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Abstract: This article estimates generalized ARCH (GARCH) models for German stock market
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error densities, and a variety of diagnostic checks. German stock return scries exhibit significant
levels of second-order dependence. Our results clearly demonstrate that for both weekly as well as
monthly return series the Studcnt-r distribution is superior to the standard normal distribution.
In particular, the estimated GARCH-t models appear to be reasonably successful in accounting
for both observed leptokurtosis and conditional heteroskedasticity from German stock return
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Introduction

The debate regarding the validity of empirical asset return distributions con-
tinues to be an issue of central concern in the financial economics literature - see
Fama (1991) and BoUerslev, Chou, and Kroner (1990), for instance. These em-
pirical distributional properties have been tested for stock indices returns by
Baillie and DeGennaro (1990), French, Schwert, and Stambaugh (1987), Chou
(1988), Akgiray (1989), Jorion (1988), Nelson (1989, 1991), Nieuwland (1992),
and Wiggins (1989) among others. Probably the most important factor that has
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generated this considerable interest, is the fact that these distributional proper-
ties have a direct impact on the validity of theoretical models in financial eco-
nomics. Many standard asset pricing models imply the martingale difference
model in which price changes are uncorrelated and hence unpredictable in the
mean. Furthermore, the Black and Scholes (1973) option pricing model assume
a continous time stochastic process for the representation of the price behavior
in the form of a geometric Brownian motion where the log of the price relatives
are assumed to be independent, and identically normally distributed. Also, the
assumptions on the distributional properties of the price process are critical in
many tests of the efficient market hypothesis.

As is well documented, empirical distributions of asset returns exhibit lepto-
kurtic behavior and clusters of high and low volatility. The Autoregressive Con-
ditional Heteroskedasticity (ARCH) class of models, introduced by Engle (1982)
and generalized (GARCH) by Bollerslev (1986), have been shown to provide
a good fit for many fmancial return time series.̂  GARCH imposes an auto-
regressive structure on conditional variance, parameterized as a linear function
of past squared innovations and lagged conditional variances, allowing volatil-
ity shocks to persist over time. This persistence captures the propensity of large
absolute returns to cluster in time and can explain the well documented non-
normality and nonstabihty of empirical asset return distributions - see espe-
cially the pioneering works of Mandelbrot (1963) and Fama (1965). Studies by
Baillie and Bollerslev (1989), Boothe and Glassman (1987), Hsieh (1989), Jorion
(1988), Meese and Rogofr(1983) and Wolff (1987) provide extensive statistical
evidence on US Dollar exchange rates and US stock market returns. Overall*
the findings overwhelmingly favor the conclusion that the assumption of condi-
tional normality does not capture all the excess kurtosis observed in both high
frequency stock and exchange rate returns. Several alternative conditional dis-
tributions have consequently been employed in the literature, for instance the
Student-t, normal-Poisson, generalized error, and normal-lognormal distribu-
tions [see, e.g., Akgiray and Booth (1988), Baillie and Bollerslev (1989), Jorion
(1988), Hsieh (1989), Nelson (1991), and Nieuwland (1992)].

Interestingly, this branch of literature pays little attention to observed statisti-
cal distributions of European asset returns. In the current article we aim
to provide extensive statistical evidence for German stock market indices.
The observed leptokurtosis may be explained by several classes of models.
Therefore, alternative time series processes and distributional specifications
characterizing the German stock market are considered. In this article we esti-
mate GARCH models and GARCH-in-mean models for three German stock
market indices, using weekly and monthly data over the 1973-1992 period. The
(G)ARCH-M model developed by Engle, Lilien and Robins (1987) which we
propose can be used in addressing questions regarding the risk-return tradeoff

^ See, eg.. Bollcrslev (1987), Lamoureux and Lastrapes (1990). Baillie and BoUerslev (1989), and
Lastrapes (1989).
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in a time series context where the cotiditional variance may be time-varying. In
addition to exploring normal conditional densities, the Student-r distribution is
employed. The research will form a body of evidence which can serve as a frame
of reference for further research.

The article is organized as follows. In Section 1 we describe our dataset and
summary statistics are provided. The methodology and models employed to
describe the patterns followed by German stock market indices returns are
explained in Section 2. Section 3 presents the main empirical results of the
article and Section 4 contains our concluding comments.

