ' ! " . • , • • . • • • ; . ! ? " ' . _ > ' • - • ' • " M ' • • ' ' • • V -• '•' ' ' '•• ' > • • • ' ' ' • -•' - ' ' - - • • • * ' i . 1 < ' O " E * {

Proof. We show that SUBSET SUM polynomially reduces to LIFTING FOR DIRECTED

EDGE CAPACITY MODEL. Given an instance of SUBSET SUM, construct an instance of
LIFTING FOR DIRECTED EDGE CAPACITY MODEL as follows. Let Q = {1,2,3} U .A,
A = B, and define d« = s«(A + 1), for all g e A. Define an integer m = [" ^ / ^ 1, and let

d* = (m + 1)A + 1, d* = (m + 1)A + A - 1, d* = (2m + 4)A + A*. Define the order TT on T
as/ \ /* , /« ,Vgei4 , / i3 , / i* , / i \ / i« ,Vge,4 , / s . Finally, let z = A* and AT = 1.

Next we show that an instance for SUBSET SUM yields an affirmative answer if and only
if the corresponding instance for LIFTING FOR DIRECTED EDGE CAPACITY MODEL yields
an affirmative answer. For convenience, we will use d' = d*/A throughout the proof.
First, note that, starting with x > 0, after lifting the variables / ' , / * , /*, Vg € A the valid
inequality reads

x > 6*7 = [d'1/i + (r#i -1) / '+E,^(r*i -1) / '

Next, if we apply maximal lifting to variable /i^ and if Ä C A is a subset with J^g^ 5* = B,
then the lifting coefficient 6* for the variable /i^ satisfies

= 2m + 4 + A - (2m + 3 + A) = 1 = A"

Conversely, let (x, / , Ä) be the vector for which the minimum value less than or equal to
K" = 1 in the lifting problem is attained, and let Q = {g € Q : /« = 1}. If 1 g Q, then

^ hence,

6.9. COMPUTATIONAL ISSUES 145

since m > $^,gx**- Hence, / ' = 1. Similarly, one can prove that /* = 1. Next define
i = {« € .4 : /« = 1}, and let p = £ ^ s«. If p < ß , then J({1,2} U i) < d», thus,
• I ! ' - • ; : ! • ' I T - . ' ' . "K-*< i l l •: ' . ! ' • : v <" ••;!"• •'':•_' 7 ' ; : - . k W ' J i i T i - , i : H ; i i < 0 f i ' h . •..'r>* v a n

so, p < ß cannot be the case. If p > ß , then d({l, 2} U Ä) > d*, hence,

hence, neither p > ß can be the case. But this yields that £,£, j s* = p = ß , hence .Ä is
the required subset. • •

6.9 Computational Issues

To test the effect of the developed theory on the solvability of network loading problems we
implemented a Branch-and-Cut algorithm, using the Branch-and-Cut system ABACUS,
version 1.2 [74], in combination with CPLEX 4.0 [48]. The algorithm was executed on
a DEC 2100 A500MP workstation with 128MB internal memory, and tested on a set of
instances for the .DATM (or DA^PM) model made available to us by KPN Research,
Leidschendam, The Netherlands. These instances are defined on complete graphs in the
range of 4 to 8 nodes, and for each graph size three different instances with fully dense
non-symmetric demand matrices were available.

The flow formulation DNFM as described by (6.9)-(6.13) and the path formulation
DA^PM as described by (6.14)-(6.18) both model the same directed network loading
problem. For a suitable choice of the set of paths for the commodities, and the exclusion
of cycles from the flow formulation, it holds that every feasible solution to the former
formulation corresponds to a feasible solution to the latter formulation, and vice versa.
Consequently, the optimal values are the same. More importantly, this property also
holds for the LP-relaxations of the formulations, even after the addition of valid inequal-
ities as discussed in the sequel. Still, we implemented both formulations to test whether
either of the two formulations would yield better results due to the difference in number
of variables. Moreover, standard branching strategies use fixing of variables. If a path
variable related to a certain commodity is fixed to its upper bound, then the routing of
that specific commodity is completely known. Fixing a flow variable for a certain com-
modity to its upper bound only gives limited information on the routing for that specific
commodity. Hence, this might also lead to different running times for both formulations.
Although it is hard to draw general conclusions from the limited set of instances available
to us, our computational results indicated that for larger graphs the exponential growth
of the number of path variables is a serious problem. The computational results stated
in the sequel are therefore obtained using the flow formulation.

146 CHAPTER 6. POLYHEDRAL RESULTS FOR EDGE CAPACITY POLYTOPE

6.9.1 S e p a r a t i o n of Val id inequal i t i e s •"-, ..'< •;

Brockmüller, Günlük and Wolsey [20] describe the separation problem for c-strong in-
equalities, and show that for a given value of c, finding the most violated c-strong in-
equality requires solving a knapsack problem. They propose heuristic methods to find
the most violated inequality for values c = 0,1,2, and our computational experiments
support their findings that this method yields good results.

