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We examine two-person zero-sum repeated games in which the players’ action
choices are restricted in the following way. Let r(, r, € N, where N also represents
the set of stages of the game. If, at any stage 7, player & € {1, 2} did not select
action i at any of the preceding r, stages, then action i will vanish from his set of
actions and will no longer be available in the remaining play. For several (r{, ry)-
cases we show the existence of optimal strategies for limiting average optimal
play. Journal of Economic Literature Classification Numbers: C72, C73. © 1995

Academic Press, Inc.

1. INTRODUCTION

Learning-by-doing is widely recognized as an important phenomenon
in technical change (cf. Arrow, 1962). Unlearning-by-not-doing could be
defined as the loss of relevant knowledge caused by ceasing to perform
certain activities. The following question arises: Which actions (e.g., skills,
activities, technological possibilities) should be maintained by doing, and
which actions will consequently be dropped, or unlearned, by not-doing?
In a one-person decision situation the obvious answer to this question is
to keep the most profitable actions. In a multi-person setting the answer
is not so obvious. In this first paper on the subject, we take a zero-sum
infinitely repeated game model to study this question. Normally, in two-
person repeated games with complete information the players face the
same payoff matrix at all stages and they can select from the same set of
actions at any of those stages. In this new setup, however, the actions
are to be used frequently in order for them to remain available. In our
model unlearning happens in a rather abrupt way: If a player has not
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performed some particular action during a given fixed period of time, then
this action instantaneously disappears from his action set.

This paper is a first attempt to model aspects of unlearning and does
not provide an exhaustive analysis of the matter. The organization is as
follows. In the next section we give our formal model. In Section 3 we
examine games where (at least) one of the players already loses actions
after not selecting them for two consecutive stages. In Section 4 both
players unlearn actions in three stages. Section 5 has concluding remarks
on solving games with longer unlearning periods.

2. THE MoDEL

A repeated game with vanishing actions is given by an (m X a)-matrix
of reals A = [a,],, -, and by two natural numbers r,, r,. The game is
played as follows. Initially players 1 and 2 have pure action sets {1, 2,

.,myand{1,2,. .., n}, respectively. Players are allowed to randomize
over their pure actions. If action i of player & has not been realized during
r, consecutive stages, then action i is removed from player k£’s action set.
Thus play continues on a submatrix of A. Whenever entry (i, j) is being
selected, player 2 has to pay the stage payoff q; to player 1. Play continues
forever and players evaluate the infinite stream of stage payoffs R, as a
limiting average reward lim inf,_,, (1/7) Z,T:, R_. Player | wishes to max-
imize his expected average reward, while player 2 is minimizing the same.

Such a game is a special type of stochastic game with finite state and
action spaces. It is well known that these games have a value, both for
discounted rewards (cf. Shapley, 1953) and for limiting average rewards
(cf. Mertens and Neyman, 1981). To compute discounted value and opti-
mal strategies, several algorithms are available (cf. Raghavan and Filar,
1991}, so in the case of discounting there is not really a problem in solving
arepeated game with vanishing actions. On the other hand, little is known
about how to solve limiting average reward stochastic games (except for
some very specially structured subclasses). Generally there are no limiting
average optimal strategies and only history dependent limiting average e-
optimal strategies (¢ > 0) (cf. Blackwell and Ferguson, 1968). Repeated
games with vanishing actions do not belong to any of the subclasses of
limiting average reward stochastic games for which solution methods are
known. We therefore focus on such rewards for our model.

We end this section with a few obvious results on (r,, ry)-restricted
games. If the matrix game A has a saddlepoint at (i*, j*), then the value
of the matrix game A, denoted by val(A4), as well as the value v, ,, of the
(ry, ry-restricted game A, . is equal to aup. If r; = r; = 1, the actions
realized at the initial stage are to be used at all stages. So the restricted
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game is equivalent to a (one-shot) matrix game and v, | = val(4). If r, =
1 and r, = 2, then at stage 2 player 1 has only one action left, while player
2 has all actions left. Hence v,,, = v = max; min; a; (and similarly v, , =
U = min; max; a; for ry = 2). Asymptotically we have lim, ,_..v, , =
val(A) for any (m X n)-matrix A because, as r, increases, player 1 can
use his matrix game optimal mixed action for a fraction of time growing

to 1, now and then selecting pure actions that are about to vanish.

3. (2, r)-RESTRICTED GAMES

THEOREM 3.1. Let A be an (m X n)-matrix game and let r = 3. The
value of the (2, r)-restricted game A,, equals v,, = v.

Proof. Obviously, player 1 can achieve at least v in the (2, r)-re-
stricted game. Player 2 can guarantee v by playing as follows without loss
of generality: At stage 1 let player 2 choose action 1 and suppose that
player 1 also chooses action 1. At stage 2 let player 2 choose action 2
with a,, = min; a;; and suppose that player | chooses action 2 as well. At
stage 3 let player 2 choose action 3 with a,; = min; a,;. At stage 3 player
1 can only choose 1 or 2, since he has lost all other actions. If player 1
chooses 2 (and loses 1) at stage 3, then player 2 can obviously enforce
payoff a,,. If player 1 chooses 1 at stage 3, then player 2 can continue
by playing actions 2 and 3 alternately, starting with 3 at stage 4. This
would give payoffs a,; and a; in cyclic order as long as player 1 is keeping
both actions ‘‘alive.”” =