I Data and Summary Statistics

Our database contains three weekly and monthly German stock market indices.
One of the indices used is the Datastream Total Market Index, which contains
all stocks quoted on the Frankfurt stock exchange. In addition, two alterna-
tive German stock market indices were included, the Frankfurter Allgemeine
Zeitung (FAZ) index and the Commerzbank (COMM) index. The indices are
value weighted and adjusted for stock dividends, capital modifications and un-
usually large dividends payments. The data were obtained from Datastream,
a U.K. incorporated data service company. Even though daily stock indices
returns are available, we choose to employ weekly and monthly data in order to
avoid issues surrounding the day-of-the-week effect with regard to stock return
volatihty (on which, see Hsieh, 1988, for example). Our sample includes 1003
weekly and 231 monthly observations, ranging from 12 January 1973 through
25 March 1992.̂

In Tables la and lb we present summary statistics for respectively weekly and
monthly stock indices returns. Continuously compounded returns are used,
defined as the difference in logarithmic value of the two consecutive observa-
tions:

) (1)
For the period analyzed (January 12th, 1973 through March 25th, 1992) all
stock returns series are subject to substantial skewness and kurtosis. Under the
normality hypothesis the corresponding measures would have asymptotic dis-
tributions of N(0, 6/7) and N{3, 24/T), respectively.* Furthermore, to assess the

^ The weekly quotes used are Wednesday closing prices. Wednesdays were chosen because very
few holidays occur on that day, and there is no problem of "weekend effects". When the quotes fall
on a holiday or weekend (monthly quotes), the next business day is chosen.
* r is equal to the number of observations.
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Table la. Summary statistics of weekly returns (1/12/73-3/25/92)

mean
St. dev.
r-test
skewness
kurtosis
BJ-test
KS-1
KS-2
LB(50) R
D(50)J?
LB(50)|i?|
LB(50) R^
LB(25) R
D(25) R
LB{25)\R\
LB(25) R^
Autocor(])

Autocor(2)

Autocor(3)

Aulocor(4)

Autocor(5)

Comm-index

0.0010
0.0222
1.3722

-0.8395* '
8.61 ! 2 * '

1430.80**
n7.57-»

1313.20'*
72.22*
44.94

648.03**
285.67**
28.47
11.03

213.09**
176.44"

0.0979
(0.0535)
0.1113

(0.0565)
0.0435

(0.0454)
-0.0231

(0.0386)
-0.0260

(0.0398)

FAZ-index

0.0011
0.0215
1.6104

-0.9398**
8.6631**

1485.00*"
147.37**

1337.61**
74.64*
44.70

604.55**
3ia97**
47. II**
24.47

445.30**
241.87**

0.1151
(0.0545)
0.1089

(0.0584)
0.0480

(0.0454)
-0.0125

(0.0386)
-0.0354

(0.0411)

DSindex-DL

0.0010
0.0203
1.6102

-1.0490**
9.3436**

1862.00**
183.57**

1678.41**
88.22**
47.53

621.79**
332.57*'

60.40**
27.03

460.02**
267.12**

0.1457
(0.0571)
0.1307

(0.0622)
0.0448

(0.0484)
-0 .005!

(0.0378)
-0.0342

(0.0404)

* Denotes statistical significance at the 5 % level. ** denotes statistical
significance at the 1% level, whereas BJ-test gives the BeraJarque test
for normality and KS-1 and KS-2, respectively, give the Kiefer-Salmon
Normality test for skewness and kurtosis. LB(p) denotes the Ljung-Box
test for serial correlation uslsg p lags. D{p) gives the Diebold test for
serial correlation using p lags. Autocor(p) denotes the p-th order auto-
correlation; robust standard errors are given in parentheses.

Comm-index = Commerzbank-index
FAZ-index = Frankfurter Allgemeine Zeitung-index
DSindex-DI =^ Datastream-index Germany

distributional properties of stock indices returns, the Bera Jarque (1982) Nor-
mality test and the Kiefer Salmon (1983) Lagrange multiplier normality test are
reported in the Tables, where the former represents a joint test using both
skewness and kurtosis and the latter being a LM test for normal skewness
(KS-1) and normal kurtosis (KS-2), respectively.' Overall, the evidence presented

' The Bera Jarque test is asymptotically Ch!-square(2) distributed, and the Kiefer Salmon nor-
mality tests are asymptotically Chl-square(l) distributed.
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Table Ib. Summary statistics of monthly returns (1/12/73-3/25/92)

401

mean
dev.
(-test
skewness
kurtosis
BJ-tcst
KS-1
KS-2
LB(50) R
D(50) R
LB(50) |R|
LB{50) R^
LB(25) R
D(25)R
LB(25)|R|
LB(25)R^
Au[ocor(l)

Autocor(2)

Autocor{3)

AutocorH)

Autocor(5)

