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NOTES AND COMMENTS

WALD CRITERIA FOR JOINTLY TESTING EQUALITY AND INEQUALITY
RESTRICTIONS

By DAVID A. KODDE AND FRANZ C. PALM!

1. INTRODUCTION

HYPOTHESES IN ECONOMICS are usually formulated in terms of constraints on the
parameters of a model. They take the form of equality and/or inequality restrictions which
are then to be jointly tested. For instance, the homogeneity of degree zero of a demand
equation implies that the price and income elasticities add up to zero, whereas the negativity
of the substitution matrix in consumer demand theory requires that all latent roots of the
substitution matrix be nonpositive. Procedures for testing a set of inequality constraints
have been studied by several authors. We refer the interested reader to Gouriéroux et al.
(1982) and Perlman (1969) and the references therein. Joint testing of equality and
inequality restrictions received little attention in the literature.

In this paper, we propose a large sample Wald test for sets of equality and inequality
constraints on the parameters of a model. The null or the alternative hypothesis may be
subject to inequality constraints. The computation of the test statistic is relatively simple.
As it is difficult in the presence of inequality constraints to derive the {asymptotic)
distribution of the test statistic, we give bounds for the critical value (under the null
hypothesis). When these bounds are sufficient, the test can be straightforwardly applied.

The paper is organized as follows. In Section 2, we show how the Wald test applies to
sets of equality and inequality restrictions, and we present the large sample distribution
of the test under the null hypothesis. Upper and lower bound critical values for the joint
test of equality and inequality restrictions are given in Section 3. Section 4 contains some
concluding remarks. In the Appendix, we derive the large sample distribution of the test
statistic under the null hypothesis.

2. THE WALD TEST FOR EQUALITY AND INEQUALITY RESTRICTIONS

We assume that the restrictions on a vector of parameters of interest ¢ are formulated
in terms of p independent continuous functions h(#), which are differentiable in some
open neighborhood of the true parameters 6,. The hypothesis to be tested is of the form

(2.1) Hg: h(6)=0, h,(8)=0 against H,: h,(68)#0, h,(8)=0 (case 1),
or
2.2) Hy: hy(8)=0, h,(8)=0 against H;: h(0)#0, h,(8)20 (case 2).

The dimensions of the partition of h(8) into h,(8) and hy(8) are g and p — g respectively.
When g =0, we assume that under H, there is at least one strict inequality in case 1.
Under H, in case 2, the parameters are completely unrestricted. To present the Wald test
for equality and inequality restrictions, we assume that  can be consistently estimated
by 8 such that the asymptotic distribution is given by

(2.3) T8~ 65) +N(0, 2),

where £ can be consistently estimated by {2; T denotes the sample size.
We transform the functions of parameters h(8) into new parameter vectors v = (1, v4)’
and ¥ = (¥}, ¥5)’ where

(2.4) Yi = Tl/zhi(e) and %= T‘/zhi(é)-

! The authors thank two anonymous referees for their useful comments.
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Applying the mean value theorem we obtain the large sample covariance matrix of ¥:
(2.5) X =(ah/08')(2(3h'/00),

where the argument 0 has been deleted for the sake of simplicity. The covariance matrix
3 can be consistently estimated by 2, evaluating expression (2.5) at § and {2.

Let Spand S, denote the feasible space for y under the nuil and the alternative hypothesis
respectively. Under the hypotheses (2.1) and (2.2}, the feasible spaces are convex in +.
Define the distance function in the metric of 3 of a vector x from the origin by
(2.6) lxl=x'2""x

Except when explicitly stated otherwise, the distance will be measured in the metric of
~. Usually the matrix 3 is not known and has to be substituted for by a consistent estimator
such as, e.g., 5.

