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Oh sometimes it’s going to be lonely
Sometimes it will be sad
But I’ve got to keep on going
Until I hold that promised land
In the palm of my hand

Nothing ventured, nothing gained or won
Without a hard fight
We would never reach the sun
Without trying

Chris de Burgh (from Leather on my shoes, Flying Colours, 1988)
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Chapter 1

Preliminaries

“But as long as you know you’re nobody special,
you’ll be a very decent sort of Horse, on the whole,

and taking one thing with another.”
The Hermit in ‘The Horse and His Boy’ – C.S. Lewis

1.1 Introduction

This thesis focusses on incentive alignment between decision makers in supply chains.
A supply chain is a sequence of actions and transactions that starts with obtaining raw
materials and ends with supplying a product to consumers. This whole process can be
performed within a company, but in general several companies will be involved. One
company produces an intermediate product and supplies this to another company (the
buyer) that uses it for further processing et cetera. For a supplier-buyer relation within
such a chain the different actors have to agree on the transactions of goods between
them. Our focus is on the short term operational coordination of these transactions be-
tween the links in a supply chain. There are many aspects of these transactions, but we
consider only two of them, namely, production planning in relation to cost minimiza-
tion and the incentives that the actors have to behave strategically. In this chapter we
introduce the production problems under consideration, and the basic concepts from
the field of game theory, which studies strategic interaction. Moreover, we discuss two
examples where production planning and strategic behavior play a role, and which are
the motivation for the rest of this thesis. But we start by motivating why it is interesting
to consider the two aspects mentioned above.

Many different organizations may be involved in the supply chain for some prod-
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Chapter 1 – Preliminaries

uct. Moreover, in a competitive environment there may be different supply chains that
produce the same type of product. One of the decisive factors for the performance of
a supply chain is the cooperation between the different companies involved. Further-
more, the performance of the supply chain as a whole determines the attractiveness
of the produced product. However, most companies wrongly assume that behaving in
their own interest is also in the interest of the supply chain:

“Most companies don’t worry about the behavior of their partners while
building supply chains to deliver goods and services to consumers. (..) Ev-
ery firm behaves in ways that maximize its own interests, but companies as-
sume, wrongly, that when they do so, they also maximize the supply chain’s
interests. In this mistaken view, the quest for individual benefit leads to col-
lective good, as Adam Smith argued about markets more than two centuries
ago. Supply chains are expected to work efficiently without interference, as
if guided by Smith’s invisible hand. But our research over the last ten years
shows that executives have assumed too much. We found, in more than
50 supply chains we studied, that companies often didn’t act in ways that
maximized the network’s profits; consequently, the supply chains performed
poorly.” (Narayanan and Raman [34])

It is the problem of egoistical behavior of supply chain partners that we discuss in this
thesis. We consider incentive schemes that reconcile individual interests and supply
chain’s interest. Assuming that companies are profit maximizers, companies are willing
to change their behavior if it increases their individual profit. This implies that align-
ing all supply chain partners has some cost. Ideally, this cost is paid by the increased
efficiency resulting from the alignment:

“In recent years, many companies have assumed that supply costs are more
or less fixed and have fought with suppliers for a bigger share of the pie.
(..) Our research, however, shows that a company can increase the size of
the pie itself by aligning partners’ incentives. (..) If the companies work
together to efficiently deliver goods and services to consumers, they will all
win. If they don’t, they will all lose to another supply chain.” (Narayanan
and Raman [34])

Managing incentives in Supply Chain Management is on the intersection of several
disciplines. Our viewpoint is from optimization problems in multi-period production
planning. These are problems from the field of Operational Research. The Association
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1.1 – Introduction

of European Operational Research Societies (EURO) describes Operational Research as
a scientific approach to the solution of problems in the management of complex sys-
tems [13]. EURO also addresses the fields of research that emerged from this approach:

“Many new analytical methods have evolved, such as: mathematical pro-
gramming, simulation, game theory, queuing theory, network analysis, deci-
sion analysis, multi-criteria analysis, etc., which have powerful application
to practical problems with the appropriate logical structure.”

In section 1.2 we discuss two classical multi-period production planning problems.
Production costs are mainly characterized by setup costs for starting a production run
and costs for holding inventory. At the extremes we have either a lot of setup costs
or high inventory holding costs. Costs can be minimized by finding the right balance
between the different types of costs. The first classical problem is the economic ordering
quantity (EOQ) model, where time runs continuously and costs and demand are con-
stant over time. The second problem is the economic lot-size model or lot-sizing problem
(LSP) where only a discrete number of periods is considered which allows for dynamic
data, i.e., costs and demand that differs from period to period. Due to the dynamic
data, also the other costs like unit product cost become a factor as one period may be
cheaper to produce than the other.

As said before, we are interested in the transactions between a buyer and a supplier
in relation to their production planning. Basically this means that we consider the ques-
tion at which moments in time the supplier has to supply the products that are ordered
by the buyer. Preferably, the transactions are such that total production costs in the
supply chain are minimized. If there would be only one decision maker then finding the
optimal transactions is just an extension of the single level problems, see for example
Van Hoesel et al. [23]. However, when different decision makers are involved we get
more than just an optimization problem. Then we have the problem that the goals of
the decision makers might be conflicting, and not in line with a globally optimal so-
lution. Moreover, an attempt to compromise the individual goals might be hindered
by information asymmetries and the unwillingness to share information. These situa-
tions of conflict are studied in the field of game theory, of which the main concepts are
discussed in section 1.3. Topics that will be treated are auctions and mechanism design.

In section 1.4 we introduce two examples where production planning and strategic
behavior play a role, and which are the motivation and cohesion for the rest of this
thesis. First, Dudek and Stadtler [9] consider the coordination of buyers and suppliers
in the discrete dynamic setting. They propose a negotiation scheme that enables the
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Chapter 1 – Preliminaries

supply chain partners to come close to the optimal coordinated solution. Second, we
discuss the work of Sucky [49] who introduces the problem of asymmetric information
in joint economic lot-sizing, i.e. the case where the EOQ problems of a buyer and a
supplier are combined in one problem.

Finally, in section 1.5 an outline of the thesis is given.

1.2 Production planning in supply chains

In this section we present two related multi-period production planning problems.
These are the basic production problems faced by individual actors in a supply chain.
After discussing the related game theoretical concepts in section 1.3 we show how pro-
duction planning and strategic behavior may play together in supply chains. This is
done for both planning problems in section 1.4.

1.2.1 Economic ordering quantity

The production problem faced by individual manufacturers can be modeled by the eco-
nomic ordering quantity model (EOQ model). Consider a retailer of some divisible
product. The retailer faces unit inventory holding costs h, and a fixed ordering cost of
f per order. The per unit wholesale price and the per unit selling price are constant
over time. The retailer sells the product at a constant rate of d, i.e., in any time interval
of unit length it sells d units of the product. We are interested in the optimal ordering
strategy for the retailer. The cost minimizing ordering quantity (that supplies all de-
mand faced by the retailer on time) is called the economic ordering quantity (EOQ).
As we assume deterministic demand, it is obvious that a new order should come in
exactly when the inventory level is equal to zero. Let Q be the ordering quantity, and
τ the time between two orders (TBO). Then we know that τ = Q

d
, and the average

inventory is Ī ≡ 1
2
Q. So the total ordering and holding cost per unit of time equals

(f + 1
2
Qτh)/τ = fdQ−1 + 1

2
Qh, which is minimized if Q =

√
2fd
h

. Note that the per unit
wholesale price and the per unit selling price do not directly influence the optimal value
of Q, but there is an indirect relation as the unit inventory holding costs do depend on
the value of the product. The model also has a production interpretation. In this case,
we have a manufacturer facing both fixed production setup costs instead of ordering
costs and unit production costs together with holding costs. In this paper we use this
production interpretation.

14



1.2 – Production planning in supply chains

Quantity

Time

Ī

Q

d

τ

1

Figure 1.1: Inventory level over time (EOQ model)

The EOQ model was first presented in a paper by Harris [20]. Although published
in 1913, it was apparently unnoticed for many years, as Erlenkotter [12] writes:

“Even though Harris’s original paper was disseminated widely, it apparently
was unnoticed for many years before its rediscovery in 1988. During this
period much confusion developed over the origin of the EOQ model.”

Erlenkotter [12] explores the early literature on the model and traces the evolution of
the confusion.

1.2.2 Economic lot-size model

Wagner and Whitin [55] consider a discrete problem that is related to the EOQ model,
having a finite planning horizon. This allows them to drop the assumptions of constant
rate demand, constant holding costs, and constant ordering (or setup) costs, i.e. mak-
ing the data dynamic. Their model is called the economic lot-size model, or single-item
lot-sizing problem (LSP). Florian and Klein [14] introduced a capacitated version of
this problem in which the ordering (production) quantities are limited by ordering (or
production) capacity constraints. The model can be formulated as a mixed integer pro-
gramming problem: Let T be the planning horizon. For each period t ∈ {1, . . . , T}, let
Rt be the production capacity, pt the unit production cost, ht the unit inventory holding
cost, and ft the setup cost if production takes place. Furthermore, let dt be the demand
for the product in period t ∈ {1, . . . , T}. The lot-sizing problem for determining the

15



Chapter 1 – Preliminaries

minimum cost for delivering the demand can be formulated mathematically as follows:

min
x,I,y

T∑
t=1

(ptxt + htIt + ftyt)

subject to: (LSP)

It−1 + xt = dt + It, ∀t ∈ {1, . . . , T}, (1.1)

xt ≤ Rtyt, ∀t ∈ {1, . . . , T}, (1.2)

I0 = 0, (1.3)

It ≥ 0, ∀t ∈ {1, . . . , T}, (1.4)

xt ≥ 0, ∀t ∈ {1, . . . , T}, (1.5)

yt ∈ {0, 1}, ∀t ∈ {1, . . . , T}. (1.6)

Here we have for each period t that xt is the level of production, yt is the setup variable,
and It is the level of inventory at the end of period t. The inventory at the beginning
of period 1, i.e. I0, is without loss of generality assumed to be zero. Constraints (1.1)
are balance constraints. The inventory from the previous period plus the production
in a period is either used to satisfy demand or stored for the next period. Constraints
(1.2) say that production can only take place after setting up the production process.
Moreover the production must not exceed the production capacity of the producer. The
initial inventory equals zero by constraint (1.3). Constraints (1.4) and (1.5) say that
production and inventory levels have to be non-negative numbers. The setup variables
are restricted by constraints (1.6) to zero or one. Recent reviews on single-item lot-
sizing problems are given by Brahimi et al. [5] and Karimi et al. [27].

We are interested in the way a supplier and a buyer can coordinate their respective
EOQ problems or lot-sizing problems within a supply chain. This means that we have a
supplier facing a lot-sizing problem and a buyer facing a lot-sizing problem that depends
on the timing of supply of the supplier. An uncoordinated solution is that first the buyer
optimizes its lot-sizing problem, given the final demand; and then the buyer announces
to the supplier what its input needs are to implement this optimal production plan.
Then, the supplier will optimize its own lot-sizing problem, given the demand of the
buyer. In a coordinated solution, the transactions between buyer and supplier are such
that the total costs of both players are minimized, instead of the costs of the buyer.
If the buyer and the supplier would not be part of different companies, implying that
there is only one decision maker, the coordinated problem can be formulated in one
two-level lot-sizing problem. In section 1.4 we discuss some approaches for finding or
approaching the coordinated solution in case of different decision makers. Sucky [49]
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1.3 – Game theoretical concepts

has an analytical approach for the EOQ model, while Dudek and Stadtler [9] have a
negotiation scheme for the lot-sizing problem.

1.3 Game theoretical concepts

We are interested in the coordination of production planning between independent
companies. As these companies may in general have conflicting interests, the coor-
dination problem is not just an optimization problem. We have to take into account
the individual and selfish behavior of the companies, and the possible strategic inter-
action between them. These are problems that are studied in the field of game theory,
described by the Game Theory Society [16] as follows:

“Game theory studies strategic interaction in competitive and cooperative
environments. Only fifty years old, it has already revolutionized economics,
and is spreading rapidly to a wide variety of fields. It develops general math-
ematical formulas and algorithms to identify optimal strategies and to pre-
dict the outcome of interactions.”

In this section we give the main notions from game theory that we use in this thesis.
We start with some basic concepts. Then, in section 1.3.1 we introduce the concepts
of (combinatorial) auctions. Auctions are special cases of mechanisms, i.e. games that
are designed to achieve a specified outcome. In section 1.3.2 we discuss the field of
mechanism design.

We start with the basic concepts from economics and game theory that we use in
this thesis.

A first concept is utility. Economists usually assume that the preferences of con-
sumers can be expressed in monetary values, i.e., consumers can express their desire
for having a good in terms of an amount of money. The utility for a transaction, i.e. the
reallocation of goods and money, is the net change in monetary valuation of its total
possessions. For example, a person is willing to pay ten million euros for a painting of
Vincent van Gogh. In an auction the person is able to buy the painting for only nine
million euros. Then, the transaction of buying the painting gives a utility of one million
euros. We use the term ‘good’ in a broad sense, i.e. including services and events. A
utility function u(·) is a function that assigns a monetary (scalar) value to any possible
transaction. Such a one-dimensional function enables us to order all possible transac-
tions from low to high: Let a and b denote two different transactions, and let a � b

17



Chapter 1 – Preliminaries

mean that a is at least as good as b, i.e. the utility of transaction a is at least as large
as the utility of transaction b. We say that a utility function is complete, reflexive and
transitive if

• for any two transactions a and b: either a � b, or b � a, or both (complete);

• for any transaction a: a � a (reflexive);

• for any three transactions a, b and c: if a � b and b � c, then a � c (transitive).

Utility is a concept corresponding to an individual. A similar concept for a group
or society of individuals is social welfare. Social welfare is naturally linked to the
utilities of the individuals as it somehow compromises the utilities of all individuals
into a single measure. Accordingly, a social welfare function is a function that assigns
a scalar value to any vector of utilities of all individuals. However, there is not just
a unique way to compromise individual utilities. For example, a socially concerned
measure is the lowest individual utility, i.e. social welfare is linked to the welfare of the
poorest. On the contrary, a dictator would choose for a measure that is linked to his own
welfare, presumably the utility of the richest. It may be clear that these two examples
are two opposites and result in a different ordering of possible transactions. In this
thesis we use the social welfare function that is just the sum of the individual utilities,
this is also called the utilitarian social welfare function. Moreover the corresponding
function that selects the most preferred transaction is called the utilitarian social choice
function. (Note that from an ethical point of view this might be an immoral choice if
we were talking about the allocation of the primary necessities of life. However, in this
thesis we are considering the production costs of companies, meaning that this concept
corresponds to choosing the solution with lowest total costs.)

Another concept is efficiency. Efficiency may have different meanings. One meaning
relates to production. In this setting input is used to produce output. Production is called
efficient if both

• one can not produce more output using the same amount of input, and

• one can not produce the same output using less input.

More generally, one can regard all production costs as ‘input’, giving the usual efficiency
concept in optimization, producing at lowest cost or highest profit. Another meaning of
efficiency relates to the allocation of goods over different consumers. The corresponding
efficiency concept is called Pareto efficiency (or Pareto optimality). An allocation is

18



1.3 – Game theoretical concepts

called (Pareto) efficient if there is no other allocation that gives all consumers at least
the same utility where at least one of them has a strictly higher utility.

In this thesis these concepts of efficiency overlap. We are aiming for production
efficiency for a supply chain as a whole, so for a set of producers. However, production
efficiency relates to the costs of the suppliers, more precisely, production is efficient if
demand is produced at the lowest possible costs. At the same time it holds that the
sum of the utilities of the suppliers (i.e. social welfare) is maximized if the total costs
are minimized. Consequently we know that this solution is Pareto efficient as otherwise
there is a contradiction with maximal social welfare.

A game is a situation in which for each individual in some group, individual utility
depends on both its own action and the others’ actions. So, in general, the best action
to choose depends on the action chosen by the others. Mas-Colell et al. [31] list the
following four elements that are needed to describe a game:

• Players: the individuals involved.

• Rules: the actions that the players may take.

• Outcomes: the reallocation of goods and money for each possible combination of
actions by the players.

• Payoffs: the preferences, i.e. the utility functions, of the players over the possible
outcomes.

A standard example of a game is the well known prisoner’s dilemma. In this game
with two players it is clear for both players what action to choose. Namely, one action
is the best reaction on every possible action of the other player. However, the resulting
outcome is not efficient as there is another outcome that is better for both players.

Example 1.3.1 (Prisoner’s dilemma) Consider a game of two players. The players are
B. and V., two prisoners that are arrested for allegedly being involved in murdering their
former friend. The prisoners are kept in separate cells and both can choose between confess-
ing that they committed the crime together and deny that they were involved in the crime.
The prosecutor can only prove wilful murder for both of them if at least one of the prisoners
confesses, otherwise only the less severe crime of manslaughter can be proven. In fact, if
both deny, they will both be in prison for seven years. A prisoner that denies the crime,
while wilful murder can be proven will be sentenced in jail for fifteen years, while confessing
the crime reduces the sentence to nine years. The prosecutor offers both prisoners that they
get an additional reduction in sentence of four years if they are the only prisoner to confess,
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i.e. if they are essential for proving wilful murder. The choices are summarized in Table
1.1. If B. knows that V. denies, he has a choice between 7 and 5 years of jail for respectively

V. Denies V. Confesses
B. Denies 7, 7 15, 5

B. Confesses 5, 15 9, 9

Table 1.1: Years of jail for B. and V.

denying and confessing. So B. prefers confessing. Otherwise, if he knows that V. confesses
the choice is between 15 and 9, and again confessing is the preferred option. Similarly, the
same holds for V. if he knows the choice of B. We conclude that for both prisoners it is best
to confess, giving both of them nine years of jail. Ironically, if they could both have agreed
on denying, they would only be in prison for seven years.

The situation ‘B. confesses, V. confesses’ in Example 1.3.1 is called an equilibrium.
An equilibrium is a combination of actions for all players such that it holds for each
player that given the other players’ actions, the player won’t change its own action.
Furthermore, ‘confess’ is for both players a dominant strategy. A dominant strategy is
an action such that no matter what the other players’ actions are, the action is strictly
preferred over all the other actions. If an action is only at least as good as any other
action, it is called a weakly dominant strategy.

Games exist in several formats and complexities, see for example Fudenberg and
Tirole [15], Mas-Colell et al. [31] and Montet and Serra [32]. Cachon and Netessine [6]
give an overview of applications in supply chain analysis. In section 1.3.1 we discuss
auctions, games that are designed to sell goods or, in reverse form, to buy goods. This
is the type of game that we consider in this thesis. Auctions are not only special kinds
of games, but also special kinds of mechanisms, i.e. games that are especially designed
to achieve some goal. In section 1.3.2 the field of mechanism design will be discussed.

1.3.1 Auctions

An auction is a public sale where prices are not fixed in advance, but depend on the bids
of potential buyers. A simple and useful auction format is the English auction. English
auctions are a very common way to sell art and antiques, for example at the famous
Christie’s auction house in London, UK. The format is very easy: a single good is offered
for some minimum price and bidders may give new bids as long as they bid more than
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the current highest bid. The highest bidder gets the good and has to pay his or her latest
bid price. To get the good you have to bid (marginally) more than the highest valuation
from the other bidders. For example, if there are three other bidders, estimating the
value of the good on 7, 8 and 9 euros respectively, you have to bid at least 9 euros to
get the good. As you would only do that if your own valuation is more than 9, the price
you have to pay is (approximately) the second highest valuation from the whole set of
bidders.

Another auction format is the Dutch or descending clock auction. This kind of auction
is commonly used for the selling of agricultural products like flowers and vegetables,
for example at the Aalsmeer Flower Auction in The Netherlands. This auction works the
other way around as the English auction: it starts at a high price, where the auctioneer
lowers the price until a bidder is willing to pay that price. Like in the English auction, the
bidder will pay exactly his own bid price. The English auction and the Dutch auction
are called ascending and descending respectively according to the price development
during the auction.

The English auction is related to the Vickrey or second-price sealed-bid auction, named
after Vickrey [52]. The Vickrey auction concerns the sale of a single indivisible good.
Bidders are asked for (sealed) bids, and the highest bidder will receive the good at
the second highest bid price. No matter the valuations or bidding strategies of the
other bidders, it is optimal for a bidder to bid its true valuation for the item. Due to
this property, the final transaction in the Vickrey auction is the same as in the English
auction.

In this thesis, we use an auction mechanism that is closely related to the Vickrey
auction and has the same incentive characteristics, i.e. for all participants truthtelling
is a (weakly) dominant strategy. This means that bidding the true valuation is one
of the preferred actions for all bidders. Vickrey [52] himself generalized the Vickrey
auction to the case in which multiple homogeneous goods are sold, and each bidder
still wants only one of them. In this case the highest bidders receive the goods and the
unit price will be equal to the first rejected bid. We investigate the further generalization
to multiple heterogeneous goods where bidders may be interested in combinations of
different goods. Moreover, we assume that the valuation of one good may depend
on the possession of another good. For example, having a mobile phone may only be
valuable if you also have a SIM card from a mobile operator. We say that the phone
and the SIM card are complements. Goods can also be substitutes: one might consider
buying a Nokia mobile phone or a Samsung, but not both.

Auctions in which bidders can bid on combinations of goods are called combinatorial
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auctions. These auctions have recently been discussed in Cramton et al. [8]. One of the
issues is how to design an appropriate (combinatorial) auction for a specific setting. See
De Vries and Vohra [54] for a review on this issue. Auction design relates to the field of
mechanism design, which we discuss next.

1.3.2 Mechanism design

If you want to sell something you have to choose how to do this, as there may be several
options to organize the selling. For example, you can have bilateral negotiations, or you
can perform an auction like the ones described in the previous section. The best way
to sell depends on the goals you have in mind. Pekeč and Rothkopf [40] distinguish
for example revenue maximization, short running time of the selling process, and low
transaction costs. Auctions are a widely applied way to sell goods, or in reverse form
to buy goods. The rise of the internet enabled many applications as auctions can be
run very efficiently on the internet, see for example Hohner et al. [24]. Still, there is a
virtually infinite number of ways to organize an auction, so you have to design the rules
of the auction such that it has the properties you like. As there is no one auction format
that fits all possible needs perfectly, auctions should be designed for specific needs and
priorities. This is called auction design, which is a special case of the more general field
of mechanism design.

Mechanism design is the field of research that focusses on the design of games to
achieve a specified outcome by giving all players involved an incentive to act such that
this outcome is achieved. For example, the English auction is a game that is designed
to sell a good to the bidder with the highest valuation for it. Mechanism design is a
branch of game theory that not only analyzes strategic interaction between players but
also actively shapes the situation itself:

“Rather than formulate a game that captures an economic situation and look
for the properties of the likely outcome given by some equilibria, we are here
fixing a set of outcomes satisfying some desirable properties and look for a
game whose equilibria yield that outcome.” Montet and Serra [32, page 49]

So, a mechanism is a game that is designed in such a way that its equilibrium yields the
outcome wanted by the mechanism designer. A mechanism in which the players have
an incentive to behave in the desired way is called incentive compatible, which is a
necessary property for being an appropriate mechanism.

Usually in mechanism design it can be assumed that the only action of the players of
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the game is to reveal their preferences to a neutral mechanism designer. These mecha-
nisms are called direct revelation mechanisms. The idea behind this assumption is that
the mechanism designer will play the game for all players according to their preferences
and the rules of the game. This idea is called the revelation principle, see for example
Mas-Colell et al. [31]. Mas-Colell et al. [31] distinguish two situations in which the
revelation principle can be applied. First, the revelation principle can be applied to
situations in which all players have a weakly dominant strategy. Second, it applies to
situations in which there is a Bayes-Nash equilibrium, i.e. the equilibrium action of each
player is in expectation the best response to the equilibrium actions of the other players.
In the first situation it is completely clear for the mechanism designer what the action of
the players would be. The second situation might have more than one equilibrium, in
which the mechanism designer has to choose the appropriate one, as not all of the equi-
libria might lead to the specified outcome, see Mas-Colell et al. [31, page 910–912].
In both situations where the revelation principle can be applied, the players have an
incentive to report their true preferences, as then the mechanism will select their pre-
ferred action. So, in direct revelation mechanisms, incentive compatibility corresponds
to truthful reporting the individual preferences.

Using the revelation principle, direct revelation mechanisms consist of two phases:

• Phase one: all players reveal their preferences.

• Phase two: the mechanism designer plays the game, and implements the outcome
of the game, i.e. goods and money are transferred giving the players their payoffs.

A mechanism is in fact a screening game:

“In a screening game the player that lacks information is the first to move.”
(Cachon and Netessine [6])

In this terminology the mechanism designer is the player who moves first by designing
a game for the others that gives them the incentive to reveal their preferences.

Before we can continue with some desirable characteristics of mechanisms and one
specific mechanism, we need the following formalization. Let A be a set of players, and
let ta denote the preferences of player a ∈ A. We call ta the type of player a. The types of
the players are assumed to be private information, but it is publicly known which values
they may possibly have. Therefore, we denote by Ta the type space of player a ∈ A, i.e.
the set of types that player a can possibly have. Write T ≡

∏
a∈A Ta for the subspace of

types of all players, with t = (ta)a∈A ∈ T . Let O be the set of outcomes, i.e. the possible
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reallocations of goods and money. By va(ta, o) we denote the valuation that player a

assigns to outcome o when being of type ta. Players are assumed to have quasi-linear
utilities: the net valuation (or payoff) for outcome o and paying pa by player a being
of type ta is given by va(ta, o) − pa. Here, a negative payment means that the player
receives money.

Recall that in the first phase of the mechanism, the players reveal their preferences,
and in the second phase the mechanism determines the outcome and the payments as
functions of the revealed preferences. Therefore, we may write o(t) and pa(t) for the
outcome and the payment of player a that are determined by the mechanism.

1.3.2.1 Desirable characteristics

As said before, a mechanism is a properly designed game whose equilibrium yields
a desired outcome. For example, the desired outcome may be to implement a given
social choice function. Recall from section 1.3 that a social choice function selects the
transaction or outcome that maximizes social welfare, depending on the types of the
players. Formally, let ω denote the social choice function, which selects outcome ω(t) in
O when t = (ta)a∈A, i.e. ω : T → O.

We say that a mechanism implements the social choice function if its equilibrium
yields the same outcome as ω(t). Apart from being an incentive compatible direct rev-
elation mechanism, the mechanism should have some other characteristics for being
implementable in many practical situations. We discuss individual rationality, efficiency
and budget balance.

Next to incentive compatibility, i.e. the property that players act in the desired way,
we need to give the players an incentive to play the game in the first place. As in
general we cannot force players to participate, they will only do so if it is profitable.
This means that a mechanism should guarantee non-negative utilities to players. An
outcome o(t) together with payments (pa(t))a∈A is called individual rational if ua(t) ≡
va(ta, o(t))− pa(t) ≥ 0 for all a ∈ A. Moreover a mechanism is called individual rational
if for any type profile t we have that ua(t) ≥ 0 for all a ∈ A.

Another desirable characteristic is efficiency, which we introduced at the beginning
of section 1.3. Here we relate the concept of efficiency to the utilitarian social welfare.
Write

V (A, t) ≡ max
o∈O

∑
a∈A

va(ta, o)

for the maximal total valuation of all players, given their preferences t. Then, an out-
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come o is called efficient if ∑
a∈A

va(ta, o) = V (A, t).

Furthermore, a mechanism is called efficient if for any possible type profile of the players
it leads to an efficient outcome. Using this terminology, we can say that a social choice
function ω is utilitarian if ω(t) is an efficient outcome for any profile t = (ta)a∈A of types.

Part of a mechanism is the payment of the players. In cases where the mechanism
itself has no money to pay to the players, which is usually true, the mechanism should be
(weakly) budget balanced. Recall that pa(t) is the amount paid by player a if type profile
t is reported. The total payment of the players is called (weakly) budget balanced if∑

a∈A pa(t) ≥ 0. Moreover the mechanism is called (weakly) budget balanced if for any
possible type profile of the players the payments are (weakly) budget balanced.

It is possible for some problem classes to design an incentive compatible mechanism
that is efficient, (weakly) budget balanced and individually rational for any problem
instance. An example of this is the Vickrey auction for selling an individual good, see
Vickrey [52] and section 1.3.1. It is efficient as it assigns the good to the player with
the highest valuation. It is budget balanced as the winner pays money to the auctioneer
while the other players do not pay or receive money. Finally it is individual rational as
the winner pays less than its own bid, while the other players have zero utilities. The
fact that the Vickrey auction has all three characteristics relates to the fact that none of
the bidders is essential in the sense that if one bidder leaves, another can buy the item.
So, none of the bidders has that much power to block any transaction. However, in
exchanges or bilateral trade settings players can become mutually dependent for gener-
ating profit. Myerson and Satterthwaite [33] proved a well known impossibility result
for the bilateral trade setting. In their case it becomes impossible to design incentive
compatible mechanisms that achieve efficiency, budget balance and individual rational-
ity at the same time. This impossibility result is also troubling the supply chain setting
in which a buyer and a supplier can only improve the uncoordinated planning if they
both agree. The impossibility result holds for several other settings, see Mas-Colell et
al. [31, p. 493] and Montet and Serra [32] and the references therein.