Comm-index

0.0043
0.0495
1.3216

-1.4692**
12.3786**

921.65**
82.38**

839.27**
54.17
48.21
77.09**
24.83
27.22
25.66
43.19*
14.99
0.0840

(0.0681)
0.0549

(0.0646)
0.0428

(0.0731)
-0.0412

(0.0768)
-0.0219

(0.0576)

FAZ-index

0.0049
0.0481
1.5359

-1.6464**
13.3160**

1118.90**
103.46**

1015.40**
56.78
51.04
77.82**
20.25
30.02
28.37
40.33*
10.01
0.0969

(0.0693)
0.0550

(0.0627)
0.0572

(0.0705)
-0.0254

(0.0741)
-0.0397

(0.0570)

DSindex-DL

0.0047
0.0471
1.4959

-1.6644**
14.0230**

1265.11**
105.73**

1159.38**
56.38
52.72
83.50**
19.04
29.42
28.11
45.27**
10.80
0.1092
(0.0675)
0.0515

(0.0635)
0.0464

(0.0774)
-0.0254

(0.0772)
-0.0358

(00592)

* Denotes statistical significance at the 5 % level, ** denotes statistical
significance at the 1% level, whereas BJ-test gives the Bera-Jarque test
for normality and KS-1 and KS-2, respectively, give the Kiefer-Salmon
Normality test for skewness and kurtosis. LB(f7) denotes the Ljung-Box
test for serial correlation using p lags. D(p) gives the Diebold test for
serial correlation using p lags. Autocor(p) denotes the p-th order auto-
correlation; robust standard errors are given in parentheses.

suggests a consistent rejection of the normality hypothesis. Thus, in spite of the
notion that leptokurtic unconditional densities of ARCH processes approach
normality by temporal aggregation - see Diebold (1988) and Baillie and
Bollerslev (1989) - it appears that the monthly series used here may be charac-
terized as highly leptokurtic. In addition. Tables la and Ib report the Ljung-
Box (1978) and Diebold (1988) test statistics for fcth-order serial correlation in
stock returns, R,, absolute returns, |K,|, and squared returns, Rf, respectively.
The Ljung-Box (LB) statistic is given by:

LB{p) = T{T (2)
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where ^(T) is the T-th order autocorrelation coefficient. As the choice of the
appropriate laglength is somewhat arbitrary, both LB(50) and LB(25) were cal-
culated. Diebold (1988) proposes an adjusted Ljung-Box test statistic to allow
for heieroskedasticity. Diebold (1988) showed that in the presence of ARCH
effects, the Ljung-Box test has a larger empirical size than a nominal test size of
5%, because the asymptotic variance of the autocorrelations under ARCH is
larger than under the null of Gaussian white noise. Diebold (1988) proposed a
for conditional heteroskedasticity adjusted Ljung-Box statistic which preserves
the proper size:

100
ISO 380 iBO ftiO BOO

Graph 1. Weekly prices F A Z index (1 /12 /1973-3 /25 /1992)

ISO 3eO 480 ftiO BOO 080

Gnph 2. Weekly returns FAZ index (1/12/1973-3/25/1992)
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Dip) = TiT + 2) t (I + (3)

where y^ir] is the i-th order sample autocovariance of the squared process, and
<T is the sample standard deviation of the data. Any evidence on serial correla-
tion in German stock returns using the standard Ljung-Box test vanishes, when
allowing for conditional heteroskedasticity. In contrast to the monthly stock
returns, weekly stock indices returns exhibit substantial first (and second) order
autocorrelation. The absolute and squared weekly stock returns exhibit sub-

Graph 3. Monthly prices FAZ index (1/1973-3/1992)

• I I r I 1 r — 1 1 T

20 40 SO 8O10O12O14O15OiaO20Qee0

Graph 4. Monthly returns FAZ index (1/1973-3/1992)
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stantially more autocorrelation than the raw data, R,, which is indicative of
strong non-linear dependence, conditional heteroskedasticity, and the clustering
phenomenon. One notes that for monthly stock indices returns, only significant
serial autocorrelations are presented in the absolute return series, which could
be indicative of no conditional heteroskedasticity.

In Graphs 1 and 3 examples of the weekly and monthly FAZ index are
presented. Graphs 2 and 4 display corresponding figures of log differences in
these index levels, corresponding (approximately) to percentage changes in these
levels. The figures indicate substantial variation in the FAZ index series. Note
that the variation of the indices (return) series is significantly smaller for the
period 1973-1982 than for the period 1982-1992. The shifts of the FAZ index
due to both stock market crashes in the late eighties can be clearly detected in
these figures.* Graphs 2 and 4 capture another feature of stock market volatility:
volatility comes in waves. That is, large (small) changes in share prices tend to
be followed by large (small) changes and this phenomenon is more marked for
higher frequency series.