Although lifting of the more general class of lower convex envelope inequalities can be
performed in polynomial time (as described in Section 6.5), there remain several unsolved
issues regarding the separation of these inequalities. In order to obtain the most violated
inequality in this class, it is yet unclear what choice of starting polytope X(Q°,Q', i)
should be employed, which lifting order to use, and, given the potential danger of high
computation times for exact lifting, whether lifting should be done exactly or by heuristics.
We therefore propose to search for violated lower convex envelop inequalities as follows.
For a given LP-solution (£, /) and an arbitrary arc (t, j) € X, let 5 be the set of commodi-
ties with positive (possibly fractional) routing variables on the arc (5 = {g £ Q : /^; > 0}).
Then one can easily construct a two-dimensional picture as in Figure 6.1 containing all
feasible solutions on the subset of variables (U,gs/,*) U i , and define all corresponding
lower convex envelop inequalities for this subset of variables. Our computational exper-
iments indicate that constructing these lower convex envelop inequalities and checking
whether any of these inequalities are violated can be done efficiently.

Next, for a given arc (i,j) € J4 and a fixed value of a, finding the most violated two-
side inequality (6.29) is an easy task. For a given LP-solution (x, /) a violated two-
side inequality exists if and only if there exists an element j £ (J such that a/y >
2 — 5Z,gg(ß' — aO^'j- Since the right hand side of the latter inequality is a constant for
the given LP-solution, finding the most violated two-side inequality on arc (i, j) for the
specific value of a (if one exists) is equivalent to finding the maximal value /^ over all
commodities g € Q. This can be done by any sorting algorithm. Likewise as for c-strong
inequalities, computational experiments indicate that two-side inequalities should only be
considered for small values of a, for instance a 6 {1,2}.

Apart from the inequalities for the edge capacity polytope as described in this chapter, we
also incorporated some other classes of well-known valid inequalities for network loading
problems. Cut-set inequalities are used quite extensively for network loading problems
(see for instance Barahona [12], Magnanti, Mirchandani and Vachani [55], [56], Bienstock
and Günlük [16], among others). Given a partition of the node set V into two sets 5
and T, let d[5, T] denote the accumulated demand of all commodities with source node
in 5 and sink node in T. Then it is clear that the total capacity on the edges in the cut
<5[S, T] should exceed this accumulated demand since all of these commodities must cross
the cut. Since, capacity can only be installed in integer amounts, the cut-set inequalities
read

« ^ max{ fd[5, T]l , [d[T, 5]1} (6.30)

Likewise, three partition inequalities (based on a partition of the node set into three sets)

6.9. COMPUTATIONAL ISSUES 147

have been considered (see [16]), as well as the general if-cuts (see Barahona [13]). For
small to medium sized graphs as considered in our experiments an exact separation that
considers all possible partitions of the graph can be performed reasonably fast, and this
strategy is used in our computations.

6.9.2 Computational Results and Future Research j
• • " • • : ;;i:> • ' £ M ! ; F H : M " ;- •' ' ^ • ' : «• • • ^ B J •

Table 6.1 shows the results of the Branch-and-Cut algorithm for the fifteen real-life in-
stances from KPN Research. The name of each instance, stated in the first column, refers
to the number of nodes in the graph (first digit), whereas the second number in the name
defines the demand matrix. The input for the algorithm included a lower bound for the
problem instance obtained with the heuristics of Chapter 5, stated in column 3 of the
table. The time associated with these heuristics is not included in the time measurements
indicated in the table. Moreover, simple rounding techniques were used in the nodes of
the search tree to generate integer solutions from the fractional LP-solutions and hence,
additional upper bounds were obtained during the process. Column 2 represents the best
integer value found by the algorithm. Moreover, the table states the LP-value in the
root node, the LP-value in the root node after the addition of valid inequalities, and the
reduction of the initial gap between LP and IP value. Finally, the total CPU time, the
number of added valid inequalities and the size of the Branch-and-Cut tree are listed
in Table 6.1. Note that for the instances defined on the complete graph with 8 nodes,
the algorithm was not able to prove optimality of the listed solutions, due to memory
restrictions. These results indicate that, although the added valid inequalities yield a
large reduction in the gap between LP and IP-value in the root node, more research is
required to obtain additional knowledge on the polyhedral structure of non-bifurcated
network loading problems.

Given these computational results, the question arises how much gain can be obtained for
the solution process of network loading problems from additional research (and insight)
on the polyhedral structure of the edge capacity polytope itself. To answer this question,
one would like to compare the total set of violated facet defining inequalities for the edge
capacity polytope for a given LP-solution with the set of violated inequalities as obtained
by the separation algorithms and added during the Branch and Cut algorithm. Once the
difference is known, one could measure the impact of these additional inequalities on the
Branch-and-Cut algorithm. Given the definition of an edge capacity polytope associated
with a specific edge, there exist well-known algorithms which, given the extreme points of
the polytope, yield the complete polyhedral description of the polytope (see for instance
Fukuda [34]). In general, these algorithms are only computationally feasible for polytopes
with a limited dimension or number of extreme points, and therefore such algorithms are
often used to obtain insight into polyhedral structures for small polytopes (however, see
Christof and Reinelt [24] for an enumeration approach that incorporates such techniques).

