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Abstract. We consider the problem of (re)allocating the total endowment of
an in®nitely divisible commodity among agents with single-peaked prefer-
ences and individual endowments. We propose an extension of the so-called
uniform rule and show that it is the unique rule satisfying Pareto optimality,
strategy-proofness, reversibility, and an equal-treatment condition. The re-
sulting rule turns out to be peaks-only and individually rational: the allo-
cation assigned by the rule depends only on the peaks of the preferences, and
no agent is worse o� than at his individual endowment.

1. Introduction

Consider the problem of allocating teaching hours among the members of a
university department. It is reasonable to assume that preferences for
teaching are single-peaked: each individual has an optimally preferred
number of teaching hours, below which and above which preference is de-
creasing. The existing distribution of teaching hours may be unsatisfactory,
for instance because preferences have changed over time. Then the question
arises how to reallocate teaching hours.

The special instance of this problem in which only the total endowment
plays a role (and, consequently, individual endowments are not modeled),
has been studied extensively in economic literature. The allocation rule
featuring pre-eminently in this literature is the so-called ``uniform rule''. This
rule was already described as a strategy-proof rationing scheme by Benassy
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[3]. Sprumont [9] showed that it is the unique Pareto optimal, anonymous,
and strategy-proof rule. As usual, strategy-proofness means that no agent
can gain by misrepresenting his preferences. Anonymity implies that only the
preferences and not the names of the agents matter. Ching [5] weakens an-
onymity to a condition called equal treatment of equals. Other character-
izations of the uniform rule were obtained by Thomson ([10], [11], [12]), using
monotonicity and consistency properties, Otten et al. [7], applying conditions
from bargaining theory, and Angeles de Frutos and MassoÂ [1] using a con-
dition called Lorenz maximality.

In this paper we consider the more general setting where individual en-
dowments do play a role (not just through the total endowment). There are
several ways in which individual endowments may in¯uence the allocation.
An agent who, at the reallocation assigned by the rule to be used, is worse o�
than at his individual endowment, might refuse to participate in the reallo-
cation operation if he has the chance; indeed, applying the uniform rule to a
problem with individual endowments may lead to non-individually rational
allocations. However, the procedure which underlies the uniform rule can be
extended to an individually rational reallocation mechanism ± the uniform
reallocation rule.

As in the original allocation situation we are interested in properties like
Pareto optimality, strategy-proofness, equal treatment of equals and ano-
nymity (see Ching [5], Sprumont [9]). Whereas Pareto optimality, strategy-
proofness and anonymity can easily be ``translated'' to the reallocation set-
ting, the notion of equality has to be adjusted in order to formulate an equal-
treatment property for reallocation rules. This is done ± loosely speaking ±
by comparing the agents' net demands, i.e., the di�erence between the re-
ported preference peaks and the individual endowments. If equal-treatment
is imposed, then every agent is indi�erent between his net trade and the net
trade of an equal agent.

In the reallocation model that we consider in this study individual en-
dowments and allotments are bounded from below by zero. This causes an
asymmetry between excess demand and excess supply which does not exist in
allocation problems. So, in order to ``translate'' results from allocation to
reallocation situations it is not su�cient to only adjust the properties.
Therefore, we impose a property of reversibility which describes symmetry
between problems in excess demand and problems in excess supply. Suppose
a problem is ``reversed'' in the sense that each agent's peak and individual
endowment are interchanged, and each agent's preference relation is re¯ected
in its peak and translated to its individual endowment. Then reversibility
requires that only the signs of the net allotment change. If in addition, we
impose Pareto optimality, equal-treatment and strategy-proofness with res-
pect to the reported preferences ± the individual endowments are assumed to
be publicly known ± we obtain a characterization of the uniform reallocation
rule. In Klaus et al. [6] some variations of the reallocation model (e.g. al-
lowing for debts) and their impact on the result are studied.
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Besides in situations as the one at the beginning of this introduction, the
uniform reallocation rule can be used in exchange economies with two goods
and ®xed prices, where rationing of one of the goods entails an allocation of
the other good, in view of ®xed prices and budgets. For more than two
goods, one needs a multi-dimensional rule.