In order to remove possible first order autocorrelation and to differentiate
between correlation effects and heteroskedasticity effects, the following OLS
regression was fitted:

/«r = Ô + ^ l^ r - l+£r (4)

In order to test for the presence of heteroskedasticity in German stock returns,
two different approaches are employed. First the Lagrange multiplier tests for
autoregressive conditional heteroskedasticity ~ see Breusch and Pagan (1979) -
are performed, and secondly a non-parametric test based on finite-state homo-
geneous Markov chains - see Gregory (1989) ~ is applied.^ Using Monte Carlo
analysis Gregory (1989) concludes that under other distributions than the Nor-
mal the LM test is biased towards the null hypothesis of no ARCH, and that the
Markov Chain test is superior to the LM test in terms of better finite sample
properties. Both tests only require estimation under the null hypothesis of no
heteroskedasticity and are appropriate under all distributional assumptions.^
The results of the LM and Markov chain tests for the presence of hetero-
skedasticity are given in Tables 2a and 2b.

Overall, the evidence presented suggests a fairly consistent rejection of the hy-
pothesis of no heteroskedasticity for weekly stock indices return series. In con-

^ As a suggestion for future research, it might be interesting to replicate all mode] estimations
up to the time the first big crash occured and compare these results with our initial ones.
' For a more detailed description, see Appendix A, Nieuwland (1992), and Nieuwland and
Verschoor (1992), for instance.
* Weiss (1986) has shown that the proposed LM-test is appropriate for non-normal distributions,
provided some moment conditions are satisfled. The Markov chain test is completely distribution
free.
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Table 2a. ARCH tests for weekly returns

LM(1)
LM(2)
LM(5)
LRIMl
LRIM2
LRM1M2

Comm-index

53.82* •
106.88**
113.05'*
24.25'*
36.97**
12.72**

FAZ-index

59.20**
123.44*'
129.69"
22.93"
27 .31"

4.38

DSindex-DL

68.52"
141.98**
154.62**

18.40*'
28.91*"
10 .51"

Table 2b. ARCH tests for monthly returns

LM(1)
LM(2)
LM(5)
LRIMl
LR[M2
LRM1M2

Comm-index

0.02
0.02
0.43
3.48
3.53
0.05

FAZ-index

0.02
0.04
0.29
0.60
1.02
0.42

DSindex-DL

0.05
083
im

1.68
a77

*, ** Denote significance at respectively the 5% and the 1% level. The
LM(p) tests are computed as TR^ from a regression of squared
residuals on a constant and p lags, and are asymptotically xHp)-
distributed. LRIM 1 is a Likelihood Ratio test of independence
against a first order Markov Chain, and is distributed as x^i^)-
LRIM2 is a Likelihood Ratio test of independence against a second
order Markov Chain, and is distributed as / '(3). LRM1M2 is a
Likelihood Ratio test of a first order against a second order Markov
Chain, and is distributed as z^{2).

trast, for monthly stock returns we cannot reject the null hypothesis of no
heteroskedasticity in all cases.

Modeling German Stock Market Dynamics: Methodology

In the academic hterature it is agreed upon that empirical distributions of stock
market returns exhibit fatter tails than one expects from a normal distribution.
See, for example, Akgiray (1989) and BoUerslev et al. (1990). In Tables la and lb
we have provided evidence confirming this fact. All scries, on a weekly and
monthly basis, suffer from substantial leptokurtosis. These fat tails, or observed
leptokurtosis, may be explained by several classes of models. In this article we
will concentrate on two possible explanations. A first explanation suggests that
German stock market indices returns can be described by a normal distribu-
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tion with time-varying parameters (see Hsieh, 1989). Second, we consider the
possibility that German stock return series are generated by a conditionally
leptokurtic distribution. These considerations lead us to the maximum-likeli-
hood estimation of the following stochastic processes:

) (5)

i, = ao -̂  t a,e,'-, -I- f Pjh,.j KQ > 0 , «„ ^j ^ 0 (6)
1=1 j^i1=1

The empirical distribution of variables generated by these processes are fat-
tailed, compared to the normal distribution. Here D(0, 1) can be any symmetri-
cal distribution with zero mean and unit variance. The conditional variance, h,,
is a linear function of squared lagged residuals and lagged conditional variances.
The fact that conditional variances are allowed to depend on past reahzed
variances is particularly consistent with the actual volatility pattern of the stock
market where there are both stable and unstable periods. In the remainder of
this article, we restrict our attention to a GARCH (1, 1) specification since it has
been shown to be a parsimonious representation of conditional variance that
adequately fits many economic time series - see Bollerslev (1986), Chou (1988),
Akgiray (1989), Bailiieand DeGennaro (1990), Nieuwland (1992), and Poonand
Taylor (1992). Equation (6) now reduces to:

h, = ao + ayEf.i + P,h,., (7)