For most LP-solutions encountered during the Branch-and-Cut process the number of
commodities with positive flow on an arc or edge is relatively small. Moreover, the degree
of violation of any facet defining inequality for the edge capacity polytope is only affected
by variables with positive (fractional) value. Hence, in order to test whether there exist

148 CHAPTER 6. POLYHEDRAL RESULTS FOR EDGE CAPACITY POLYTOPE

Table 6.1: Computational results for KPN network loading instances.

Instance

1.4.3
1.4.10
1-4.20
1.5.3
1.5-10
1.5-20
1.6.3
1-6.10
1.6-20
1.7.3
1.7-10
I.7J2O
1.8.3
1.8.10
1.8-20

Best IP

3
8

13
4
9

16
5
9

16
6

10
17

7
12
21

Heur

3
8

13
4
9

16
5

10
17
6

11
18
7

12
21

LP

1.74
5.81
11.6
1.89
6.32
12.7
1.93
6.45
12.9
1.95
6.52
13.0
2.17
7.23
14.5

LP+vi

3.000
7.125
13.00
3.750
8.135
15.01
4.109
8.377
15.46
4.417
8.850
15.94
4.880
9.890
17.56

gap%

100%
60%
100%
88%
68%
70%
71%
76%
83%
81%
67%
74%
56%
56%
47%

#sec

0.15
0.51
0.20
0.83
1.68
3.88
7.16
33.0
92.8
76.7
1005
415
XX
XX
XX

#vi

34
93
42

123
181
283
437

1273
3554
1833

20422
7093

#BC

1
7
1
3
7

15
11
41

127
25

453
255

violated facet defining inequalities for the edge capacity polytope for a given LP-solution,
one only needs to test whether there exist violated facet defining inequalities for the edge
capacity polytope on this restricted set of commodities. Therefore, we performed the
following computational experiment. If at any node of the Branch and Cut tree no more
violated cuts could be found, we generated the extreme points of the edge capacity poly-
tope defined on the restricted set of commodities with positive flow on the arc (or edge),
and used Fukuda's software package CDD to obtain the complete polyhedral description
of this restricted edge capacity polytope. Next, we enumerate this set of facet defining
inequalities to check whether there are any violated inequalities that can be added to the
formulation of the network loading problem. Usually, the number of violated inequali-
ties found by this procedure is very small (typically in the range 0-5) and the effect of
adding these inequalities to the formulation is marginal. Hence, the potential gain of such
inequalities is expected to be small.

Future research on non-bifurcated network loading problems could therefore focus on valid
inequalities for more general structures of the integer programming formulation, such as
cuts in the graph. Although cut-set inequalities (or the more general partition inequali-
ties) are facet defining for bifurcated versions of network loading problems (see [56],[16]),
for non-bifurcated network loading problems this is in general not the case, and several
possibilities for strengthening arise. We have performed some initial computational ex-
periments to test the effect of a strengthening of a cut-set inequality, but so far the gain
has been limited.

Next, a special observation can be made regarding the IP-formulation of non-bifurcated
network loading problems. These formulations contain two types of constraints (routing

6.9. COMPUTATIONAL ISSUES 149

and capacity constraints), as well as two types of variables (routing and capacity vari-
ables). The non-bifurcated network loading problem formulation can therefore be viewed
as follows. The feasibility of the routing variables is determined only by the routing
constraints, and given a feasible choice of the routing variables, the capacity constraints
merely define the capacity variables, and therefore the objective value. Hence, there is no
interaction between any of the capacity variables in the formulation. As a consequence,
one can prove that a facet defining inequality for the network loading problem formula-
tion with only a subset of the capacity constraints yields a facet defining inequality for
the overall problem (using the same techniques as in Section 6.3). Due to the limited
interaction between the capacity variables and capacity constraints, it may well be that
an important gain in the improvement of polyhedral descriptions of the network loading
polytope should be achieved by general purpose cuts, such as Chvatal-Gomory cuts (see
Marchand and Wolsey [59] for general purpose polyhedral techniques in solving mixed
integer programs). ,-,,, ..., : -,.-,,•.. .. .• .• •••,*•.-•.. -..«.••••• . . . , . . , . > . ,

150

•••••rf-! :E Ji :) . r j i . : ; . . • • , : . ' ! .

.j>':n.

Bibliography

[1] E.H.L. Acirts cind J.K. Lenstra. LocaZ 5earcÄ in Comimatono/ Optt'mtzotton. Wiley,
N.Y., 1997.

[2] W. Ackermann. "Zum hilberschen aufbau der reellen zahlen". Afot/iema<isc/ie i4n-
na/en, 99:118-133, 1928.

[3] E.H. Aghezzaf, T.L. Magnanti, and L.A. Wolsey. "Optimizing constrained subtrees
of trees". Afat/iemottcoi Proprammmy, 71:113-126, 1995.

[4] D. Alevras, M. Grötschel, and R. Wessäly. "Capacity and survivability models for
telecommunication networks". Preprint SC 97-24, Konrad-Zuse-Zentrum fur Infor-
mationstechnik Berlin, June 1997.

[5] A. Amiri and H. Pirkul. "Primary and secondary route selection in backbone com-
munication networks". European Journa/ o/ Operational Äesearc/i, 93:98-109, 1996.