1.3.2.2 VCG mechanism

One well-known mechanism is the VCG mechanism, named after Vickrey [52], Clarke [7]
and Groves [18], and is essentially a generalization of the Vickrey auction, which we
discussed in section 1.3.1. Groves [18] presents the most general model, based on the
theory of teams.
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“A team decision problem is, roughly speaking, a multi-person joint decision
problem in which the decision makers base their decision choices on differ-
ent information, yet are motivated by a common goal.” Groves [18, page
618]

The setting of Groves is that of an organization, in which the organization’s leader
and some employees are decision makers. The problem is that the employees may
not have the same goals as the organization’s leader. To handle this, a model is built
in which the leader pays money to the employees to incite them to act in line with
the organization’s goal. A more specific model is the one of Clarke [7]. Mas-Colell et
al. [31] say the following about the relation between the work of Groves [18] and the
work of Clarke [7]:

“A special case of the Groves mechanism was discovered independently by
Clarke (1971) and is known as the Clarke, or pivotal, mechanism.”

In fact this is the basic form of what is called the VCG mechanism. The VCG mechanism
is a direct revelation mechanism that implements the utilitarian social choice function,
i.e. it chooses the allocation that maximizes the total utility. Like in the Vickrey auction,
it is a dominant strategy for all players to report truthfully, i.e. no matter what the
reports of the other players are it is best to report truthfully.

Let ω be the utilitarian social choice function that we want to implement by a mech-
anism. Recall that t = (ta)a∈A is the profile of types of the players. Furthermore, let
t−a = (tb)b∈A\{a} denote the profile of types of all players except a. We can now specify
the VCG mechanism, where we already assume that all players report truthfully. Later
on we show that this assumption is correct. Given the (truthful) reports of the players,
the VCG mechanism chooses the outcome ω(t). Payments are defined as follows. The
payment that player a has to make is given by

pa(t) ≡ va(ta, ω(t)) + V (A \ {a}, t−a)− V (A, t),

which is known as the Vickrey payment. (The Groves mechanism replaces V (A\{a}, t−a)

by a general function ha(t
−a), having the same incentive characteristics. The Vickrey

payment is exactly such that the VCG mechanism applied to the auctioning of one item
is the same as the Vickrey auction.) The resulting net valuation (or payoff) of player a

is equal to its marginal contribution or marginal product

va(ta, ω(t))− pa(t) = V (A, t)− V (A \ {a}, t−a).

26



1.3 – Game theoretical concepts

The VCG mechanism has several nice properties, see Mas-Colell et al. [31]. Most im-
portantly, reporting truthfully is a (weakly) dominant strategy, i.e. the VCG mechanism
is an incentive compatible direct revelation mechanism. It is easy to see that report-
ing the true preferences or type is a dominant strategy as we present in the following
proposition.

Proposition 1.3.2 Reporting the true valuations is a dominant strategy in the VCG mech-
anism.

Proof:
If player a chooses to report ra instead of ta, and the other players report some arbitrary
r−a, player a has payoff equal to

V (A, r)− V (A \ {a}, r−a) + va(ta, ω(r))− va(ra, ω(r)),

while reporting truthfully ta gives a payoff equal to

V (A, (ta, r
−a))− V (A \ {a}, r−a).

So the gains from reporting ra instead of ta are the difference between the payoffs
above:

V (A, r)− V (A, (ta, r
−a)) + va(ta, ω(r))− va(ra, ω(r)).

Player a wants to choose ra such that these gains are maximized. Note that V (A, (ta, r
−a))

is independent from ra, so we can restrict our attention to the exprssion

va(ta, ω(r)) + (V (A, r)− va(ra, ω(r))).

The first term of this expression is the (true) valuation of player a, while (V (A, r) −
va(ra, ω(r))) is the (reported) valuation of all the other players. In total, this is exactly
what is maximized by the mechanism if player a reports truthfully. Consequently, the
gains of player a are maximized if he reports truthfully. 2

In chapters 2, 3 and 4 we use the VCG mechanism for a combinatorial procurement
auction, where the valuations of the bidders correspond to costs, i.e. their valuations are
negative. So, knowing that the players will tell the truth and the mechanism chooses
the cost-minimizing solution, player a ∈ A receives a VCG-payment of

Ca
A + (CA\{a} − CA),
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where Ca
A denotes the cost faced by player a in the optimal allocation, and CA denotes

the total costs of the optimal allocation for the set of players A. In total, the auctioneer
pays ∑

a∈A

[
Ca

A + (CA\{a} − CA)
]

= CA +
∑
a∈A

(
CA\{a} − CA

)
. (1.7)

Observe that the marginal product of any bidder that does not win equals zero. As a
consequence the payment reduces to CA\{a1} if there is only one winner a1. So, indeed,
if only one good is auctioned the VCG mechanism is equivalent to a second-price or
Vickrey auction [52].

1.4 Coordination in supply chain planning: motivating

examples

In section 1.2 we presented two models for production planning, a continuous model
with static data, and a discrete model with dynamic data. These two models are the
basic point of view from which we consider coordination in supply chains.

First, Dudek and Stadtler [9] consider the coordination of buyers and suppliers in
the discrete dynamic setting. They propose a negotiation scheme that enables the sup-
ply chain partners to come close to the optimal coordinated solution. However, one
assumption is that all partners voluntarily provide private information, i.e. information
that cannot be verified by the other party. We show that it can be very expensive to
achieve incentive compatibility in this setting. As a solution we introduce supplier com-
petition in the form of an auction. In chapters 2, 3 and 4 the performance of this auction
will be assessed and compared with auctions that do not take into account the lot-sizing
cost structure of suppliers. The proposed auction uses the VCG mechanism, which has
nice theoretical properties, but might be hard to implement. In chapter 5 we discuss
the VCG mechanism for a very basic problem. For this problem it can be shown that
some nice properties enable the use of the VCG mechanism. We also show that these
properties do not hold for some rather straightforward extensions of the problem. This
implies that an English auction-like ascending price implementation of the auction we
propose in chapter 2 might not achieve the theoretical optimal solution.

Second, we discuss the work of Sucky [49] who introduces the problem of asym-
metric information in the case where the EOQ problems of a buyer and a supplier are
combined in one problem. Sucky discusses how the supplier can determine a set of
offers to the buyer that fulfills conditions of individual rationality and incentive com-
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patibility. The offers can be determined analytically in the EOQ setting, but the related
problem in single-item lot-sizing yields a mathematical programming problem. A basic
version of this problem will be discussed in chapter 6.

1.4.1 Negotiation-based planning in supply chains

Dudek and Stadtler [9] consider a generalization of the lot-sizing problem (LSP) over
different echelons of a supply chain, where the different lot-sizing problems are linked
to each other. In this setting a buyer needs production input from a supplier, similar
to the setting of Sucky [49], but here they consider the discrete lot-sizing problem
instead of the continuous EOQ model. The problem can be modeled as a generalization
of (LSP), called the multi-level lot-sizing problem (MLSP). However, it is not always
possible to optimize (MLSP), especially if the different echelons of the supply chain
belong to different companies. In such a situation, firms may fear sharing information
(see Griffin and Scherrer [17]), making a joint planning impossible.

Dudek and Stadtler [9] propose a negotiation based scheme to coordinate the plan-
ning over the different echelons, without sharing all information. In the following we
present their scheme for a two-player case trading one product, although their models
can be applied to more general supply chain structures with more players and more
products.

Suppose we have a supplier and a buyer, each with a production planning problem
of the form (LSP). Assume that the demand of the supplier is given by the production
requirements of the buyer, where we assume that the buyer needs one unit of input
for each unit of output. We index the variables of the buyer and supplier by b and s

respectively. From this we get the following multi-level lot-sizing problem:

min
T∑

t=1

∑
j∈{b,s}

(pj
tx

j
t + hj

tI
j
t + f j

t yj
t )

subject to: (MLSP)

Ij
t−1 + xj

t = dj
t + Ij

t , ∀t ∈ {1, . . . , T}, ∀j ∈ {b, s},
ds

t = xb
t , ∀t ∈ {1, . . . , T}, (1.8)

xj
t ≤ Cj

t y
j
t , ∀t ∈ {1, . . . , T}, ∀j ∈ {b, s},

Ij
0 = 0, ∀j ∈ {b, s},

Ij
t ≥ 0, ∀t ∈ {1, . . . , T}, ∀j ∈ {b, s},

xj
t ≥ 0, ∀t ∈ {1, . . . , T}, ∀j ∈ {b, s},
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yj
t ∈ {0, 1}, ∀t ∈ {1, . . . , T}, ∀j ∈ {b, s}.

Constraints (1.8) link the production planning of the buyer and the supplier. In the
negotiation scheme of Dudek and Stadtler [9] this link is subject to negotiations, and
demand for the supplier is not directly fixed by the production quantities of the buyer.

The negotiation process runs as follows.

A first step is that an upstream planning is determined. This means that the buyer
solves its own single-level lot-sizing problem, without taking into account the capacities
and cost structure of the supplier. For being able to implement this plan, some input
vector is needed from the supplier. Given this vector the supplier solves its own local
lot-sizing problem, minimizing the costs to produce the order of the buyer. (Here Dudek
and Stadtler [9] assume that capacity restrictions are flexible in the sense that additional
capacity can be hired at some higher cost. As this is beyond our focus, we omit the
corresponding adaptation of problem (MLSP).)

The second step allows the supplier to change the proposals of the buyer. As a
maximum the supplier can shift all demands to the next or previous period with a
positive demand, as long as the resulting demand pattern is feasible to the buyer. So, in
fact the supplier faces a generalization of the lot-sizing problem in which the demand
vector can be adapted marginally. The resulting solution is proposed to the buyer. These
first two steps initialize the negotiation process. The next two steps are repeated until
some condition holds.

In the third step it is the turn of the buyer. The buyer first determines the costs of
two extreme solutions:

• The minimal costs if the proposed solution is accepted, and

• the minimal costs if the proposed solution can be adapted within the same bounds
as faced by the supplier in the previous step.

Naturally, the second solution is the best one for the buyer, being the same as its latest
proposal to the supplier. However, it is assumed that the buyer does not choose its
own personal best, but determines a balanced solution between the two extremes given
above. The idea is to only propose the most effective changes and leave changes that
only give a minor cost reduction. The buyer sends this proposal to the supplier together
with its increase in costs compared to the upstream solution. This enables the supplier
to judge its own cost reduction against the cost increase of the buyer.

In the next step it is the supplier’s turn again. The supplier first determines the cost
if the same type of shifts were allowed as in the second step. But now, like the buyer
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did in the previous step, the supplier will not propose this personal best. Instead the
supplier weighs its own savings and the estimated cost increase of the buyer. And again
the resulting plan is sent to the buyer, repeating the previous step et cetera.

The process finishes at some point by using a simulated annealing criterium. Dudek
and Stadtler [9] say that computational tests suggest that this negotiation scheme comes
close to optimal results as obtained by central coordination, i.e. solving the multi-level
lot-sizing problem at once. On average the test results show a cost difference of only
1.6%.

The approach of Dudek and Stadtler [9] is very promising in situations where we
may assume that the players (i.e. the buyer and supplier) will report truthfully their
abilities and their cost changes. One may think of situations within one company where
no central planning authority exists, but where all parts are interested in the company’s
total profit. However, in situations where the supply chain is formed by independent
companies, which is the focus of this thesis, the assumption of truthful reports will not
hold. It is an important question how independent players may be able to negotiate a
solution that is good enough for being a competitive supply chain.

Therefore, in the following chapters, we focus on the same underlying setting as
Dudek and Stadtler [9] together with the assumption that the buyer and supplier behave
selfishly. This means that we have to apply some mechanism such that the individual
goals are made incentive compatible, i.e. acting selfishly is compatible with acting in the
interest of the supply chain. A first intuition is to apply the VCG mechanism due to its
nice (theoretical) properties. However, in the next example we see that this mechanism
is far from budget balance, where we have no third party that is willing to pay for the
budget deficit.

Example 1.4.1 Consider a supply chain with one buyer b and one supplier s, facing lot-
sizing problem (MLSP). The buyer has the market power to impose its optimal lot-size
policy, giving the upstream planning solution. Assume that both the buyer and the supplier
do not know each other’s cost profile. Now we apply the VCG mechanism to get to the
optimal solution of the chain’s optimization problem, using the notation as introduced in
section 1.3.2. Let V (A, t) denote the maximal cost reduction that can be achieved compared
to the upstream plan, where A = {b, s}. Furthermore, if either of the players does not
cooperate, no cost reduction can be achieved. Therefore it holds that V (A \ {b}, t−b) =

V (A \ {s}, t−s) = 0. The VCG payment of the buyer is:

pb(t) = V (A \ {b}, t−b)− V (A, t) + vb(tb, ω(t)) = vb(tb, ω(t))− V (A, t).

31



Chapter 1 – Preliminaries

The VCG payment of the supplier is:

ps(t) = V (A \ {s}, t−s)− V (A, t) + vs(ts, ω(t)) = vs(ts, ω(t))− V (A, t).

The utility of both the buyer and the supplier is therefore equal to V (A, t), i.e. both players
receive the whole cost reduction that was achieved. This means that the cost reduction itself
is insufficient to pay both players, giving a budget deficit: pb(t) + ps(t) = −V (A, t).

To overcome this budget difficulty, we introduce competition in this setting. Like be-
fore we assume that there is only one buyer facing a multi-period problem. But now we
assume that the buyer can get its input from different suppliers. Furthermore, the choice
between these suppliers will be made by using a procurement auction mechanism. In
the next chapter this mechanism will be introduced.

1.4.2 A bargaining model with asymmetric information

In this section we present a bargaining model with asymmetric information for a single
supplier–single buyer problem, as described by Sucky [49]. The setting is a supply chain
with one buyer b and one supplier s, facing a continuous demand rate d at the buyer
level, and a production rate at the supplier level of m. This basic setting was introduced
by Banerjee [2]. First consider the buyer. The buyer faces an economic lot-size problem
like we presented in section 1.2.1, having inventory holding costs hb and fixed ordering
costs fb. The cost minimizing economic ordering quantity Q∗

b and the corresponding per
period costs Kb(Q

∗
b) are respectively

• Q∗
b =

√
2fbd
hb

, and

• Kb(Q
∗
b) =

√
2fbdhb.

Furthermore, the supplier faces a production rate m > d, meaning that uninterrupted
production results in overproduction. So, to fulfill demand the supplier faces alternately
periods of production and periods of idle time. Similarly to the EOQ model, Sucky [49]
recalls the following cost minimizing formulas for the supplier’s economic lot-size Q∗

s

and per period costs Ks(Q
∗
s) respectively, having inventory holding costs hs and fixed

production setup costs fs,

• Q∗
s =

√
2fsm

hs
, and

• Ks(Q
∗
s) = d

√
2fshs

m
.
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Here it is assumed that every time that the supplier finishes a complete lot, this is
shipped to the buyer immediately. However, buyer and supplier can not just choose
their own optimal schedule as the optimal supply schedule may be different from the
optimal ordering schedule. Minimizing the total costs of supplier and buyer together,
gives the following optimal integrated production and ordering policy, where Q∗

J is the
joint optimal lot-size and KJ(Q∗

J) the joint optimal per period costs,

• Q∗
J =

√
2d(fb+fs)

hb+
d
m

hs
, and

• KJ(Q∗
J) =

√
2d(fb + fs)

(
hb + d

m
hs

)
.

The question is whether the buyer and supplier would be able to agree on this solution.
Sucky [49] says:

“If b and s behave individually rational, they select their individual optimal
policies Q∗

b and Q∗
s. If b or s has market power to impose its individual

optimal policy on s or b, respectively, then no incentive exists for either b or s

to deviate from their individual optimal policy Q∗
b or Q∗

s. The weaker player
must deviate from his individual optimal policy and adapt to the stronger
players policy. However if negotiations are possible, the weaker player may
try to persuade the stronger player to select a policy other than its individual
optimal policy by a side payment.” (The quote is adapted to the notation of
this thesis.)

Sucky [49] shows that in case of complete information (i.e. players do not have to
reveal private information), the bargaining solution will be the same as the joint optimal
solution.

Things get much more complicated if players do not have complete information.
Therefore, Sucky [49] studies the case in which the buyer has the market power to
impose its optimal lot-size policy, while the supplier does not know the cost structure
of the buyer. The idea is that the supplier can offer a combination (Q, p) to the buyer,
where Q is the proposed lot-size and p the compensation that the supplier pays to the
buyer to change its own optimal policy. However, the optimal bid depends on the true
cost structure (called type) of the buyer. Let N ≡ {1, . . . , n} be the set of possible
types of the buyer, where type i ∈ N is assumed to occur with probability λi. Then
the supplier may offer different bids tailored to the different types, as long as incentive
compatibility and individual rationality can be assured, i.e.

• a buyer of type i prefers the bid made for type i (incentive compatibility), and
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• choosing this bid is preferred over (Q∗
i , 0), where Q∗

i is the individual optimal lot-
size for the buyer of type i (individual rationality).

This game is a screening game (see section 1.3.2) as the uninformed player designs a
menu of choices for the informed player who indirectly reveals its type by choosing the
preferred bid. The screening problem of the supplier can be formalized in the following
mathematical program, where (Qi, pi) is the bid designed for buyer type i, Ks(·) is the
cost function of the supplier, and Ki(·) is the cost function of a buyer of type i:

min
Q,p

n∑
i=1

λi(Ks(Qi) + pi)

subject to: (SG)

Ki(Qi)− pi ≤ Ki(Q
∗
i ), ∀i ∈ N,

Ki(Qi)− pi ≤ Ki(Qj)− pj, ∀i, j ∈ N,

Qi > 0, ∀i ∈ N,

pi ≥ 0, ∀i ∈ N.

Sucky [49] is able to derive analytically a set of possible solutions that fulfill the Karush-
Kuhn-Tucker conditions. An optimal solution of a problem instance can then be found
by calculation the costs for each of these solutions.

A similar formulation can be given for the the case of a discrete and finite time-
horizon. Then, unlike the continuous setting of Sucky [49], the preferred planning of
each of the players can not be expressed by a single number. Instead they will have a
preferred supply vector that should fulfill the constraint that it is sufficient to deliver the
demand at the buyer level. Although the set of feasible supply vectors can be assumed
to be finite (using the zero-inventory property of Wagner and Whitin [55]), finding an
optimal solution to this problem is much less trivial than for the continuous problem.
As we can not give explicit cost functions Ks(·) and Ki(·), we have to find an optimal
solution by enumeration of all possible solutions. Moreover, the number of solutions is
exponential in both the number of types and the number of periods. We conclude that
unlike the relatively easy method of Sucky [49] for the continuous problem, as yet the
discrete setting can not be solved efficiently.

Problem (SG) has a feasible region that is defined by incentive compatibility and
individual rationality constraints. The same structure of constraints may appear in the
design of incentive compatible and individual rational auctions, see section 1.3.2.1. The
corresponding optimization problems are already nontrivial for very simple cost func-
tions. In chapter 6 we describe one of those problems, called the parametric shortest
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path tree problem. This is a generalization of the shortest path tree problem where we
have to choose parameter values of the arc-length functions. The arc length functions
are given by arc-dependent constants and node-dependent variables (the parameters
to choose). We show that an optimality condition holds that is related to a local im-
provement algorithm, but this algorithm itself may need an exponential or even infinite
number of steps.

1.5 Outline of the thesis

The rest of the thesis is organized as follows. In chapter 2 we introduce a combinato-
rial auction for a multi-period procurement setting. In this setting there is one buyer
who organizes a procurement auction for a group of possible suppliers. Although we
consider only one type of good, the multi-period character of the problem causes the
combinatorial character. More specifically, the dynamic costs (especially setup costs)
and capacities corresponding to the lot-sizing problems of suppliers give the costs a
nonlinear character, which is shown in section 2.2. Even though the combinatorial
auction allows bidders to express their costs appropriately in their bids, it might be bet-
ter for the auctioneer to use less sophisticated auction mechanisms. In section 2.3 we
present two alternative auction mechanisms that have a strong relation to the extreme
solutions of the lot-sizing problem. A first alternative is to have one auction that pro-
cures all demand in the first period, leaving the auctioneer with the highest possible
inventories. As this auction builds up stock for the entire planning horizon already in
the first period, we call this the stock auction. The second alternative is to organize
an auction in each period separately and preclude the possibility of inventories. We
have the counterintuitive result that either of the alternative auction formats, that do
limit production flexibility, might be cheaper for the auctioneer than the combinatorial
procurement auction. However, we also show that for the two-period case, the combi-
natorial auction seems to be an attractive compromise between the alternatives as it is
never the most expensive of the three.

Chapter 3 compares the procurement costs of the combinatorial auction and the
alternative of organizing an auction in each period separately. In section 3.2 we show
that if suppliers are not limited by capacities, the combinatorial auction dominates the
separate auctions as it is never more expensive for the auctioneer than the separate
auctions. For capacitated problems the separate auctions might be the cheapest solution
for the auctioneer for some special cases. However, in section 3.3 we show for a two-
period scenario that in expectation the combinatorial auction dominates the separate
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auctions.

Chapter 4 compares the procurement costs of the combinatorial auction and the
stock auction. In section 4.2 we show that if suppliers are not limited by capacities,
the combinatorial auction dominates the stock auction as it is never more expensive
for the auctioneer than the stock auction. On the contrary, for capacitated problems
the stock auction might be the cheapest option for the auctioneer. However, in a two-
period scenario, the possible loss from using the combinatorial auction instead of the
stock auction can be limited in two ways. First, this loss is limited by the setup costs.
Second, we show that the loss depends on the level of competition between suppliers.
More specifically, the loss is limited by the difference in unit production costs of the two
cheapest suppliers in the second period.

In chapter 5 we have a closer look at the VCG mechanism that we used in the previ-
ous chapters. This mechanism has some nice theoretical advantages, but is also limited
in practice as it is complex in both computation and communication. However, in some
situations complexity can be reduced by using equivalent iterative auctions like the En-
glish auction. We consider two properties that are needed for practical implementation
of the VCG mechanism. One is called the buyers-are-substitutes property and relates to
the existence of price equilibria, as shown by Bikhchandani and Ostroy [4]. The other
is the concavity property which is nescessary for implementation of the primal-dual
auction of De Vries et al. [53]. In section 5.3 we show both the buyers-are-substitutes
property and concavity for the combinatorial auction that emerges from the capacitated
assignment problem. Moreover, in section 5.4 we show that this problem is a special
case of the models discussed by Bikhchandani and Ostroy [4] and De Vries et al. [53]
and therefore their results can be applied to this setting. In section 5.5 we prove for two
generalisations of the setting that the needed properties do not hold.

Chapter 6 deals with a parametric shortest path tree problem. The problem is a
basic version of a problem class for designing incentive compatible and individual ra-
tional mechanisms. In section 1.4.2 we already showed how these kind of problems
emerge from production planning. Section 6.2 defines the parametric problem as a
shortest path problem where the lengths of the arcs are given by the products of arc
dependent constants and node dependent variables. In section 6.3 we show an opti-
mality condition. This condition has the nice property that it is in fact a local condition.
The optimality condition suggests a local improvement algorithm which is presented
in section 6.4. Unfortunately, this algorithm is not finite, which we show in an exam-
ple. Section 6.5 presents an alternative formulation of the parametric shortest path tree
problem where the parametric variables are eliminated. However, even here the exis-
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tence of a combinatorial algorithm that is running in polynomial time remains an open
question.

Finally, in chapter 7 we present an overview of results in this thesis and conclusions.
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Chapter 2

Auction Procurement over Multiple
Periods: Combinatorial Auction

2.1 Introduction

In this and the following two chapters we consider a company that needs to buy ma-
terials as input for its production process. Production takes place in a discrete number
of periods, each having its own level of demand. This setting relates to the lot-sizing
problem introduced in section 1.2.2. The company wishes to use an auction mechanism
to buy this input as cheaply as possible. There may be different reasons to use a pro-
curement auction, see Bichler et al. [3]. The first obvious reason is to gain from the
competition between suppliers. If the company succeeds in inviting a lot of suppliers to
compete, this may significantly reduce the price. Although important, it might not be
easy to integrate competition and production planning:

“A (..) factor that may play an even more important role (..) is the effect of
competition, although we acknowledge that it is the most difficult to inte-
grate with models of short-term operational decisions such as production or
procurement.” (Yano and Gilbert [57])

However, increasing competition is not the only reason to use auctions. An auction that
is tuned to the cost structure of suppliers, might as well benefit the suppliers. For ex-
ample, Hohner et al. [24] used a combinatorial auction for the procurement process of
the Mars corporation. This auction gave the suppliers the possibility of expressing their
nonlinear costs for combinations of items. The auctions of Mars Inc. yielded consistent
procurement cost savings, but:
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“We don’t mean that suppliers are selling to us below cost. The efficiencies
come from matching supplier capabilities and the company’s needs and thus
increasing suppliers’ margins (..).” (Hohner et al. [24, page 32].)

So, the use of auctions may as well be advantageous for the suppliers by tuning capa-
bilities and needs. This means that increasing the efficiency of the whole chain may
benefit all links. The article of Hohner et al. [24] is one of very few where the auction
is designed to achieve this tuning, as pointed out by Elmaghraby [10]:

“A serious omission from the procurement auctions literature is the impor-
tant interaction between (..) suppliers’ costs and the appropriate design of
an auction.”

On the contrary, most procurement auctions are just single-item auctions:

“Nearly all of the procurement auctions being run today in the private sector
are single unit English auctions.” (Bichler et al. [3])

Pinker et al. [41] conclude with (among others) the following area that is of interest in
future research:

“Integrating auctions into the ongoing operations of the firm and quanti-
fying the effects of auctions on critical business decisions such as procure-
ment, marketing, production and inventory control, and supply chain man-
agement.”

We may conclude from these quotes that there is a challenge in combining the pro-
curement process and short-term production planning. In particular, we consider the
use of procurement auctions in the multi-period production setting that is described by
the lot-sizing model. There is a lot of literature on procurement auctions, see for a re-
cent exposition Bichler et al. [3], including a description of the industrial procurement
auction conducted at Mars, Inc., which was presented by Hohner et al. [24]. Further-
more, Tunca and Wu [51] provide a number of examples of companies and government
organizations that make use of procurement auctions, including SUN Microsystems,
Hewlett-Packard, IBM, Samsung, and Lucent. However, none of these papers focuses
on the multi-period auction case. There are not many papers on this topic. In fact,
in the procurement auction literature, the phrase “multi-period procurement” almost
invariably refers to auctioning items sequentially via a series of single-period auctions,
as in Elmaghraby [11], rather than auctioning them simultaneously via a single auction
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for multiple periods, as we will do here. One exception is by Kameshwaran et al. [26],
who touch on the idea of a single auction for multiple periods in passing. They are
mainly concerned with an auction for procuring heterogeneous items in a single period
setting where the synergy across items is not strong. In their auction, rather than sub-
mit combinatorial bids, each supplier submits a single discount bid, which consists of
the cost for each item of demand he offers to supply, together with a discount depend-
ing on the number of items actually supplied. The authors point out, however, that in
a multi-period procurement scenario these discount bids would not be appropriate, as
capacity constraints imply that the combination of items might be more important than
the number of items. If demand in each period is considered as an indivisible item, then
the problem reduces to procurement of multiple items, and in this case, a combinatorial
bid can express the supplier’s cost function more efficiently than a discount bid.

In this chapter we show that a combinatorial auction is an appropriate auction for
multi-period production settings, i.e. it fits the cost structure implied by lot-sizing prob-
lems. This is shown in section 2.2. The combinatorial auction allows bidders to fully
incorporate their cost structure, in particular balancing setup and holding costs. As a
consequence, a combinatorial auction using the rules of the VCG mechanism will yield
the cost minimizing production plan of the lot-sizing problem. Two extreme solutions
of the lot-sizing problem can be related to more restricted auction settings. The first
extreme solution is where all production takes place in the first period. In this solution
only one setup is needed but holding costs are maximal. A corresponding auction is
an auction where demand of all periods is auctioned and supplied at the beginning of
the planning horizon. We will call this auction the stock auction. The other extreme
solution is where all demand is produced just-in-time, which minimizes holding costs
but needs a setup in every period. This solution corresponds to organizing an auction
in each period, assuming that suppliers do not speculate on future demand. We refer
to this setting as a series of separate auctions. First results from this and the next two
chapters were presented in Romero Morales, Lok, and Steinberg [44, 45].

In section 2.3 we show that a combinatorial auction compromises the two alternative
auction mechanisms. However, each alternative may be preferred over the combinato-
rial auction in specific settings. This raises the question whether we can make a mea-
sured choice between the three auction mechanisms. In chapters 3 and 4 we compare
the combinatorial auction with separate auctions and one stock auction respectively.
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2.2 Combinatorial structure

In this chapter we consider the very common production setting where suppliers face
lot-sizing problems, i.e. have production capacity in different periods. Unlike most
procurement auctions, as pointed out in the previous section, we will allow the suppliers
to incorporate all information about their costs (e.g., economies of scale in production
and capacity restrictions) when submitting their respective bids. From the following
examples it becomes clear that the cost structure implied by lot-sizing problems has a
combinatorial character with respect to the demand vector.

Recall the lot-sizing problem (LSP) from section 1.2.2. We defined T as the planning
horizon. For each period t we had Rt the production capacity, pt the unit production
cost, ht the unit inventory holding cost, and ft the setup cost if production takes place.
Let Q denote a supply vector, i.e. Qt is the amount supplied in period t ∈ {1, . . . , T}.
Now, let C(Q) be the minimum costs for supplying vector Q, i.e. the optimal value of
(LSP) when the vector of demand is equal to Q. The cost function is said to have a
nonlinear or combinatorial character if C(Q′ + Q′′) 6= C(Q′) + C(Q′′). If C(Q′ + Q′′) <

C(Q′) + C(Q′′) we say that Q′ and Q′′ are complements, i.e. when produced together
they gain economies of scale. We can illustrate this with a simple example.