Another situation where uniform reallocation can be applied is studied in
BarberaÁ et al. [2]. There, situations are considered where agents have natural
claims or are treated with di�erent priorities, for example in investment
situations. Proceeding from this situation they deviate from uniform division
and introduce a class of Pareto optimal and strategy-proof allotment rules:
the class of sequential allotment rules. Allowing for asymmetric treatment of
the agents, the stepwise procedure of sequential allotment incorporates
guaranteed levels of the agents' shares. Applying uniform division in the
sequential allotment procedure, the uniform reallocation rule as de®ned in
the allocation context with individual endowments is obtained.

The uniform reallocation rule can be seen as an extension of the uniform
rule for problems without individual endowments, by starting from equal
division of the amount to be divided in such problems. The proof of the
characterization of the uniform reallocation rule is structured in a similar
way as Ching's [5] elegant proof for the uniform rule.

The organization of the paper is as follows. In Section 2 we formulate the
model and the uniform reallocation rule with its main properties. In Section
3 we state and prove the characterization of the uniform reallocation rule.
Section 4 is devoted to some variations of the preference domain, and to
showing independence of the axiom systems.

2. The uniform reallocation rule

Let N � f1; 2; . . . ; ng denote the set of agents. Each agent i 2 N has a single-
peaked preference on R, i.e. a complete and transitive binary relation Ri on R

for which there exists a point p�Ri� 2 R� with the following property: for all
a; b 2 R with b < a � p�Ri� or b > a � p�Ri� we have aPib, where Pi is the
asymmetric part of Ri. As usual, aRib is interpreted as ``a is weakly preferred
to b'', and aPib as ``a is strictly preferred to b''. The symmetric part of Ri is
denoted by Ii: aIib means that individual i is indi�erent between a and b. The
point p�Ri� is called the peak of Ri and will also be denoted by pi. By R we
denote the class of all single-peaked preferences. An element R � �R1; . . . ;Rn�
of RN is called a preference pro®le. Furthermore, each agent i has an indi-
vidual endowment ei 2 R�. A reallocation problem (or brie¯y: problem) is a
pair �e;R� where e � �e1; . . . ; en� is a vector of individual endowments and
R 2 RN is a preference pro®le. By E :�Pi2N ei we denote the total endow-
ment of a problem (e;R).

We say that the problem (e;R) is in excess demand if
Pn

i�1 p�Ri� > E. IfPn
i�1 p�Ri� � E the problem (e;R) is balanced. If

Pn
i�1 p�Ri� < E the problem

(e;R) is in excess supply.
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In what follows it is useful to distinguish between suppliers and de-
manders in a reallocation problem (e;R). The set of demanders is de-
®ned as D�e;R� :� fi 2 N jp�Ri� > eig and the set of suppliers as S�e;R� :�
fi 2 N jp�Ri� � eig.1

For a problem (e;R), a ( feasible) allocation or an allotment is a vector
x 2 RN

� with
Pn

i�1 xi � E. A rule u is a map assigning to every problem (e;R)
a feasible allocation u�e;R�. For i 2 N ;ui�e;R� denotes the share of agent i
and Dui�e;R� :� ui�e;R� ÿ ei denotes the net allotment change or net trade
for agent i.

Let u be a rule. We are interested in the following possible properties of u.

A standard property which needs no further explanation is the following
Pareto optimality condition.

Pareto optimality. For every problem (e;R) there is no (feasible) allocation x
with xiRiui�e;R� for all i 2 N and xiPiui�e;R� for at least one i 2 N .

Strategy-proofness ensures that no agent bene®ts from (strategically) mis-
representing his preference. So, if preferences are private information, in the
game where each agent reports his preference it is a (weakly) dominant
strategy to reveal one's true preference.

Strategy-proofness. For all j 2 N and all problems �e;R�; �e0;R0� with e � e0

and Ri � R0i for all i 6� j, we have uj�e;R�Rjuj�e0;R0�.
Equal-treatment requires that, if the individual endowments and preferences
of two agents are equal up to a translation, then each agent should be
indi�erent between his own share and the translated share of the other
agent.2

For i 2 N , a preference Ri 2 R and a number s 2 R such that
p�Ri� � s � 0, we de®ne the translated preference Ri � s by: for all a; b 2 R

a�Ri � s�b if �aÿ s�Ri�bÿ s�:

Equal-treatment. For all i; j 2 N , every s 2 R, and every problem �e;R� with
Rj � Ri � s and ej � ei � s, we have uj�e;R�Ij�ui�e;R� � s�.
The equal-treatment property as described above is a natural extension of
Ching's equal treatment of equals for division problems with total endow-
ments.3 Because net trades are compared it can also be seen as a weaker
form of fairness as introduced in Schmeidler and Vind [8].