The model, given by equations (5) and (7), will be estimated under two different
assumptions for the conditional error distribution. Most commonly used in
GARCH applications is the standard normal distribution. Under conditional
normahty, the conditional standard deviation can be seen as the stochastic
volatility of the process, see Taylor (1990). This has the unfavorable implication
that the volatility during a particular time period is known at the end of the
previous time period, thereby reducing the impact on volatihty, of news during
the period, to zero. An empirical shortcoming of the assumption of conditional
normality pertains to the frequent leptokurtosis of standardized GARCH-
normal residuals. If conditional normality is appropriate this phenomenon
should not occur. The conditional density function for e, under normality reads:

(8)

' / ' . - i = { e i - i . E i - 2 . • • • } (9)

The associated log-likelihood function becomes:

LLM = I f - Tin 271 - i In ft, - i; a^/h) (10)

As an alternative to conditional normality we propose a scaled Student t-
distribution. Theoretically and, as will become clear, also empirically this distri-
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bution should be preferred to a conditional nonnal distribution. The Student
r-distribution is conditionally fat-tailed, a feature which can explain - next to
conditional heteroskedasticity - unconditional fat tails. Furtherniore it can be
seen as a continuous variance mixture of normals, where the mixing variable
followes an inverted Gamma-1 distribution. Such a mixture distribution is de-
sirable when information arrives randomly during a time period, see Tauchen
and Pitts (1983), because the random character of information is conveyed by
the unobservable mixing variable. In this case the stochastic volatility for period
t is dependent on unexpected news, and is in genera! not equal to the condi-
tional standard deviation for period t, which is known at the end of period i — I.
Finally, the observed leptokurtosis of GARCH residuals does not pose a prob-
lem under a conditional r-distribution. The conditional density function for e,
depends on a degrees-of-freedom parameter v and is given by:

The associated log-likelihood function reads:

0 = (<io,^i,ao,ai-J?i.v) (14)

The scaled (-distribution approaches normality when v ^ oo. In addition, we
estimate a GARCH(1, l)-in-mean model, initially developed by Engle, Lilien
and Robins (1987), which can be used in adressing questions regarding the
risk-return tradeoff in a time series context where the conditional variance may
be time-varying. In order to provide empirical evidence for a relationship be-
tween stock index returns and conditional variances of the underiying process,
the following model was fitted:

R, = <^o + ^i^.-i +^h, + e, (15)

/i, = ao + a,€f-i+ ^1^,-1 ' (16)

Again, estimation will be performed under the normal and the Student t-
distribution. Prominent examples of applications of this model to stock index
returns are French, Schwert and Stambaugh (1987), Chou (1988), and Baillie
and DeGennaro (1990). Although the model has been used extensively. Backus,
Gregory and Zin (1989) challenge the usefulness of the GARCH-in-mean
models by stating that there is no explicit theoretical relationship between the
risk premium and the conditional variance. Furthermore Pagan and UUah
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(1988) pointed out that the estimates for the parameters in the conditional mean
equation are not asymptotically independent from the estimates of the parame-
ters in the conditional variance equation. Misspecilication of the GARCH part
of the model, therefore, leads to biases and inconsistencies in the mean part of
the model. Consistent with the first criticism, Baillie and DeGennaro (1990)
obtained insignificant estimates for 5, in their analysis for daily and monthly
returns.

In the next section we present and discuss our estimation results for the
GARCH and the GARCH-in-mean models, respectively. Likelihood Ratio
Tests and diagnostic checks will also be included.

Ill Estimation Procedures and Empirical Results

Maximum likelihood estimates of the parameters and their heteroskedasticity
consistent asymptotic standard errors were obtained by numerical methods
using the Berndt, Hall, Hall and Hausman (1974) (BHHH) algorithm.^ In
Tables 3a through 4b, the estimation results are reported for the stochastic
processes described in the previous section.