Example 2.2.1 Suppose we have a lot-sizing problem with two periods, i.e. T = 2. In
Table 2.1 the parameter values are given. Note that the inventory holding costs are very

t = 1 t = 2

pt 1 1

ft 5 5

ht 9 −
Rt 4 4

Table 2.1: Data for Example 2.2.1

expensive compared to the unit production costs and the setup costs. In fact, it is not
profitable to hold any inventory, unless enforced by capacity restrictions. Consider the
supply vector Q = (2, 2). The cheapest way to supply this demand, is to produce each unit
just-in-time, so C(Q) = 14. For Q′ = Q′′ = (1, 1) we have that C(Q′) = 12. Note that
Q = Q′ + Q′′. Then,

C(Q′ + Q′′) < C(Q′) + C(Q′′)

as in the right hand side we have paid twice the fixed costs.
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So the setup costs in the lot-sizing problem may give the costs a complementary
character. If C(Q′ + Q′′) > C(Q′) + C(Q′′) we say that Q′ and Q′′ are substitutes, i.e.
both compete for the same capacity. We have a similar example as above.

Example 2.2.2 Suppose we have a lot-sizing problem with two periods, i.e. T = 2. In
Table 2.2 the parameter values are given. Again, consider a supply vector Q = (2, 2). For

t = 1 t = 2

pt 1 1

ft 0 0

ht 2 −
Rt 4 1

Table 2.2: Data for Example 2.2.2

a unit of demand in period 2 the cheapest solution is to produce in period 2 as otherwise
inventory holding costs have to be paid. However, there is only capacity for producing one
unit in period 2. The cheapest way to supply Q2 = 2, is to produce one unit in each period,
so C(Q) = 6. For Q′ = Q′′ = (1, 1) we have that C(Q′) = C(Q′′) = 2. Note again that
Q = Q′ + Q′′. Then,

C(Q′ + Q′′) > C(Q′) + C(Q′′)

as in the right hand side we considered Q′ and Q′′ separately, both using the scarce capacity
in period 2.

So, even though we are discussing the procurement of only one type of item, the
costs of the suppliers have a combinatorial character due to setup costs and capacities.

2.3 Compromising setup and holding costs

2.3.1 Combinatorial VCG auction

In our procurement auction we have one buyer and a set of suppliers S. Each supplier
can supply the demand of one or more periods from the planning horizon of T periods.
In period t the buyer needs Dt units of input, where t ∈ {1, . . . , T} and D = (Dt) ∈ RT

denotes the vector of demands. It is assumed that each Dt has to be produced at once by
a single supplier, at any time not later than t. The suppliers individually submit bids in
the form of a bid price together with a T -vector representing an offer to supply specific
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quantities of units in periods 1, . . . , T , where the quantity in period t is not restricted
to being zero or Dt, but can be the sum of any subset of the buyer’s demands Dτ for
τ ∈ {t, t + 1, . . . , T}. However, supplier s ∈ S is restricted by its production capacity
Rst in period t. We have the assumption that, at every point in the planning horizon,
there exists sufficient production capacity from the suppliers to meet the total demand
requirements to date, i.e.,

∑
s∈S
∑τ

t=1 Rst ≥
∑τ

t=1 Dt, for all τ ∈ {1, . . . , T}. In other
words, satisfying the demand requirements from the suppliers is a feasible problem for
the buyer.

Supplier s faces a setup cost fst if he produces in period t, a unit production cost
pst in period t, and a unit inventory holding cost hs per period. The only cost faced
by the buyer is a unit inventory holding cost of H per period. The standard supply
chain assumption that H ≥ hs for all s ∈ S applies. This assumption implies that if the
suppliers submit all possible bids truthfully, then there is always an optimal allocation
such that the suppliers hold all inventory. Therefore, we can assume without loss of
generality that only suppliers keep inventory when we use the combinatorial auction.

In the following we recall the VCG mechanism as described in section 1.3.2.2, spe-
cified in the setting and notation of the procurement auction, i.e. where the bidders are
suppliers that face costs when producing. The VCG mechanism is a one shot auction
where the buyer announces its demand vector and all suppliers submit at once all bids
on any subset of the demand vector. For example, if the buyer needs D = (1, 1), all
suppliers will submit their prices for the vectors (1, 1), (1, 0) and (0, 1), where the bid-
prices may be infinite if capacity is insufficient.

Due to the incentive characteristics of the VCG mechanism, we may assume that all
suppliers bid their true costs for every bid. After receiving all bids the buyer computes
a cost-minimizing allocation of sets of goods to the suppliers. Because of the combina-
torial character of the costs, the buyer may select at most one winning bid from each
supplier. Each supplier s ∈ S receives a payment equal to its costs Cs

S plus a surplus.
Specifically, the surplus for supplier s is the marginal contribution or marginal product of
the supplier to the total costs. This is the difference between the total costs had supplier
s not participated in the auction, CS\{s}, and the actual costs CS . In total, the buyer
pays ∑

s∈S

[
Cs
S + (CS\{s} − CS)

]
= CS +

∑
s∈S

(
CS\{s} − CS

)
,

where, by definition, CS =
∑

s∈S Cs
S , the total costs of the suppliers. Observe that the

marginal product of any supplier that does not win any demand equals zero. Then if W
denotes the set of winning suppliers, the total payment of our auction can equivalently
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be written as
CS +

∑
s∈W

(
CS\{s} − CS

)
. (2.1)

As a consequence the payment reduces to CS\{s1} if there is only one winner s1, i.e.,
W = {s1}.

2.3.2 Stock Auction and Separate Auctions

As said, the incorporation of the suppliers’ costs structures may be advantageous for
both the suppliers and the buyer. The question is, what is the advantage from using the
combinatorial auction. Of course, this depends on the mechanism that is replaced by
the combinatorial auction.

The first alternative that we consider is the stock auction. In the stock auction to-
tal demand is auctioned at the beginning of the planning horizon, ignoring production
ability in later periods. As a consequence this auction maximizes the inventory levels.
The stock auction allows suppliers to achieve economies of scale, but gives no flexibility
in production timing. Our second alternative, is to run a series of separate auctions for
each period separately. These separate auctions have minimal (zero) inventory levels,
but a maximal number of setups as production takes place in each period. The two
alternative auctions also correspond to the extreme solutions of the lot-sizing problem:
producing everything at once, minimizing the number of setups, versus producing ev-
erything just-in-time, minimizing inventory levels. So, like the lot-sizing problem itself,
a main part of the combinatorial auction is to find a balance between holding costs
and setup costs. In the following we will investigate the stock auction and the separate
auctions, where we assume the VCG mechanism in both cases.

The stock auction runs in a similar way as the combinatorial auction. However,
production is only allowed in the first period. This means that the buyer faces inventory
holding costs itself for any demand Dt, with t > 1. The VCG payment in the stock
auction is equal to

CI
S +

∑
s∈S

(CI
S\{s} − CI

S), (2.2)

where CI
S is the lowest cost at which the set of suppliers S can supply D, when pro-

duction is only allowed in period 1. (Note that we distinguish this cost function of the
stock auction by a superscript I.) In addition to these costs, the buyer has to pay for
holding inventory, i.e.

∑T
t=2(t−1)HDt. Note that now the buyer bears the holding costs

directly, where we could assume that the suppliers kept inventory in the combinatorial
auction. Since any production planning for the stock auction is also feasible for the
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combinatorial auction, and since the buyer’s holding costs are at least as large as the
suppliers’ holding costs we know that

CI
S +

T∑
t=2

(t− 1)HDt ≥ CS . (2.3)

In the series of separate auctions, the VCG mechanism boils down to the Vickrey
auction, as we assumed for all three types of auctions that Dt is indivisible. Therefore,
the price to be paid equals the second best bid. Note that fst + pstDt is the total produc-
tion costs that supplier s faces if he wins Dt. Obviously, these costs are only defined for
the suppliers having enough capacity in period t to fulfill Dt. Therefore, let Ft be the
set suppliers who can produce demand Dt in period t. Then

(f·t + p·tDt)
(n) (2.4)

denotes the n-th lowest value in {fst + pstDt}s∈Ft. The total payment in the T different
separate auctions is equal to

T∑
t=1

(f·t + p·tDt)
(2). (2.5)

Let πC , πI and πS be the total procurement costs using respectively the combinatorial
auction, the stock auction, and the series of separate auctions. These costs include
the inventory holding costs, where we can assume without loss of generality that the
suppliers keep inventory in the combinatorial auction, the buyer keeps inventory in
the stock auction, and no inventory is kept in the series of separate auctions. For the
combinatorial auction and the series of separate auctions the procurement costs are
just the total auction payments given above. In the stock auction the buyer receives all
supplies in the first period and has to hold in inventory the items that are needed in
later periods. The total procurement costs are therefore

πI = CI
S +

∑
s∈S

(CI
S\{s} − CI

S) +
T∑

t=2

(t− 1)HDt. (2.6)

2.3.3 Comparison of the auction alternatives

In this section we show by examples that either of the three auction mechanisms may
be the cheapest for the buyer. We start with an example in which the combinatorial
auction is indeed the best option for the buyer.
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Example 2.3.1 (Combinatorial auction is cheapest solution) Consider a scenario
where the buyer requires input over two time periods, with demand Dt = 1 in each period
t and the buyer’s holding cost is H = 2. There are three suppliers, s = 1, 2, 3, each with
holding cost hs = 1 and setup cost fst = 3. The rest of the suppliers’ data are shown in
Table 2.3. In the combinatorial auction setting we have three options for producing D:

s ps1 Rs1 ps2 Rs2

1 5 1 5 1

2 10 2 10 1

3 15 2 15 1

Table 2.3: Data for Example 2.3.1

• Produce everything in period 1, using the cheapest supplier that can produce both
units of demand, i.e. using economies of scale. This has a cost of 3 + 2× 10 + 1 = 24.

• Produce everything in period 1, using the cheapest supplier and the second cheapest
supplier as the former has a limited capacity. The costs are 3 + 5 + 3 + 10 + 1 = 22.

• Produce D1 in period 1, and produce D2 in period 2, having cost 3 + 5 + 3 + 5 = 16.

So CS = 16, where supplier 1 produces both units of demand, just-in-time. Recall from
section 2.3.1 that the one-winner case has a payment equal to CS\{1}. The payment in this
combinatorial auction is therefore CS\{1} = 3 + 2× 10 + 1 = 24.

For having two separate auctions, the total production costs are again 3+5+3+5 = 16,
and the total procurement costs are equal to 3 + 10 + 3 + 10 = 26.

In the stock auction setting we have two options for producing D:

• Produce everything in period 1, using economies of scale, with cost 3 + 2× 10 = 23.

• Produce everything in period 1, without economies of scale, with cost 3+5+3+10 =

21.

So CI
S = 21, and we have two winning suppliers, 1 and 2. Clearly, CI

S\{1} = 3+2×10 = 23

and CI
S\{2} = 3 + 5 + 3 + 15 = 26. The total payment in the stock auction is 21 + (23 −

21) + (26− 21) = 28, giving total procurement cost of 28 + 2 = 30, including holding costs
borne by the buyers.
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In the next example we show that in some cases the series of separate auctions are
cheaper than the combinatorial auction.

Example 2.3.2 (Separate auctions are cheapest solution) Consider a scenario where
the buyer requires an item over two time periods, with demand Dt = 1 in each period t

and the buyer’s holding cost is H = 2. There are five suppliers, s = 1, . . . , 5, each with
holding cost hs = 1. Each supplier has production capacity 1 in one of the periods and
no capacity in the other period. None of the suppliers faces setup costs in either period.
The supplier capacities and unit production costs are shown in Table 2.4. In the series of

s Rs1 Rs2 pst

1 1 0 5

2 1 0 9

3 1 0 13

4 0 1 14

5 0 1 15

Table 2.4: Data for Example 2.3.2

separate auctions setting, there are two auctions. In the first period auction, supplier 1 is
the (single) winner having production cost 5 and receiving the second best bid which is 9.
Similarly, in the second period, supplier 4 is the cheapest supplier and receives the second
best bid, i.e. 15. (Note that we assume that no inventory is possible in this setting.) We
conclude that the total procurement costs of the buyer are 9 + 15 = 24.

In the combinatorial auction setting the suppliers have the possibility to hold inventory.
This means that although suppliers 1, 2 and 3 have no capacity in period 2, they can in
fact choose to produce in period 1 and hold the item in inventory until period 2, at an
effective period 2 production cost of 6, 10 and 14, respectively. The winning bids are (1, 0)

from supplier 1 with cost 5, together with (0, 1) from supplier 2 with cost 10, so CS = 15.
Furthermore, it is easy to see that CS\{1} = 9 + 14 = 23 and CS\{2} = 5 + 14 = 19. From
this we get a total payment of 15+(23−15)+(19−15) = 27, which is more than the total
buyer payment in the series of separate auctions. We may observe that the competition for
the second period demand increases and therefore we obtain a better price, however this
has a negative effect on the payments related with the first period demand.

In the stock auction, the winning bids are (1, 0) from supplier 1 with cost 5, together
with (1, 0) from supplier 2 with cost 9, so CS = 14. Furthermore, it is not hard to see that
CS\{1} = 9 + 13 = 22 and CS\{2} = 5 + 13 = 18. From this we get a total payment of
14 + (22 − 14) + (18 − 14) = 26, so the total costs of the buyer including holding costs
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are 26 + 2 = 28. So, in this example the procurement costs are the lowest in the series
of separate auctions (24), and the highest in the stock auction (28). Note that in case the
buyer had the same holding costs as the suppliers, that the total procurement costs of the
combinatorial auction and the stock auction would have been the same.

In the next example we show that there exist instances in which the stock auction is
cheaper than the combinatorial auction.

Example 2.3.3 (Stock auction is cheapest solution) Consider a scenario where the
buyer requires an item over two time periods, with demand Dt = 1 in each period t, where
the buyer’s holding cost is H = 1. There are four suppliers, s = 1, . . . , 4. All suppliers have
setup costs equal to 2, and inventory holding costs equal to 1. The rest of the suppliers’
data are shown in Table 2.5. First have a look at the case of the stock auction. The optimal

s ps1 Rs1 ps2 Rs2

1 9 1 13 1

2 10 2 12 1

3 10 2 11 1

4 12 2 8 1

Table 2.5: Data for Example 2.3.3

allocation of the stock auction will use economies of scale or not, i.e.,

CI
S = min{2 + 2× 10, 2 + 9 + 2 + 10} = min{22, 23} = 22.

This shows that the best option is to use economies of scale of supplier 2. The payment of
the stock auction is equal to the costs made if supplier 2 is excluded. As supplier 3 has the
same costs and the same capacity in period 1, the payment is also 22. Together with holding
costs, the buyer has a total procurement cost of 23.

Now consider the combinatorial auction. This auction may improve the stock auction
by letting D2 be produced in period 2. Therefore,

CS = min{22 + 1, 2 + 9 + 2 + 8} = min{23, 21} = 21,

where supplier 1 is the winner of D1 and supplier 4 is the winner of D2. After we eliminate
supplier 1, we could again produce each unit in each corresponding period, with a one
unit increase with respect to the optimal allocation, i.e., 22 or produce both units in period
1 and then we will face the costs of the stock auction allocation, i.e., 22 + 1, which is
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more expensive. However, when we eliminate supplier 4, there is no competitive supplier
that can produce D2 in period 2 and therefore, the best option is to produce both units in
period 1 at a cost of 23. Summarizing the payment of the combinatorial auction is equal
to 21 + (22− 21) + (23− 21) = 24.

Finally, in two separate auctions the total production costs are 2+9+2+8 = 21, while
the buyer has to pay 2 + 10 + 2 + 11 = 25. So, in this example the stock auction is the
cheapest option, while the series of separate auctions is the most expensive one.

2.3.4 Combinatorial auction compromises the alternatives

In none of the previous examples the combinatorial auction is strictly more expensive
than both the other two options. This is not a coincidence. To see this we combine the
following two propositions.

Proposition 2.3.4 If the production plans of the combinatorial auction and the stock auc-
tion are equal, then we have πC ≤ πI .

Proof:
By assumption the production plans and (as a consequence) the total inventory levels
are equal in both auctions, where the buyer holds inventory in the stock auction and the
suppliers hold inventory in the combinatorial auction. Therefore, the only difference in
total costs relates to the unit holding costs. In the stock auction inventory is hold at the
most expensive level of the buyer, therefore

CI
S +

T∑
t=2

(t− 1)HDt ≥ CS . (2.7)

Furthermore, let Ĥ(CS) denote the total inventory holding cost that is part of CS . Then,
as there is only a difference in inventory costs, we have

CI
S + Ĥ(CS) = CS . (2.8)

Using the previous expressions we can write:

πI − πC = CI
S +

∑
s∈S

(CI
S\{s} − CI

S) +
T∑

t=2

(t− 1)HDt −

[
CS +

∑
s∈S

(CS\{s} − CS)

]
≥

∑
s∈S

(CI
S\{s} − CI

S)−
∑
s∈S

(CS\{s} − CS)

=
∑
s∈S

[
(CI

S\{s} + Ĥ(CS)− CS\{s}) + (CS − CI
S − Ĥ(CS))

]
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=
∑
s∈S

(CI
S\{s} + Ĥ(CS)− CS\{s})

≥ 0.

The first inequality follows from (2.7). The next equality follows from rearranging
terms after adding Ĥ(CS) − Ĥ(CS), and the last equality follows from (2.8). Finally,
the last inequality holds because any solution for the stock auction is also feasible in the
combinatorial auction. Thus, the desired inequality holds. 2

Proposition 2.3.5 If the production plans of the combinatorial auction and the series of
separate auctions are equal, then we have πC ≤ πS.

Proof:
Let s ∈ S be a winner in the combinatorial auction and let Ts be the set of periods in
which s is the winning supplier. By assumption we have CS =

∑T
t=1(f·t + p·tDt)

(1). If
winner s is excluded, it is a feasible solution to produce its winning demands by the
second best supplier in the same period, so we have

CS\{s} − CS ≤
∑
t∈Ts

[
(f·t + p·tDt)

(2) − (f·t + p·tDt)
(1)
]
,

and thus ∑
s∈S

(CS\{s} − CS) ≤
T∑

t=1

[
(f·t + p·tDt)

(2) − (f·t + p·tDt)
(1)
]
.

With this we can write:

πS − πC =
T∑

t=1

(f·t + p·tDt)
(2) −

[
CS +

∑
s∈S

(CS\{s} − CS)

]

=
T∑

t=1

(f·t + p·tDt)
(2) −

[
T∑

t=1

(f·t + p·tDt)
(1) +

∑
s∈S

(CS\{s} − CS)

]

≥
T∑

t=1

(f·t + p·tDt)
(2)

−

[
T∑

t=1

(f·t + p·tDt)
(1) +

T∑
t=1

[
(f·t + p·tDt)

(2) − (f·t + p·tDt)
(1)
]]

= 0,

and the desired inequality holds. 2
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These two propositions imply that if T = 2 the combinatorial auction is never strictly
worse than both the stock auction and the series of separate auctions.

Corollary 2.3.6 If T = 2, then πC is never strictly larger than both πI and πS.

Proof:
Consider the combinatorial auction. In any case D1 is produced in period 1. For D2

there are two options, it is either produced in period 1 or in period 2. This implies that
we have either the case of Proposition 2.3.4 or of Proposition 2.3.5. 2

In the two period setting, the combinatorial auction is either the best solution (see
Example 2.3.1) or a compromise between the stock auction and a series of separate
auctions (Corollary 2.3.6). So, indeed we may regard the combinatorial auction as a
good compromise. In the next two chapters we compare the procurement costs of the
combinatorial auction and its two alternatives.

In chapter 3 we compare the combinatorial auction with the series of separate auc-
tions. It appears that in the uncapacitated setting, the combinatorial auction is always
the cheapest auction format for the buyer. For capacitated problems it may happen that
the series of separate auctions is cheaper than a combinatorial auction. However, for a
two-period scenario we can still show that for many instances the combinatorial auction
is still the cheapest. Moreover, we show that in expectation the combinatorial auction
is at most as expensive as the series of separate auctions.

In chapter 4 we compare the combinatorial auction with the stock auction. Again,
it appears that in the uncapacitated setting, the combinatorial auction is always the
cheapest auction format for the buyer. For a two-period capacitated scenario, the stock
auction may be the cheapest solution, but we are able to bound the loss of using the
combinatorial auction instead. First this loss is bounded by one setup cost, and second,
it is bounded by the level of competition in the second period. This means that if the
costs of the different suppliers are close to each other, the possible loss is also small.
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Chapter 3

Combinatorial Auction versus Separate
Auctions

3.1 Introduction

In this chapter we compare the combinatorial auction and the series of separate auc-
tions. The combinatorial auction will increase production efficiency as compared to the
series of separate auctions, as it will allow the suppliers to incorporate more information
about their costs. In other words, suppliers can produce more cheaply and therefore bid
more competitively against each other. Moreover, a combinatorial auction will allow
the buyer to purchase units in advance of when required. This can be advantageous if
supplier production capacity is scarce in some periods, or if production costs vary from
period to period.

Thus, intuitively one might expect the combinatorial auction to always be advanta-
geous for the buyer, as the buyer will receive better bids, i.e., lower prices, which can
be more flexibly combined with each other. This would allow the buyer to satisfy his
demand schedule at lower cost than with the series of separate auctions.

From Example 2.3.2 we know that, to the contrary, there are cases in which the
buyer will be worse off using a combinatorial auction. So, in some cases, in spite of the
increase in production efficiency the buyer needs in fact to pay more. This somewhat
counter-intuitive result is reminiscent of the well-known result of Hart [22], who con-
siders the consequences in a market structure of permitting trades that were previously
prohibited, where “our intuition tells us that the introduction of additional markets
ought to make people better off,” but provides an example in which this is not the case.
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The counterintuitive result can arise from two factors. The first is supplier transfor-
mation, i.e. holding inventory. Although the aim of the supplier may be only to lower its
own production costs, supplier production in advance of demand will have the added
effect of transferring supplier competition to other periods. By using capacity for future
periods the capacity is out of competition for the period it is available, while increasing
competition in future periods. The net effect can both be positive or negative. The
second factor is that in general a supplier can have production capacity in multiple pe-
riods. Although this overlap in suppliers is of no importance for the separate auctions,
it can be detrimental to the buyer in the combinatorial auction. The joint availability
of production capacity over multiple periods may place the supplier in a more powerful
position with respect to the buyer. In summary we have the following effects:

• Transformation effect, which has two components:

– production efficiency effect (always positive for the buyer), and

– transferred competition effect (can be positive or negative for the buyer).

• Joint capacity effect (always negative for the buyer).

In section 3.2 we show that in the uncapacitated case the combinatorial auction
is never more expensive than having a series of separate auctions. In section 3.3 we
delimit for a two-period setting some cases with the same property for the capacitated
scenario. Moreover, we show that the expected savings from using a combinatorial
auction instead of a series of separate auctions are nonnegative.

3.2 Uncapacitated case

In this section we assume that the capacities of the suppliers are not binding, i.e. Rst ≥∑T
τ=t Dτ , for all t ∈ {1, . . . , T} and s ∈ S. Under this scenario, we can show that

the combinatorial auction results in a cost to the buyer that is less than or equal to
that which would result under the T separate auctions. Recall that each Dt has to be
produced at once by a single supplier.

Theorem 3.2.1 If the capacities are not binding, we have πC ≤ πS.

Proof:
Consider the optimal allocation for the combinatorial auction, and recall that Cs

S de-
notes the costs incurred by supplier s ∈ S, with CS =

∑
s∈S Cs

S . Let Ts ⊆ {1, 2, . . . , T} be
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the index set of the demands won by supplier s. Recall that (f·t+p·tDt)
(n) is the n-th low-

est in {fst+pstDt}s∈S . Define (f·t+p·tDt)
−s,(1) as the cheapest value in {frt+prtDt}r∈S\{s},

i.e. if s is excluded. Then, we have that

CS\{s} − CS ≤
∑
t∈Ts

(f·t + p·tDt)
−s,(1) − Cs

S , (3.1)

as if s is excluded, it is feasible to produce Dt, t ∈ Ts, by the cheapest player according
to {frt + prtDt}r∈S\{s}. (Notice that this is a quick way to find the costs of a feasible but
probably non-optimal solution. Moreover, we may overestimate the costs of this feasible
solution if we already paid for some of those setups for the demands won by the other
suppliers. Nonetheless, this bound suffices to prove the result.)

Using this inequality for all s ∈ S, we have that

CS +
∑
s∈S

(CS\{s} − CS) ≤ CS +
∑
s∈S

(∑
t∈Ts

(f·t + p·tDt)
−s,(1) − Cs

S

)
=

∑
s∈S

∑
t∈Ts

(f·t + p·tDt)
−s,(1)

≤
∑
s∈S

∑
t∈Ts

(f·t + p·tDt)
(2)

=
T∑

t=1

(f·t + p·tDt)
(2),

which proves the desired result. 2

We may relate this result to the effects of transformation and joint capacities. Note
that in the uncapacitated case we do not have an adverse effect from transferred compe-
tition: One can use production capacity in period s for period t (s < t) without limiting
production possibilities. Therefore, Theorem 3.2.1 says that the (adverse) joint capacity
effect is smaller than or equal to the transformation effect. However, in Example 3.2.2
we show that in the uncapacitated case the joint capacity effect can be quite large. In
fact, the suppliers are able to claim the whole cost reduction from using the combina-
torial auction instead of the series of separate auctions. This leaves the buyer with no
benefit at all.

Example 3.2.2 (Joint capacity effect) Consider the scenario where the buyer requires
an item over two time periods, with demand Dt = 1 in each period t. There are four
suppliers, i.e. S = {1, 2, 3, 4}. The suppliers have unrestricted capacity and no setup costs.
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s ps1 ps2

1 5 9

2 7 9

3 9 7

4 9 8

Table 3.1: Data for Example 3.2.2

Furthermore, all suppliers have unit holding costs equal to 1, while the buyer has holding
cost H = 2. The suppliers’ data are shown in Table 3.1.

First have a look at the case of two separate auctions. Total production costs are 5+7 =

12, while the procurement costs are 7 + 8 = 15, i.e. the second best costs of the two periods.
Introducing a combinatorial auction instead of the separate ones, induces a saving on the
production costs as we may produce D2 at a cost of 5 + 1 instead of 7. We can see that
this saving in production costs is given to the buyer: As supplier 1 is the only winner, its
payment is 14, the total production costs without this supplier. So, the buyer pays one unit
less by using a combinatorial auction instead of a series of separate auctions.

However, due to the combined competition effect, it is not obvious that the buyer profits
from this cost reduction. Suppose that suppliers 1 and 3 merge to one player with costs
(5, 7). Then, the production costs of the combinatorial auction would remain 11, but the
payment would increase to 7 + 8 = 15, the same as for the separate auctions. This shows
that in some cases the suppliers are able to claim the whole cost reduction, leaving the
buyer with no benefit at all.

In Example 2.3.2 we have shown that Theorem 3.2.1 does not hold, in general, in
the capacitated case. In that example none of the suppliers has capacity over multiple
periods, so there is no joint capacity effect. Consequently, the transformation effect has
a net negative influence on the buyer’s procurement costs.

3.3 Capacitated case

So far we have seen that the buyer always prefers the combinatorial auction to the se-
ries of separate ones in the uncapacitated case. However, Example 2.3.2 showed that
separate auctions might be cheaper in the capacitated setting, even in the absence of
setup costs. In this section we will have a closer look at the capacitated case. In Section
3.3.1 we consider a two-period problem with the same setup costs and the same inven-
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tory holding costs across all the suppliers. First, we delimit a set of problem instances
for which the combinatorial auction is never more expensive than the separate auctions.
Second, we show for uniform, identical and independent probability distributions of the
production costs that in expectation the combinatorial auction is at most as expensive
as a series of separate auctions.

The setting we consider is related to the work of Elmaghraby [11]. She considers
two sequential procurement auctions for procurement of two (identical) items. The
auctions have two types of bidders: global bidders that have capacity to produce both
items, and small bidders that only have capacity for producing one item. It is assumed
that all producers face the same fixed setup cost, but differ in their variable production
cost and capacity. So global bidders may have economies of scale. In this setting El-
maghraby shows that the commonly held belief that increasing the number of bidders
makes an auction more competitive’ does not always hold: Adding small bidders to
an auction with only global bidders may in some cases increase expected procurement
costs. An increase in costs typically occurs when the small bidders have relatively high
production costs, and hence do not win the auctions, but their presence results in the
global bidders inflating their bids. Compared to our setting, Elmaghraby [11] applies
a series of auctions to procure a single-period demand, where we introduce a multi-
period setting and the possibility of inventories. Furthermore, Elmaghraby examines
the influence of the bidder population, where we focus on the auction format that can
be applied.

Like Elmaghraby [11], in the following we will assume that all bidders have the
same setup cost. Moreover, we will also assume that all bidders face the same in-
ventory holding costs. Slagmulder et al. [47, 48] described the case of UK’s retailing
group Sainsbury’s. Sainsbury’s has a network of primary consolidation centres, which
are shared-user storage warehouses. Stocks are consolidated between suppliers, but re-
main the supplier’s property until the goods are delivered at Sainsbury’s. This approach
results in inventory holding costs that are the same for all suppliers.