THEOREM 3.2. For a matrix A of size m X 2 the (2, 2)-restricted game
A, , has value v, , given by v,, =3 v + v,

Proof. At stage 1| player 1 can put probability 4 on a row containing
the first column maximum, as well as probability ¢ on a row containing
the second column maximum. Then, with probability at least 4, the initial
payoff will be at least v (the minimum of these maxima). If this happens
indeed, then player 1 can obtain an average reward of at least U because,
as long as player 2 has two actions, player | can alternate between the
two rows, each time receiving at least v; if player 2 loses an action, player
1 can get the maximum of the remaining column. If the initial payoff is
below v, then player 1 can get at least v by choosing a maxmin action.
Since player 2 can apply an analogous strategy, we have v,, = $ v +
iv. =

We now give an example to illustrate how any (2,2)-restricted game of
size m X n can be solved using backward induction.
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ExampLE 3.3. Consider the following matrix game without sad-
dlepoints:

b
I
~N W N
[T TN

Now suppose that at stage 1 entry (1, 1) is being selected. Then at stage
2 choosing action 1 is, for both players, weakly dominated by choosing
something else. So, after stage 2 we are in one of the following submatrices
with a history of playing the main diagonal from up/left to bottom/right:

From the arguments in the proof of Theorem 3.2 one can conclude that
the resulting average rewards will respectively be 2, 3, 2, and 2. Hence
at stage 2 the players would like to play optimally in the matrix game

) ,

which has value §. Similarly, we find the other entries of the matrix game
representing the initial stage situation

Nikr N B
N W W

A* =

W e
oo SE
% a

The unique optimal mixed actions in A* are (3838, 435, 38%%) for player 1

and (%%, 1§85, 4% for player 2, while the (2,2)-restricted value is given
by vy, = val(A*) = 388 ~ 3.2049. (The matrix game A has val(A) = §
and optimal mixed action (7%, 0, 1%) for player 1 and (3, {3, 0) for player 2.)
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4. (3,3)-RESTRICTED GAMES

THEOREM 4.1. Consider
d) dpp
A= o
dy axp
without saddlepoints. Let G = {{a,, + aj; + a5, + a). Then vy ; = median{v,
o, U}.
Proof. Assume that v = § = v (the other cases follow similarly) and

let player 1 use the following strategy:

a. (Initialization) Until a payoff of at least v is obtained, play (3, 3
except when it is necessary to prevent an action from vanishing; in that
case choose that action.

Once a payoff of at least v is obtained, continue play according to:
b. If the previous payoff is at least v and player 2 has both actions
available, then choose the action different from the previous one.

c. If the previous payoff is at most v and player 2 has both actions
available, then choose the previous action again.

d. If player 2 has only one action left, select the action giving the
highest remaining payoff.

Now the worst thing that can happen for player | is that play will cycle
around all entries of the matrix, giving average reward i(a,, + a, +
a, + ax). 8

Without proof we state the following result.

TueoreM 4.2. If A = layl is a matrix game of size m X 2,
then vy ;(A) = max{v,3(A’) : A" a (2 X 2)-submatrix of A}.

To find vy, for an (m X n)-game we propose the following algorithm:
a. Find alower and an upper bound for v, ; by examining what players
can achieve by focusing on one action each:

Uv=u3(4) =0

b. If the previous lower and upper bounds are not equal, then find
better lower and upper bounds for v;, by examining what players can
achieve by focusing on two actions each:
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max min vs5(A; ;, ;, ;) = U33(A) = min max v, 5(4;

Sea B PP 1-"1-1’1‘12)’
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where A; . ;

columns j, Jj5.

is the subgame of A that consists of rows i,, i, and of

¢. If the previous lower and upper bounds are not equal, then find
better lower and upper bounds for v;; by examining what players can
achieve by focusing on three actions each:

3
max min 3}, a

3
< v5;(A) = min max} Y, aq;;
indady Jidads t

iy ST et
1 Jpdedy dpdndy 1=l .

d. If the previous lower and upper bounds are not equal, then apply
backward induction to find v, 3(A). This backward induction proceeds in
a manner similar to that for (2, 2)-restricted games (cf. Example 3.3).

Examples illustrating this algorithm are provided in Joosten et al. (1991).

S. CONCLUDING REMARKS

In the previous sections we have seen how to solve (r, ry)-restricted
games for some specific values of | and r,. Solution methods also exist for
(r, =)-restricted games. These games are also known as single-controller
stochastic games and solutions for such games can be found by solving
a single linear program and its dual (cf. Vrieze, 1981; Filar and Raghavan,
1984).

To extend these results to other (r,, r,)-values appears to be a non-
trivial problem. In contrast with Theorem 3.1, for example, it is not true
that v;, = v for any matrix A. However, an algorithm like that at the end
of the previous section would obviously work for any (r, r)-restricted
game A with arbitrary r under the assumption that one knows how to
compute v,, for all real submatrices of A. Thus, a first problem seems to
be to find a procedure for computing Uy 1y with r,, r, arbitrary, for
(2 X 2)-matrices. Such a procedure seems to call for a kind of induction
on r, but it is not clear to us how this should work.

Needless to say, in view of these difficulties, finding a solution for the
non-zero-sum model, which would obviously be much more appropriate
for economic applications, will be even more problematic.
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