Let ¥ and ¥ be the minimum distance estimators which satisfy the restrictions under
H, and H, respectively;

(2.7) Dozll'y_Y(l:{/nelg 7=l

and

(2.8) Dy=|¥—4|l=min |y - v[.
ves;

D; is the minimum distance from the data (i.e. ¥) to the closest feasible point under H;,
i€{0,1}. In fact, ¥ and ¥ are orthogonal projections of ¥ onto S, and S, respectively.
Since S, and S; are convex, ¥ and ¥ are uniquely determined. We define the Wald or
distance test as

(29) D =Dy—D,.

Using the properties of orthogonal projections, we straightforwardly get a useful alternative
formulation of the Wald test

(2100 D=]#1-17.

As §,CS,, D will always be nonnegative, If D exceeds the critical value, we reject the
null hypothesis.

Now we discuss the two types of composite hypotheses (2.1) and (2.2) and we give the
asymptotic distribution of D under H,.

CASE 1: When Hy: y=(v}, v5)'=0 and H;: y, %0, y,=0, we have =0 and ¥ equals
(2.11) ';'1‘—"71'*‘2122;21('?2"’72),
where 9, solves the program
(2.12) {;12;1(1) (¥.— ’)’2)'22_21(’)-’2 = ¥2).

The partitioning of ¥ corresponds to that of y. The Wald test equals
(2.13) D=9 =(3,~ Z,35 2 (2~ 2122521221)_1('71 =225 7))+ 9225 %

The two tzerms on t_he right-hand side of (2.13) are asymptotically independent. The first
term is x (q) distributed. The distribution of the second term is a mixture of (r—q) x*
distributions, so that the large sample distribution of (2.13) can be written as

(Q14)  Pr(D=c|5)=" PiLA(a+)= cn(p-a,i 5,

wh‘ere w( P-q, i, 2,,) denotes the probability that i of the (p—q) elements of ¥, are
strictly positive, The resplt of (2.14) has been obtained by Gouriéroux et al. (1982), Kudd
(12963)3 Perlmax} (1969) in the case of maximum likelihood estimates and qg=0.Forg=0,
x“(g) is the unit mass at the origin.

Notice that when p=gq, D is the commonly used Wald criterion.
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CASE 2: For Hy: v, =0, 7,20 and H: v,#0, v,20, we have ¥=%, ¥,=0 and ¥, is
the solution of

(2.15) {/l;lg(l) (¥2- ‘)’2—221‘2111 ' (2 _2212T11212)_1('?2 - 7’2"221‘\:-1-1l )
The Wald test equals
(2.16) D= "’7’“';’" = ’7'12111'71

+(F2— P2 Z Z0 V) (B0 = 20 I 20) T (B = Vo= 2 2T ).

For the maximum under the null hypothesis the large sample distribution equals (see the
Appendix) ’

: p—q

(217)  sup Pr(D= c|2)= L Pr DP(p=-i=clw(p—g,i 5~ 20211 2n),
Y2 =

with the weights w denoting the probability that i of the p~q elements of ¥, are strictly

positive. The covariance matrix in w is the conditional covariance matrix of ¥, given ;.

After a minor modification the methods described above can be directly applied to test a

set of equality or inequality constraints conditionally on equality restrictions.

Consider the following hypotheses Hy: y,= 0 and H,: ¥, # 0, both subject to the restric-
tion ¥, =0. Then %,=%,=0 and ¥, and %, are the solution of (2.15) subject to the
restrictions 7y, = 0 and vy, being unrestricted respectively. With ¥, substituted into (2.15),
the distance test can be readily computed. Its large sample distribution is given in (2.17)
with p—i being replaced by p—g—i.

3. UPPER AND LOWER BOUND CRITICAL VALUES

The main difficulty when testing inequality restrictions consists in computing the weights
w in the distribution of the test statistic. Kudd (1963) gives an analytical expression for
the weights, which is not very tractable. Gouriéroux et al. (1982) propose numerical
simulation to determine the weights. However, from Perlman (1969, Theorem 6.2) we can
derive lower and upper bound critical values corresponding to a chosen significance
level a.