3.3.1 A two-period problem

In this section we consider the following scenario for the capacitated case. We assume

• T = 2,

• D = (1, 1),

• hs = h, for all s ∈ S,
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• fst = ft, for all s ∈ S and all t = 1, . . . , T .

(We may observe that the problem instance described in Example 2.3.2 fulfills these
conditions.) Let x be an instance of this problem, i.e. being an array of all its parameters.
Let πC(x) denote the procurement costs if the combinatorial auction is applied on x,
and πS(x) the total procurement costs if separate auctions are applied on x. Recall from
equation (2.1) that πC(x) boils down to

CS\{s1} + CS\{s2} − CS (3.2)

if there are two winners s1 and s2, and to

CS\{s1} (3.3)

if there is only one winner s1. Without loss of generality we assume in the following
that s1 is the winner of (at least) D1, implying that s2 denotes the winner of D2 if there
is a second winner.

In the following, we will derive conditions under which the combinatorial auction
is at least as good as the series of separate separate ones. As we will see, this depends
on the timing of production, the capacity of the winning suppliers, and the number of
winners.

Proposition 3.3.1 We have that πC(x) ≤ πS(x) in the following cases:

(i) the combinatorial auction has one winner, or

(ii) the combinatorial auction has two winners, where the second winner produces in the
second period, or

(iii) the combinatorial auction has two winners, both producing in the first period, where
the second winner has no capacity restrictions in this period.

Proof:
From (2.5), we know that the total procurement cost for the two separate auctions is
equal to (f1 + p·1)

(2) + (f2 + p·2)
(2). Moreover, we know that for any n ≥ 1, (f1 + p·1)

(n) is
an upper bound on the total production costs faced when producing Dt in period t. We
treat the three cases separately:

Part (i): Recall that the combinatorial auction payment for a single winner s1 is equal
to CS\{s1}. Excluding this single winner means that either the capacity corresponding to
(f1 + p·1)

(1) or (f1 + p·1)
(2), and the capacity corresponding to (f2 + p·2)

(1) or (f2 + p·2)
(2)

is still available. This means that CS\{s1} ≤ (f1 + p·1)
(2) + (f2 + p·2)

(2).
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Part (ii): In this case D1 is produced by the cheapest supplier in period 1 and D2

is produced by the cheapest supplier in period 2. Therefore, the production plan is the
same as for the series of separate auctions. Consequently, we can apply Proposition
2.3.5, which yields the desired result.

Part (iii): Recall that in this case D2 is produced in period 1, then we have:

CS = (f1 + p·1)
(1) + (f1 + p·1)

(2) + h,

CS\{s1} ≤ 2(f1 + p·1)
(2) + h since s2 has no capacity restrictions in period 1, and

CS\{s2} ≤ (f1 + p·1)
(1) + mins 6=s2(f2 + ps2).

Using (3.2), the total payment in the combinatorial auction is equal to

(f1 + p·1)
(2) + min

s 6=s2

(f2 + ps2) ≤ (f1 + p·1)
(2) + (f2 + p·2)

(2).

Concluding, in all three cases the combinatorial auction is at least as good as the two
separate auctions. 2

Note that the same prove can be given for supplier-dependent setup costs. So, Proposi-
tion 3.3.1 also holds for general setup costs.

Corollary 3.3.2 Whenever the best and second best suppliers in period 1 have jointly a
total capacity in period 1 that is at least 3, or the combinatorial auction has exactly one
winner, we have πC(x) ≤ πS(x).

Proof:
If the combinatorial auction has exactly one winner, we have an instance of case (i) of
Proposition 3.3.1. Otherwise, D2 will be produced in period 2 and we have an instance
of case (ii) of the same proposition, or D2 will be produced in period 1 and we have an
instance of case (iii). 2

In the following, we assume that the production costs are independent and identically-
distributed (i.i.d.) random variables and follow a uniform distribution on the interval
[a, b]. So we may see any instance x as an observation of a random vector X. We show
in Theorem 3.3.3 that the expected total payment by the buyer in the combinatorial
auction is no greater than the sum of the buyer’s expected payments in the two different
separate auctions. The proof of this theorem is given in section 3.3.2.

Theorem 3.3.3 Suppose that the production costs are i.i.d. random variables that have a
uniform distribution on the interval [a, b]. Then

E(πC(X)) ≤ E(πS(X)).
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3.3.2 Proof of nonnegative expected savings

In this section we first present the different preliminary results that are needed for the
proof of Theorem 3.3.3. In section 3.3.2.1 we have a result that allows us to restrict
ourselves to the case with zero setup costs. In section 3.3.2.2 we delimit different
regions of the (random) parameter values, and derive lower bounds on the savings of
the combinatorial auction compared to the series of separate auctions. Section 3.3.2.3
presents the density functions of order statistics, and a result on density functions that
are monotone. Finally, using these results, we prove Theorem 3.3.3 in section 3.3.2.4.

3.3.2.1 Setup costs

In this section we show a result that allows us to prove Theorem 3.3.3 only for problem
cases with zero setup costs. The idea is that we link a problem instance with positive
setups to an instance without setups, denoted by x and x̃ respectively, and show that
πS(x) − πC(x) ≥ πS(x̃) − πC(x̃), i.e. the buyer’s savings are the worst for the instance
without setups.

In the following the parameters and the cost functions of instance x̃ are marked by
a tilde. Instance x̃ is the same problem instance as x, but with f̃ = 0 and p̃st ≡ f + pst,
so in comparison the setup costs have to be paid for any unit of production. In the
following theorem we link the auction payments of x and x̃.

Theorem 3.3.4 πC(x) ≤ πC(x̃) and πS(x) = πS(x̃).

Proof:
Recall that the payments for the separate auctions and the combinatorial auctions are
given in (2.5), and (3.2) or (3.3). The second part of the theorem follows from the fact
that no economies of scale can be attained in the separate auctions as D = (1, 1) and
no inventory can be held. Note that for any set of players K ⊆ S we have CK ≤ C̃K. We
consider three cases:

Case A CS has two winners.

Case B CS has one winner, who is also a winner in C̃S .

Case C CS has one winner, who is not a winner in C̃S .
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3.3 – Capacitated case

Case A In this case no economies of scale are attained, which means that CS = C̃S ,
having the same set of winners. Comparing the total payments gives:

C̃S\{s1} + C̃S\{s2} − C̃S −
[
CS\{s1} + CS\{s2} − CS

]
= (C̃S\{s1} − CS\{s1}) + (C̃S\{s2} − CS\{s2}) + 0

≥ 0.

Case B Let s1 be the unique winner in CS , such that he is also a winner in C̃S . If there
is no other winner in C̃S , a comparison of payments gives:

C̃S\{s1} − CS\{s1} ≥ 0.

If there is another winner, called s2, in C̃S , a comparison of payments gives:

C̃S\{s1} + C̃S\{s2} − C̃S − CS\{s1} ≥ 0,

where the inequality holds as both C̃S\{s2} − C̃S ≥ 0 and C̃S\{s1} − CS\{s1} ≥ 0.

Case C Let s3 be the winner in CS . If there is only one winner s1 in C̃S , a comparison
of payments gives:

C̃S\{s1} − CS\{s3} ≥ 0,

where the inequality follows from C̃S\{s1} ≥ C̃S = C̃S\{s3} ≥ CS\{s3}. If there are two
winners s1 and s2 in C̃S , we have for the same reason, together with C̃S\{s2} − C̃S ≥ 0:

C̃S\{s1} + C̃S\{s2} − C̃S − CS\{s3} ≥ 0.

We conclude that πC(x) ≤ πC(x̃), and the desired result follows. 2

In section 3.3.2.4 we show that E(πC(X)) ≤ E(πS(X)) for the case without setups.
Then, it follows from Theorem 3.3.4 that introducing setup costs, i.e. giving a reduction
for the second unit produced, gives an even better result.

3.3.2.2 Lower bounds

In this section we derive lower bounds on the savings from using the combinatorial
auction instead of a series of separate auctions. For reasons that will become clear in
section 3.3.2.4, we only consider the case where

• we have two winners in the combinatorial auction, s1 and s2, and
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• the cheapest and the second cheapest suppliers in period 1 have a capacity equal
to 1 in period 1.

These lower bounds depend on the (random) values of the ordered unit production
costs of the suppliers. More precisely, the payments of the combinatorial auction with
zero setup costs depend on the values

r ≡ p
(2)
1 + h,

q ≡ p
(3)
1 + h,

u ≡ p
(1)
2 , and

v ≡ p
(2)
2 ,

where p
(i)
t is the i-th lowest unit production cost in period t. By definition we have u ≤ v

and r ≤ q. Define the following five regions in the space of u and v, see Figure 3.1:

(S1) q ≤ v and q ≤ u,

(S2) r ≤ u ≤ v ≤ q,

(S3) r ≤ u ≤ q ≤ v,

(S4) u ≤ r ≤ v, where v can either be smaller or larger than q,

(S5) v ≤ r.

a r q b

a

r

q

b

S5

S4 S3 S1

S2

v

u

Figure 3.1: Regions (S1) to (S5)
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3.3 – Capacitated case

(Note that unlike Figure 3.1, r and q may be larger than b.) For these five regions we
can find (upper bounds on) the combinatorial payments, and therefore (lower bounds
for) the (possibly negative) savings of the payments of the combinatorial auction with
respect to the total payments of the two separate auctions, i.e. πS(x)− πC(x).

Lemma 3.3.5 For f = 0 we have that

πS(x)− πC(x) ≥



v − q + r − q if x ∈ (S1)

r − u if x ∈ (S2)

r − u + v − q if x ∈ (S3)

v − r if x ∈ (S4)

0 if x ∈ (S5).

Proof:
Note that because the setup costs are equal to zero, we have πS(x) = p

(2)
1 + p

(2)
2 .

Region (S1) We have that s1 and s2 will produce all demand in period 1, and also
without one of these players, D2 is still produced in period 1. Therefore,

CS = p
(1)
1 + p

(2)
1 + h,

CS\{s1} = p
(2)
1 + p

(3)
1 + h,

CS\{s2} = p
(1)
1 + p

(3)
1 + h.

Using (3.2), we get πC(x) = 2p
(3)
1 +h, and πS(x)−πC(x) = p

(2)
1 + p

(2)
2 − 2p

(3)
1 −h =

v − q + r − q.

Region (S2) Again s1 and s2 will produce all demand in period 1, but when one of
these players is not available, D2 will be produced in period 2. In this case,

CS = p
(1)
1 + p

(2)
1 + h,

CS\{s1} = p
(2)
1 + min

s 6=s1

ps2,

CS\{s2} = p
(1)
1 + min

s 6=s2

ps2.

We may observe that

min
s 6=s1

ps2 + min
s 6=s2

ps2 ≤ p
(1)
2 + p

(2)
2 ,

which means that πC(x) is at most p
(1)
2 + p

(2)
2 − h and savings are at least p

(2)
1 +

p
(2)
2 − p

(1)
2 − p

(2)
2 + h = r − u.
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Region (S3) Again s1 and s2 will produce all demand in period 1, but now the produc-
tion timing of D2 is not known in advance. We then have

CS = p
(1)
1 + p

(2)
1 + h,

CS\{s1} = p
(2)
1 + min{p(3)

1 + h, min
s 6=s1

ps2},

CS\{s2} = p
(1)
1 + min{p(3)

1 + h, min
s 6=s2

ps2}.

At least one of the minima mins 6=s1 ps2 and mins 6=s2 ps2 equals p
(1)
2 , which is smaller

than p
(3)
1 + h. We conclude that πC(x) is at most p

(1)
2 + p

(3)
1 , and savings are at least

p
(2)
1 + p

(2)
2 − p

(1)
2 − p

(3)
1 = r − u + v − q.

Region (S4) In this case each demand is produced by the cheapest supplier in each
period, but without s2 demand D2 will be produced in period 1. Therefore,

CS = p
(1)
1 + p

(1)
2 ,

CS\{s1} = p
(2)
1 + p

(1)
2 ,

CS\{s2} = p
(1)
1 + p

(2)
1 + h.

We have πC(x) = 2p
(2)
1 +h, and savings of p

(2)
1 + p

(2)
2 − 2p

(2)
1 −h = v− r. (Note that

we already know from Proposition 3.3.1 that the savings are nonnegative. As said
before, we still consider this case to compensate for possible losses from regions
(S1), (S2) and (S3).)

Region (S5) Again each demand is produced by the cheapest supplier in each period,
but the timing does not change for the cases with one player less. Therefore,

CS = p
(1)
1 + p

(1)
2 ,

CS\{s1} = p
(2)
1 + p

(1)
2 ,

CS\{s2} = p
(1)
1 + p

(2)
2 .

This gives πC(x) = p
(2)
1 + p

(2)
2 , the same as πS(x), thus the savings are equal to

zero.

2
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3.3.2.3 Density functions

As we have seen, the payments in the two auctions are defined by the cheapest supplier
in period 2, the second cheapest suppliers in period 1 and 2, and the third cheapest
supplier in period 1. When the production costs are randomly generated, we need to
use the corresponding order statistics. In the proof of Theorem 3.3.3 we make use of
the density function of a pair of order statistics. Let {Yi}n

i=1 be i.i.d. random variables
with density function f and distribution function F . According to Rohatgi and Ehsanes
Saleh [43, page 175], we have the following formula for the joint distribution of order
statistics Y(j), Y(k), where 1 ≤ j < k ≤ n:

gjk(yj, yk|n) = n!
F j−1(yj)[F (yk)− F (yj)]

k−j−1[1− F (yk)]
n−k

(j − 1)!(k − j − 1)!(n− k)!
f(yj)f(yk) (3.4)

if yj < yk, and zero otherwise.

We will show that the expected lower bound on the savings found in Lemma 3.3.5 is
always nonnegative, giving the desired result. To calculate this expected value, we need
the joint density functions of (p

(2)
1 , p

(3)
1 ) and (p

(1)
2 , p

(2)
2 ), which are mutual independent.

Let n1 ≥ 3 be the number of suppliers having capacity in period 1, and n2 ≥ 2 the
number of suppliers having capacity in period 2. From (3.4), we have that

g12(u, v|n2) =
n2(n2 − 1)

(b− a)n2
(b− v)n2−2,

if a ≤ u < v ≤ b, and zero otherwise, and

g23(r − h, q − h|n1) =
n1!

(n1 − 3)!(b− a)n1
(r − h− a)(b− q + h)n1−3,

if a + h ≤ r < q ≤ b + h, and zero otherwise, where we used F (x) = x−a
b−a

and f(x) =
1

b−a
. For ease of notation, define g12(v|n2) ≡ n2(n2−1)

(b−a)n2
(b − v)n2−2 as this expression is

independent of u.

We will use the following observation in the proof of Theorem 3.3.3.

Observation 3.3.6 Within each period all the suppliers have the same probability to be
the i-th cheapest one. This is a consequence of the production costs being i.i.d. random
variables. It follows that the distribution function of p

(i)
t equals the distribution function of

p
(i)
t |si=s, where si denotes the the identity of the i-th cheapest supplier. Furthermore, the

similar relation holds for the joint distribution functions.

Furthermore, in the proof of Theorem 3.3.3 we use the following property.
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Proposition 3.3.7 Let X be a random variable with continuous and monotone decreas-
ing density function f(x), and R(x) a decreasing function over the possible values of X.
Furthermore, let A be the average value of f(x) over the interval [l, u], i.e.

∫ u

l
f(x)dx =

A(u− l). Then ∫ u

l

R(x)f(x)dx ≥
∫ u

l

R(x)Adx.

Proof:
Let x∗ ∈ [l, u] be such that f(x∗) = A, which is well-defined as f(·) is monotone and
continuous. Then we know that f(x)− A ≥ 0 for x ≤ x∗, and f(x)− A ≤ 0 for x ≥ x∗.
We have:∫ u

l

R(x)f(x)dx

=

∫ u

l

R(x)Adx +

∫ u

l

R(x)(f(x)− A)dx

=

∫ u

l

R(x)Adx +

∫ x∗

l

R(x)(f(x)− A)dx +

∫ u

x∗
R(x)(f(x)− A)dx

≥
∫ u

l

R(x)Adx +

∫ x∗

l

R(x∗)(f(x)− A)dx +

∫ u

x∗
R(x∗)(f(x)− A)dx

=

∫ u

l

R(x)Adx + R(x∗)

∫ u

l

(f(x)− A)dx

=

∫ u

l

R(x)Adx,

where the inequality follows from R(x) being a decreasing function and from the sign
of f(x)− A in the respective intervals. 2

3.3.2.4 Proof of Theorem 3.3.3

In this section we recall Theorem 3.3.3 and give its proof.

Theorem 3.3.3 Suppose that the production costs are i.i.d. and uniformly distributed.
Then

E(πC(X)) ≤ E(πS(X)).

Proof:
Let Ψ1 be the set of all instances fulfilling the condition of Corollary 3.3.2. Note that
this subset contains all instances having one winner that produces both units of demand
in the first period. Furthermore, let Ψ2 be the set of all other instances having only one
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winner, which is part of case (i) of Proposition 3.3.1. We know for all x ∈ Ψ ≡ Ψ1 ∪Ψ2

that πC(x)) ≤ πS(x). So it is sufficient to prove E(πC(X)|x 6∈ Ψ) ≤ E(πS(X)|x 6∈ Ψ).
(Notice that we proved πC(x)) ≤ πS(x) for more cases than Ψ, but these will be used
in the calculation of the expected values to compensate for possible losses from other
cases.)

Both Ψ1 and Ψ2 can be defined in terms of the identities of the suppliers correspond-
ing to the order statistics. Ψ1 links all combinations of two suppliers having at least
capacity 3 in the first period to p

(1)
1 and p

(2)
1 . Ψ2 links the cheapest supplier in period

1 to p
(1)
2 . So, using Observation 3.3.6, the conditional distribution functions for the or-

der statistics, for all cases outside these subsets, equals the unconditional distribution.
Therefore, in the following we may leave out the condition on X.

We prove that the expected (lower bounds on the) savings are nonnegative for any
given value of v = p

(2)
2 . We distinguish three cases:

Case 1 q ≤ v ≤ b,

Case 2 r ≤ v ≤ q, and

Case 3 a ≤ v ≤ r.

Let LSi(r, q, v) denote the expected (lower bound on) savings for region i and fixed
values (r, q, v). These are respectively:

LS1(r, q, v) =

∫ v

q

(v − q + r − q)g12(u, v|n2)du = g12(v|n2)(v − q) (v − q + r − q)

LS2(r, q, v) =

∫ v

r

−(u− r)g12(u, v|n2)du =
−g12(v|n2)

2
(v − r)2

LS3(r, q, v) =

∫ q

r

(r − u + v − q)g12(u, v|n2)du = g12(v|n2)

(
(q − r)(v − q)− (q − r)2

2

)
LS4(r, q, v) =

∫ r

a

(v − r)g12(u, v|n2)du = g12(v|n2)(r − a)(v − r)

LS5(r, q, v) = 0.

Case 1 For such a value of v, we can see that u ranges over the regions (S1), (S3),
and (S4), see Figure 3.1. So, we have to add up LS1(r, q, v), LS3(r, q, v) and LS4(r, q, v).
This equals

R(r, q, v) ≡ g12(v|n2)

(
(v − q)2 − (q − r)2

2
+ (r − a)(v − r)

)
.
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Our aim is to show that expected value of R(r, q, v) is nonnegative. Let A(r) be a
constant depending on the value of r such that for A(r) it holds that∫ v

r

A(r)dq =

∫ v

r

g23(r − h, q − h|n1)dq. (3.5)

The function R(r, q, v) is decreasing in q for r ≤ q ≤ v. The same holds for g23(r− h, q−
h|n1) for the relevant values of q ≤ b+h, while A(r) is constant in q, but has on average
the same value as g23(r − h, q − h|n1), over the domain [r, v], see (3.5). Therefore, we
can apply Proposition 3.3.7:∫ v

r

R(r, q, v)g23(r − h, q − h|n1)dq

≥
∫ v

r

R(r, q, v)A(r)dq

≥ g12(v|n2)A(r)

∫ v

r

(
(v − q)2 − (q − r)2

2
+ (r − a)(v − r)

)
dq

= g12(v|n2)A(r)

[
−(v − q)3

3
− (q − r)3

6
+ (r − a)(v − r)q

]v

r

= g12(v|n2)A(r)

(
(v − r)3

3
− (v − r)3

6
+ (r − a)(v − r)2

)
,

which is nonnegative for v ≥ r.

Case 2 For such a value of v, u ranges over the regions (S2) and (S4), see Figure 3.1.
We have to add up LS2(r, q, v) and LS4(r, q, v). This equals
g12(v|n2)

(
−1

2
(v − r)2 + (r − a)(v − r)

)
, which we denote by R(v, r). Observe that, for a

given v,

• R(v, r) is a concave parabolic function of r,

• with roots 2a+v
3

and v, and

• has its maximum at a+2v
3

.

So, R(v, r) is negative for r ∈
[
a + h, 2a+v

3

)
and positive for r ∈

(
2a+v

3
, v
)
, see Figure

3.2. Again, our aim is to show that the expected value of R(v, r) is nonnegative. We
will show that for any fixed value of v in Case 2, the expected value of R(v, r) over r is
nonnegative. Note that as r ranges from a + h to v, we have that if a + h ≥ 2a+v

3
the

function itself is nonnegative over the whole range, and so is the expected value.
Now assume that a+h ≤ 2a+v

3
. Let A(q) be a constant depending on q such that it holds

that ∫ v

a+h

A(q)dr =

∫ v

a+h

g23(r − h, q − h|n1)dr.
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R(v,r)

r

2a+v
3 va

a+2v
3

0

Figure 3.2: The function R(v, r)

Observe that for given q, g23(r−h, q−h) is linearly increasing in r, while A(q) is constant
in r. Moreover, on the interval [a + h, v] the two functions intersect at a+h+v

2
≥ 2a+v

3
.

Now compare g23(r − h, q − h|n1) and A(q) for fixed q:

• For r ∈
[
a, 2a+v

3

]
we have that A(q) ≥ g23(r − h, q − h) while R(v, r) ≤ 0.

• For r ∈
[

2a+v
3

, v
]

we have that R(v, r) ≥ 0 and
∫ v

2a+v
3

g23(r − h, q − h)dr ≥ A(q), i.e.

on the interval
[

2a+v
3

, v
]

the average value of g23(r− h, q− h|n1) is at least as large
as (the average value of) the constant A(q). Observe that as R(v, r) is a symmetric
function on

[
2a+v

3
, v
]
, an integral with a linear weight function has the same value

as an integral weighted by the average of this function.

So we may conclude that using A(q) instead of g23(r − h, q − h|n1) gives a lower bound
for the expected value of R(v, r). Using that R(v, r) is also negative for r ≤ (a + h), and
using a substitution λ = r−a

v−a
and (1− λ) = v−r

v−a
we get the following lower bound:

g12(v|n2)

∫ v

a+h

(
−1

2
(v − r)2 + (r − a)(v − r)

)
g23(r − h, q − h|n1)dr

≥ g12(v|n2)

∫ v

a+h

(
−1

2
(v − r)2 + (r − a)(v − r)

)
A(q)dr

= g12(v|n2)A(q)

∫ v

a+h

(
−1

2
(v − r)2 + (r − a)(v − r)

)
dr

≥ g12(v|n2)A(q)

∫ v

a

(
−1

2
(v − r)2 + (r − a)(v − r)

)
dr

= g12(v|n2)A(q)(v − a)2

∫ 1

0

(
−1

2
(1− λ)2 + λ(1− λ)

)
dλ

= g12(v|n2)A(q)(v − a)2

∫ 1

0

(
−3

2
λ2 + 2λ− 1

2

)
dλ

= g12(v|n2)A(q)(v − a)2

[
−1

2
λ3 + λ2 − 1

2
λ

]1

0
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= 0.

Case 3 Here we only have the savings from region (S5), see Figure 3.1, which are
zero. 2
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Chapter 4

Combinatorial Auction versus Stock
Auction

4.1 Introduction

In this chapter we compare the combinatorial auction and the stock auction. The stock
auction allows suppliers to achieve economies of scale, but gives no flexibility in pro-
duction timing. The combinatorial auction gives this flexibility and therefore decreases
production costs compared to the stock auction. So, as in the case of the separate auc-
tions in chapter 3, it seems to be intuitive that the buyer prefers to use the combinatorial
auction as this allows the suppliers to produce at lower costs. However, from Example
2.3.3 we know that, to the contrary, there are cases in which the buyer will be worse off
using a combinatorial auction. As said in the previous chapter, this somewhat counter-
intuitive result is reminiscent of the well-known result of Hart [22], who considers the
consequences in a market structure of permitting trades that were previously prohib-
ited, where “our intuition tells us that the introduction of additional markets ought to
make people better off,” but provides an example in which this is not the case.

Similar to the analysis in the previous chapter, there are different effects that inter-
fere. First we have the effect of increasing supplier production efficiency, as the combi-
natorial auction will allow each supplier to use capacity in different periods where the
stock auction restricts the suppliers to production in the first period. One part of this
effect is the use of cheaper production capacity, another part is the change in inventory
levels and in the players that are holding inventory. The second effect is the change in
the relative importance (or power) of the suppliers. The combinatorial auction enables
suppliers to use the capacities not only of the first period but also of the other periods.
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As the (relative) costs of the suppliers may differ over the periods, this also means that
suppliers that are cheap in the first period, may be expensive in the other periods giving
them a weaker position if the combinatorial auction is used instead of the stock auction.

As suppliers may use the capacities from other periods in which they may be able
to produce at possibly lower or higher costs, their order of importance might change.
Unlike the effect of production efficiency, this might as well be advantageous as disad-
vantageous for the buyer.

The two effects can easily be linked to the VCG formula of the procurement costs of
the stock auction. Recall formula (2.6):

πI = CI
S +

∑
s∈S

(CI
S\{s} − CI

S) +
T∑

t=2

(t− 1)HDt.

The efficiency effect corresponds to the change in the first and last term, CI
S and∑T

t=2(t − 1)HDt. The effect in change in power corresponds to the change in the
marginal products of the suppliers, i.e.

∑
s∈S(CI

S\{s} − CI
S).

In section 4.2 we show that a key factor in making an example like Example 2.3.3
is supplier production capacity. We prove that, when suppliers are not restricted by
capacities, the buyer will always do at least as well in the combinatorial auction as
compared to the stock auction, i.e., it will not increase its total cost and might lower it.
(Again, there is the analogy with Hart [22], where Hart points out that if enough new
markets are opened to make the market structure complete, then his counter-intuitive
result cannot occur.)

In section 4.3 we delimit for two-period setting some capacitated cases for which the
combinatorial auction is the cheapest solution for the buyer. Thereafter, we show two
different lower bounds on the possible loss of using the combinatorial auction instead
of the stock auction.

4.2 Uncapacitated case

In this section we assume that the capacities of the suppliers are not binding, i.e. Rst ≥∑T
τ=t Dτ , for all t ∈ {1, . . . , T} and s ∈ S. Moreover, fst = ft, for all s ∈ S and all

t ∈ {1, . . . , T}. Under this scenario, we can show that the combinatorial auction results
in a cost to the buyer that is less than or equal to that which would result under the
stock auction.

Theorem 4.2.1 If the capacities are not binding, we have πC ≤ πI .
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Proof:
Consider the optimal allocation of the combinatorial auction and let Ts ⊆ {1, . . . , T}
be the index set of demands won by s ∈ S and Cs

S is the costs of supplier s when
delivering these demands, i.e., CS =

∑
s∈S Cs

S . Recall that p
(i)
t denotes the i-th lowest

unit production cost in period t.

As the capacities are not binding, we know that the stock auction has only one
winner. Moreover, because the setup costs are the same for all suppliers, the winner of
the stock auction will be the one with the cheapest unit production costs in period 1.
This supplier will obviously be also the winner for demand D1 (and maybe others) in
the combinatorial auction. Finally the payments of the stock auction will be determined
by the supplier with the second cheapest unit production costs in period 1. Therefore,

πI − πC = CI
S\{s1} +

T∑
t=2

(t− 1)HDt −

[
CS +

∑
s∈S

(CS\{s} − CS)

]

= f1 + p
(2)
1

T∑
t=1

Dt +
T∑

t=2

(t− 1)HDt −

[
CS +

∑
s∈S

(CS\{s} − CS)

]

= f1 +
∑
s∈S

∑
t∈Ts

(p
(2)
1 + (t− 1)H)Dt −

[∑
s∈S

Cs
S +

∑
s∈S

(CS\{s} − CS)

]

= f1 +
∑
s∈S

[∑
t∈Ts

(p
(2)
1 + (t− 1)H)Dt + (CS − Cs

S)− CS\{s})

]
.