1 The inclusion of non-traders, i.e. agents with peaks equal to their individual
endowments, among the suppliers is arbitrary, but convenient for what follows.
2 The uniform reallocation rule de®ned below actually satis®es the stronger version
where we would have equality instead of indi�erence.
3 Equal-treatment applied on reallocation problems with equal individual endow-
ments implies equal treatment of equals for the division of the total endowment.
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With reversibility we introduce a notion of symmetry in the model. Suppose
a problem of excess demand (respectively, supply) can be obtained by re-
versing ± in a sense to be speci®ed below ± a problem of excess supply
(respectively, demand). Then reversibility requires that also the net allotment
changes be reversed. To formalize this condition we need the following no-
tations.

Let Ri 2 R. Then Rr
i 2 R is the re¯ection of Ri (in the peak p�Ri��, if for all

a; b 2 IR

aRr
i b if �2p�Ri� ÿ a�Ri�2p�Ri� ÿ b�:

By Rr :� �Rr
1; . . . ;Rr

n� we denote the re¯ection of R 2 RN .
Let �e;R� be a problem. The reversed problem of �e;R� with endowment

vector p�R� and preference pro®le �Rr ÿ � p�R� ÿ e�� is denoted by �e;R�. So,
in the reversed problem (a ``re¯ection'' of the original problem) the role of
endowments and peaks is interchanged whereby each preference is re¯ected
in the peak and translated from the peak to the endowment. By this all agents
demand (supply) at �e;R� as much as they supply (demand) in the reversed
problem. With the following condition we link the outcome of a problem to
the outcome of the corresponding reversed problem.

Reversibility. For all i 2 N and every problem �e;R� and its reversed prob-
lem �e;R� we have Dui�e;R� � ÿDui

�e;R�.
Because all extensions of well-known division rules we consider here ± the
uniform, the proportional and the hierarchical reallocation rule ± satisfy
reversibility, the property does not seem too demanding. Nevertheless, it
turns out that it is crucial when extending Ching's result to the reallocation
setting.

A well-known rule, satisfying strategy-proofness and Pareto optimality (see
Sprumont [9] or Ching [5]), is the uniform rule U de®ned4 by

Uj�e;R� :� minfp�Rj�; kg if
Pn

i�1 p�Ri� � E
maxfp�Rj�; kg if

Pn
i�1 p�Ri� � E

�
for every j 2 N , where k solves

Pn
i�1 Ui�e;R� � E. So, all agents either receive

their optimal share p�Ri� or a maximal (minimal) equal share k in case of
excess demand (supply). The uniform rule does not take the individual initial
distribution of the total endowment into account; for instance, it does not
satisfy equal-treatment. As an alternative, we propose the uniform realloca-
tion rule U r de®ned by

4 This de®nition is adapted to our context. In the original literature only the total
endowment is speci®ed and no individual endowments.
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U r
j �e;R� :� minfp�Rj�; ej � kg if

Pn
i�1 p�Ri� � E

maxfp�Rj�; ej ÿ kg if
Pn

i�1 p�Ri� � E

�
for every j 2 N , where k � 0 and k solves

Pn
i�1 U r

i �e;R� � E. So, in case of
excess demand the uniform reallocation rule works as follows. All suppliers
receive their peaks. Next, the total resulting supply is distributed uniformly
among the demanders (who already possess their individual endowments). In
case of excess supply the uniform reallocation rule is dual to the excess
demand case: Demanders are satiated and the total amount of the good they
absorb is subtracted uniformly from the individual endowments of the
suppliers. Observe that the uniform reallocation rule is well de®ned: it assigns
a feasible allocation to every reallocation problem.

It is easy to see that the uniform reallocation rule is an extension of the
uniform rule in a sense speci®ed by the following lemma.

Lemma 1. For every problem (e, R) applying the uniform rule gives the same
result as applying the uniform reallocation rule from equal individual endow-
ments, i.e.,

U�e;R� � Ur�~e;R�
where ~e � E

n ; . . . ; E
n

ÿ �
.