For case 1, the lower and upper bound critical values are obtained by solving
a= %x;f; Pr(D=c|Z)=4Pr ¥ qg)=c]+:Prx*(¢+1)=¢] and

(3.1
: a=sup Pr(D=c|Z)=3Pr[x*(p—1)= c]+3 Pr[x*(p)=c],
=>0

respectively for ¢. Similarly for case 2, ¢ is determined such that it corresponds to inf and
sup Pr (D= c¢|Z, y =0) respectively substituted in (3.1). Notice the coincidence of upper
and lower bound values when p = g+ 1. The result obtained by Gouriéroux et al. (1982)
is a special case of (3.1) with the number of equality restrictions g being zero. When g =0
we have Pr[¥*(0)=¢]=0, for ¢>0.

Table I can be used to determine upper and lower bound critical values for a joint test
of equality and inequality constraints for commonly used significance levels a. A lower
bound c¢ for the critical value is obtained by choosing a level @ and setting df equal to
g+ 1. For the upper bound ¢ of the critical value, df is set equal to the sum of the number
of equality and inequality restrictions p.

4. CONCLUDING REMARKS

We presented a large sample Wald test for jointly testing nonlinear equality and
inequality constraints either under H, or H,. The kind of hypotheses which we considered
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TABLE 1

UPPER AND LOWER BoOUNDS FOR THE CRITICAL VALUE FOR JOINTLY TESTING EQUALITY
AND INEQUALITY RESTRICTIONS?

df a 25 10 L5 2025 .01 005 001
1 0.455 1.642 2,706 , 3.841 5.412 6.635 9.500
2 2.090 3.808 5.138 6.483 8.273 9.634 12.810
3 3.475 5528 7.045 8.542 10.501 11.971 15.357
4 4.776 7.094 8.761 10.384 12.483 14.045 17.612
5 6.031 8.574 10.371 12.103 14.325 15.968 19.696
6 7.257 9.998 11.911 13.742 16.074 17.791 21.666
7 8.461 11.383 13.401 15.321 17.755 19.540 23.551
8 9.648 12,737 14.853 16.856 19.384 21.232 25.370
9 10.823 14.067 16.274 18.354 20.972 22.879 27.133
10 11.987 15.377 17.670 19.824 22.525 24.488 28.856
11 13.142 16.670 19.045 21.268 24.049 26.065 30.542
12 14.289 17.949 20.410 22.691 25.549 27.616 32.196
13 15.430 19.216 21.742 24,096 27.026 29.143 33.823
14 16.566 20472 23.069 25.484 28.485 30.649 35.425
15 17.696 21718 24.384 26.856 29.927 32.136 37.005
16 18.824 22956 25.689 28.219 31.353 33.607 38.566
17 19.943 24.186 26.983 29.569 32.766 35.063 40,109
18 21.060 25.409 28.268 30,908 34,167 36.505 41.636
19 22,174 26,625 29.545 32.237 35.556 37.935 43.148
20 23,285 27.835 30.814 33.557 36.935 39.353 44.646
21 24,394 29.040 32.077 34,869 38.304 40.761 46,133
22 25.499 30.240 33.333 36.173 39.664 42.158 47.607
23 26.602 31436 34.583 37.470 41.016 43.547 49.071
24 27.703 32,627 35.827 38.761 42.360 44927 50.524
25 28.801 33.813 37.066 40,045 43.696 46.299 51.986
26 29.898 34996 38.301 41.324 45.026 47.663 53.403
27 30.992 36.176 35.531 42,597 46.349 49.020 54.830
28 32.085 37352 40,756 43.865 47.667 50.371 56.248
29 33.176 38524 41.977 45.128 48.978 51.715 57.660
30 34.266 39.694 43.194 46,387 50.284 53.054 59.064
31 35.354 40.861 44.408 47.641 51.585 54.386 60.461
32 36.440 42,025 45.618 48.891 52.881 55713 61.852
33 37.525 43.186 46.825 50,137 54.172 57.035 63.237
34 38.609 44.345 48.029 51.379 55.459 58.352 64.616
35 39.691 45.501 49.229 52.618 56.742 59.665 65.989
36 40.773 46.655 50.427 53.853 58.020 60.973 67357
37 41.853 47.808 51.622 55.085 59.295 62.276 68.720
38 42,932 48,957 52.814 56.313 60.566 63.576 70.078
39 44.010 50.105 54.003 57.539 61.833 64.871 71.432
40 45.087 51251 35.190 58.762 63.097 66.163 72.780