To show the desired inequality it is enough to prove that

f1 +
∑
t∈Ts1

(p
(2)
1 + (t− 1)H)Dt + (CS − Cs1

S ) ≥ CS\{s1}, and (4.1)

∑
t∈Ts

(p
(2)
1 +

t−1∑
τ=1

hτ )Dt + (CS − Cs
S) ≥ CS\{s}, s ∈ S \ {s1}, (4.2)

where s1 is the winning supplier for D1 in the combinatorial auction. Note that if s is
not a winner that Ts = Ø, Cs

S = 0 and CS\{s} = CS , which reduces (4.2) to CS ≥ CS ,
which holds trivially. Therefore, we may assume that s is a winning supplier in the
combinatorial auction. For any winning supplier s we can easily find an upper bound
for CS\{s} as follows: For the suppliers in S \ {s} we just use the production plan from
CS , which part of the production plan has cost CS − Cs

S . Furthermore, we need a
feasible reallocation of the demand that was assigned to s: Inequality (4.1) holds by
observing that s1 is the cheapest supplier in period 1, therefore in the absence of s1

the demands allocated to s1 can be produced by the second cheapest supplier in pe-
riod 1. To show inequality (4.2), we may observe that s1 ∈ S \ {s} and therefore
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s1 can produce the demands assigned to s incurring additional costs that sum up to∑
t∈Ts

(p
(1)
1 + (t− 1)H)Dt ≤

∑
t∈Ts

(p
(2)
1 + (t− 1)H)Dt. Note that here we do not have to

add an additional setup cost as we know that supplier s1 already produces some other
demands. We can conclude that both inequalities hold, and therefore the desired result
follows. 2

In Example 2.3.3 we have shown that Theorem 4.2.1 does not hold, in general, in
the capacitated case. However, for a two-period case, we can bound the possible loss
from using the combinatorial auction instead of the stock auction. In section 4.3.2 we
show that the possible loss can be bounded by one setup cost. In section 4.3.3 we show
that the loss is also limited by the difference in unit production costs of the best two
suppliers, i.e. the more competition between suppliers, the less risk we bear from using
the combinatorial auction.

4.3 Capacitated case

So far we have seen that the buyer always prefers the combinatorial auction over the
stock auction in the uncapacitated case. However, Example 2.3.3 showed that the stock
auction might be cheaper in the capacitated setting. In this section we will have a closer
look at the capacitated case by considering a two-period scenario with the same setup
costs and the same inventory holding costs across all the suppliers.

First, we delimit a set of problem instances for which the combinatorial auction
is never more expensive than the stock auction. Second, we show a lower bound on
the savings, which show that the stock auction can only be better by one setup cost.
Finally, we define a lower bound on the savings that reflects the competition in the
stock auction.

4.3.1 A two-period problem

In the rest of this section, we assume that

• T = 2,

• hs = h, for all s ∈ S,

• fst = f , for all s ∈ S and all t = 1, . . . , T .
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Note that the problem instance described in Example 2.3.3 fulfills these conditions. The
setting is similar to the setting in section 3.3.1 but here we handle a general demand
vector D and stationary setup costs. We need a further specification in our notation for
unit production costs. Denote by p

(i)
t |α the i-th cheapest unit production costs among

all those suppliers who have enough capacity to produce α units in period t. Recall that
from equation (2.1) it follows that the VCG payment in the combinatorial auction boils
down to CS\{s1} + CS\{s2}−CS if there are two winners s1 and s2, and to CS\{s1} if there
is only one winner s1. For any number of winners, we assume that s1 is the winner of (at
least) D1. Similar expressions hold for the stock auction, where the costs are indicated
with an index I and the winners are denoted by w1 and w2. Since in the stock auction
the buyer holds inventory, the total procurement costs are

πI =

{
CI
S\{w1} + CI

S\{w2} − CI
S + HD2 for two winners

CI
S\{w1} + HD2 for one winner.

In the following, we present a couple of remarks that will be used when showing the
relationship between πC and πI . First, the combinatorial auction has a choice between
producing all demand in period 1 and producing demand just-in-time. If all demand is
produced in the first period the production plan is the same as in the stock auction as a
consequence of the cost minimizing property of the VCG mechanism. (Note, however,
that the inventories are hold at different levels at possibly different costs.) The other
way around we have:

Remark 4.3.1 Whenever the optimal allocation of the combinatorial auction differs from
the stock auction, we know that the combinatorial auction produces D2 in period 2.

When the stock auction has two winners we have that D1 is produced at a unit cost of
p

(2)
1 |D1 when D1 < D2 and p

(1)
1 |D1 = p

(1)
1 |D2 , or at a unit cost of p

(1)
1 |D1, otherwise. As a

consequence the following remark holds:

Remark 4.3.2 If the stock auction has two winners, the cheapest supplier among all those
who can produce D1 in period 1 is one of the winners in the stock auction.

Finally, there is a straightforward bound for the marginal contribution of the two win-
ning suppliers.

Remark 4.3.3 When the combinatorial auction has two winners where s2 produces D2 in
period 2, we have:

CS\{st} − CS ≤ (p
(2)
t |Dt − p

(1)
t |Dt)Dt for t = 1, 2.
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Now we derive conditions under which the combinatorial auction is at least as good
as the stock auction, depending on the number of winners in both auctions.

Proposition 4.3.4 We have that πC ≤ πI in the following cases:

(i) the combinatorial auction has one winner, or

(ii) the combinatorial auction has two winners, while the stock auction has only one
winner and w1 = s1, or

(iii) both auctions have two winners and their optimal allocations are the same.

Proof:
Part (i): First suppose that the stock auction has also exactly one winner, then the
savings can be written as

πI − πC = CI
S\{w1} + HD2 − CS\{s1}

≥ CI
S\{w1} + HD2 − (CI

S\{s1} + HD2)

= CI
S\{w1} − CI

S\{s1},

where we use the fact that all allocations in the stock auction are also feasible for the
combinatorial auction. Now it is easy to see that CI

S\{w1} − CI
S\{s1} is a nonnegative

number. If s1 = w1, then this difference is equal to zero. Otherwise, CI
S\{s1} = CI

S ,
since the winner of the stock auction w1 belongs to the set S \ {s1}, implying that
CI
S\{w1} − CI

S\{s1} ≥ 0.

Now suppose that the stock auction has two winners. Because the allocations do not
coincide, we know from Remark 4.3.1 that the combinatorial auction produces demand
D2 in period 2, and therefore, D1 is made by the cheapest supplier that can produce D1.
Now, using Remark 4.3.2, we conclude that either s1 = w1 or s1 = w2. Without loss of
generality assume that s1 = w1. We have that under this assumption the savings can be
written as

πI − πC = CI
S\{w1} + CI

S\{w2} − CI
S + HD2 − CS\{s1}

= CI
S\{s1} + CI

S\{w2} − CI
S + HD2 − CS\{s1}

= (CI
S\{s1} + HD2 − CS\{s1}) + (CI

S\{w2} − CI
S),

which is nonnegative since both terms in the summation are nonnegative.

Part (ii): From Remark 4.3.1 we know that s2 produces D2 in period 2. As a
consequence s1 is the cheapest supplier that can supply D1, and as w1 = s1 we have
p

(1)
1 |D1 = p

(1)
1 |D1+D2.
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The expression of the savings is equal to

πI − πC = CI
S\{s1} + HD2 − CS\{s1} − CS\{s2} + CS

= (CI
S\{s1} + HD2 − CS\{s2}) + (CS − CS\{s1}).

By Remark 4.3.3 we know that CS\{s1} − CS ≤ (p
(2)
1 |D1 − p

(1)
1 |D1)D1. Therefore, it is

sufficient to show that

CI
S\{s1} + HD2 − CS\{s2} ≥ (p

(2)
1 |D1 − p

(1)
1 |D1)D1. (4.3)

Note that CS\{s2} ≤ CI
S\{s2} + HD2 = CI

S + HD2, where the equality holds as w1 belongs

to S \ {s2}. Moreover, CI
S = f + p

(1)
1 |D1+D2(D1 + D2), as there is only one winner. So

(4.3) is implied by

CI
S\{s1} − (f + p

(1)
1 |D1+D2(D1 + D2)) ≥ (p

(2)
1 |D1 − p

(1)
1 |D1)D1. (4.4)

We distinguish two cases depending on the value of p
(1)
1 |D2.

First suppose that p
(1)
1 |D2 = p

(1)
1 |D1 = p

(1)
1 |D1+D2. Then we may observe that:

CI
S\{s1} ≥ f + p

(2)
1 |D1D1 + p

(2)
1 |D2D2,

which implies

CI
S\{s1} − (f + p

(1)
1 |D1+D2(D1 + D2))

≥ (f + p
(2)
1 |D1D1 + p

(2)
1 |D2D2)− (f + p

(1)
1 |D1+D2(D1 + D2))

≥ (p
(2)
1 |D1 − p

(1)
1 |D1+D2)D1 + (p

(2)
1 |D2 − p

(1)
1 |D1+D2)D2

= (p
(2)
1 |D1 − p

(1)
1 |D1)D1 + (p

(2)
1 |D2 − p

(1)
1 |D2)D2

≥ (p
(2)
1 |D1 − p

(1)
1 |D1)D1,

and the desired inequality follows.

Second, assume p
(1)
1 |D2 < p

(1)
1 |D1 = p

(1)
1 |D1+D2. We have

CI
S\{s1} = min{f + p

(2)
1 |D1+D2(D1 + D2), 2f + p

(2)
1 |D1D1 + p

(1)
1 |D2D2}.

We get a similar proof as above if the minimum equals the first term, as

CI
S\{s1} = f + p

(2)
1 |D1+D2(D1 + D2) ≥ f + p

(2)
1 |D1D1 + p

(2)
1 |D2D2.

Therefore, it remains to study what happens if CI
S\{s1} equals the second term of the

minimum. Here we have

CI
S\{s1} − (f + p

(1)
1 |D1+D2(D1 + D2))

= (2f + p
(2)
1 |D1D1 + p

(1)
1 |D2D2)− (f + p

(1)
1 |D1+D2(D1 + D2))

= (p
(2)
1 |D1 − p

(1)
1 |D1+D2)D1 + f − (p

(1)
1 |D1+D2 − p

(1)
1 |D2)D2

= (p
(2)
1 |D1 − p

(1)
1 |D1)D1 + [f − (p

(1)
1 |D1+D2 − p

(1)
1 |D2)D2]

≥ (p
(2)
1 |D1 − p

(1)
1 |D1)D1,
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where the last inequality follows from the fact that the allocation of the stock auction
uses economies of scale, i.e.,

CI
S = f + p

(1)
1 |D1+D2(D1 + D2) ≤ 2f + p

(1)
1 |D1+D2D1 + p

(1)
1 |D2D2.

Part (iii): Follows from Proposition 2.3.4. 2

4.3.2 Lower bound on losses: setup costs

Example 2.3.3 illustrates that the stock auction can be better than the combinatorial
auction. In the following, we will show that the possible loss from using the combina-
torial auction instead of the stock auction is bounded by the setup costs.

Theorem 4.3.5 It holds that πI − πC ≥ −f .

Proof:
From Proposition 4.3.4, we know that we can limit ourselves to the following cases

(i) the combinatorial auction has two winners, while the stock auction has only one
winner and w1 6= s1,

(ii) both auctions have two winners but their optimal allocations differ.

In both cases, the allocation of the two auctions do not coincide. Therefore, we know
by Remark 4.3.1 that s2 produces demand D2 in period 2 and this implies that s1 is the
cheapest supplier among all those that can produce D1 in period 1.

Part (i): The expression of the savings in this case is equal to

πI − πC = CI
S\{w1} + HD2 − CS\{s1} − CS\{s2} + CS

= (CI
S\{w1} + HD2 − CS\{s2}) + (CS − CS\{s1})

≥ (CI
S\{w1} − CI

S\{s2}) + (p
(1)
1 |D1 − p

(2)
1 |D1)D1,

where the inequality holds because CI
S\{s2} + HD2 ≥ CS\{s2}, and because of Remark

4.3.3. Thus, since either s2 = w1 or the winner of the stock auction w1 belongs to
S \ {s2}, we can conclude that πI − πC ≥ (p

(1)
1 |D1 − p

(2)
1 |D1)D1. Therefore, it remains to

show that −(p
(2)
1 |D1 − p

(1)
1 |D1)D1 ≥ −f . This easily follows by comparing the costs of the
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optimal stock auction allocation with the one where D1 is produced by s1 instead of w1,

f + p
(1)
1 |D1+D2(D1 + D2) + hD2 ≤ 2f + p

(1)
1 |D1D1 + p

(1)
1 |D1+D2D2 + hD2

p
(1)
1 |D1+D2D1 ≤ f + p

(1)
1 |D1D1

−f ≤ −(p
(1)
1 |D1+D2 − p

(1)
1 |D1)D1,

and the desired inequality follows by noticing that p
(1)
1 |D1+D2 ≥ p

(2)
1 |D1.

Part (ii): Recall that s1 is the cheapest supplier among all those that can produce D1

in period 1. Moreover, w1 is the winner of D1 and w2 is the winner of D2 in the stock
auction. From Remark 4.3.2, we know that either s1 = w1 or s1 = w2, where the latter
is true if D1 < D2 and p

(1)
1 |D1 = p

(1)
1 |D2.

First assume that s1 = w1. The expression of the savings in this case is equal to

πI − πC = CI
S\{s1} + CI

S\{w2} − CI
S + HD2 − CS\{s1} − CS\{s2} + CS

= (CI
S\{w2} + HD2 − CS\{s2}) + (CI

S\{s1} − CI
S − CS\{s1} + CS)

≥ CI
S\{s1} − CI

S − CS\{s1} + CS

≥ CI
S\{s1} − CI

S − (p
(2)
1 |D1 − p

(1)
1 |D1)D1,

where the first inequality follows from the observation that CI
S\{w2} + HD2 ≥ CS\{s2}

since either s2 = w2, or both w1 and w2 belong to S \ {s2}. The second inequality is a
consequence of Remark 4.3.3.

It remains to show that CI
S\{s1} − CI

S ≥ (p
(2)
1 |D1 − p

(1)
1 |D1)D1 − f . To show this, we

have that

CI
S = 2f + p

(1)
1 |D1D1 + p

(`)
1 |D2D2,

with ` = 1 or 2, where the latter holds if both D2 ≤ D1 and p
(1)
1 |D1 = p

(1)
1 |D2. Further-

more, we have the following lower bound

CI
S\{s1} ≥ min{2f + p

(2)
1 |D1D1 + p

(`)
1 |D2D2, f + p

(1)
1 |D1+D2(D1 + D2)},

where the lower bound holds because we used for the first term the individual cheapest
producers for D1 and D2, neglecting possible capacity restrictions. This means that

CI
S\{s1} − CI

S ≥ min{(p(2)
1 |D1 − p

(1)
1 |D1)D1,

−f + (p
(1)
1 |D1+D2 − p

(1)
1 |D1)D1 + (p

(1)
1 |D1+D2 − p

(`)
1 |D2)D2}

≥ min{(p(2)
1 |D1 − p

(1)
1 |D1)D1,

−f + (p
(2)
1 |D1 − p

(1)
1 |D1)D1 + (p

(1)
1 |D1+D2 − p

(`)
1 |D2)D2}

≥ min{(p(2)
1 |D1 − p

(1)
1 |D1)D1,−f + (p

(2)
1 |D1 − p

(1)
1 |D1)D1}

= −f + (p
(2)
1 |D1 − p

(1)
1 |D1)D1,
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where we used that p
(1)
1 |D1+D2 > p

(1)
1 |D1 as the stock auction has two winners and

p
(1)
1 |D1 = p

(1)
1 |D2 if ` = 2.

Second, assume that s1 = w2. Recall that in this case we know that D1 < D2 and
p

(1)
1 |D1 = p

(1)
1 |D2. Similarly as above,

πI − πC ≥ CI
S\{s1} − CI

S + (p
(1)
1 |D1 − p

(2)
1 |D1)D1.

Again it remains to show that CI
S\{s1} − CI

S ≥ (p
(2)
1 |D1 − p

(1)
1 |D1)D1 − f . We have that

CI
S = 2f + p

(2)
1 |D1D1 + p

(1)
1 |D2D2 = 2f + p

(2)
1 |D1D1 + p

(1)
1 |D1D2,

and

CI
S\{s1} ≥ min{2f + p

(2)
1 |D1D1 + p

(2)
1 |D2D2, f + p

(1)
1 |D1+D2(D1 + D2)},

where the lower bound holds because we used for the first term the individual cheapest
producers for D1 and D2, neglecting possible capacity restrictions. This means that

CI
S\{s1} − CI

S ≥ min{(p(2)
1 |D1 − p

(1)
1 |D1)D2,

−f + (p
(1)
1 |D1+D2 − p

(2)
1 |D1)D1 + (p

(1)
1 |D1+D2 − p

(1)
1 |D1)D2}

≥ min{(p(2)
1 |D1 − p

(1)
1 |D1)D1,−f + (p

(1)
1 |D1+D2 − p

(1)
1 |D2)D2}

≥ min{(p(2)
1 |D1 − p

(1)
1 |D1)D2,−f + (p

(2)
1 |D1 − p

(1)
1 |D1)D2}

= −f + (p
(2)
1 |D1 − p

(1)
1 |D1)D2

≥ −f + (p
(2)
1 |D1 − p

(1)
1 |D1)D1,

where we used in the first inequality that p
(2)
1 |D1 ≤ p

(2)
1 |D2 as a consequence of D1 < D2.

2

4.3.3 Lower bound on losses: competition

In section 4.3.1 we showed that in several cases the combinatorial auction dominates
the stock auction. For the other cases we were able to derive an upper bound on the
possible losses when using the combinatorial auction instead of the stock auction. This
bound is the (supplier independent) setup cost, and was derived in section 4.3.2. In this
section we derive an alternative bound on the losses that is dependent on the unit pro-
duction costs of the suppliers. In fact we show that the loss is limited by the difference
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in production costs of the two cheapest suppliers. As a consequence, the more suppliers
the better the bound.

From Proposition 4.3.4 we know that the stock auction can only be cheaper than the
combinatorial auction in the following cases:

• the combinatorial auction has two winners, while the stock auction has only one
winner and w1 6= s1,

• both auctions have two winners but their optimal allocations differ.

Even for these two cases the possible loss from using the combinatorial auction instead
of the stock auction is very limited. It can be bounded by the difference between the
marginal product of one of the winners in the stock auction and the cost difference
between the two best suppliers in the second period. Recall that in any case s1 and w1

denote the winners of (at least) D1 in the combinatorial auction and the stock auction
respectively.

Theorem 4.3.6 It holds that

(i) if the combinatorial auction has two winners, while the stock auction has only one
winner and w1 6= s1, then

πI − πC ≥ (CI
S\{w1} − CI

S)− (p
(2)
2 |D2 − p

(1)
2 |D2)D2, and

(ii) if both auctions have two winners and their optimal allocations are not the same,
then

πI − πC ≥

{
(CI

S\{w2} − CI
S)− (p

(2)
2 |D2 − p

(1)
2 |D2)D2, if s1 = w1,

(CI
S\{w1} − CI

S)− (p
(2)
2 |D2 − p

(1)
2 |D2)D2, otherwise.

Proof:
Part (i): We have that

πI − πC = CI
S\{w1} + HD2 − CS\{s1} − CS\{s2} + CS

= (CI
S\{w1} + HD2 − CS\{s1}) + (CS − CS\{s2})

≥ (CI
S\{w1} − CI

S\{s1}) + (CS − CS\{s2})

≥ (CI
S\{w1} − CI

S\{s1})− (p
(2)
2 |D2 − p

(1)
2 |D2)D2

≥ (CI
S\{w1} − CI

S)− (p
(2)
2 |D2 − p

(1)
2 |D2)D2,

where the first inequality follows from equation (2.3), implying that CI
S\{s1} + HD2 ≥

CS\{s1}. The second inequality is a consequence of Remark 4.3.3. The last inequality
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follows from the observation that the only winner of the stock auction w1 belongs to the
set S \ {s1} because w1 6= s1.

Part (ii): Recall that s1 is the cheapest supplier among all those that can produce D1

in period 1. From Remark 4.3.2, we conclude that either s1 = w1 or s1 = w2, where the
latter holds if both D1 < D2 and p

(1)
1 |D1 = p

(1)
1 |D2.

First, consider the case where s1 = w1. Similarly to part (i), we have that

πI − πC = CI
S\{s1} + CI

S\{w2} − CI
S + HD2 − CS\{s1} − CS\{s2} + CS

= (CI
S\{s1} + HD2 − CS\{s1}) + (CI

S\{w2} − CI
S) + (CS − CS\{s2})

≥ (CI
S\{w2} − CI

S) + (CS − CS\{s2})

≥ (CI
S\{w2} − CI

S)− (p
(2)
2 |D2 − p

(1)
2 |D2)D2,

where the first inequality holds as CI
S\{s1} + HD2 ≥ CS\{s1}, and the second follows

again from Remark 4.3.3.

Second, consider the case where s1 = w2. Similarly as before,

πI − πC = CI
S\{w1} + CI

S\{s1} − CI
S + HD2 − CS\{s1} − CS\{s2} + CS

= (CI
S\{w1} − CI

S) + (CI
S\{s1} + HD2 − CS\{s1}) + (CS − CS\{s2})

≥ (CI
S\{w1} − CI

S) + (CS − CS\{s2})

≥ (CI
S\{w1} − CI

S)− (p
(2)
2 |D2 − p

(1)
2 |D2)D2.

We conclude that the result holds. 2
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Chapter 5

Concavity and Substitutes in a
Combinatorial Auction

5.1 Introduction

In the setting of an exchange economy, auctions are very popular and fast mechanisms
concerning the reallocation of goods (or items in auction design terminology). In this
thesis we use the VCG auction mechanism because of its very nice theoretical properties
like having dominant strategies, and yielding an efficient outcome, see Ausubel and
Milgrom [1] and section 1.3.2.2. However, in the application of this mechanism there
might be some problems. Ausubel and Milgrom [1] describe many problems that may
arise for the simplest setting of the Vickrey auction, for example, the complexity of its
implementation. This complexity is even more of a problem for combinatorial VCG
auctions as the number of possible bids is exponential in the number of goods. So,
combinatorial auctions might be very complex in already three ways:

• bidders have to determine an exponential number of bids,

• bidders and auctioneer have to communicate an exponential number of bids, and

• the auctioneer faces a winner determination problem with an exponential number
of variables.

A way to avoid these complexities is to use an iterative auction format, like the Eng-
lish auction, where bidders can bid in different rounds and may select only the most
appropriate bids. In some classes of problems there exist iterative auctions that are
equivalent to the VCG mechanism, which means that they result in exactly the same
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transactions. For example, the English auction is equivalent to the Vickrey auction. De
Vries et al. [53] discuss the conditions under which iterative auctions can be equivalent
to the VCG mechanism applied to a combinatorial auction. It appears that equivalence
relates to the existence of price equilibria.

Leonard [29] has shown for the classical assignment problem that the VCG mecha-
nism is supported by any minimal price equilibrium with linear prices. In more general
settings, the link between price equilibria and the VCG mechanism is missing and addi-
tional conditions are needed to recover it. Bikhchandani and Ostroy [4] and De Vries
et al. [53] have studied the case where buyers bid for bundles of indivisible items.
Bikhchandani and Ostroy [4] show that in the class of linear prices we may not find,
in general, a price equilibrium. Therefore, they propose a richer class of prices, namely
non-anonymous bundle prices. They show a result similar to Leonard [29] that hold if
and only if the buyers-are-substitutes property holds. De Vries et al. [53] propose a com-
binatorial ascending price auction as the trading mechanism in the exchange economy.
Under the stronger condition saying that the associated transferable utility game (TU-
game) is concave, i.e. the characteristic funcion of the TU-game is submodular, they
show that the auction terminates in VCG payments. Apart from the argument that as-
cending auctions need less communication, there is also some empirical evidence that
ascending auctions are more useful than the VCG mechanism itself. In experimental
tests of Kagel and Levin [25] it appears that in ascending auctions more players actu-
ally play the equilibrium strategy compared to the Vickrey auction. Players learn from
the repetitive character of the auction and see less imaginary advantages from lying.

In this chapter we first address the assignment problem with capacities, where buy-
ers can bid for collections of items but the valuations are linear. We show that the
corresponding TU-game is concave. Moreover, we show that this problem is a special
case of the models discussed by Bikhchandani and Ostroy [4] and De Vries et al. [53]
and therefore their results can be applied to this setting. Specifically, this means that
the VCG mechanism corresponds to a price equilibrium, and the VCG mechanism can
be replaced by the primal-dual auction. However, the concavity, and even the buyers-
are-substitutes property, does not hold anymore when we include setup costs in the
valuations of the buyers or when the items have different sizes, which we show by two
counterexamples. We conclude that even for very straightforward extensions of the as-
signment problem we cannot ensure that the VCG mechanism corresponds to a price
equilibrium. Finally, we show that it may be necessary to have non-anonymous prices
in the price equilibrium that corresponds to the VCG mechanism. The results of this
chapter can also be found in Lok, Romero Morales and Vermeulen [30].
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The remainder of the chapter is organized as follows. In section 5.2 we give some
basic definitions of cooperative games that are used in this chapter. In section 5.3 we
introduce the assignment problem with capacities and show that the corresponding TU-
game is concave. In section 5.4 we present the results of Bikhchandani and Ostroy [4]
and De Vries et al. [53] and show that they apply to the assignment problem with
capacities. In section 5.5 we present two extensions of the assignment problem with
capacities and show that the VCG mechanism is not supported, in general, by price
equilibria.

5.2 Cooperative games

In the following we present some notions of cooperative game theory in addition to the
introduction in section 1.3.

A transferable utility game, or TU-game, is a pair (N, v) with set of players N and
characteristic function v : 2N → R with v(Ø) = 0. A vector u = (ui)i∈N ∈ RN is
a core element of the game (N, v) if

∑
i∈S ui ≥ v(S) for all coalitions S ⊂ N , and∑

i∈N ui = v(N).

Following Shapley [46] and Bikhchandani and Ostroy [4], we define the players-
are-substitutes property as follows.

Definition 5.2.1 A coalition B of players in N are substitutes in the game (N, v) if for all
coalitions S ⊆ B it holds that

v(N)− v(N \ S) ≥
∑
i∈S

(v(N)− v(N \ {i})). (5.1)

In this chapter and in the article of Bikhchandani and Ostroy [4], the players con-
sidered are called buyers. Therefore we usually refer to this property as the buyers-
are-substitutes property. The buyers-are-substitutes property is related to concavity, a
property that a TU-games may have:

Definition 5.2.2 The game (N, v) is concave if for any two subsets S and T of N

v(S) + v(T ) ≥ v(S ∪ T ) + v(S ∩ T ).

Notice that the concept concavity is equivalent to the submodularity concept for func-
tions on sets, see Topkis [50]. The term concave is used for TU-games that have a
submodular characteristic function.
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An equivalent characterization of concavity is given in the following, see for example
Nemhauser and Wolsey [35].

Proposition 5.2.3 (Proposition 2.1 of Nemhauser and Wolsey [35, page 662]) The
game (N, v) with characteristic function v : 2N → R is concave if and only if for any set
S ⊆ N and a, b /∈ S with a 6= b the following holds:

v(S ∪ {a})− v(S) ≥ v(S ∪ {a, b})− v(S ∪ {b}).

In this chapter we will use the following proposition.

Proposition 5.2.4 If (N, v) is concave, then the players in N are substitutes in (N, v).

Proof:
We prove that (5.1) holds for any S ⊆ N . This is clearly true for S = N , so consider an
arbitrary S ⊂ N . Let t = |N \ S| and N \ S = {a1, . . . , at}. Let τ be an arbitrary index in
{1, . . . , t}. By concavity of (N, v) we know that

v(N \ {a1, . . . , aτ−1})− v(N \ {a1, . . . , aτ}) ≥ v(N)− v(N \ {aτ}).

We can add up these inequalities for all τ in {1, . . . , t}:

t∑
τ=1

[v(N \ {a1, . . . , aτ−1})− v(N \ {a1, . . . , aτ})] ≥
t∑

τ=1

[v(N)− v(N \ {aτ})] .

This is equivalent to:

v(N)− v(S) ≥
∑

a∈N\S

[v(N)− v(N \ {a})] ,

and the desired result follows. 2

It is easy to show that for |N | ≤ 3 concavity is equivalent to the players-are-substitutes
property.

5.3 The assignment problem with capacities is concave

In this section we analyze the assignment problem with capacities (APC) defined as
follows. Let B be a set of buyers and I a set of items to be allocated to the buyers. Each
buyer b ∈ B has a valuation vbi ≥ 0 for item i ∈ I, and a capacity Rb ≥ 0. All items
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are assumed to have size one, so the capacity Rb of buyer b in fact indicates that buyer
b wants at most Rb items.

The goal of the assignment problem with capacities is to assign the items in such a
way that no capacity restriction is violated and the total valuation is maximized. The
assignment problem APC(B, I) with capacities (Rb)b∈B can be formulated as follows:

max
x

∑
b∈B

∑
i∈I

vbixbi

subject to: (APC)∑
i∈I

xbi ≤ Rb, ∀b ∈ B,∑
b∈B

xbi ≤ 1, ∀i ∈ I,

xbi ∈ {0, 1}, ∀b ∈ B, ∀i ∈ I,

where xbi is equal to 1 if item i is assigned to buyer b.

The optimal solution value of APC(B, I) is denoted by VAPC(B, I). Now notice
that, for a set of buyers A ⊆ B, the problem APC(A, I) can be seen as a subproblem of
APC(B, I) by adding the constraints xbi = 0 for all i ∈ I and b /∈ A, to APC(B, I). Thus
it makes sense to consider the TU-game (B, vAPC) defined by vAPC(A) ≡ VAPC(A, I) for
all A ⊆ B. The remainder of this section is used to prove concavity of this particular
TU-game. The proof is in two parts. First we will prove concavity of this game in case
all capacities Rb are equal to one, the classical assignment problem. Then we will use
this partial result to prove concavity of the TU-game for the general problem.