Proof. Let �e;R� be a reallocation problem. Assume that
Pn

i�1 pi � E, the
other case is similar. For agents i 2 N such that pi � E

n we have
U r

i �~e;R� � pi � Ui�e;R�. If i 2 N with pi >
E
n, then U r

i �~e;R� � minfpi;
E
n � kg,

where k solves
Pn

i�1 U r
i �~e;R� � E. Let k0 :� E

n � k. Then, Ur
i �~e;R� � min

fpi; k
0g, where k0 solves

Pn
i�1 Ur

i �~e;R� � E �Pn
i�1 Ui�e;R�. Hence,

U r
i �~e;R� � Ui�e;R�: j

Let u be a rule with, for every problem �e;R�, either ui�e;R� � p�Ri� for all
i 2 N or ui�e;R� � p�Ri� for all i 2 N . We call such a rule same-sided. By
single-peakedness of the preferences, it is easy to show that a same-sided
rule is Pareto optimal, and that, conversely, every Pareto optimal rule must
be same-sided. (Sprumont [9] actually uses same-sidedness as de®nition of
Pareto optimality.) For later reference, we state this observation as a
lemma.

Lemma 2. A rule u is Pareto optimal if and only if it is same-sided.

3. The characterization result

This section is entirely devoted to the following characterization of the
uniform reallocation rule.

Theorem 1. The uniform reallocation rule is the unique rule satisfying Pareto
optimality, strategy-proofness, reversibility, and equal-treatment.
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We start by showing that the uniform reallocation rule has all the properties
mentioned in the theorem.

Proposition 1. The uniform reallocation rule is Pareto optimal, strategy-proof,
reversible, and satis®es equal-treatment.

Proof. Pareto optimality of U r follows immediately from same-sidedness,
see Lemma 2. In order to show strategy-proofness of U r, let j 2 N and let
�e;R� and �e;R0� be reallocation problems with Ri � R0i for all i 6� j. We have
to prove that

U r
j �e;R�RjU r

j �e;R0�: �1�
We assume that

Pn
i�1 pi > E, the other case is similar. Then, Ur

j �e;R� �
minfpj; ej � kg, where k � 0 solves

Pn
i�1 U r

i �e;R� � E. If U r
j �e;R� � pj, then

(1) holds because pj is the peak of Rj. Otherwise, U r
j �e;R� � ej � k, i.e., agent

j is a demander. We distinguish two cases.

Case 1. p0j > ej � k

Observe that in the pro®le R0 agent j is still a demander. Consequently,
D�e;R0� � D�e;R� and by feasibility and same-sidedness,X

i2D�e;R0�
� p0i ÿ ei� � � p0j ÿ ej� �

X
i2D�e;R�; i6�j

� pi ÿ ei�

> k�
X

i2D�e;R�; i6�j

�U r
i �e;R� ÿ ei�

�
X

i2D�e;R�
�U r

i �e;R� ÿ ei�

�
X

i2S�e;R�
�ei ÿ pi�

�
X

i2S�e;R0�
�ei ÿ p0i�:

Hence,
Pn

i�1 p0i >
Pn

i�1 ei � E. Therefore, Ur
j �e;R0� � minfp0j; ej � k0g, where

k0 � 0 solves
Pn

i�1 U r
i �e;R0� � E. Because p0j > ej � k and p0i � pi for i 6� j it

follows that k0 � k. Hence, Ur
j �e;R0� � ej � k � Ur

j �e;R�, and (1) follows.

Case 2. p0j � ej � k

If
Pn

i�1 p0i > E, then Ur
j �e;R0� � minfp0j; ej � k0g � ej � k � Ur

j �e;R� � pj. IfPn
i�1 p0i � E, then Ur

j �e;R0� � maxf p0j; ej ÿ k0g � ej � k � U r
j �e;R� � pj. So

in both cases (1) holds.

Next, we show the reversibility of U r. Let �e;R� be a problem. We assume
that

Pn
i�1 pi � E, the other case is similar. Then, the reversed problem �e;R�

� �p;Rr ÿ �p ÿ e�� has the endowment vector �e � p, the peak vector �p � e
and it holds that

Pn
i�1 �pi � E �Pn

i�1 pi �
Pn

i�1 �ei �: �E. Let i 2 N . By the
de®nition of the uniform reallocation rule, we have
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DUr
i �e;R� � Ur

i �e;R� ÿ �ei

� maxf �pi; �ei ÿ kg ÿ �ei; k � 0 solves
Xn

i�1
maxf �pi; �ei ÿ kg � �E

� maxfei; pi ÿ kg ÿ pi; k � 0 solves
Xn

i�1
maxfei; pi ÿ kg �

Xn

i�1
pi

� maxfei ÿ pi;ÿkg; k � 0 solves
Xn

i�1
maxfei ÿ pi;ÿkg � 0

� ÿminf pi ÿ ei; kg; k � 0 solves
Xn

i�1
minfpi ÿ ei; kg � 0

� ÿ�minf pi; ei � kg ÿ ei�; k � 0 solves
Xn

i�1
minfpi; ei � kg � E

� ÿDU r
i �e;R�:

Hence, U r is reversible.
The proof of equal-treatment of Ur is straightforward and left to the
reader. j

The proof of the converse direction of Theorem 1 is structured in a similar
way as Ching's [5] elegant proof for the uniform rule. We also show that
Pareto optimality and strategy-proofness imply own-peak monotonicity and
uncompromisingness.

The ®rst property means that increasing the peak of an agent while
leaving the remaining problem unchanged, does not decrease the amount
allocated to that agent. The second condition implies that if an agent's peak
di�ers from the share assigned by the rule, then his share does not change if
his peak remains at the same side of the allocation. Ching's result and ours
are, however, logically independent, and ± except for the global structure ±
the proofs of the characterization results proceed rather di�erently.

Own-peak monotonicity. For every j 2 N and all problems �e;R� and �e0;R0�
with e � e0;Ri � R0i for all i 6� j and p�R0j� � p�Rj� :

uj�e0;R0� � uj�e;R�:

Uncompromisingness. For every j 2 N and all problems �e;R� and �e0;R0�with
e � e0;Ri � R0i for all i 6� j : if p�Rj� < uj�e;R� and p�R0j� � uj�e;R� or if p�Rj�
> uj�e;R� and p�R0j� � uj�e;R�; thenuj�e;R� � uj�e0;R0�:
Own-peak monotonicity was introduced by Ching [5]. Uncompromisingness
is a well-known property in connection with strategy-proofness (see for in-
stance Border and Jordan [4] in the context of public goods). Both properties
are convenient to work with because they only use information concerning
the peaks of the preferences. In the following two lemmas it is shown that
both properties are implied by Pareto optimality and strategy-proofness.
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Lemma 3. Let u be a Pareto optimal and strategy-proof rule. Then u is own-
peak monotonic.

Proof. Let j 2 N and let �e;R� and �e;R0� be reallocation problems with
Ri � R0i for all i 6� j; and p0j � pj. We wish to show that uj�e;R0� � uj�e;R�.
Suppose that,

uj�e;R0� > uj�e;R�: �2�
We derive a contradiction which completes the proof. By strategy-proofness
it follows that

uj�e;R�Rjuj�e;R0� �3�
and

uj�e;R0�R0juj�e;R�: �4�
This yields pj < uj�e;R0� ��2� and �3�� and p0j > uj�e;R� ��2� and �4��. Thus,

uj�e;R� < p0j � pj < uj�e;R0�:
Now, because pj > uj�e;R�; by same-sidedness it follows that

pi � ui�e;R� for all i 2 N :

Similarly, by p0j < uj�e;R0� and same-sidedness

p0i � ui�e;R0� for all i 2 N :

Because pi � p0i for all i 6� j we have

ui�e;R� � ui�e;R0� for all i 6� j:

Furthermore, by assumption,

uj�e;R� < uj�e;R0�:
Hence,

E �
Xn

i�1
ui�e;R� <

Xn

i�1
ui�e;R0� � E;

which is the desired contradiction. j

An immediate but important consequence of own-peak monotonicity of a
rule u is that unilateral preference changes of an agent j with the same peak
do not change j's share.

Individual peak-onliness. For every j 2 N ;uj�e;R� � uj�e0;R0�whenever
e � e0;Ri � R0i for all i 6� j; and p�Rj� � p�R0j�:
We proceed with the result concerning uncompromisingness.

Lemma 4. Let u be a Pareto optimal and strategy-proof rule. Then u is
uncompromising.
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Proof. Let j 2 N and let �e;R�; �e;R0� be reallocation problems with Ri � R0i
for all i 6� j; pj > uj�e;R�; and p0j � uj�e;R� (the other case is similar). We
wish to prove that uj�e;R� � uj�e;R0�.