* The values in the table are obtained by solving the equation a =} Pr{x2(df —1}= c]+} Pr (x*(df)= c] for ¢ given a and df.

often arise in empirical econometric work. The large sample distribution of the test statistic
under the null hypothesis is a mixture of x* distributions.

As in the case of testing equality constraints, the Wald test should be very useful when
unrestricted asymptotically normal, consistent but not necessarily efficient estimates of
the parameters @ can be easily obtained compared with estimation subject to nonlinear
equality and inequality restrictions.

To avoid the computational problems involved in obtaining the asymptotic distribution
of the Wald test, we derived upper and lower bound critical values, which should be
useful in many applications.
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To implement the test, the following steps have to be carried out: (i) From § and &,
obtain ¥ and & and compute the test statistic D using quadratic programming techniques.
(ii) Choose @ and determine the upper and lower bounds from Table I. (iii} Reject H,
when D exceeds the upper bound value; do not reject Hy when D is smaller than the
lower bound value. When the test is inconclusive, the weights w in the distribution can
be determined numerically. Then D can be compared with the critical value corresponding
to the selected size a.

Moreover, when ¥ is an efficient estimate of v, the Wald or distance (D), likelihood
ratio (LR) and the Kuhn-Tucker {KT) tests for equality and inequality constraints are
asymptotically equivalent. Along the lines of the proof in Gouriéroux et al. (1982) a
well-known ordering of these test for other types of models and hypotheses, KT <LR< D,
is found to hold in the more general cases that we considered here (see Kodde and Palm

(1984)). Also, the KT-test can be obtained as the coefficient of determination in a two-step
procedure.

Economics Institute, Catholic University, Nijmegen, The Netherlands
and
Dept. of Economics, Free University, Amsterdam, The Netherlands

Manuscript received June, 1984; final revision received July, 1985.

APPENDIX

DERIVATION OF THE NULL DISTRIBUTION OF THE WALD TEST

In this Appendix, we outline the steps in the proof of the asymptotic distribution of D
under H,. We limit ourselves to case 2 with Hy: v, =0, y2=0 against H;: y, #0, y,20
for which D=]|$— | in (2.16).

The critical level ¢ of the distance test in {2.16) is determined by
(A1) sup Pr(D=c¢|Z]=a

v
with @ being the size of the test. As y,=0 is a convex cone, the left-hand side is maximal
when y, =0 (see, e.g., Perlman (1969, Theorem 8.3)).
Consider a partition of ¥, into subsets of (p —q—1) zero and i strictly positive values

denoted by ¥,, and ¥,, respectively. Since ¥, minimizes (2.12), we can apply the lemma
of Niiesch (1966) to get

(A.2) Pr[¥,,=0and ¥,,>0]=Pr[u,>0 and u,=<0],

where w, = B9, and p, = ¥,, — B,, B1! 7,1, aresult which follows from the Kuhn-Tucker
conditions for a minimum of (2.12). The matrices B;;, B, are submatrices of 2y~
Z,, X7 =, and correspond to the partition of 7y, into v, and y,,. Using this result, the
difference between ¥ and ¥ equals

=1 =1,

Yo ¥2= (41, '75131_11312)',
and the value of the distance test conditionally on the event in (A.2) is a quadratic form
in (#1, ¥%,)", which can be shown to be y?(p ~ i)-distributed. The probability weights are

found by summing over all events of the form (A.2) with i positive elements of ¥,.
For a given significance level ¢, the critical value ¢ is found by solving

r—a
(A3) ‘Zo Pr [Xl(P -Dzclw(p—g i, 2, "22121_11212) = Q.
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