[6] A. Amiri and H. Pirkul. "Routing and capacity assignment in backbone communi-
cation networks". Computers and Operationa/ Äesearc/i, 24:275-287, 1997.

[7] A. Balakrishnan, T. Magnanti, J. Sokol, and Y. Wang. "Modelling and solving the
single facility line restoration problem". Working paper, 1997.

[8] A. Balakrishnan, T.L. Magnanti, and R.T. Wong. Models for planning capacity
expansion in local access telecommunication networks. Anna/s o/ Operations resercA,
33:239-284, 1991.

[9] A. Balakrishnan, T.L. Magnanti, and R.T. Wong. "A decomposition algorithm for
local access telecommunications network expansion planning". Operations .Research,
43(l):58-76, 1995.

[10] E. Balas. "Facets of the knapsack polytope". Afat/iematicaZ Programming, 8:146-164,
1975.

[11] E. Balas and E. Zemel. "Facets of the knapsack polytope from minimal covers".
SL4Af Journal o/ylpp/ied Afat/iematics, 34:119-148, 1978.

[12] F. Barahona. "Network design using cut inequalities". SA4A/ jouma/ on Optimtza-
fion, 6:823-837, 1996.

[13] F. Barahona. "On the k-cut problem". Working paper, 1998.

151

152 BIBLIOGRAPHY

[14] I. Barany, J. Edmonds, and L.A. Wolsey. "Pacing and covering a tree by subtrees".
Comfttnatorica, 6:221-233, 1986.

[15] D. Bienstock, S. Chopra, O. Günlük, and C.-Y. Tsai. "Minimum cost capacity
installation for multicommodity network flows". Working paper, July 1995.

[16] D. Bienstock and O. Günlük. "Capacitated network design — polyhedral structure
and computation". Working paper, June 1995.

[17] D. Bienstock and G. Muratore. "Strong inequalities for capacitated survivable net-
work design problems". Working Paper, December 1997.

[18] D. Bienstock and I. Saniee. "Atm network design: Traffic models and optimization
based heuristics". Working Paper, 1997.

[19] E.A. Boyd. "Polyhedral results for the precedence constrained knapsack problem".
Discrete 4pp/ie<i A/at/iematics, 41:185-201, 1993.

[20] B. Brockmüller, O. Günlük, and L. Wolsey. "Designing private line networks - poly-
hedral analysis and computation". Discussion Paper 9647, Center for Operations
Research and Econometrics, October 1996.

[21] B. Brockmüller, 0 . Günlük, and L. Wolsey. "Designing private line networks - polyhe-
dral analysis and computation". Discussion Paper 9647 revised, Center for Operations
Research and Econometrics, March 1998.

[22] G. Cho and D.X. Shaw. "A depth-first dynamic programming algorithm for the tree
knapsack problem". Research Memorandum 94-15, School of Industrial Engineering,
Purdue University, April 1994.

[23] G. Cho and D.X. Shaw. "Limited column generation for local access telecommu-
nication network design - formulations, algorithms, and implementation". Working
Paper, January 1995.

[24] T. Christof and G. Reinelt. "Algorithmic aspects of using small instance relaxations
in parallel branch-and-cut". Working paper, April 1998.

[25] L.W. Clarke and P. Gong. "Capacitated network design with column generation".
Working paper, December 1995.

[26] Y. Crama. "Combinatorial optimization models for production scheduling in au-
tomated manufacturing systems". In i^t/i .European Con/erence on Operations Äe-
searc/i, pages 237-259, 1995.

[27] H. Crowder, E. Johnson, and M. Padberg. "Solving large-scale zero-one linear pro-
gramming problems". Operations Äesearc/i, 31(5):803-834, 1983.

[28] G. Dahl, A. Martin, and M. Stoer. "Routing through virtual paths in layered telecom-
munication networks. Research note n 78/95, Telenor Research and Development,
Kjeller, Norway, 1995.

BIBLIOGRAPHY 153

[29] G. Deihl and M. Stoer. "A cutting plane algorithm for multicommodity survivable
network design problems". Working Paper, April 1996. u>Tyo.<-\ Uv.ü/utrtsVinW.

[30] E. Dijkstra. "A note on two problems in connexion with graphs". TVumeric/ie
ftifcs, 1:269-271, 1959. ,, , . I«. Ü J I ' ; .! (. ?-CJIJMV] . ; 1 .

[31] R. Epstein. Linear programming and capacitated network loading, 1998. h. .• ,;

[32] S. Even, A. Itai, and A. Shamir. On the complexity iof timetable and multicommodity
flow problems. 5L4Af Journal o/ Computing, 5:691-703, 1976. .

[33] O. Flippo, A. Kolen, A. Koster, and R. van de Leensel. A dynamic programming
algorithm for the local access network expansion problem. Research Memorandum
96/027, Maastricht University, 1996. • • 'i >! .-: •'""'•

[34] K. Pukuda. "cdd+ reference manual". Technical report, Institute for Operations
Research, ETH-Zentrum, Zurich, Switzerland, 1995.