First, we present the results for weekly stock indices return series. Inspection
of the Tables reveals several notable facts. GARCH parameters and autocor-
relation coefficients are highly significant for all weekly stock indices and model
specifications. For the conditional (-distribution, the degrees of freedom param-
eter, V, is significant in all cases. Note that ct^ + j3i is near unity for all indices,
indicating infinite persistence in the volatility shocks, or IGARCH behavior
(see Engle and Bollerslev (1986)]. As conjectured by Lamoureux and Lastrapes
(1990), this may be the result of not accounting for discrete shifts in regimes
which affect the level of the unconditional variances, and, therefore can lead to
misspecification of the GARCH model.'° Comparing the results of the standard
normal GARCH model to the results of the GARCH-t model, we notice that the
volatility persistence has been reduced. For the GARCH-in-mean model, all the
estimated models result in statistically insignificant S coefficients.̂ ^ Tables 4a
and 4b present the estimation results for monthly stock index return series. It is
interesting to note that the monthly estimates of the GARCH models demon-
strate less significant parameter coefficients. This is consistent with the results of

' AH calculations were performed with the software package GAUSS.
'" Lastrapes (1989) finds that persistence of exchange rate volatility decreases when regime shifts
are accounted for, diminishing the likelihood of integrated-in-variance processes.
' ' The Tables are omitted frotn the text. For the interested readers, however, the estimation
results for the GARCH-in-mean models are available upon request.
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Table 3a. GARCH(I, I)-normal estimates of weekly returns

ao

" i

^ 1

a[ + /ij

LL

Comm-index

0.000871
(0.000599)

0.094064*
(0.039800)

0.000008
(0.000006)

0.107042*
(0.044798)

0.880662**
(0.051068)

0.987704

2505.96

FAZ-index

0.000982
(0.000585)

0.111538**
(0.038225)

0.000008
(0.000007)

0.101380*
(0.047520)

0.884134**
(0.058402)

0.985514

2535.94

DSindex-Dl

0.000786
(0.000555)

0.136151"
(0.037266)

0.000006
(0.000005)

0.088571*
(0.038680)

0.899572**
(0.047429)

0.988143

2599.62

TaWe 3b. GARCH(1. 1) i-distribution estimates of weekly
returns

O'o

<Pi

«o

a,

^ 1

y

LL

Comm-index

0.001170*
(0.000557)

0.074317*
(0.033799)

0.000011*
(0.000005)

0-100409**
(0.030853)

0.877022**
(0.036790)

0.977431

8.734596**

2521.34

FAZ-indcx

0.001393**
(0.000547)

0.087549**
(0.033343)

0.000011*
(0.000005)

0.098237**
(0.030876)

0.876119"
(0.037891)

0.974356

9.085585**

2550.64

DSindcx-Dl

0.001186**
(0.000507)

0.120357**
(0.033371)

0.000009*
(0.000004)

0.089402**
(0.032872)

0.886785**
(0.032872)

0.976187

8-280524**

2618.05

* Denotes statistical significance at the 5% level, ** denotes
statistical significance at the 1% level. Heteroskedasiticity
consistent standard errors are given in parentheses. LL
denotes the log-Litcelihood Values.

Table 2b, which indicates insignificant ARCH effects in monthly stock index
return series. However, the ^y estimates are statistically significant for all stock
indices. The degree of freedom parameter, v, is significant in all cases and, con-
trary to what one might expect, does not increase when moving from a weekly
to a monthly time interval. This is surprising as the general notion in the finan-
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T»We4a. GARCH{1, l)-normal estimates of monthly returns

^ 1

ao

«!

LL

Comm-index

0.002231
(0.002990)

0.062990
(0.062275)

0.000025
(0.000042)

0.067639
(0.037761)

0.929123**
(0.016713)

0.996762

373.05

FAZ-index

0.003178
(0.002987)

0.077143
(0.062665)

0.000029
(0.000045)

0.064116
(0.040911)

0.929959**
(0.015613)

0.994075

377.83

DSindex-Dl

0.002977
(0.002745)

0.087397
(0.061478)

0.000027
(0.000045)

0.078193
(0.047609)

0.918033**
(0.021475)

0.996226

384.87

Table 4b. GARCH(I, I) ^-distribution estimates of monthly
returns

<f>i

ao

a,

Pi

a, -1-^,

y
LL

Comm-index

0.004833
(0.002954)

0.043347
(0.062208)

0.000050
(0.000027)

0.033715
(0.019878)

0.942998**
(0.018894)

0.975723

6.326147*

386.13

FAZ-index

0.005698
(0.002866)

0.062848
(0.063220)

0.000052
(0.000028)

0.031446
(0.021668)

0.940728**
(0.023211)

0.972174

6.445831*

393.19

DSindex-Dl

0,005154
(0.002758)

0.070670
(0.058937)

0.000047
(0.000026)

0.033186
(0.021848)

0.940262'*
(0.022837)

0.973448

6.391206*

399.20

* Denotes statistical significance at the 5% level, ** denotes
statistical signiHcance at the 1% level. Heteroskedasiticity
consistent standard errors are given in parentheses. LL
denotes the log-Likelihood Value.