Theorem 5.3.1 Assume that Rb = 1 for all b ∈ B. Then the corresponding TU-game
(B, vAPC) is concave.

Proof:
It suffices to prove that

VAPC(A ∪ {a}, I)− VAPC(A, I) ≥ VAPC(A ∪ {a, b}, I)− VAPC(A ∪ {b}, I)

holds for any subset A of B and any a, b /∈ A with a 6= b. We show this by induction to
the number of elements of A.

Suppose that A = Ø. Obviously VAPC(Ø, I) = 0. Thus, for any set I,

VAPC({a}, I)− VAPC(Ø, I) ≥ VAPC({a, b}, I)− VAPC({b}, I),
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since VAPC({a}, I)+VAPC({b}, I) ≥ VAPC({a, b}, I) easily follows from the optimality of
the left hand side.

Suppose that the conditions are fulfilled for all possible coalitions A in the set B with
|A| ≤ k. Take a set A with |A| = k + 1. Let a and b be two different buyers in B that are
not in A. Take an item i ∈ I. First we show that

VAPC(A, I)− VAPC(A, I \ {i}) ≤ VAPC(A ∪ {b}, I)− VAPC(A ∪ {b}, I \ {i}).

Consider the instance APC(A, I) of the assignment problem. If item i is not assigned
to any buyer in an optimal allocation, the inequality holds trivially as the left hand side
will be equal to zero. So, suppose that in an optimal allocation item i is assigned to
buyer c ∈ A. Then

VAPC(A, I)− VAPC(A, I \ {i})
= vci + VAPC(A \ {c}, I \ {i})− VAPC(A, I \ {i})
≤ vci + VAPC((A ∪ {b}) \ {c}, I \ {i})− VAPC(A ∪ {b}, I \ {i})
≤ VAPC(A ∪ {b}, I)− VAPC(A ∪ {b}, I \ {i}),

where the first inequality is due to the induction hypothesis.

Now consider the problem instance APC(A ∪ {a, b}, I), and suppose that in an op-
timal assignment buyer a gets item j ∈ I. Then, using our previous observation to get
the first inequality, we have

VAPC(A ∪ {a, b}, I)− VAPC(A ∪ {b}, I)

= vaj + VAPC(A ∪ {b}, I \ {j})− VAPC(A ∪ {b}, I)

≤ vaj + VAPC(A, I \ {j})− VAPC(A, I)

≤ VAPC(A ∪ {a}, I)− VAPC(A, I).

So in this case we found that

VAPC(A ∪ {a}, I)− VAPC(A, I) ≥ VAPC(A ∪ {a, b}, I)− VAPC(A ∪ {b}, I).

If in an optimal allocation no item is assigned to buyer a, this inequality still holds as
the right hand side will be equal to zero. 2

The theorem above is an extension of the result of Shapley [46] who proved that
buyers are substitutes in the classical assignment problem, i.e., where Rb = 1 for all
b ∈ B. The result of Shapley follows from Theorem 5.3.1 and Proposition 5.2.4. We will
now prove the concavity of the TU-game (B, vAPC).
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Theorem 5.3.2 The TU-game (B, vAPC) is concave.

Proof:
Without loss of generality, we can assume that Rb is integer for all b ∈ B. First split each
buyer b ∈ B into Rb buyers b1, . . . , bRb

with capacities Rbr = 1 and valuations wbr,i ≡ vbi.
Let B◦ denote the new set of buyers. From Theorem 5.3.1 we know that (B◦, w) is
concave. Let S and T be two coalitions in B and let S◦ and T ◦ be the corresponding
coalitions in B◦. Then

vAPC(S) + vAPC(T ) = w(S◦) + w(T ◦)

≥ w(S◦ ∪ T ◦) + w(S◦ ∩ T ◦)

= w((S ∪ T )◦) + w((S ∩ T )◦)

= vAPC(S ∪ T ) + vAPC(S ∩ T ),

since for any coalition A ⊂ B the assignment problem APC(A◦, I) with unit capacities
we constructed has the same objective value as APC(A, I). 2

Topkis [50] proved that the optimal value of the objective function of the transporta-
tion problem is a submodular function of the players’ capacities, which means that the
corresponding TU-game is concave. The transportation problem is an equivalent formu-
lation to (APC) in terms of cost minimization. Our proof is easier and shorter though,
and is also valid if total capacity is smaller than total demand. Furthermore, the buyers-
are-substitutes property, which is implied by concavity (see Proposition 5.2.4), is also
implied by the gross substitutes property of the buyers’ utilities. This follows from a
result of Lehmann et al. [28, Theorem 5]. The utilities of the buyers are said to have
the gross substitutes property if the increase in price of one item will not decrease the
demand for any other item, see for example Gul and Stacchetti [19]. The buyers in
problem (APC) have indeed valuations that satisfy the gross substitutes property. To see
why, consider buyer b who will solve the following problem for maximizing utility when
pi is the price of item i ∈ I:

max
x

∑
i∈I

(vbi − pi)xbi

subject to: ∑
i∈I

xbi ≤ Rb,

xbi ∈ {0, 1},

which is a straightforward knapsack problem. The optimal solution is that buyer b

selects the Rb items with highest values vbi − pi. Consequently, increasing the price of
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item i ∈ I will only lower its own ranking according to vbi − pi, but not of any other
item.

5.4 Two applications

The main object of study in both Bikhchandani and Ostroy [4] and De Vries et al. [53]
is an exchange economy with a set B of buyers and a set I of (indivisible) items to
be sold by a single seller indicated by s. (In fact this is a special case of the setting
of Bikhchandani and Ostroy [4]. They initially also allowed multiple sellers.) The
valuation of buyer b for the set S ⊆ I of items is vbS ≥ 0. Valuations are assumed to be
non-decreasing, i.e., vbS ≤ vbT for all buyers b ∈ B and all sets S, T ⊆ I with S ⊆ T , and
vbØ = 0 for all buyers b ∈ B.

5.4.1 The result of Bikhchandani and Ostroy

The main result of Bikhchandani and Ostroy [4] in this setting provides a link between
minimal prices in a price equilibrium, the outcome of the VCG mechanism in this set-
ting, and a TU-game that can be associated with this exchange economy. These three
different approaches to trade in the exchange economy will be discussed first, and then
we present the result of Bikhchandani and Ostroy [4].

One approach to allocate items is to use a price equilibrium. A price equilibrium in
this setting is a price vector p = (pbS)b∈B,S⊆I together with a partition T = (Tb)b∈B of I

such that
vbTb

− pbTb
≥ vbS − pbS

holds for all b ∈ B and S ⊆ I, and ∑
b∈B

pbTb
≥
∑
b∈B

pbSb

holds for all partitions (Sb)b∈B of I. Tb is interpreted as the set of items allocated to buyer
b in B. This economy is called E3 in Bikhchandani and Ostroy [4]. A price equilibrium
(p, T ) is said to be minimal if for any other price equilibrium (q, S) it holds that

vbTb
− pbTb

≥ vbSb
− qbSb

for all b ∈ B. A minimal equilibrium price vector is a price vector that is part of a
minimal price equilibrium.
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An alternative approach to allocate the items is to organize a combinatorial auction
and use the VCG mechanism to sell the items in I. Given that the buyers report their
valuations truthfully under this mechanism, the mechanism returns a partition (Tb)b∈B

of I such that ∑
b∈B

vbTb
≥
∑
b∈B

vbSb

for any partition (Sb)b∈B of I, together with a payment

p(b∗) ≡
∑
b6=b∗

vbUb
−
∑
b6=b∗

vbTb

of buyer b∗ to the seller, where (Ub)b6=b∗ is a partition of I such that∑
b6=b∗

vbUb
≥
∑
b6=b∗

vbSb

for any partition (Sb)b6=b∗ of I. This results in a net valuation of

u(b∗) ≡ vb∗Tb∗ − p(b∗) =
∑
b∈B

vbTb
−
∑
b6=b∗

vbUb

for buyer b∗ and a revenue of u(s) ≡
∑

b∈B p(b) for the seller.

A third approach for the players in the economy is to cooperate. This leads to a
TU-game (N, vB&O), where N = B ∪ {s}, defined as follows. For a coalition A ⊆ B

of buyers, vB&O(A) = 0. The value vB&O(A ∪ {s}) is computed as follows. Let (Tb)b∈A

denote a partition of I. The set of all such partitions is denoted by P(A). Then

vB&O(A ∪ {s}) ≡ max

{∑
b∈A

vbTb
| (Tb)b∈A ∈ P(A)

}
.

Theorem 6.1 of Bikhchandani and Ostroy [4] enables us to link these three different
approaches to trade in the exchange economy with each other. Let T = (Tb)b∈B and
(p(b))b∈B be the allocation and the payment vector of the VCG mechanism. A price vec-
tor p = (pbS)b∈B,S⊆I is said to support the VCG mechanism if (p, T ) is a price equilibrium,
and moreover p(b) = pbTb

holds for all buyers b ∈ B. Theorem 6.1 of Bikhchandani and
Ostroy [4] now states the following.

Theorem 5.4.1 The following statements are equivalent:

(i) Buyers are substitutes in the TU-game (N, vB&O).

(ii) The vector (u(s), u(b)b∈B) of net utilities is a core allocation of the TU-game (N, vB&O).

(iii) Any minimal equilibrium price vector supports the VCG mechanism.
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5.4.2 Application to the assignment problem with capacities

Consider the assignment problem with capacities with buyer set B, item set I, valuations
vbi and capacities Rb as it is defined in Section 5.3. This problem can also be seen as an
exchange economy with valuations given by

vbS ≡ VAPC({b}, S)

for each buyer b ∈ B and each set of items S ⊆ I. Clearly, the valuations defined in
this way are non-decreasing. Thus, in the light of Theorem 5.4.1 of Bikhchandani and
Ostroy [4], the question arises whether buyers are substitutes in the game (N, vB&O)

associated with this exchange economy. Using our results from the previous section we
will now show that this is indeed the case.

Theorem 5.4.2 Buyers are substitutes in the TU-game (N, vB&O).

Proof:
Notice that it suffices to prove that all players in B are substitutes in the TU-game (B, w)

defined by

w(A) ≡ max{
∑
b∈A

vbTb
| (Tb)b∈A ∈ P(A)}

for all coalitions A ⊆ B. Therefore

w(A) = max{
∑
b∈A

vbTb
| (Tb)b∈A ∈ P(A)} = VAPC(A, I) = vAPC(A),

and (B, w) is concave by Theorem 5.3.2. Hence, by Proposition 5.2.4, the players in B

are substitutes in the game (B, w). 2

5.4.3 The result of De Vries, Schummer and Vohra

De Vries et al. [53] consider the same single seller exchange economy, defined in the
beginning of this section, as Bikhchandani and Ostroy [4] with the extra assumption
that all vbS are integer.

They consider a combinatorial ascending price auction, called the Primal Dual auc-
tion or PD auction for short, as the trading mechanism in the exchange economy. To
define the PD auction we first need to introduce some notation.
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Given a vector of prices p, the most preferred sets of items for buyer b are

Db ≡ {T ⊆ I | vbT − pbT ≥ vbS − pbS for all S ⊆ I}.

Let F ⊆ B be a set of buyers. A vector (Tb)b∈F is called feasible for F if Tb ∈ Db for
every buyer b ∈ F and the elements of (Tb)b∈F are mutually disjoint. Let Z(F ) be the set
of all feasible vectors for F . Let Z∗(F ) denote the set of all feasible vectors for F such
that ∑

b∈F

pbTb
≥
∑
b∈G

pbSb

holds for every G ⊆ B and every (Sb)b∈G ∈ Z(G). Let Z∗ =
⋃

F⊆B Z∗(F ). If for F ⊆ B

there is no (Tb)b∈F in Z∗ we say that F is undersupplied. We say that F is minimally
undersupplied if F is undersupplied, and no proper subset of F is undersupplied.

Now let B∗ be the set of buyers b ∈ B for which there exists an S ∈ Db with
vbS − pbS > 0. We say there is overdemand if B∗ is undersupplied.

The PD auction is an iterative procedure defined as follows.

PD auction

Step 0. Choose prices pbS = 0 for all b ∈ B and S ⊆ I.

Step 1. With respect to the current prices, ask each buyer b to report its most preferred
sets of items, i.e., Db.

Step 2. If overdemand holds, choose a minimally undersupplied set A ⊆ B∗ and for
each b ∈ A and each S ∈ Db increase the current price pbS by one unit and
return to Step 1. All other prices stay the same for the moment. (This con-
struction ensures in particular that pbØ = 0 throughout the auction.)

Step 3. If there is no overdemand, choose an element (Tb)b∈B in Z∗, allocate the items
in Tb to buyer b ∈ B, and charge b the current price pbTb

.

Notice that we have some degree of freedom in the auction because of the freedom
of choice of the minimally undersupplied sets and the final allocation in Z∗. Any choice
made here yields a version of the PD auction. Nevertheless, as De Vries et al. [53] show,
any PD auction constructed in this way features truthful reporting as an ex post Nash
equilibrium, and in equilibrium it terminates in an efficient assignment.

For a coalition A ⊆ B of buyers, define

vPD(A) ≡ max

{∑
b∈A

vbTb
| (Tb)b∈A ∈ P(A)

}
.
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Theorem 4 of De Vries et al. [53] states the following.

Theorem 5.4.3 Suppose that (B, vPD) is concave. Then any PD auction terminates in
VCG payments.

5.4.4 Application to the assignment problem with capacities

Again we can apply the result under consideration to the assignment problem with
capacities. Using our result concerning the concavity of (B, vAPC) we can show the
following statement in the context of the assignment problem with capacities.

Theorem 5.4.4 A PD auction applied to the assignment problem with capacities generates
a price vector p and an allocation T that constitute a price equilibrium (p, T ). Moreover, p

supports the VCG mechanism.

Proof:
Let p = (pbS)b∈B,S⊆I be the price vector generated by a certain PD auction, and let
T = (Tb)b∈B be the corresponding final allocation. Since the PD auction terminates in
an efficient allocation in equilibrium, we may assume that T together with the VCG
payments (p(b))b∈B is the outcome of the VCG mechanism.

It is clear that vAPC = vPD. Hence, by Theorem 5.3.2 and Theorem 5.4.3 we have
that p(b) = pbTb

holds for all buyers b ∈ B. Thus, it remains to show that (p, T ) is a price
equilibrium.

Since T = (Tb)b∈B is an element of Z∗, it is in particular feasible. Thus we know that
Tb ∈ Db for each buyer b ∈ B, and hence

vbTb
− pbTb

≥ vbS − pbS

for all S ⊆ I. Finally we show that∑
b∈B

pbTb
≥
∑
b∈B

pbSb

holds for all partitions (Sb)b∈B of I. Take a partition (Sb)b∈B of I. Let B+ be the set
of buyers b for which pbSb

> 0. Let b be a buyer in B+. Since pbSb
> 0, we know that

somewhere during the auction Sb ∈ Db. However, due to the fact that valuations are
integral and that all prices of sets in the demand of an undersupplied buyer increase
in steps of size one, it is evident that Sb ∈ Db will remain true for the remaining time

94



5.5 – Impossibilities

the auction runs. Thus, (Sb)b∈B+ is a feasible vector for B+. So, since T = (Tb)b∈B is an
element of Z∗ and pbSb

= 0 for all b /∈ B+, we know that∑
b∈B

pbTb
≥
∑
b∈B+

pbSb
=
∑
b∈B

pbSb

which completes the proof. 2

5.5 Impossibilities

In the previous section we proved that the TU-game associated with the assignment
problem with capacities is concave. Therefore the buyers are substitutes in this TU-
game, according to Proposition 5.2.4. Unfortunately concavity, and even the buyers-
are-substitutes property gets lost for other small and rather natural extensions of the
assignment problem.

We also give a simple example of (APC) with a unique optimal assignment in which
the VCG outcome is not supported by a price equilibrium where the prices are anony-
mous. Therefore, in general, the richer class of prices used by Bikhchandani and Ostroy,
namely non-anonymous bundle prices, cannot be simplified for the assignment problem
with capacities.

5.5.1 Generalized assignment problem

In this section we consider the case where each item i ∈ I consumes an amount ρi of the
capacity of the buyers. This yields to the Generalized Assignment Problem (GAP) with
buyer independent resource consumption. The problem reads as follows:

max
∑
b∈B

∑
i∈I

vbixbi

subject to: (GAP)∑
i∈I

ρixbi ≤ Rb, ∀b ∈ B,∑
b∈B

xbi ≤ 1, ∀i ∈ I,

xbi ∈ {0, 1}, ∀b ∈ B, ∀i ∈ I.
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The value vGAP (A) for a coalition A of buyers is the optimal value of the objective
function in the above (GAP) with the additional constraints that xbi = 0 whenever b /∈ A.

In the resulting TU-game (B, vGAP ) the buyers will in general not be substitutes as
the next example shows. Hence, also concavity will not hold in general.

Take buyer set B = {a, b, c} with capacities Ra = 2, Rb = 2 and Rc = 1 respectively.
Take set of items I = {i, j, k} with resource consumption ρi = 2, ρj = 1 and ρk = 1

respectively. The buyers’ valuations for the items are given in the Table 5.1.

i j k

a 6 5 5

b 0 0 3

c 0 3 0

Table 5.1: Valuations for GAP

Given these valuations it is easy to see that we obtain vGAP (a, b, c) = 12, vGAP (a, c) =

vGAP (a, b) = 10 and vGAP (a) = 10, which violates the substitutes condition

vGAP (a, b, c)− vGAP (a) ≥ 2 vGAP (a, b, c)− vGAP (a, c)− vGAP (a, b).

Since for this problem instance of (GAP) the buyers-are-substitutes property does
not hold, we know that the VCG mechanism is not supported by a price equilibrium.
Let us illustrate this. We have that vGAP (b, c) = 6. Thus, the net utilities of buyers a,
b and c are equal to 12 − 6 = 6, 12 − 10 = 2 and 12 − 10 = 2, respectively. According
to the optimal allocation, the buyers’ payments are equal to 0, 1 and 1, respectively.
This yields an auction revenue of 2. As the only optimal solution assigns item i to
buyer a and items j and k to buyers c and b respectively, we have that in equilibrium
6 − pa{i} ≥ 10 − pa{j,k}. From the VCG payments we know that pa{i} = 0, so pa{j,k} ≥ 4,
which gives the auctioneer a revenue of at least 4 > 2.

In a similar way, the vector of prices generated by the PD auction does not support
the VCG mechanism. We will show that any PD auction will terminate with pa{j,k} = 4.
Thus, as before, p cannot be a price equilibrium. Any PD auction starts with all prices
equal to zero. This gives the following initial demand sets (assuming disposability):

Da = {{j, k}, {i, j, k}},
Db = {{k}, {j, k}, {i, k}, {i, j, k}},
Dc = {{j}, {i, j}, {j, k}, {i, j, k}}.
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Here B∗ = {a, b, c} is undersupplied as buyer a wants at least both j and k, buyer b

wants at least item k and buyer c wants at least item j. The minimally undersupplied
sets are {a, b} and {a, c}. Suppose that we choose {a, b}. The algorithm would then raise
the price of all sets in Da and Db. After this first price-raise the demand sets remain the
same, so we can do the same raise again, and even a third time. After the third iteration
Da is still the same, but now Db = 2I . Then the only minimally undersupplied set
is {a, c}, so we raise the prices in Da a fourth time and also the prices in Dc. After
this, {i} ∈ Da. Because there is no overdemand anymore the algorithm will stop with
pa{j,k} = 4. We arrive to the same conclusion if we choose {a, c} as the undersupplied
set in the first iteration.

5.5.2 Setup costs

The (APC) model assumes a linear valuation function for the buyers. In this section we
include a setup cost fb in the valuation function. This results in the following mixed-
integer linear program.

max
∑
b∈B

∑
i∈I

vbixbi −
∑
b∈B

fbyb

subject to: (APCS)∑
i∈I

xbi ≤ Rbyb, ∀b ∈ B,∑
b∈B

xbi ≤ 1, ∀i ∈ I,

xbi ∈ {0, 1}, ∀b ∈ B, ∀i ∈ I,

yb ∈ {0, 1}, ∀b ∈ B.

Where xbi is defined as before and yb is equal to one if buyer b processes at least one
item. Again, for a coalition A ⊆ B of buyers the valuation vAPCS(A) is defined as the
optimal value of the objective function of the above program with the extra conditions
that xbi = 0 and yb = 0 whenever b /∈ A.

Consider the problem instance with B = {a, b, c}, Ra = Rb = Rc = 2, and setup costs
of fa = 10, fb = 1 and fc = 1 and set of items I = {i, j, k, m}. Valuations are given
in Table 5.2. It can easily be checked that vAPCS(a, b, c) = 12 (a gets no items, b gets
items i and k and c gets j and m), vAPCS(a, c) = 10 (a gets i and k, c gets j and m),
vAPCS(a, b) = 3 (a gets k and m, b gets i and j) and vAPCS(a) = 2 (a gets k and m).
Thus, the substitutes condition

vAPCS(a, b, c)− vAPCS(a) ≥ 2 vAPCS(a, b, c)− vAPCS(a, c)− vAPCS(a, b)
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i j k m

a 4 4 6 6

b 1 1 2 1

c 1 1 1 10

Table 5.2: Valuations for APCS

is violated.

Similarly to the previous section, we will show that the VCG mechanism is not
supported by a price equilibrium and that the PD auction does not support the VCG
mechanism. We have that vAPCS(b, c) = 12, so the net utilities of buyer a, b and c are
12−12 = 0, 12−10 = 2 and 12−3 = 9, respectively. According to the optimal allocation
the buyers’ payments are 0, 0 and 1 respectively, yielding an auction revenue of 1. Since
in the only optimal solution buyer a gets no item, we have that pa{k,m} ≥ 2. Therefore,
the auction revenue is at least 2 > 1.

In any PD auction we can also see that we will not terminate before pa{k,m} ≥ 2. The
auction starts with all prices equal to zero. This gives the following initial demand sets
(assuming disposability):

Da = {S ⊆ B : k ∈ S, m ∈ S},
Db = {S ⊆ B : k ∈ S, |S| > 1},
Dc = {S ⊆ B : m ∈ S, |S| > 1}.

Here B∗ = {a, b, c} is undersupplied as buyer a wants at least items k and m, buyer b

wants at least item k and buyer c wants at least item m. The minimally undersupplied
sets are {a, b} and {a, c}. Suppose that we choose {a, b}. The algorithm would then
raise the price of all sets in Da and Db. After this first price-raise Da remains the same,
but Db becomes {S ⊆ B : |S| > 1}. Now {a, b} is not undersupplied anymore, but
{a, c} is. Therefore, after raising the prices in Da and Dc we have that pa{k,m} ≥ 2. The
same conclusion can be derived if we choose {a, c} as the undersupplied set in the first
iteration.

5.5.3 The VCG mechanism is not supported by anonymous prices

Leonard [29] showed for the classical assignment problem that the VCG mechanism is
supported by any minimal price equilibrium vector with linear prices. Theorem 5.4.2
together with Theorem 5.4.1 shows that any minimal equilibrium price vector supports
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the VCG mechanism for the assignment problem with capacities (APC). But here the
prices are not necessarily linear, and not even anonymous. We now show for (APC) that
we really need non-anonymous prices to support the VCG mechanism.

Formally, a price vector p = (pbS)b∈B,S⊆I is called anonymous if paS = pbS for all
buyers a and b in B and sets S ⊆ I of items. It is called linear if for each i ∈ I there is a
price φi such that

pbS =
∑
i∈S

φi

for all b ∈ B and all S ⊆ I. Obviously a linear price vector is also anonymous.

Consider the instance of (APC) with B = {a, b}, I = {i, j, k}, Ra = 1 and Rb = 2.
The buyers’ valuations are given in Table 5.3.

i j k

a 5 4 2

b 5 4 1

Table 5.3: Valuations for APC

The unique optimal solution for this problem is that buyer a gets item k, and buyer
b gets items i and j. To calculate the VCG payments we also need the optimal solutions
for the problems excluding one buyer at a time. Obviously, when on his own, a chooses
item i, while b chooses items i and j when a is not present. The VCG payments are
therefore p(a) = 9− 9 = 0 and p(b) = 5− 2 = 3.

With these VCG payments we get the following conflicting conditions for linear
prices φi, φj and φk that form a price equilibrium with the allocation that assigns k

to a and i and j to b. From the coincidence of the equilibrium prices with the VCG
payments we get that

φk = 0 and φi + φj = 3.

From the equilibrium conditions we get that

5− φi ≤ 2− φk and 4− φj ≤ 2− φk.

Using φk = 0, we have that φi ≥ 3 and φj ≥ 2. These conditions are clearly conflicting
with φi + φj = 3. From this we conclude that prices that support the VCG mechanism
are necessarily nonlinear.

Now we also show that the prices cannot be anonymous. Let φij, φik and φjk be the
prices of the packages {i, j}, {i, k} and {j, k} respectively. By disposability buyer a has
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valuations 5, 5 and 4 for these packages. From the equilibrium conditions we therefore
have that

5− φij ≤ 2− φk and 5− φik ≤ 2− φk and 4− φjk ≤ 2− φk.

So together with the conditions above we have that φi ≥ 3, φj ≥ 2, φk = 0, φij ≥ 3,
φik ≥ 3 and φjk ≥ 2. From the perspective of the auctioneer these prices mean that the
revenue from the auction is at least 5 by assigning for example i to buyer a and j and k

to buyer b. This contradicts with the VCG outcome in which the auction has a revenue
of 3.
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Chapter 6

Parametric Shortest Path Tree Problem

6.1 Introduction

In this chapter we present a parametric shortest path tree problem. The structure of
this problem relates to the bargaining model of Sucky [49]. He considers a supply chain
setting with one buyer and one supplier, where the supplier takes the first step towards
a coordinated production planning, see section 1.4.2. This is a screening problem where
the first player designs the rules of the game such that the second player faces incentive
compatibility and individual rationality, see section 1.3.2. The parametric shortest path
tree problem is a very basic, but still challenging, version of this problem.

In section 6.2 the parametric shortest path tree problem is presented as a generaliza-
tion of the shortest path problem. Furthermore, it is shown that although the parametric
problem is nonlinear, it can be reformulated as a linear programming problem by us-
ing duality theory, see for example Papadimitriou and Steiglitz [39]. Therefore, as this
reformulation is straightforward and as linear programs are polynomially solvable, the
problem itself is polynomially solvable. We are interested in applying an algorithm that
uses the combinatorial structure of the problem allowing for faster optimization.

In section 6.3 we show an optimality condition for the shortest path tree problem in
terms of parameter values and the set of arcs that are part of a shortest path. This condi-
tion has the nice property that it is in fact a local condition. More specifically, a solution
is optimal if for all nodes the local condition holds. The optimality condition suggests a
local improvement algorithm which is presented in section 6.4. Unfortunately, this local
improvement algorithm is not finite, which we show in an example.

Section 6.5 presents an alternative formulation of the parametric shortest path tree
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problem. We obtain this alternative formulation by elimination of the parametric vari-
ables. The new formulation only has variables corresponding to the shortest path
lengths, but still we are able to construct an example for which the local improvement
algorithm is infinite. Therefore, the existence of a combinatorial algorithm that is faster
than algorithms for linear programs remains an open question.

This chapter concludes with two examples that are basically parametric shortest path
tree problems but with a more difficult parametrization than the problem discussed in
this chapter. The first example concerns the pricing problem of a monopolist. The
second example is a revenue maximization problem of an auction-designer.

6.2 Problem formulation

In this section we introduce the problem formulation of the parametric shortest path
tree problem. We start with the standard shortest path (tree) problem. Thereafter
we introduce the parametric generalization of the problem. Finally, we show that the
problem can be formulated as a linear program.

6.2.1 Shortest path problem

Suppose we have a directed graph G = (V, A) in which there is a (directed) path from
source node s to any other node in V . The length of arc (i, j) ∈ A is given by `ij.
The shortest path problem is to find the minimum length path from s to t, which is
only well-defined if no negative length cycles exist. For fixed source node s the shortest
paths to all other nodes can be found with the well known Dijkstra’s algorithm in case
all arc lengths are nonnegative, or the Bellman-Ford algorithm for general arc lengths,
see Nemhauser and Wolsey [35]. As these shortest paths can be chosen in such a way
that we have a directed tree, the problem of finding all shortest paths from s is known
as the shortest path tree problem, see Pallottino and Scutellà [37].

The shortest path (tree) problem can be formulated as a flow problem where one
unit of flow is sent from the source to each of the other nodes. Let fij be the flow on arc
(i, j) and f = (fij)(i,j)∈A, then we have:

min
f

∑
(i,j)∈A

`ijfij
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subject to: (SPT)

∑
j:(j,i)∈A

fji −
∑

j:(i,j)∈A

fij =

{
−(|V | − 1), for i = s,

1, for i ∈ V \ {s},

fij ≥ 0, ∀(i, j) ∈ A.

In this thesis we use the dual problem of (SPT):

max
π

∑
t∈V \{s}

πt − (|V | − 1)πs =
∑

t∈V \{s}

(πt − πs)

subject to: (Dual-SPT)

πj − πi ≤ `ij, ∀(i, j) ∈ A,

where π = (πi)i∈V . Suppose we have a feasible solution π for this problem. Then
note that when we increase or decrease all of its elements with the same number, these
changes cancel out in the objective as well as in the constraints. Therefore it is possible
to add the constraint πs = 0, preserving at least one of the optimal solutions. Further-
more, note that for optimal solutions f ∗ and π∗ we have by complementary slackness
that arcs with a positive flow, i.e. f ∗ij > 0, imply that π∗j − π∗i = `ij. Together with π∗s = 0

this implies that π∗i equals the shortest path length from s to i.