[35] V. Gabrel and M. Minoux. "Large scale lp relaxations for minimum cost multicom-
modity flow problems with step increasing cost functions and computational results".
Technical Report Masi 96/17, Laboratoire d'Informatique de Paris 6, June 1996.

[36] V. Gabrel and M. Minoux. "Lp relaxations better than convexification for multicom-
modity network optimization problems with step increasing cost functions". >1CTJ4

Afat/iematica Kietnamica, 22:123-145, 1997.

[37] M. R. Garey and D.S. Johnson. "Computers and m(rocto6r7i<y: a <7uide to tfte 77ieorj/
o/ JVP-Completeness". Freeman and Company, N.Y., 1979.

[38] B. Gavish. "Topological design of telecommunication networks: Local access design
networks", ylnnak o/ Operations Äesearc/i, 33:17-71, 1991.

[39] B. Gavish. Topological design of computer communication networks - the overall
design problem. .European Journal o/ Operationa/ Äesearc/i, 58(2):149-172, 1992.

[40] B. Gavish and K. Altinkemer. "Backbone network design tools with economic trade-
offs". OflS.4 Journa/ on Computing, 2(3):236-252, 1990.

[41] D.E. Goldberg. "Genetic ^Mgorit/ims in Searc/i, Optimization ana" Afac/iine Learn-
ino". Addison Wesley, Ma., 1989.

[42] M. Grötschel and C. Monma. "Integer polyhedra arising from certain network design
problems with connectivity constraints". SMA/ JournaZ on .Discrete A/at/iemaiic«,
3(4):502-523, 1990.

[43] M. Grötschel, C. Monma, and M. Stoer. "Computational results with a cutting plane
algorithm for designing communication networks with low-connectivity constraints".
Operations fiesearcn, 40(7):309-330, 1992.

[44] M. Grötschel, C. Monma, and M. Stoer. "Polyhedral and computational investiga-
tions for designing communication networks with high survivability requirements".
Operations Äesearc/i, 43(6):1012-1024, 1995.

154 BIBLIOGRAPHY

[45] P.L. Hammer, E.L. Johnson, and U.N. Peled. "Facets of regular 0-1 polytopes".
A/a</iemartca/ Programming 8:179-206, 1975.

[46] D. Hartvigsen and E. Zemel. "The complexity of lifted inequalities for the knapsack
problem". Discrete v4pp/ied Matfiematics, 39:113-123, 1992. , !..*-*:.;:•.. .-.-:

[47] S.H. Hwan and W. Shogan. "Modeling and solving an FMS part selection problem",
/nternationa/ Journal o/ Production Äesearc/i, 27:1349-1366, 1989.

[48] CPLEX Optimization Inc. Cplex callable library, version 4.0, 1995. '•••; -

[49] ITU-T. Com xviii 228-e, March 1984. Geneva. •-: ' :

[50] C. Jack, S-R. Kai, and A. Shulman. "Design and implementation of an interactive
optimization system for telephone network planning". Operations .Re^earc/i, 40:14-25,
1992.

[51] D.S. Johnson and K.A. Niemi. "On knapsacks, partitions and a new dynamic pro-
gramming technique for trees". Afat/iematics o/ Operations Äesearc/i, 8:1-14, 1983.

[52] A. Kolen. A genetic algorithm for frequency assignment. Technical report, Maastricht
University, 1999. Available at http://www.unimaas.nl/~akolen/.

[53] A. Lisser, R.Sarkissian, and J.P.Vial. "Survivability in telecommunication networks".
Technical report, France Telecom, CNET, 1995.

[54] F. Maffioli M. Dell'Amico and S. Martello. Annotated Bift/ioorap/iies in Comiinatoria/
Optimization. Wiley, New York, 1997.

[55] T.L. Magnanti, P. Mirchandani, and R. Vachani. "The convex hull of two core ca-
pacitated network design problems". Mat/iematica/ Programming, 60:223-250, 1993.

[56] T.L. Magnanti, P. Mirchandani, and R. Vachani. "Modelling and solving the two-
facility capacitated network loading problem". Operations fiesearc/i, 43:142-157,
1995.

[57] J.W. Mamer and W. Shogan. "A constrained capital budgeting problem with appli-
cations to repair kit selection". Management Science, 33:800-806, 1987.

[58] H. Marchand and L.A. Wolsey. "The 0-1 knapsack problem with a single continous
variable". Discussion Paper 9720, Center for Operations Research and Econometrics,
March 1997.

[59] H. Marchand and L.A. Wolsey. "Aggregation and Mixed Integer Rounding to solve
MIPs". Discussion Paper 9839, Center for Operations Research and Econometrics,
June 1998.

[60] C. Monma, B. Munson, and W. Pulleyblank. "Minimum-weight two-connected span-
ning networks". Afat/iematicai Programming, 46:153-171, 1990.

[61] C. Monma and D. Shallcross. "Methods for designing communications networks with
certain two-connectivity constraints". Operations fiesearc/i, 37:531-541, 1989.

BIBLIOGRAPHY 165

[62] G.L. Nemhauser and L.A. Wolsey. "/nteper and ComftinatoriaZ Optimization". Wiley,
N.Y., 1988.