If uj�e;R0� < uj�e;R�; thenuj�e;R�P 0juj�e;R0�, violating strategy-proof-
ness. Therefore, uj�e;R0� � uj�e;R�:

Assume that Rj is a preference which is symmetric around its peak: be-
cause u is own-peak monotonic by Lemma 3 and therefore individually
peak-only, this is without loss of generality. If uj�e;R0� > uj�e;R�;
thenuj�e;R0� � 2pj ÿ uj�e;R� because otherwise uj�e;R0�Pjuj�e;R�, violating
strategy-proofness. By Pareto optimality this implies p0j � uj�e;R0� � 2pjÿ
uj�e;R�. Hence, as long as p0j < 2pj ÿ uj�e;R� we have uj�e;R0� � uj�e;R�.
By repeating this argument, each time we double the range of peaks
p0j withuj�e;R� � uj�e;R0�. This implies uj�e;R� � uj�e;R0� for all pj >
uj�e;R�: j

Remark 1. The repetition argument in the proof of Lemma 4 can be avoided
by taking a su�ciently asymmetric preference Rj instead (see Ching [5]
Lemma 2). We deliberately used the above argument to be able to conclude
later (see Remark 4) that Theorem 1 remains valid if only symmetric pref-
erences are allowed.

Our next task is to prove the converse of Proposition 1.

Proposition 2. Let u be a rule satisfying Pareto optimality, strategy-proofness,
reversibility, and equal-treatment. Then u is the uniform reallocation rule U r.

Proof. Let �e;R� be an arbitrarily chosen reallocation problem. We have to
show that u�e;R� � U r�e;R�.
Case 1. Assume that

Pn
i�1 pi � E.

We assume that u�e;R� 6� Ur�e;R� and derive a contradiction. By Lemmas 3
and 4 both u and U r are own-peak monotonic and uncompromising.

Let m 2 arg max fpi ÿ eiji 2 D�e;R�g; and letM�e;R� :� fi 2 D�e;R�j
Ri � Rm � si; g; where si :� ei ÿ em. In words, agent m is an arbitrary but
®xed agent with maximal demand, and M(e, R) is the set of maximal de-
manders that have the same preferences as agent m up to a translation; so
M(e, R) contains at least agent m.

We say that C�e;R� holds if the following two conditions are satis®ed:

(i) For all i 2 S�e;R� : ui�e;R� � pi.
(ii) D�e;R� � M�e;R�:

Suppose C�e;R� holds. Then, by de®nition, for all i 2 S�e;R� : Ur
i �e;R�

� pi: With (i) and feasibility this impliesX
i2D�e;R�

Ur
i �e;R� �

X
i2D�e;R�

ui�e;R�:
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By (ii) and equal-treatment therefore Ur
i �e;R� � ui�e;R� for all i 2 D�e;R�.

Hence, U r�e;R� � u�e;R�, violating the assumption u�e;R� 6� Ur�e;R�. This
contradiction completes the proof for the case that C�e;R� holds. Otherwise,
we have the following claim:

Claim. If C�e;R� does not hold, then there is a problem �e;R0� satisfying the
following two conditions:

(iii) M�e;R0� � M�e;R�;M�e;R0� 6� M�e;R�:
(iv) u�e;R0� 6� U r�e;R0�:

We will prove this claim below. First observe that for �e;R0� as in the
claim C�e;R0� cannot be true, because otherwise (iv) would be violated.
Hence, by repeated application of the claim we can ®nd an in®nite sequence
of reallocation problems satisfying (iii) and (iv) but not both (i) and (ii). By
(iii), however, the number of maximal demanders with the same preferences
as m up to a translation increases at every step, an obvious impossibility since
N is ®nite. So we have a contradiction.

We are left to prove the Claim. Suppose that C�e;R� does not hold. We
distinguish two cases.

Case 1.1. There exists a k 2 S�e;R�withuk�e;R� 6� pk. Then, by same-
sidedness and feasibility, uk�e;R� < pk. De®ne R0i :� Ri for all i 6� k
andR0k :� Rm � sk. In other words, we turn agent k into an agent in M�e;R0�,
so that the number of maximal demanders that up to a translation have the
same preferences as m, is increased. By uncompromisingness,
uk�e;R0� � uk�e;R�; henceuk�e;R0� < ek � Ur

k �e;R0�. So also u�e;R0� 6�
U r�e;R0�.

Case 1.2. For all k 2 S�e;R� : uk�e;R� � pk. Because C�e;R� does not hold,
we have M�e;R� 6� D�e;R�. Note that A :� fi 2 D�e;R�jui�e;R� >
U r

i �e;R�g 6� ;. We distinguish two subcases.