6.2.2 Parametric shortest path tree problem

Now we assume that the length of the arcs is not known in advance but given by a linear
function of variables. For each arc (i, j) we have constant cij ∈ R \ {0}, and for each
node j we have a variable xj ∈ [0, 1]. The length of arc (i, j) is described by the product
of cij and xj, i.e. `ij = cijxj.

The goal of the parametric shortest path tree problem (PSPT) is to choose the variables
xj ∈ [0, 1] in such a way that the sum of all (directed) shortest path lengths originating
in the source node s is maximized. Note that the problem is trivial if all constants are
positive, as then it is optimal to choose all parameter-variables (xj) equal to the upper
bound. Similar, when all constants are negative it is optimal to choose all parameters
equal to zero. Let x = (xi)i∈V and define Pi(x) as the length of the shortest path from s

to node i given x. The optimization problem is then:

max
x

∑
i∈V \{s}

Pi(x)
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subject to: (PSPT)

xi ≤ 1, ∀i ∈ V,

xi ≥ 0, ∀i ∈ V.

We may observe that the definition of Pi(x) implies itself an optimization problem,
namely, problem (SPT) with `ij = cijxj for all arcs (i, j) ∈ A.

As both (Dual-SPT) and (PSPT) are maximizing the sum of the shortest path lengths,
we will directly write the intersection of the two feasible regions and use one objective
function, resulting in a linear programming formulation for the parametric shortest path
tree problem:

max
x,π

∑
i∈V \{s}

πi

subject to: (LP)

πj − πi ≤ cijxj, ∀(i, j) ∈ A, (6.1)

πs = 0,

xi ≤ 1, ∀i ∈ V,

xi ≥ 0, ∀i ∈ V.

Note that (LP) is a linear program, and is therefore polynomially solvable, see Papadim-
itriou [38]. Let (x∗, π∗) be an optimal solution of this problem. Then π∗i is equal to the
shortest path from s to i when x = x∗, i.e. π∗i = Pi(x

∗).

6.3 Optimality condition

In this section we give a necessary and sufficient condition for an optimal solution of
(LP). The condition has the nice property that it says that all nodes should fulfill a local
optimality condition.

We start with the assumption that x is such that no negative-length cycles exist,
and consequently a shortest path is well-defined. For xj = 0, ∀j ∈ V , this holds trivially.
Furthermore, we only consider other values of x that induce longer shortest path lengths
than the trivial solution. Let πi(x) denote the shortest path length from s to i given the
parameter values x. Furthermore let zij(x) be such that πj(x)−πi(x)+zij(x) = cijxj, i.e.
zij(x) is the slack value in constraint (6.1). For given x, an arc (i, j) is tight if zij(x) = 0,
which means that the shortest path length to j is as long as the shortest path length to
i plus the arc length of (i, j). As a result we have that tight arc (i, j) is on a shortest

104



6.3 – Optimality condition

path to j, where this path is not necessarily a simple path, i.e. one without loops. For
a feasible solution (x, π(x)) being an optimal solution for (LP) the following condition
should hold for all nodes. (Recall that cij is nonzero for all arcs (i, j) ∈ A.)

Condition 6.3.1 For node j ∈ V exactly one of the following possibilities holds:

• xj = 0 and ∃i such that both cij < 0 and (i, j) is tight.

• xj = 1 and ∃i such that both cij > 0 and (i, j) is tight.

• 0 < xj < 1 and

{
∃i such that both cij < 0 and (i, j) is tight, and
∃i such that both cij > 0 and (i, j) is tight.

It is easy to see that if Condition 6.3.1 does not hold for some node j, the solution can
be improved by changing xj marginally in an appropriate direction. In the following we
prove that satisfying Condition 6.3.1 for all nodes j ∈ V is also sufficient for optimality.
We first need the following definitions and observation. Define A(x) as the set of tight
arcs corresponding to x, and f(x) the total length of the shortest paths when the arc
lengths are fixed by x. Note that we assume that there exists a path from s to any other
node, so there exists a shortest path tree T ⊆ A(x).

Observation 6.3.2 Directed cycles of tight arcs have zero length.

Proof:
Consider cycle C = (i1, i2), (i2, i3), . . . , (ik, i1) of tight arcs. For each tight arc (i, j) we
know that πj(x) − πi(x) = cijxj. If we add these equalities of all cycle arcs, we get
0 =

∑
(i,j)∈C cijxj. 2

Now we prove that satisfying Condition 6.3.1 for all nodes j ∈ V is also sufficient for
optimality.

Theorem 6.3.3 A feasible solution (x, π(x)) is an optimal solution for (LP) if it satisfies
Condition 6.3.1 for any node j ∈ V .

Proof:
The proof is by contradiction. Suppose we have a feasible solution (x̃, π(x̃)) for which
the condition holds but which is not optimal. Let (ẋ, π(ẋ)) be an optimal solution, so
f(ẋ) > f(x̃). Let T be a shortest path tree for solution x̃, i.e. T ⊆ A(x̃).

We now consider what happens to the arc and path lengths in T when we step from
x̃ to ẋ. As f(ẋ) > f(x̃) there is at least one path in T from s to another node t that
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gets longer. In the following we will trace back a path of tight arcs to t that contains
a cycle. We will see that this path and the cycle only contain arcs that get shorter or
arcs that do not change in length when we step from x̃ to ẋ. Moreover, at least one of
them strictly gets shorter. According to Observation 6.3.2 the cycle becomes a negative
length cycle, contradicting the optimality assumption. Starting in j0 ≡ t we trace back a
path as follows, where [i, j] ⊆ T denotes the path between i and j (possibly with i = j):

• Start in j0, and trace back in T until we find an arc that gets longer, which we
denote by (o1, i1). Note that as the path [i1, j0] does not get longer, necessarily the
path to i1 gets longer.

• We know that the change of x̃i1 in ẋi1:

– increases the length of (o1, i1) ∈ A(x̃), as assumed by the choice of i1, and

– decreases the length of some tight arc (j1, i1) ∈ A(x̃), as Condition 6.3.1 holds
for x̃.

• This means that the path to j1 necessarily gets longer, as otherwise the path via j1

to i1 shortens the path to i1 and j0.

• We can apply the same argument on j1 as we did for j0.

• We repeat this reasoning until the path . . . , (j2, i2), [i2, j1], (j1, i1), [i1, j0] forms a
cycle, which will happen as there are finitely many nodes.

So we found a cycle containing (at least two) arcs (jk, ik) whose lengths are reduced
and paths [ik+1, jk] whose lengths either decrease or remain the same. So, the length of
the cycle is strictly smaller for ẋ than for x̃. According to Observation 6.3.2 this means
that we have a negative-length cycle, contradicting optimality of ẋ. 2

To illustrate the reasoning of Theorem 6.3.3 we have the following example.

Example 6.3.4 In Figure 6.1 we present an example. The figure shows a part of the short-
est path tree (solid arcs) plus some arcs that we find by tracing back the path (dotted arcs).
Note that all these arcs are in A(x̃). All arcs in the path are in a bold style. Furthermore,
we indicated whether the arc gets longer, shorter or does not change in length by +, − and
0. Starting with the observation that the path to j0 = t gets longer, we start in t and go
back in the tree until we have an arc that gets longer (o1, i1). As the condition holds, we
then find a tight arc coming from another branch of the tree that gets shorter, (j1, i1). As
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this arc was tight and gets shorter, we know that the path to j1 gets longer. From j1 we
trace back in the tree until we find the first arc that gets longer, (o2, i2), where o2 = s.
Again we can find a tight arc coming from another branch of the tree that gets shorter,
(j2, i2). From (j2, i2) on we can apply the same reasoning as we did for (j1, i1), which gives
an arc (j3, i3), and so on.

s

j0 = ti1

o1

j1
i2

j2

i3

+

−

0

+

0

+

−

−

−

−

Figure 6.1: Path in A(x̃)

6.4 Local improvement algorithm

6.4.1 Algorithm and example

In this section we present an algorithm for the parametric shortest path tree problem.
Condition 6.3.1 suggests a straightforward local improvement algorithm. The main
idea is to increase the shortest path lengths by changing one parameter at a time. We
describe this algorithm and show that, unfortunately, it may need an infinite number of
steps to finish.

Recall that cij is nonzero for all arcs (i, j) ∈ A, and let Ij(x) = {(i1, j), . . . , (ir, j)} be
the set of tight incoming arcs of node j ∈ V . For each node j ∈ V we distinguish three
cases:

Case 1 xj < 1 and cij > 0 ∀(i, j) ∈ Ij(x),

Case 2 xj > 0 and cij < 0 ∀(i, j) ∈ Ij(x),

Case 3 Condition 6.3.1 holds.
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One can see that Case 1 and Case 2 give an immediate possibility to increase the shortest
path length to node j. For Case 1 any small enough increase in xj will do, and for Case
2 any small enough decrease in xj will do. Now the question is how and how much to
increase or decrease xj in these two cases.

Let Vj(x) denote the set of nodes for which every shortest path passes j, with j /∈
Vj(x). So, in the shortest arc network, all nodes in Vj(x) are linked to s exclusively via j.
Let node j be of Case 1 or Case 2, and consider what happens if we gradually change
xj within its lower and upper bound. As long as no new arc gets tight and we do not
reach the bounds, we may continue changing xj, which will increase πj and πi for all
i ∈ Vj(x) with the same number. Note that πi, i ∈ Vj(x), increases as all its shortest
paths pass node j.

Formally, let ∆j denote the change in xj, positive for Case 1 and negative for Case
2. The shortest path length to j and the nodes in Vj(x) increases by ci∗j∆j, with i∗ such
that |ci∗j| ≤ |cij|, ∀(i, j) ∈ Ij(x). There are four factors that bound the value of ∆j:

• First, a further change in xj would cause infeasibility, i.e. xj reaches its bounds:
xj + ∆j ∈ {0, 1}.

• Second, an arc (i, j) with i ∈ Vj(x) becomes tight which means that a further
change in xj will create a negative cycle containing arc (i, j).

• Third, an arc (i, j) with i /∈ Vj(x) becomes tight which means that a further change
in xj will shorten the path to j.

• Fourth, an alternative shortest path arises to a node in Vj(x), which means that
this set needs to be updated.

The first three factors also end the current possibility to improve on node j.

According to the first factor, xj becomes infeasible if it is increased by more than
α1 ≡ 1− xj or if it is decreased by more than α2 ≡ xj.

For the second factor, consider πj(x) − πi(x) ≤ cijxj, with i ∈ Vj(x), where the left
hand side remains constant as both the paths to i and j change with the same amount.
The constraint gets tight when the right hand side is reduced with zij(x), the original
slack. Therefore, arc (i, j) will only get tight if cij and the change in xj have opposite
signs. For Case 1 this gives a maximum increase in xj of

β1 ≡ min
{
u | u = −zij(x)/cij, i ∈ Vj(x), (i, j) ∈ A, cij < 0

}
,
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and for Case 2 we have a maximum decrease in xj of

β2 ≡ min
{
u | u = zij(x)/cij, i ∈ Vj(x), (i, j) ∈ A, cij > 0

}
.

For the third factor, consider πj(x)− πi(x) ≤ cijxj, with i /∈ Vj(x). When we change
x, this also changes πj(x) and cijxj, while πi(x) does not change. The arc can get tight if
cijxj decreases, or increases less than πj(x). For Case 1 this gives a maximum increase
in xj of

γ1 ≡ min

{
u | u =

zij(x)

ci∗j − cij
, i /∈ Vj(x), (i, j) ∈ A, cij < ci∗j

}
,

and for Case 2 we have a maximum decrease in xj of

γ2 ≡ min

{
u | u = − zij(x)

ci∗j − cij
, i /∈ Vj(x), (i, j) ∈ A, cij > ci∗j

}
.

Finally, the fourth factor is that we stop changing x when Vj(x) needs to be updated.
This happens if there arises a shortest path to one of its nodes that does not pass node j,
i.e. if an arc (k, i) with k /∈ Vj(x) and i ∈ Vj(x) becomes tight. Consider πi(x)− πk(x) ≤
ckixi where πi(x) is the only part that changes. So the arcs gets tight when the increase
in πi is equal to the original slack zki(x). This gives the following maximum change in
xj:

δ ≡ min
{
u | u = zki(x)/|ci∗j|, k /∈ Vj(x), i ∈ Vj(x), (k, i) ∈ A

}
.

Concluding, in Case 1 we increase xj by min{α1, β1, γ1, δ}, in Case 2 we decrease xj by
min{α2, β2, γ2, δ}, and in both cases we increase πi by |ci∗j∆j| for all nodes i in Vj(x) and
node j, where ∆j is the change in xj. We now have the following algorithm.

Local improvement algorithm

Step 0. Initialization: start with xj = 0, and therefore πj = 0 for all j ∈ V . So all arcs
are tight.

Step 1. Determine Ii(x) for all i ∈ V . Choose a node j ∈ V for which Case 1 or Case
2 holds. If no such node exists, go to step 5.

Step 2. Determine respectively Vj(x), i∗, α1 or α2, β1 or β2, γ1 or γ2, and δ.
If j of Case 1, let ∆j = min{α1, β1, γ1, δ}.
If j of Case 2, let ∆j = −min{α2, β2, γ2, δ}.

Step 3. Set xj := xj + ∆j.
Set πj := |ci∗j∆j|.
Set πi := πi + |ci∗j∆j| for all i ∈ Vj(x).
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Step 4. If j of Case 1 and ∆j < min{α1, β1, γ1}, then go to Step 2.
If j of Case 2 and ∆j < min{α2, β2, γ2}, then go to Step 2.
Go to Step 1.

Step 5. Stop.

Obviously, if the local improvement algorithm terminates, we have a solution ful-
filling Condition 6.3.1 for all nodes j ∈ V , and hence we have an optimal solution
according to Theorem 6.3.3. However, the algorithm may need an infinite number of
steps, as will be shown in the following example.

Example 6.4.1 Consider a graph with source node s and three other nodes, 1, 2 and 3.
The arcs and the values of cij are depicted in Figure 6.2. First observe that the solution

s

1

2

3

4

2

−2

2

−2

Figure 6.2: Graph G and values of cij

x = (1
2
, 1

2
, 1), π = (2, 1, 3) fulfills Condition 6.3.1 and is therefore optimal according to

Theorem 6.3.3. We apply the local improvement algorithm on this example.

Step 0. x1 = x2 = x3 = 0, and therefore π1 = π2 = π3 = 0. So all arcs are tight.

Step 1. I1(x) = {(s, 1), (3, 1)}, I2(x) = {(s, 2), (1, 2)}, I3(x) = {(2, 3)}.
The only node that does not fulfill Condition 6.3.1 is node 3.

Step 2. V3(x) = Ø, i∗ = 2, α1 = 1, β1 = ∞, γ = ∞, and δ = ∞.
As 3 is of Case 1, let ∆3 = min{α1, β1, γ1, δ} = 1.

Step 3. x3 = 0 + 1.
π3 = 0 + |2× 1| = 2.

Step 4. As x3 = 1 we go to step 1.

Step 1. I1(x) = {(s, 1)}, I2(x) = {(s, 2), (1, 2)}, I3(x) = {(2, 3)}.
The only node that does not fulfill Condition 6.3.1 is node 1.
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Step 2. V1(x) = Ø, i∗ = s, α1 = 1, β1 = ∞, γ1 = 2
4−(−2)

= 1
3
, and δ = ∞.

As 1 is of Case 1, let ∆1 = min{α1, β1, γ1, δ} = 1
3
.

Step 3. x1 = 0 + 1
3
.

π1 = 0 + |4× 1
3
| = 4

3
.

Step 4. As ∆1 = γ1 we go to step 1.

Step 1. I1(x) = {(s, 1), (3, 1)}, I2(x) = {(s, 2)}, I3(x) = {(2, 3)}.
The only node that does not fulfill Condition 6.3.1 is node 2.

Step 2. V2(x) = {3}, i∗ = 1, α1 = 1, β1 = ∞, γ =
4
3

2−(−2)
= 1

3
, and δ = ∞.

As 2 is of Case 1, let ∆2 = min{α1, β1, γ1, δ} = 1
3
.

Step 3. x2 = 0 + 1
3
.

π2 = 0 + |2× 1
3
| = 2

3
.

π3 = 2 + |2× 1
3
| = 22

3
.

Step 4. As ∆2 = γ1 we go to step 1.

The algorithm continues by alternately applying the steps 1 to 4 on node 1 and 2. After the
last step arc (1, 2) became tight, while (3, 1) lost its tightness. This means that x1 can be
increased until (3, 1) is tight again, but then (1, 2) loses tightness, giving the opportunity
to increase x2, etcetera. One can see that x1 < 1

2
if x2 < 1

2
, and x2 < 1

2
if x1 < 1

2
. One

increases x1 until the path (s, 1) has the same length as the path (s, 2), (2, 3), (3, 1), i.e.
until 4x1 = 2x2 + 2 − 2x1, so x1 = 1

3
x2 + 1

3
. One increases x2 until the path (s, 2) has the

same length as the path (s, 1), (1, 2), i.e. until 2x2 = 4x1 − 2x2, so x2 = x1. As we start in
a solution where both x1 and x2 are smaller than a half, we will never reach the optimal
solution in a finite number of steps.

6.4.2 Accelerating the algorithm

The algorithm may get caught in an infinitely repeated loop, as is shown in example
6.4.1. In this section we show that we can handle these loops efficiently by repeating
the first loop in one step.

Let (xA, πA) and (xB, πB) be two feasible solutions for (LP), and assume that πA =

π(xA) and πB = π(xB), i.e. the π’s are equal to the shortest path lengths of the cor-
responding solution for x. Assume that

∑
i∈V πA

i <
∑

i∈V πB
i . Furthermore, define

δx ≡ xB − xA and δπ ≡ πB − πA. Consider the following solution:

(xC , πC) ≡ (xB, πB) + F · (δx, δπ), (6.2)
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in which F is the largest real number that makes (xC , πC) a feasible solution of (LP).
Note that F is nonnegative as F = 0 is a trivial solution. Then we have the following
observation for solution (xC , πC).

Theorem 6.4.2 Arcs that are tight in solution (xB, πB), are also tight in solution (xC , πC).

Proof:
The theorem is trivial for F = 0, so assume F > 0. The proof is by contradiction. Sup-
pose arc (i, j) is tight for solution (xB, πB), and not tight for solution (xC , πC). Consider
the corresponding constraint for A, B and C:

πA
j − πA

i ≤ cijxj
A, (6.3)

πB
j − πB

i = cijxj
B, (6.4)

πC
j − πC

i < cijxj
C . (6.5)

Using the definitions of (xC , πC) and (δx, δπ) we can write

(xB, πB) =
F

1 + F
(xA, πA) +

1

1 + F
(xC , πC).

Implying that (6.4) is a convex combination of (6.3) and (6.5). This contradicts the
signs of the constraint for the three different solutions. 2

We can apply this result to extend the local improvement algorithm. Suppose that
(v1, . . . , va, . . . , vb) is the sequence of nodes for which the variable x is changed during
the algorithm and let va = vb, i.e. the sequence is looping. Instead of continuing local
improvements we can now first eliminate the possibility of infinite repetition of this loop
by applying (6.2) with (xA, πA) the solution before updating node va and (xB, πB) the
solution before (considering) updating node vb. After this step the local improvement
algorithm can be continued again as we have that πC = π(xC) if this is also true for
πA = π(xA) and πB = π(xB):

Proposition 6.4.3 If πA = π(xA) and πB = π(xB) then also πC = π(xC), i.e. πC equals
the shortest path lengths given xC .

Proof:
We know from Theorem 6.4.2 that all tight arcs (and therefore any shortest path tree)
from solution (xB, πB) are also tight for (xC , πC) which implies that πC = π(xC). 2
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Unfortunately, even by using this kind of loop elimination, finiteness is still not guar-
anteed. This can be seen by extending the graph of Example 6.4.1, by adding its mirror
image, see picture 6.3. The upper part of the graph is the original graph, where it has
arc (s, 2) in common with its mirror image. In this graph, the algorithm can get stuck

s

1

2

34

2

−2

2

−2

4
−2

−2

2

5

4

Figure 6.3: Graph G and values of cij

in a loop of loops: The loop between nodes 1 and 2 can be handled until arc (s, 4) gets
tight, whereafter the loop between nodes 4 and 2 can be handled until arc (s, 1) gets
tight, and so on. Like Example 6.4.1, x2 can only have its optimal value if x1 and x4 are
equal to their optimal values, and the other way around. So, to be able to apply the
algorithm acceleration effectively, it should be applied on the largest loop. However,
this can only be done if you know in advance what the largest loop is.

6.5 Alternative formulation

In this section we present an alternative formulation for the parametric shortest path
tree problem (LP). Using the structure of an optimal solution, we are able to eliminate
the parametric variables.

6.5.1 Elimination of parametric variables

Consider an optimal solution of (LP). Then we know from Theorem 6.3.3 and Condition
6.3.1 that for node k we have at least one or two tight arcs. Knowing the tight arcs of
node k, we are able to express xk in terms of π. Recall that cij is nonzero for all arcs
(i, j) ∈ A. For the three possibilities we have respectively:
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• Let (j, k) be the tight arc with cjk < 0. By definition xk = 0, which gives πk = πj.

• Let (i, k) be the tight arc with cik > 0. By definition xk = 1, which gives πk =

πi + cik.

• Let (i, k) and (j, k) be tight arcs with cik > 0 and cjk < 0. Then we may solve the
two corresponding constraints, giving xk =

πj−πi

cik−cjk . Substituting in either of the
constraints gives πk as a convex combination of πi and πj:

πk =
cik

cik − cjk
πj +

−cjk

cik − cjk
πi.

Proposition 6.5.1 The following inequalities hold for any feasible solution:

• For any arc (j, k) with cjk < 0 we have πk − πj ≤ cjkxk ≤ 0, which means πk ≤ πj.

• For any arc (i, k) with cik > 0 we have πk − πi ≤ cikxk ≤ cik, which means πk ≤
πi + cik.

• For any combination of arcs (i, k) and (j, k) with cik > 0 and cjk < 0 we can eliminate
xk from the system of inequalities πk − πj ≤ cjkxk and πk − πi ≤ cikxk which gives

πk ≤
cik

cik − cjk
πj +

−cjk

cik − cjk
πi.

Let A+ be the set of all arcs (i, j) with cij > 0, and A− ≡ A \ A+. Consider the
following linear program:

max
π

∑
i∈V \{s}

πi

subject to: (AF)

πk ≤ πj, ∀(j, k) ∈ A−,

πk ≤ πi + cik, ∀(i, k) ∈ A+,

πk ≤ cik

cik − cjk
πj +

−cjk

cik − cjk
πi, ∀((i, k), (j, k)) ∈ A+ × A−,

πs = 0.

As all constraints in (AF) follow from (LP), we know that the optimal π from (LP) is
also feasible in (AF). The reverse is also true.

Proposition 6.5.2 An optimal solution of (AF) corresponds to a feasible solution of (LP).
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Proof:
Let π be an optimal solution for (AF). We show that we can choose x such that (π, x) is a
feasible solution in (LP). Consider node k and all its upper bounds in (AF). By optimality
in (AF), at least one of these upper bounds is tight. First, suppose there exists a pair of
arcs ((i, k), (j, k)) ∈ A+×A− such that πk = cik

cik−cjk πj +
−cjk

cik−cjk πi. Then xk =
πj−πi

cik−cjk makes
that πk − π` ≤ c`kxk holds for all (`, k) ∈ A. This can be seen as follows. By feasibility in
(AF) we have for c`k > 0 that

cik

cik − cjk
πj +

−cjk

cik − cjk
πi ≤

c`k

c`k − cjk
πj +

−cjk

c`k − cjk
π`,

where subtracting πj at both sides gives

cjk πj − πi

cik − cjk
≤ cjk πj − π`

c`k − cjk
,

showing πj−πi

cik−cjk ≥ πj−π`

c`k−cjk . Using this we have by feasibility in (AF)

πk ≤
c`k

c`k − cjk
πj +

−cjk

c`k − cjk
π` = π` + c`k

(
πj − π`

c`k − cjk

)
≤ π` + c`kxk.

Similarly for c`k < 0 we have

cik

cik − cjk
πj +

−cjk

cik − cjk
πi ≤

cik

cik − c`k
π` +

−c`k

cik − c`k
πi,

where subtracting πi at both sides gives

cik πj − πi

cik − cjk
≤ cik π` − πi

cik − c`k
,

showing πj−πi

cik−cjk ≤ π`−πi

cik−c`k . Using this we have by feasibility in (AF)

πk ≤
cik

cik − c`k
π` +

−c`k

cik − c`k
πi = π` + c`k

(
π` − πi

cik − c`k

)
≤ π` + c`kxk.

Second, suppose that there is not such a pair of arcs, but there is an arc (j, k) ∈ A−

such that πk = πj. Then xk = 0 makes that πk − π` ≤ c`kxk holds for all (`, k) ∈ A.
For (`, k) ∈ A− it follows trivially from feasibility in (AF). For (`, k) ∈ A+ we have
πk ≤ c`k

c`k−cjk πj + −cjk

c`k−cjk π` where replacing πj by πk gives

πk ≤
c`k

c`k − cjk
πk +

−cjk

c`k − cjk
π`

⇔ −cjk

c`k − cjk
πk ≤

−cjk

c`k − cjk
π`

⇔ πk ≤ π`.
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Third, suppose the previous two cases do not hold, but there is an arc (i, k) ∈ A+ such
that πk = πi + cik. Then xk = 1 makes that πk − π` ≤ c`kxk holds for all (`, k) ∈ A.
For (`, k) ∈ A+ it follows trivially from feasibility in (AF). For (`, k) ∈ A− we have
πk ≤ cik

cik−c`k π` + −c`k

cik−c`k πi where replacing πi by πk − cik gives

πk ≤
cik

cik − c`k
π` +

−c`k

cik − c`k
(πk − cik)

⇔ cik

cik − c`k
πk ≤

cik

cik − c`k
π` +

cik

cik − c`k
c`k

⇔ πk ≤ π` + c`k.

We conclude that all constraints on π in problem (LP) are fulfilled. The only thing still
to be proven is that our choices for x are such that 0 ≤ xk ≤ 1 for all k ∈ V . We use that
πk = cik

cik−cjk πj + −cjk

cik−cjk πi for some ((i, k), (j, k)) ∈ A+ × A− if xk /∈ {0, 1}. From πk ≤ πj

we get
cik

cik − cjk
πj +

−cjk

cik − cjk
πi = πj + cjk

(
πj − πi

cik − cjk

)
≤ πj,

which implies that πj−πi

cik−cjk ≥ 0 as cjk < 0. Finally, from πk ≤ πi + cik we get

cik

cik − cjk
πj +

−cjk

cik − cjk
πi = πi + cik

(
πj − πi

cik − cjk

)
≤ πi + cik,

which implies that πj−πi

cik−cjk ≤ 1 as cik > 0. 2

Unfortunately, the new problem formulation does not solve the problem that a local
improvement algorithm may be infinite.

Example 6.5.3 Consider Example 6.4.1. Reformulation of this problem gives (after elimi-
nation of πs and dominated restrictions):

max
π

∑
i∈V

πi

subject to:

π3 ≤ π2 + 2,

π1 ≤ 2

3
π3,

π2 ≤ 1

2
π1.

Here it is easy to see that the optimal solution (π = (2, 1, 3)) can not be achieved by raising
one element of π at a time, starting from zero. From the first two constraints we get
π1 ≤ 2

3
π2 + 4

3
, implying that π1 < 2 if π2 < 1. However, the last constraint says that π2 < 1

if π1 < 2.
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6.5.2 Open problem

As (AF) is a linear program, we know it can be solved efficiently. However, as we
know from the discussion above, there is no straightforward combinatorial algorithm
that solves the problem efficiently. The question is, whether there exists an efficient
algorithm that uses the combinatorial structure of the problem.

6.6 Origin of parametric shortest path tree problems

6.6.1 Economic example: monopolist pricing

Consider a monopolist of some (raw) material who maximizes its expected revenue. The
preferences (called type) of a potential customer of the monopolist are denoted by θ,
and are unknown by the monopolist. The customer faces a quasi-linear utility function
u(q, θ) = v(q, θ) − p, where v(q, θ) is its monetary valuation for having q units of the
material, and p is the money transfer from the customer to the monopolist. Although the
monopolist does not know the type θ of the customer, it is known that θ ∈ {θ1, . . . , θn},
with probability fj being of type θj.

The problem for the monopolist is to offer the customer a set of contracts (qj, pj),
j = 1, . . . , n, one for each possible type such that:

• A customer of type θj chooses contract (qj, pj), j = 1, . . . , n (Incentive compatibil-
ity), and

• the chosen contract offers the customer a nonnegative utility (Rationality).

(The monopolist may choose to give different contracts the same value. The reason for
having different values is to raise the expected profit.)

The set of contracts fulfills the incentive compatibility requirement if it holds that:

v(qj, θj)− pj ≥ v(qi, θj)− pi, ∀i, j = 1, . . . , n,

i.e. a customer of type θj maximizes its utility by choosing contract (qj, pj). The set of
contracts fulfills the rationality requirement if it also holds that:

v(qj, θj)− pj ≥ 0, ∀j = 1, . . . , n.