[63] I. Osman and G. Laporte. "Metaheuristics: a bibliography". >lnnaZs o/ Operattorw
Äesearc/i, 63:513-623, 1996.

[64] K. Park and S. Park. Lifting cover inequalities for the precedence-constrained knap-
sack problem. Discrete App/ied A/at/iematics, 72:219-241, 1972. <'*«•"•'

[65] U. Paul, P. Jonas, D. Alevras, M. Grötschel, and R. Wessäly. "Survivable mobile
phone network architectures: Models and solution methods". Preprint SC 96-48,
Konrad-Zuse-Zentrum fur Informationstechnik Berlin, 1996.

[66] H. Pirkul and S. Narasimhan. "Primary and secondary route selection in backbone
computer networks". 0Ä&4 Journa/ on Computing, 6:50-60, 1994.

[67] Y. Pochet and L.A. Wolsey. Integer knapsack and flow covers with divisible co-
efficients: Polyhedra, optimization and separation. Discrete .App/ied A/at/iematics,
59(l):57-74, 1995.

[68] A. Schrijver. TTieory o/ /inear and integer programming. Wiley, New York, 1986.

[69] D.X. Shaw. "Reformulation and column generation for several telecommunication
network design problems". In Proceeding o/ t/ie 2nd /nternationa/ Te/ecommunication
Con/erence, Nashville, Tennessee, 1994.

[70] D.X. Shaw and G. Cho. "A branch-and-bound procedure for the tree knapsack
problem". Research memorandum 94-11, School of Industrial Engineering, Purdue
University, March 1994.

[71] A. Shulman and R. Vachani. "An algorithm for capacity expansion of local access
networks". In / £ £ £ /n/ocom'50, San Francisco, California, 1990.

[72] K.E. Stecke and I. Kim. "A study of part type selection approaches for short-term
production planning", /nternationai Journal o/F/exiWe Manufacturing 5j/s<ems, 1:7-
29, 1988.

[73] R.E. Tarjan. "Data structures and ATetiuorifc >Uporitftms". SIAM, Philadelphia, Pa,
1983.

[74] S. Thienel. Abacus: a branch and cut system, version 1.2, 1996.

[75] R.L.M.J. van de Leensel, O.E. Flippo, and A.M.C.A. Koster. "A dynamic program-
ming algorithm for the ATM network installation problem on a tree". Research
Memorandum 98/009, Maastricht University, 1998.

[76] R.L.M.J. van de Leensel, C.P.M. van Hoesel, and J.J. van de Klundert. "Lifting
Valid Inequalities for the Precedence Constrained Knapsack Problem". Research
Memorandum 97/021, Maastricht University, 1997. To appear in Mathematical Pro-
gramming.

156 BIBLIOGRAPHY

[77] C.P.M. van Hoesel, A.M.C.A. Koster, R.L.M.J. van de Leensel, and M.W.P. Savels-
bergh. Polyhedral results for the edge capacity polytope. Technical report, Maastricht
University, 1999.

[78] L. Wolsey. Facets and strong inequalities for integer programs. Operations ÄesearrA,
24:367-372, 1976.

t f Ü K r . : - , . - ; • " . " ' . - . n r ' i r V , ;< , ; • ' ! ? '• . i,V <":,-M V? ' K t i

[79] L. A. Wolsey. "Faces of linear inequalities in 0-1 variables". AfatfiemahcaZ Projram-
mins, 8:165-178, 1975.

[80] E. Zemel. "Easily computable facets of the knapsack polytope". Mai/iemahcs o/
Operation Äesearc/i, 14(4):760-764, 1989.

*t>- . '

M:>;S->

Nederlandse Samenvatting

M i - . ' i . ; , < > : : , , . : . : , • • , . ; ; : • • . . ^ , ' - . ; r , ; f i .

Telecommunicatie netwerken bevinden zieh in een dynamische omgeving. Sinds de intro-
ductie van de telefonie hebben de markten een continue groei in de vraag naar telecom-
municatie diensten geregistreerd. Daarnaast hebben technologische ontwikkelingen een
belangrijke bijdrage geleverd aan de omvang en het ontwerp van netwerken. Enerzijds
heeft dit geleid tot wereldwijde communicatie faciliteiten en de introductie van nieuwe
telecommunicatie diensten. Anderzijds hebben deze innovaties in sterke mate bijgedragen
aan de profatibiliteit van de telecommunicatie industrie. Tenslotte heeft de deregelering
heeft gezorgd voor concurrerende markten, welke ondernemingen stimuleren om efficient
te opereren. ^ : /

Telecommunicatie netwerken worden voortdurend aangepast aan deze veranderende om-
standigheden. Gedurende dit proces worden talrijke beslissingen genomen welke van in-
vloed zijn op de karakteristieken van een netwerk, zoals de capaciteit, betrouwbaarheid,
beschikbaarheid, en niet in de laatste plaats de kosten. Elk jaar worden er wereldwijd
immense bedragen geinvesteerd in het onderhoud en moderniseren van telecommunicatie
netwerken. Dientengevolge ontstaan er ook talloze mogelijkheden tot kostenbesparingen.
De Problemen die opgelost dienen te worden om zulke kostenredueties te bewerkstelli-
gen zijn vaak complex. Wiskundige technieken uit het wetenschappelijke werkveld van
de besliskunde kunnen een helpende hand bieden bij de analyse van dergelijke netwerk
ontwerp problemen.