In the ®rst subcase, there is a j 2 A with j j2 M�e;R�, i.e., Rj 6� Rm � sj.
De®ne R0 by R0i :� Ri for all i 6� j and R0j :� Rm � sj. Then p0j � pj, so that by
own-peak monotonicity uj�e;R0� � uj�e;R� > Ur

j �e;R�. By uncompromis-
ingness, U r

j �e;R0� � Ur
j �e;R�. Hence uj�e;R0� > Ur

j �e;R0�, and in particular,
u�e;R0� 6� Ur�e;R0�.

In the second subcase, A � M�e;R�, i.e., there is no j 2 A with
Rj 6� Rm � sj. By feasibility:X

i2D�e;R�
Ur

i �e;R� � E ÿ
X

i2S�e;R�
pi �

X
i2D�e;R�

ui�e;R�:

Hence, there exists a j 2 D�e;R�nM�e;R� such that pj � Ur
j �e;R� > uj�e;R�.

Again, de®ne R0 by R0i :� Ri for all i 6� j and R0j :� Rm � sj. Uncompromis-
ingness of u implies uj�e;R0� � uj�e;R�. Own-peak monotonicity of Ur im-
plies Ur

j �e;R� � Ur
j �e;R0�. Thus, Ur

j �e;R0� > uj�e;R0�, and in particular,
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u�e;R0� 6� U r�e;R0�. In both subcases, (e;R0) satis®es conditions (iii) and (iv).
This completes the proof of the claim. Hence, u�e;R� � Ur�e;R� ifPn

i�1 pi > E.

Case 2. Assume that
Pn

i�1 pi � E.

Let �e;R� be the reversed problem of (e;R). Denote the endowment vector
of �e;R� by �e � p and the peak vector by �p � e. Hence,

Pn
i�1 �pi �

Pn
i�1 ei �

E �Pn
i�1 pi �

Pn
i�1 �ei �: �E. Let i 2 N . Applying Case 1 yields

Dui�e;R� � DUr
i �e;R�:

By reversibility of u and U r it follows that Dui�e;R� � ÿDui�e;R� and
DU r

i �e;R� � ÿDUr
i �e;R�. Hence, Dui�e;R� � DU r

i �e;R�. So, u � Ur. j

Remark 2. The excess demand part of the proof of Proposition 2 does not
use reversibility. This condition, however, is necessary (see Example 4 in
Section 4) to prove the proposition for excess supply. Because the peaks of
the agents have zero as lower bound, transforming a problem with excess
supply into an excess supply problem with exclusively maximal suppliers is
not always possible (Example 4). Consequently, for the excess supply case the
proof technique used for the excess demand case above, cannot be applied.
Reversibility compensates this asymmetry of the model between the excess
demand and the excess supply case.

Proof of Theorem 1. Theorem 1 follows from Propositions 1 and 2. j

Remark 3. Theorem 1 shows that Pareto optimality, strategy-proofness,
reversibility and equal-treatment together imply peak-onliness, i.e., u�e;R� �
u�e0;R0� whenever e � e0 and p�Ri� � p�R0i� for all i 2 N .

4. Some remarks, and independence of the axioms

In this section we ®rst make some observations concerning the domain of
preferences and the domain of the reallocation problems. Second, we brie¯y
discuss the connections between allocation and reallocation problems when
translation invariance is imposed. Finally, we show the logical independence
of the axioms in Theorem 1.

Remark 4. By going over the proofs ± see also Remark 1±the reader may
verify that our results, in particular Theorem 1, remain valid if the domain of
single-peaked preferences is replaced by the much smaller domain of all
single-peaked preferences which are symmetric around their peaks or that
linearly depend only on the distance to the peaks. It is interesting to note that
there is a trade o� between the domain restriction and strategy-proofness: On
the one hand the restriction of the preference domain weakens strategy-
proofness (less preference pro®les can be used in unilateral deviations). On
the other hand by the domain restriction extra information about rules is
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implied, e.g., when preferences are symmetrical they are completely described
by their peaks. Consequently, on this domain a rule is peak-only by de®ni-
tion.

Remark 5. If we extend the domain of the reallocation problems by allowing
negative endowments and peaks, all results remain true with little changes in
the proofs. In the characterization of the uniform reallocation rule in The-
orem 1 we can then omit reversibility. For further model variations (e.g., a
restriction of the preferences to the nonnegative real line) see Klaus et al. [6].