Assume that any customer has a zero valuation for receiving no units, i.e. v(0, ·) =

0. By defining a dummy type θ0 and dummy contract (q0, p0) = (0, 0) the rationality
constraints become part of the incentive compatibility constraints.
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The problem of the monopolist can be described by the following linear program:

max
q,p

n∑
i=1

fipi

subject to: (MON)

pj − pi ≤ v(qj, θj)− v(qi, θj), ∀i, j = 0, . . . , n,

p0 = 0,

qj ≤ C, ∀j = 1, . . . , n,

qj ≥ 0, ∀j = 1, . . . , n,

where C is the quantity available of the material. Notice that (MON) is (the dual formu-
lation of) a parametric shortest path tree problem with (parametric) arc-length function
v(qj, θj)− v(qi, θj).

The problem of the monopolist is an example of what is called a screening game,
see section 1.3.2. Note that the design of a mechanism is also an example of a screen-
ing game. However, the screening game of the monopolist is not a mechanism design
problem as the rules of the game are exogenously given. The example above is based
on the survey on screening of Rochet and Stole [42].

6.6.2 Auction example: revenue maximization

Consider an auction with m bidders. The bidders are stochastically the same in the
sense that the preferences (called type) of the bidders are random draws from the same
discrete distribution. Let Λ be the finite set of possible types, and λj the type of bidder
j, whose value is only known by bidder j. Let λ ≡ (λ1, . . . , λm) ∈ Λm. The probability
that the m-tuple λ is realized is denoted by P (λ). We write (λj, λ

−j) = λ to highlight the
element from bidder j, and denote P (λ−j) the probability that λ−j is realized, ignoring
the type of bidder j.

Bidder j faces a quasi-linear utility function u(α, λj) = v(α, λj) − pj, where v(α, λ)

is its monetary valuation for allocation α, and pj is the money transfer from bidder j to
the auctioneer. The auction is a direct revelation mechanism in which the bidders reveal
their type, knowing that the allocation and payments are determined by an allocation
function and payment function of the revealed types:

α : Λm → A,

p : Λm → Rm,

where A is the set of possible allocations. These functions have to fulfill two conditions:
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• Incentive compatibility, i.e. reporting truthfully is a Bayes-Nash equilibrium, which
means that reporting truthful is in expectation the best strategy, and

• Individual rationality, i.e. in expectation it is profitable for all bidders to participate
in the auction.

The incentive compatibility constraints can be written as:∑
λ−j∈Λm−1

[
v(α(λj, λ

−j), λj)− pj(λj, λ
−j)
]
P (λ−j)

≥
∑

λ−j∈Λm−1

[
v(α(µ, λ−j), λj)− pj(µ, λ−j)

]
P (λ−j),

∀j ∈ {1, . . . ,m}, ∀λ ∈ Λm,∀µ ∈ Λ.

Individual rationality is fulfilled if also the following constraints hold:∑
λ−j∈Λm−1

[
v(α(λj, λ

−j), λj)− pj(λj, λ
−j)
]
P (λ−j) ≥ 0, ∀j ∈ {1, . . . ,m}, ∀λ ∈ Λm.

The objective of the auctioneer is to maximize expected revenue:

max
α,p

∑
λ∈Λm

[
m∑

j=1

pj(λ)

]
P (λ).

To simplify these expressions we define the following:

v(µ|λ�, α) =
∑

λ−j∈Λm−1

v(α(µ, λ−j), λj)P (λ−j),

where we used the bidder-neutral λ� ∈ Λ as the expected value is the same for all
bidders; and

p(µ) =
∑

λ−j∈Λm−1

pj(µ, λ−j)P (λ−j),

which is bidder-neutral for the same reason. Using these definitions the auctioneer’s
problem can be summarized in the following program:

max
α,p

m
∑
λ�∈Λ

p(λ�)

subject to: (RMA)

p(λ�)− p(µ) ≤ v(λ�|λ�, α)− v(µ|λ�, α), ∀λ�, µ ∈ Λ,

p(λ�) ≤ v(λ�|λ�, α), ∀λ� ∈ Λ.
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Note that it is possible to integrate the second set of constraints (rationality constraints)
in the incentive compatibility constraints by defining a dummy-bidder in the same way
as we did for (MON). Then, (RMA) is (the dual formulation of) a parametric shortest
path tree problem with (parametric) arc-length function v(λ�|λ�, α)− v(µ|λ�, α).

The example in this section is from the survey on combinatorial auctions of De Vries
and Vohra [54].
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Chapter 7

Summary and Conclusions

“There is something about all this that I do not understand;
but if ever we need to know it, you may be sure that we shall.”

The Hermit in ‘The Horse and His Boy’ – C.S. Lewis

In this thesis we focussed on incentive alignment between decision makers in supply
chains. We considered the multi-period production planning problems of these decision
makers and the way how short term operational transactions between them can be
chosen such that supply chain costs are minimized. The complicating factor in these
situations is that different decision makers have different goals in mind and can not be
forced to behave in a social way.

The VCG mechanism is a well known mechanism to align incentives between differ-
ent actors, however, in Example 1.4.1 we showed that in single supplier–single buyer
relations the mechanism may lead to budget deficits that are equal to the cost benefits
from incentive alignment. This means that a third party has to pay an amount of money
to the buyer and supplier that equals the total cost savings faced by them. However,
such a benefactor may not exist and incentive alignment is only implementable if the
cost reduction itself is the incentive to cooperate. As the single supplier–single buyer
setting faces a budget deficit, we use auction mechanisms where multiple suppliers
compete for supplying goods.

In chapter 2 we introduced a combinatorial auction for a multi-period procurement
setting, where the buyer in the supply chain procures its input via an auction. We
proved that the combinatorial auction is appropriate for this setting, i.e. it fits the cost
structure implied by the planning problems faced by the bidders. These planning prob-
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lems are modeled as lot-sizing problems. The combinatorial auction allows bidders to
fully incorporate their cost structure, in particular balancing setup and holding costs.
As a consequence, a combinatorial auction using the rules of the VCG mechanism will
yield the cost minimizing production plan of the lot-sizing problem. By two examples
we showed that even though the combinatorial auction allows bidders to express their
costs appropriately in their bids, it might be better for the auctioneer to use less sophisti-
cated auction mechanisms. Two alternative auction mechanisms have a strong relation
to the extreme solutions of the lot-sizing problem. A first alternative is to have one auc-
tion that procures all demand in the first period, leaving the auctioneer with the highest
possible inventories. The second alternative is to organize an auction in each period
separately and preclude the possibility of inventories. We showed the counterintuitive
result that either of the alternative auction formats, that do limit production flexibility,
might be cheaper for the auctioneer than the combinatorial procurement auction. How-
ever, we also show that for the two-period setting, the combinatorial auction seems to
be an attractive compromise between the alternatives as it is never the most expensive
of the tree.

Chapter 3 compared the procurement costs of the combinatorial auction and the
alternative of organizing an auction in each period separately. The combinatorial auc-
tion will increase production efficiency as compared to the series of separate auctions,
as it will allow the suppliers to incorporate more information about their costs. In
other words, suppliers can produce more cheaply and therefore bid more competitively
against each other. Moreover, a combinatorial auction will allow the buyer to purchase
units in advance of when required. This can be advantageous if supplier production
capacity is scarce in some periods, or if production costs vary from period to period.
We showed that if suppliers are not limited by capacities, the combinatorial auction
dominates the separate auctions as it is never more expensive for the auctioneer than
the separate auctions. However, from Example 2.3.2 we know that there are capaci-
tated cases in which the buyer will be worse off using a combinatorial auction. So, in
spite of the increase in production efficiency the buyer needs in fact to pay more. The
main result of this chapter is that for a two-period scenario the combinatorial auction
dominates the alternative in expectation.

Chapter 4 compared the procurement costs of the combinatorial auction and the
other alternative, called stock auction. The stock auction allows suppliers to achieve
economies of scale, but gives no flexibility in production timing. The combinatorial
auction gives this flexibility and therefore decreases production costs compared to the
stock auction. Similar to the result of the previous chapter, we show that if suppliers
are not limited by capacities, the combinatorial auction dominates the stock auction as
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it is never more expensive for the auctioneer than the stock auction. However, from
Example 2.3.3 we know that there are capacitated cases in which the buyer will be
worse off using a combinatorial auction instead of the stock auction. So, in spite of
the increase in production efficiency the buyer needs in fact to pay more. The main
result of this chapter is that in a two-period scenario, the possible loss from using the
combinatorial auction instead of the stock auction can be limited in two ways. First, this
loss is at most one setup cost. Second, we showed that the loss depends on the level of
competition between suppliers. More specifically, the loss is limited by the difference in
unit production costs of the two cheapest suppliers in the second period.

In chapter 5 we applied the VCG mechanism to the capacitated assignment prob-
lem, where buyers can bid for collections of items but the valuations are linear within
capacity restrictions. We showed that the TU-game corresponding to the capacitated
assignment problem is concave, which implies the buyers-are-substitutes property. Fur-
thermore, we showed that the capacitated assignment problem is a special case of the
models discussed by Bikhchandani and Ostroy [4] and De Vries et al. [53]. As the main
results of Bikhchandani and Ostroy [4] and De Vries et al. [53] are conditional to re-
spectively the buyers-are-substitutes property and concavity, their results can be applied
to the capacitated assignment problem. Specifically, this means that the VCG mecha-
nism corresponds to a price equilibrium, and that the VCG mechanism can equivalently
be replaced by the primal-dual auction. We extended the assignment problem with ca-
pacities in two directions. First, we studied the generalized assignment problem where
items have different sizes. Second, we added setup costs to the buyers’ valuations. For
both extensions, the buyers-are-substitutes condition and therefore concavity does not
hold in general as we showed by examples. This means that even for very straightfor-
ward extensions of the assignment problem we cannot ensure that the outcome of the
VCG mechanism is supported by a price equilibrium, or can be achieved by an ascend-
ing auction. Finally, we also showed that it may be necessary to have non-anonymous
prices in the price equilibrium that corresponds to the VCG mechanism.

Chapter 6 discussed a parametric shortest path tree problem. The problem is a basic
version of a problem class for designing incentive compatible and individual rational
mechanisms, for example in bargaining in the EOQ setting or in auctions. The problem
is a generalization of the shortest path problem. The parametric problem is a shortest
path problem where the lengths of the arcs are defined by the products of arc depen-
dent constants and node dependent variables. We showed that although the parametric
problem is nonlinear, it can be reformulated as a linear programming problem by using
duality theory, and is therefore polynomially solvable. However, we searched for an
algorithm that uses the combinatorial structure of the problem allowing for faster op-
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timization. First we proved an optimality condition for the shortest path tree problem
in terms of parameter values and the set of arcs that are part of a shortest path. This
condition has the nice property that it is in fact a local condition. The optimality condi-
tion suggests a local improvement algorithm, but unfortunately, the local improvement
algorithm may not be finite, for which we gave an example. Second, we showed an al-
ternative formulation for the parametric shortest path tree problem where, surprisingly,
the parametric variables can be eliminated. However, we could still construct an exam-
ple for which local improvement is infinite. The existence of a combinatorial algorithm
that is running in polynomial time remains an open question.

This thesis focussed on incentive alignment between different decision makers in
supply chains. More specifically, we considered short term operational coordination of
the transactions between links in a supply chain. Among the many aspects of these
transactions, we considered only two of them, namely, production planning in relation
to cost minimization, and the incentives that the actors have to behave strategically. As
stated in many quotes from scientific literature, this field is a very difficult and mainly
uncultivated field at the frontiers of knowledge. We explored some of the problems from
this field and showed both possibilities and challenges. Our main suggestion for coordi-
nation is the use of procurement auctions in the multi-period production setting that is
described by the lot-sizing model. This mechanism avoids the budgetary problems that
exist in bilateral exchange situations and allows for optimal matching of production
timing and demand. Moreover, on the average, the increased efficiency of supply chain
planning appears to be profitable for both suppliers and buyer. The main challenge is
to put these kind of mechanisms into practice.
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Pekeč, A., 22
Pinker, E.J., 40
pivotal mechanism, 26
players-are-substitutes property, see buyers-

are-substitutes property
price

linear –, 84, 98
definition, 99

price equilibrium, see equilibrium, price
prices

anonymous –, 95, 99
definition, 99

primal dual auction, see PD auction
prisoner’s dilemma, 19
PSPT, 104

Raman, A., 12
RMA, 119
Rochet, J.-C., 118
Rohatgi, V.K., 65
Romero Morales, D., 13, 41, 84
Rothkopf, M.H., 22

Satterthwaite, M.A., 25
Scherrer, C.R., 29
Schummer, J., 36, 84, 85, 90, 92–94, 123,

139
screening game, see game, screening
screening problem, see game, screening
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Samenvatting

Veilingmechanismen voor het optimaliseren van de pro-

ductieketen

Achtergrond
Dit proefschrift gaat over het plannen van productie en voorraad als de vraag naar de
producten bekend is en vast ligt. Uitgangspunt is dat de productie plaatsvindt op ver-
schillende momenten en dat de kosten bestaan uit vaste kosten voor het opstarten van
de productie, variabele kosten voor iedere geproduceerde eenheid, en voorraadkosten
voor producten die eerder geproduceerd worden dan ze nodig zijn. Stel dat een pro-
ducent weet hoeveel eenheden van het product hij in iedere periode kan afzetten. In
dat geval wil hij weten hoe hij dat op de goedkoopste manier kan produceren. Aan
de ene kant moet de producent zo veel mogelijk in een keer produceren, om de vaste
kosten zo laag mogelijk te houden. Immers, bij verschillende productieseries worden
voor iedere serie opnieuw de vaste kosten gemaakt. Helaas heeft deze strategie het
nadeel dat de producten die pas over enige tijd gebruikt worden, in voorraad moeten
worden gehouden. Aan de andere kant zou de producent daarom zoveel mogelijk pre-
cies op tijd moeten produceren. In veel gevallen zal de goedkoopste optie tussen de
twee uitersten van ‘alles in een keer produceren’ en ‘alles precies op tijd produceren’ in
liggen. In essentie is het probleem dus om te bepalen hoe groot de productieseries op
ieder moment moeten zijn om de totale kosten zo laag mogelijk te krijgen. We zullen
dit probleem daarom aanduiden als het seriegrootteprobleem.

Het seriegrootteprobleem kent twee basisvarianten, een voor goederen die (min of
meer) oneindig deelbaar zijn, zoals olie, en een voor productie die noodzakelijk per
stuk worden gemaakt, zoals bijvoorbeeld mobiele telefoons. De eerste variant werd
in 1913 voor het eerst in een wiskundig model geformuleerd door Harris [20]. Bijna
een halve eeuw later presenteerden Wagner en Whitin [55] een model voor de tweede
variant. Beide modellen zijn voorbeelden van problemen uit het vakgebied van de
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(mathematische) besliskunde 1, en zijn daarin uitgebreid bestudeerd. Zie bijvoorbeeld
de overzichten van Erlenkotter [12], Brahimi et al. [5] en Karimi et al. [27].

In dit proefschrift kijken we naar het seriegrootteprobleem vanuit het perspectief
van de productieketen (supply chain) waarin de ene producent een halffabrikaat levert
aan een volgende producent die het halffabrikaat verwerkt tot eindproduct. In deze
situatie hebben zowel de leverancier als de afnemer hun eigen seriegrootteprobleem.
In beginsel zullen beiden hun productie zo willen plannen dat hun eigen totaal van
vaste, variabele, en voorraadkosten minimaal is. Maar, producenten kunnen het zich
niet veroorloven om alleen naar hun eigen kosten te kijken. Voor de concurrentieposi-
tie van het eindproduct zijn de totale kosten van de hele productieketen van belang.
Narayanan en Raman [34] maken duidelijk dat er alleen verliezers zullen zijn als de
partners in een productieketen niet samenwerken. De vraag is dan hoe de verschil-
lende schakels van een productieketen kunnen samenwerken. Eén oplossing is de fusie
van beide producenten zodat we niet meer te maken hebben met twee op elkaar af te
stemmen planningsproblemen, maar met één gëıntegreerd planningsprobleem. Het bij-
behorende tweelaagse seriegrootteprobleem is eveneens een veel bestudeerd probleem
in de besliskunde, zie bijvoorbeeld het werk van Van Hoesel et al. [23]. Een andere nog
nauwelijks bestudeerde oplossingsrichting is die van het formuleren van (afdwingbare)
spelregels waarbinnen de producenten tot een gezamenlijke planning komen maar toch
zelfstandig blijven beslissen. In deze richting hebben we niet meer alleen te maken met
een optimaliseringsprobleem, maar ook met de strategische interactie tussen de produ-
centen. Deze strategische interactie wordt uitgebreid bestudeerd in het vakgebied van
de speltheorie, en wordt een spel genoemd. Een praktisch voorbeeld van een spel is een
veiling zoals de bloemenveiling in Eelde, waar het mechanisme van de veiling wordt
gebruikt om bloemen te verkopen. Andersom gebruiken steeds meer bedrijven (omge-
keerde) veilingen om goederen in te kopen, bijvoorbeeld Mars, Inc. (Masterfoods), zie
de studie van Hohner et al. [24]. Volgens Elmaghraby [10] is de interactie van kosten-
minimalisatie van de leveranciers en het ontwerp van de inkoopveiling een nog onont-
gonnen gebied in de wetenschap. Dit is het gebied waar we in dit proefschrift enkele
voorzichtige stappen zetten: Veilingmechanismen voor het optimaliseren van de produc-
tieketen.

1Het Nederlands Genootschap voor Besliskunde [36] beschrijft het vakgebied als volgt: “Besliskunde
omvat de theorie en toepassing van wiskundige technieken voor het modelleren en verbeteren van
processen in bedrijven en andere organisaties. (..) Besliskunde bevindt zich (..) op het snijvlak van
Wiskunde, Bedrijfskunde en Informatica. Besliskunde wordt ook wel Operations Research, of Manage-
ment Science genoemd.”
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Het proefschrift
Samenvattend kunnen we zeggen dat in dit geschrift het volgende probleemgebied cen-
traal staat.

• Planning van productie en voorraad, het zogenaamde seriegrootteprobleem,

• waarin we kijken naar de afstemming van de individuele beslissingsproblemen
van opeenvolgende schakels in een productieketen, en

• waarvoor de spelregels moeten worden ontworpen zodat de individuele belangen
van de opeenvolgende schakels samenvallen met het belang van de hele keten.

Een bekend mechanisme om de belangen van verschillende spelers met elkaar te
verzoenen is het VCG-mechanisme. Onderdeel van dit mechanisme zijn betalingen aan
of van de spelers. Deze betalingen zijn zodanig dat alle spelers er belang bij hebben
om open kaart te spelen en daarmee gezamenlijk de ketenbrede goedkoopste produc-
tieplanning te kiezen. Om in de setting van de productieketen te kunnen worden ge-
bruikt, moeten de betalingen wel zo zijn dat er een overschot is op de begroting. Dat wil
zeggen dat de betalingen aan de ene groep spelers betaald moet kunnen worden met
de betalingen van de andere spelers. We tonen met een voorbeeld aan dat de toepass-
ing van dit mechanisme op de setting met één leverancier en één afnemer, helaas, een
fors begrotingstekort heeft. Om dit probleem te omzeilen, breiden we het aantal lever-
anciers uit zodat we met een veilingversie van het VCG-mechanisme kunnen werken.

In hoofdstuk 2 introduceren we een combinatorische veiling voor de setting waarin
één afnemer via een veiling een of meer leveranciers kiest uit een groep bieders. De
veiling heet combinatorisch omdat de potentiële leveranciers biedingen mogen uitbren-
gen op een bepaalde combinaties van de gevraagde hoeveelheden. We tonen aan dat
de leveranciers op deze manier de kostenstructuur uit het seriegrootteprobleem exact
kunnen vertalen in passende biedingen. Bovendien, door gebruik te maken van de be-
talingsregels van het VCG-mechanisme, is het voor alle leveranciers het beste om hun
werkelijke kosten te bieden. Op die manier kan de veilingmeester (in dit geval de afne-
mer) de combinatie van biedingen kiezen die de laagste totale kosten geeft. Hoewel
de combinatorische veiling dus precies doet wat we willen, namelijk het minimaliseren
van de kosten van de hele keten, is er toch een probleem. Met twee voorbeelden tonen
we aan dat in bepaalde gevallen de afnemer beter af kan zijn met minder geavanceerde
veilingen. We hebben dus een mooi mechanisme wat precies doet wat we willen, maar
de vraag is of de afnemer daadwerkelijk zal kiezen voor dit mechanisme. Het eerste
voorbeeld gebruikt de aanname dat de afnemer kiest om alle benodigde halffabrikaten
al in de eerste periode in te kopen. In dat geval heeft de afnemer dus een maximale
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voorraad. Het tweede voorbeeld gebruikt dat de afnemer voor iedere periode apart
een veiling organiseert en geen voorraden aanhoudt. Een bemoedigend resultaat is dat
hoewel deze alternatieve veilingen in sommige omstandigheden het beste alternatief
zijn voor de afnemer, ze ook heel slecht kunnen uitpakken. Daartegenover staat dat
voor alle gevallen met maar twee perioden, de combinatorische veiling óf de goedkoop-
ste optie is, óf de op een na goedkoopste, maar nooit de duurste van de drie.

In hoofdstuk 3 maken we een nadere vergelijking tussen de combinatorische veiling
en het alternatief om in iedere periode apart een veiling te organiseren. Zoals gezegd
doet de combinatorische veiling precies wat we willen, namelijk het minimaliseren van
de totale kosten van de productieketen. Dit is het geval omdat de leveranciers hun echte
kosten volledig kunnen uitdrukken in de soort biedingen die de afnemer accepteert, en
dat zo ook daadwerkelijk hun echte kosten willen bieden omdat dat het beste voor hen
is vanwege de eigenschappen van het VCG-mechanisme. Wanneer in iedere periode een
aparte veiling wordt georganiseerd, dan zullen de leveranciers niet meer in staat zijn om
in een keer de goedkoopste oplossing van hun seriegrootteprobleem te bepalen, simpel-
weg omdat ze niet van tevoren weten welke combinaties ze uiteindelijk mogen leveren.
De afnemer is daardoor ook niet meer in staat om de oplossing te kiezen die de kosten
van de keten minimaliseert. We laten zien dat wanneer de leveranciers niet gehinderd
worden door capaciteitsbeperkingen, de afnemer altijd voor de combinatorische veil-
ing moet kiezen. Helaas is dat niet meer waar als er wel capaciteitsbeperkingen zijn.
Toch kunnen we als belangrijkste resultaat van dit hoofdstuk aantonen dat wanneer
de productiekosten onafhankelijke en identiek (uniform) verdeelde stochasten zijn, en
we ons beperken tot problemen met twee perioden, de combinatorische veiling voor de
afnemer in verwachting beter is dan het alternatief van aparte veilingen.

In hoofdstuk 4 maken we een nadere vergelijking tussen de combinatorische veiling
en het alternatief om alle halffabrikaten al in de eerste periode in te kopen. Uiteraard
gelden hier dezelfde mooie eigenschappen voor de combinatorische veiling als hiervoor
genoemd. In het alternatief van één veiling in de eerste periode kunnen de leveranciers
wel schaalvoordelen halen, maar hebben ze niet de flexibiliteit om productiecapaciteit
in latere perioden in te zetten. Ook hier geldt dus dat het alternatief vaak geen ruimte
laat voor de goedkoopste oplossing voor de hele keten. We laten zien dat wanneer
de leveranciers niet gehinderd worden door capaciteitsbeperkingen, de afnemer altijd
voor de combinatorische veiling moet kiezen. Helaas is dat niet meer waar als er wel
capaciteitsbeperkingen zijn. Toch is het mogelijke voordeel dat de afnemer kan krijgen
door een inefficiënte veiling te gebruiken wel beperkt. Voor het geval met twee perioden
kunnen we twee grenzen afleiden. Eerst laten we zien dat het voordeel nooit groter is
dan de waarde van de vaste kosten. Daarna bewijzen we dat het voordeel afhangt
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van het niveau van de concurrentie tussen de leveranciers. Er geldt namelijk dat het
voordeel ook nooit groter is dan het verschil in de per-eenheid variabele kosten van de
twee goedkoopste leveranciers in de laatste periode.

In hoofdstuk 5 gaan we dieper in op de speltheoretische aspecten van het VCG-
mechanisme. Het VCG-mechanisme heeft een paar hele mooie theoretische eigenschap-
pen, zoals bijvoorbeeld het hebben van dominante strategieën voor de deelnemers, en
een uitkomst die gelijk is aan de optimale keuze van hetzelfde probleem met maar één
beslisser. Helaas is er wel een probleem wanneer we het mechanisme in praktische
situaties willen toepassen (zie ook het overzicht van Ausubel en Milgrom [1]). Het
mechanisme is namelijk nogal complex in verschillende opzichten. Bijvoorbeeld, in de
combinatorische veiling van de voorgaande hoofdstukken, moeten de deelnemers voor
iedere mogelijke combinatie hun kosten berekenen en doorgeven aan de veiling. Het
aantal mogelijke combinaties neemt echter exponentieel toe als het aantal producten
toeneemt, en dit heeft als gevolg dat al voor relatief kleine problemen een veel te groot
aantal biedingen moet worden gedaan en verwerkt. Deze complexiteit kan in sommige
gevallen worden omzeild door een iteratieve veiling te houden die equivalent is aan
het VCG-mechanisme. Een bekend voorbeeld hiervan is de Engelse veiling waarin de
deelnemers elkaar om de beurt mogen overbieden. Soortgelijke alternatieven voor com-
plexere situaties zoals de combinatorische veiling, zijn echter niet altijd equivalent aan
het VCG-mechanisme. Er moet namelijk worden voldaan aan een stabiliteitsvoorwaarde
gerelateerd aan het economische begrip prijsevenwicht en het wiskundige begrip sub-
modulariteit.

We laten zien dat het VCG-mechanisme in bovenstaande zin toepasbaar is op het
zogenaamde toewijzingsprobleem met capaciteiten. Dit is een eenvoudig geval van een
combinatorische veiling. In deze toepassing mogen de deelnemers aan de veiling bieden
op pakketten goederen. Iedere deelnemer hecht bepaalde waardes aan de individuele
goederen, onafhankelijk van de pakketsamenstelling, mits het pakket zijn capaciteit niet
overschrijdt. We tonen aan dat het zogenaamde spel met overdraagbaar nut (TU-game)
dat hoort bij deze setting, voldoet aan de benodigde stabiliteitsvoorwaarde. Bovendien
laten we zien dat dit probleem een speciaal geval is van de modellen van Bikhchan-
dani en Ostroy [4] en De Vries et al. [53]. Helaas geldt voor twee relatief eenvoudige
generalisaties van het toewijzingsprobleem dat de stabiliteitsvoorwaarde komt te ver-
vallen. Ten eerste tonen we dit aan voor het gegeneraliseerde toewijzingsprobleem
waarin de verschillende goederen van formaat kunnen verschillen (dat wil zeggen, een
verschillend beslag leggen op de capaciteit van de bieders). Ten tweede wordt het ook
aangetoond voor het geval waarin de bieders worden geconfronteerd met vaste kosten
voor het hebben van goederen.
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In hoofdstuk 6 bespreken we een parametrische versie van het probleem om een
kortste-pad-boom te vinden in een netwerk. In plaats van gegeven afstanden tussen
de punten, zijn de afstanden afhankelijk van de te kiezen parameters. Dit probleem is
een basale versie van de klasse van problemen waarin mechanismen worden ontwor-
pen waarin de deelnemers vrijwillig meedoen aan het mechanisme (bijvoorbeeld een
veiling) en waarin het voor hen optimaal is om te handelen in het algemeen belang.
Een zo’n probleem komt voort uit het onderhandelingsmodel dat Sucky [49] heeft ont-
worpen voor de coördinatie in een productieketen met oneindig deelbare goederen.
Als eerste laten we zien dat hoewel het probleem niet lineair is, het toch kan worden
geherformuleerd als een lineair optimaliseringsprobleem. Dit impliceert dat het prob-
leem polynomiaal oplosbaar is, wat betekent dat de maximale oplossingstijd in tegen-
stelling tot bijvoorbeeld de combinatorische veiling niet exponentieel toeneemt met de
grootte van het probleem. Desondanks onderzoeken we in dit hoofdstuk of er een
oplossingsalgoritme bestaat dat nog sneller is dan die voor gewone lineaire optimalis-
eringsproblemen door gebruik te maken van de specifieke structuur van het probleem.
Als eerste presenteren we een optimaliteitsvoorwaarde, en laten zien dat die noodza-
kelijk en voldoende is voor optimaliteit. De voorwaarde heeft de mooie eigenschap
dat het een lokale voorwaarde is, wat wil zeggen dat ieder punt in het netwerk aan
die voorwaarde moet voldoen. Van de optimaliteitsvoorwaarde naar een eenvoudige
lokale-ophogingsalgoritme is een kleine stap. We tonen aan dat dit algoritme in spe-
ciale gevallen, helaas, oneindig veel stappen vraagt. Opvallend genoeg kunnen we het
parametrische probleem herformuleren door de parametrische variabelen te elimineren.
Maar ook hier geldt dat een lokaal algoritme oneindig veel stappen nodig kan hebben.
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