Dit proefschrift beschrijft zowel modellen als methoden voor een aantal specifieke netwerk
ontwerp problemen. Hoofdstuk 1 geeft een inleiding op het algemene ontwerp van
telecommunicatie netwerken en introduceert de desbetreffende terminologie. De meest
gangbare netwerken hebben een hierarchisch ontwerp. De onderste lagen van zulk een
netwerkstructuur zijn verantwoordelijk voor de aansluiting van telecommunicatie klanten
aan het netwerk. De hogere lagen verzorgen de verbinding tussen lokale aansluitnetwerken
en de routering van telecommunicatie boodschappen tussen de gebruikers van een dienst.
Het inleidende hoofdstuk beschrijft zowel een situatie welke de problematiek in de lokale
aansluitnetwerken representeert, als een voorbeeld welke de beslissingsmogelijkheden in
routeringsnetwerken illustreert. Tevens dient het hoofdstuk als een leidraad voor de rest
van het proefschrift, welke is opgesplitst in twee delen.

Part I bestaat uit de hoodstukken 2, 3 en 4, en behandelt lokale aansluitnetwerken.
Hoofdstuk 2 introduceert een netwerk probleem waarbij onder invloed van toenemende
vraag naar telecommunicatie diensten de bestaande capaciteit in een lokaal aansluit-

157

158 NEDERLANDSE SAMENVATTING

netwerk niet meer toereikend is om in de gewenste service te kunnen voorzien. Voor de
noodzakelijke uitbreiding van capaciteit onderscheiden we twee mogelijkheden. Enerzijds
zorgt de aanleg van additionele kabels in de bestaande netwerkstructuur voor een grotere
capaciteit. Anderzijds kunnen centrales in het lokale aansluitnetwerk geplaatst wor-
den welke telecommunicatie strömen kunnen comprimeren. Aangezien gecomprimeerde
telecommunicatie strömen gepaard gaan met een kleinere consumptie van capaciteit lei-
den dergelijke centrales tot een vermindering van de benodigde capaciteit. Kern van het
probleem is om een efficiente afweging te maken tussen de kosten van kabelexpansie en
kosten van installatie van centrales. Hoofdstuk 2 beschrijft een elegante methode voor het
vinden van de optimale capaciteitsexpansie van een lokaal aansluitnetwerk. De methode
blijkt in Staat om probleeminstanties uit de telecommunicatie industrie efficient op te
lossen. Als zodanig kan de methode een belangrijke rol speien in het economisch plannen
van lokale aansluitnetwerken.

In hoofdstuk 3 beschouwen we een uitbreiding van de problematiek welke onderdeel is
van hoofdstuk 2. Een gedeelte van de telecommunicatie strömen in een lokaal aansluit-
netwerk is afkomstig van communicatie tussen klanten in hetzelfde lokale aansluitnet.
Communicatie tussen elk tweetal gebruikers van een dienst kan alleen plaatsvinden via
tussenkomst van een routeringscentrale. Deze routeringscentrales bevinden zieh normaal
gesproken in de hogere lagen van de netwerk hierarchie. Dit betekent dat, ondanks dat
gebruikers in eenzelfde lokaal aansluitnetwerk geografisch dicht bij elkaar zitten, de com-
municatie tussen desbetreffende gebruikers een lange weg in het telecommunicatie netwerk
af kan leggen. In hoofdstuk 3 beschouwen we daarom de additionele mogelijkheid om
dergelijke routeringscentrales in het lokale aansluitnetwerk te installeren om zodanig deze
routering eenvoudiger te maken. De installatie van een routeringscentrale leidt zodoende
tot een vermindering van de capaciteitsconsumptie en derhalve is zij concurrerend met
andere maatregelen om capaciteitsproblemen in lokale aansluitnetwerken op te lossen. We
beschijven in dit hoofdstuk een methode welke de juiste balans vindt tussen de kosten
van kabelexpansie en de kosten van installatie van centrales. Probleeminstanties uit de
praktijk, zoals beschikbaar gesteld door KPN Research, Leidschendam, kunnen hiermee
efficient worden opgelost.

Veel netwerk ontwerp problemen op lokale aansluitnetwerken hebben een gemeenschap-
pelijke deler. Ten eerste is de netwerkstructuur zodanig dat er tussen elk tweetal klanten
in eenzelfde aansluitnetwerk precies een uniek pad is. Dit impliceert dat routering van
telecommunicatieberichten binnen het lokale aansluitnet in het algemeen geen keuze-
mogelijkheden met zieh mee brengt. Ten tweede geldt dat de centrales welke in een lokaal
aansluitnet aanwezig zijn of geinstalleerd kunnen worden vaak beschikking hebben over
een beperkte capaciteit, zodat een keuze moet worden gemaakt welke klanten aangesloten
worden op een specifieke centrale. Tenslotte worden meestal beperkende voorwaaarden
opgelegd aan de toewijzing van klanten aan centrales met het doel een bepaalde logische
en overzichtelijke netwerkstructuur te ontwerpen. Inzichtelijkheid is een belangrijke factor
voor een efficiente planning van bijvoorbeeld onderhoud. In hoofdstuk 4 beschouwen we
de mathematische formulering welke de gemeenschappelijke deler van deze problemen in
lokale aansluitnetwerken representeert. We bestuderen versterkingen van de formulering,
de complexiteit van zulke verbeteringen en het daaruitvolgende effect.