cial economics literature suggests that conditional distributions of asset returns,
when aggregated, approach normality - see Drost and Nijman (1991), and
Nieuwland (1992), for instance. If this were indeed true we would expect to see
a significant increase in the value of v. This is however not the case. For the
GARCH-in-mean model, the estimated S coefficients are greater than those for
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Table 5a. Generalized likelihood ratio tests, weekly data

Commerz-index

FAZ-index

DS-index

30.76
(0.000)

29.40
(0.000)

36.86
(0.000)

9.86
(0.002)

10.06
(0.002)

10.36
(0.001)

0.00
(1.000)

0.04
(0.840)

0.06
(0.810)

[dlzfn

20.74
(0.000)

19.38
(0.000)

26.56
(0.000)

[a] GARCH Normal Model against GARCH i-Distribution Model;
[b] GARCH Normal Model against GARCH in Mean Nonnal Model;
[c] GARCH f-Distribution Model against GARCH in Mean r-
Distribution Model; [d] GARCH in Mean Nonnal Model against
GARCH in Mean t-Distribution Model; f-values are given in
parentheses.

weekly indices returns, however, as before, the GARCH-M parameter remains
insignificantly different from zero/^

Given the above results, it is interesting to compare the relative fit of the
alternative models. We employ generalized likelihood ratio tests to compare
nested models. Such nested models can be tested using the generalized likeli-
hood ratio:

)

of the maximized likelihood values under the nuU and under the encompassing
parameter space, <P, which also includes the alternative hypothesis. Here, L(,; .)
is the likelihood function, ^ is the parameter vector and x is the relevant set of
observations. Under the null 0O' the statistic —2\nA has a Chi-square distribu-
tion with degrees of freedom equal to the difference in the number of parameters
between the two models. Thus, the improvement in the maximized likelihood
indicates to what extent an enlarged specification helps in fitting the data.

Tables 5a and 5b present the generalized likehhood ratio tests to compare the
relative fit of the models employed. All but nine of the p-values associated with
the chi-square statistics are close to zero. Thus, the generalized likelihood ratio
tests reject the simpler model in favor of the more complicated model in most of
the cases. It is clear that for both weekly and monthly return series the Student
r-distribution is superior to the standard normal distribution. For the stock
indices, the generalized likelihood ratio tests cannot reject the simpler (GARCH)

'* In addition to German stock market indices, we estimated GARCH models for individual stock
returns. The individual asset dataset comprises weekly and monthly returns for five actively traded
stocks quoted on the Frankfurt stock exchange. The results are available upon request.
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Table 5b. Generalized likelihood ratio tests, monthly data

Commerz-index

FAZ-index

DS-index

26.16
(0.000)

30.72
(0.000)

28.56
(0.000)

mxfu
0.30

(0.580)

0.36
(0.550)

0.34
(0.560)

0.52
(0.470)

0.58
(0.450)

0.44
(0.510)

26.38
(0.000)

30.94
(0.000)

28.76
(0.000)

[e] GARCH Normal Model against GARCH (-Distribution Model;
[f] GARCH Normal Model against GARCH in Mean Normal Model;
[g] GARCH (-Distribution Model against GARCH in Mean f-
Distribution Model; [h] GARCH in Mean Normal Model against
GARCH in Mean (-Distribution Model; P-values are given in
parentheses.

Table 6a. Diagnostics Tor GARCH r-distribution models, weekly
data

Skewnes5
Kurtosis
BJ-Test
KS-I
KS-2
F(l)
F(2)
F(5)

Commerz-index

-0.38"*
4.60**

133.01**
25.34-*

107.67'*
8.68**
5.91"
3.!3**

FAZ-index

- 0 . 4 7 "
4.64**

148.54**
36.65**

111.89**
9.26**
6.41**
3.53**

DS-index

-0.49**
4,94**

196.38**
40.11**

156.27**
5.82**
4.52**
2.61**

The BJ-test denotes the Bera Jarque test for nonnality; KS-l
and KS-2 pertain to the Kirfer Salmon Nonnality test for respec-
tively skewness and kurtosis.

Table 6b. Diagnostics for GARCH r-distribution models, monthly
data

Skewness
Kurtosis
BJ-Test
KS-1
KS-2
F(l)
F(2)
F(5)

Commerz-index

-1.20**
10.75**

628.64**
55.48**

573.16**
0,059
0.050
aO62

FAZ-index

- 1 . 5 1 "
12.63**

971.73**
86,47**

885.26**
0.021
0.027
0.046

DS-indcx

-1.39**
12.27**

893.44**
73.73**

819.71**
0.027
0.025
0.045

The BJ-test denotes the Bera Jarque test for normality; KS-1
and KS-2 pertain to the Kiefer Salmon Normality test for respec-
tively skewness and kurtosis.
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model in favor of the more complicated {GARCH-in-mean) model in most of
the cases.