Remark 6.5 Comparing our characterization of the uniform reallocation rule
with Ching's characterization of the uniform allocation rule (Ching [5],
Theorem 1), we observe that the equal-treatment condition we impose is not
logically equivalent with Ching's equal treatment of equals. In addition, we
impose a reversibility property which guarantees a symmetrical treatment of
excess demand and excess supply problems. Now, imposing translation in-
variance ± i.e., translating a problem along the nonnegative real line has no
impact on net allotment changes ± would compensate the asymmetry be-
tween excess demand and excess supply in the reallocation setting as well.
Then, we can translate any reallocation problem to a problem where all
agents have identical individual endowments. In this case, Pareto optimality,
strategy-proofness and equal-treatment are logically equivalent to the cor-
responding properties for allocation problems and the uniform allocation
equals the uniform reallocation (Lemma 1). As a consequence, Ching's result
can be straightforwardly applied and by translation invariance, we obtain the
uniform reallocation for the initial reallocation problem. With a similar ar-
gumentation, Sprumont's characterizations of the uniform rule by Pareto
optimality, strategy-proofness and anonymity or envy-freeness respectively
directly imply corresponding characterizations of the uniform reallocation
rule.

Finally, we discuss logical independence of the axiom systems in Theorem 1.
In this discussion we include consideration of the following property of a rule
u.

Individual rationality. For every problem �e;R� and every i 2 N

ui�e;R�Riei:

In words, no individual should be worse o� than at his individual endow-
ment. All examples below will be individually rational; this indicates that, in
general, individual rationality cannot replace any of the axioms used in
Theorems 1.

5 This remark is due to an anonymous referee.
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Example 1. The endowment rule ue satis®es individual rationality, strategy-
proofness, reversibility, and equal-treatment, but not Pareto optimality. It is
de®ned as follows. For every reallocation problem (e;R)

ue�e;R� � e:

Example 2. The proportional rule up is Pareto optimal, individually rational,
reversible and satis®es equal-treatment, but is not strategy-proof. The pro-
portional rule satiates in case of excess demand (supply) all suppliers (de-
manders) and the demanders (suppliers) proportional to their net demand
(supply). It is de®ned as follows. For a reallocation problem �e;R� with
vector of peaks p:

� if Pn
i�1 pi � E, then

ui�e;R� :� pi if i 2 S�e;R�;
allocate S :�Pi2S�e;R� ei ÿ pi among the agents in D�e;R� by giving each
agent i 2 D�e;R� the amount ei � s�pi ÿ ei�, where 0 � s � 1 is determined
by feasibility.

� if Pn
i�1 pi � E;up�e;R� is de®ned similarly.

Example 3. The hierarchical rule uh is Pareto optimal, individually rational,
reversible and strategy-proof, but does not satisfy equal-treatment. The hi-
erarchical rule satiates in case of excess demand (supply) all suppliers (de-
manders) and the demanders (suppliers) according to their number. It is
de®ned as follows. For a reallocation problem �e;R� with vector of peaks p:

� if Pn
i�1 pi � E, then

ui�e;R� :� pi if i 2 S�e;R�;
allocate S :�Pi2S�e;R� ei ÿ pi among the agents in D�e;R� as follows: ®rst
serve the demander with the lowest number as well as possible; if there is
something left, serve the agent in D�e;R� with the second lowest number, etc.
� if Pn

i�1 pi � E;uh�e;R� is de®ned similarly.

Example 4. The following rule û, de®ned for 3-person reallocation problems
with set of agents N � f1; 2; 3g, is Pareto optimal, individually rational,
strategy-proof and equally treating, but not reversible.

� Let �e;R� be in excess supply with: D�e;R� � f1g; e2 � p1ÿe1
2 �: M . Then,

e3 > e2 and e3 ÿ p3 > e2 ÿ p2.

For such problems we de®ne û as follows: First agent 3 may give as much of
his endowment to agent 1 as he wishes,

310 B. Klaus et al.



û3�e;R� � maxfp3; e3 ÿ 2Mg:
After this, agent 2 may hand in the remaining amount of the good to satiate
agent 1. So,

û2�e;R� � e2 ÿ �2M ÿ �e3 ÿ û3�e;R���;
û1�e;R� � p1:

� For all other reallocation problems, û�e;R� � Ur�e;R�.
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