NEDERLANDSE SAMENVATTING 159

Part II, bestaande uit hoofdstukken 5 en 6, beschouwt telecommunicatie netwerk ontwerp
Problemen in hogere lagen van de hierarchische structuur. We beschouwen de lokatie
van routeringscentrales hierbij als een gegeven, en concentreren ons op de beslissingen
omtrent de routering van telecommunicatie strömen en de installatie van capaciteit op de
connecties tussen centrales. Hoofdstuk 5 introduceert een aantal wiskundige modellen en
heuristische methoden voor deze netoorA; Zoadmf? problemen. Tevens beschrijven we enkele
kenmerken van een beslissingsondersteunend computer systeem welke in samenwerking
met KPN Research te Leidschendam ontwikkeld is voor de efficiente analyse van deze
netwerk problemen. De besproken software bevat een grafische interface welke het gebruik
en de interpretatie van netwerk planningen beduidend eenvoudiger maakt.

Een belangrijk onderdeel van de modellen voor de network loading problemen zoals
beschreven in hoofdstuk 5 wordt gevormd door capaciteitsrestricties. Deze restricties
garanderen dat de hoeveelheid capaciteit welke geinstalleerd wordt op een connectie in
het netwerk groter of gelijk is aan de capaciteitsbehoefte op de desbetreffende connectie.
In hoofdstuk 6 restricteren we ons tot een specifieke connectie in het netwerk en analy-
seren de mathematische structuur van de bijbehorende capaciteitsrestrictie. Verschillende
theoretische resultaten worden vermeld. Ten eerste wijzen we op het nut van versterkingen
van individuele capaciteitsrestricties voor globale network loading problemen. Vervolgens
laten we zien hoe reeds bekende ongelijkheden voor knapsack problemen kunnen worden
gebruikt om versterkingen voor het onderhavige model te genereren. Meer specifiek con-
centreren we ons op twee typen versterkingen welke een grafische interpretatie hebben.
Het effect van deze versterkingen op de solvabiliteit van network loading problemen is het
onderwerp van een rekenstudie.

160

?*!•?• j a*

;-:;:i:»J .• >ia.u;

lit -•vrfiiiv

M :) ^ >K- ; i ; . i

- . ; . j • • . ; . , . ; ; , ^ 0 Ji;> ,;-• ij4tAiXt i l l

/'-; ; • ! . • ; • .] i ! . b 7

Curriculum Vitae

Robert van de Leensel was born on March 21st, 1971 in Helenaveen, the Netherlands.
He studied Econometrics at the Katholieke Universiteit Brabant in Tilburg, specializing
in Operations Research. During his study he tutored mathematics and statistics classes
for two years, spent six months at North Carolina State University in Raleigh, USA, and
participated in a Master's course in Management Science at CentER, Tilburg. After his
graduation in April 1995 he started his PhD research at Maastricht University, where he
completed his Doctoral thesis.

Robert van de Leensel werd geboren op 21 maart 1971, te Helenaveen. Hij studeerde
Econometrie aan de Katholieke Universiteit Brabant te Tilburg, met als specialisatie
Besliskunde. Gedurende zijn studie was hij twee jaar werkzaam als student-assistent
in de vakken wiskunde en statistiek, verbleef hij een halfjaar aan North Carolina State
University in Raleigh, USA, en volgde hij een Master's course in Management Science aan
het CentER, te Tilburg. Na zijn afstuderen (cum laude) in april 1995 begaf hij zieh naar
de Universiteit Maastricht, alwaar hij zijn proefschrift voltooide.

161

Robert van de Leensel was born on March 21st, 1971 in Helenaveen, the
Netherlands. He studied Econometrics at the Katholieke Universiteit Brabant
in Tilburg, specializing in Operations Research. During his study he tutored
mathematics and statistics classes for two years, spent six months at North
Carolina State University in Raleigh, USA, and participated in a Master's
course in Management Science at CentER, Tilburg. After his graduation in
April 1995 he started his PhD research at Maastricht University, where he
completed his Doctoral thesis.

Robert van de Leensel werd geboren op 21 maart 1971, te Helenaveen. Hij
studeerde Econometrie aan de Katholieke Universiteit Brabant te Tilburg, met
als specialisatie Besliskunde. Gedurende zijn studie was hij twee jaar
werkzaam als student-assistent in de vakken wiskunde en statistiek, verbleef
hij een halfjaar aan North Carolina State University in Raleigh, USA, en volgde
hij een Master's course in Management Science aan het CentER, te Tilburg.
Na zijn afstuderen (cum laude) in april 1995 begaf hij zieh naarde Universiteit
Maastricht, alwaar hij zijn proefschrift voltooide.

ISBN 90-9012781-X