In order to determine the adequacy of the statistical specification, the models
are subjected to diagnostic checks on the standardized residuals:

^ (18)

where £, is the residual from equation (5) and -Jk is the estimated conditional
variance from equations (7). From Jensen's inequality it follows that the stan-
dardized residuals, 2,, should demonstrate less absolute skewness and should be
thinner tailed than their unconditional raw data counterparts. Any strong viola-
tion of this rule should be regarded as evidence of model misspecification - see
Hsieh(1989).

The diagnostics for the estimated GARCH-f models are presented in Tables 6a
and 6b. Overall, the evidence presented suggests a less consistent rejection of the
normality hypotheses as compared with the results of Tables la and Ib. In
addition, we find that in most cases the estimated statistics - the BJ-test, KS-1,
and KS-2 - are smaller than those reported by Tables la and Ib thus supporting
our model specifications. In particular, for weekly stock indices the GARCH-r
model is reasonably successful at removing excess kurtosis and skewness in all
cases. However, for the monthly indices skewness and kurtosis of the standard-
ized residuals are only marginally smaller than their raw data counterparts.
In order to test for remaining heteroskedasticity, a residual-based test of the
models may be carried out by regressing {£f — k^ykf on XjkJ and on one to two
and one to five lags, respectively, of the dependent variable and testing whether
the estimated coefficients are significantly different from zero by a conventional
F-test.'^ The results are reported under F(l), F(2) and F(5). These statistics
follow F(2,998), F(3,996) and F{6,990) distributions for weekly return series and
F(2,226), F(3,224) and F(6,218) for monthly return series, respectively. For the
GARCH-i models, rejection of the null hypothesis of no heteroskedasticity
occurs for all of the weekly stock indices return series, whereas all of the month-
ly stock indices return series result in statistically insignificant test statistics at
the 1% significance level.

IV Conclusions

In this paper we have extensively studied the statistical properties of German
stock market returns. These properties are important for the pricing of stock

'̂  See Domowitz and Hakkio (1985) and Pagan and Hall (1983) for a discussion of the general
principles leading to such a test statistic.
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Options and for international asset pricing models. GARCH models may be
used to further understand the relationship between volatility and expected
returns.

Our results demonstrate clearly that for both weekly as well as nionthly
return series the Student f-distribution is superior to the standard normal distri-
bution. GARCH-r models fit the data significantly better than the standard
normal GARCH using a variety of Goodness-of-fit diagnostics. In particular,
the estimated GARCH-r models appear to be reasonably successful in account-
ing for both observed leptokurtosis and conditional heteroskedasticity from
German stock return movements. This does not preclude the possibility that the
GARCH-f model for German stock indices is misspecified, but it is the best
alternative considered. Furthermore, the estimated GARCH-in-mean models
do not support a statistically significant relationship between a stock portfolio's
return and its own volatility. Moreover, the empirical finding of near integrated
GARCH behavior suggests that the conditional variances have very long
memories and are highly sensitive to initial conditions. Exponential GARCH
models may perform better in this respect In the Student's Autoregressive
model with dynamic heteroskedasticity (STAR) the memory of the conditional
variance is as long as the sample while the question of unit roots does not
arise.'* The STAR approach seems to be a promising altemative specification
to the GARCH and may be a fruitful route for further research into the
dynamics of German stock market returns.

Many issues in asset pricing and portfolio allocation decisions can only
be meaningfully analyzed in a multivariate context. The evidence presented
suggests that for multivariate analysis, the assumption of multivariate condi-
tional normality fails to be a reasonable empirical working hypothesis. This
issue requires further investigation in future research.

Appendix A

This appendix outlines the construction of the ARCH test based on finite-state
Markov Chains. A detailed description of the construction of this test can be
found in Gregory (1989) and Nieuwland (1992). Basically this test is equivalent
to a test for independence in a two way contingency table. The first step in the
construction of the test is to obtain the squared residuals from the estimation of
equation (4) the main text. The next step is to apply a discretization rule, by
which the squared residuals are divided into different categories or states. The

'* Recently, the STAR model has been developed by Spanos (1991,1992) and successfully applied
to exchange rate data by McGuirk, Robertson and Spanos (1993).
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rule applied here is to mark the residuals as being high or low, with the sample
median as the boundary. This results in a two-state definition; the squared
residual are either low (state I) or bigh (state 2). Next it is assumed that that
{e,̂ }, which values are now either 1 or 2, possesses the Markov property tbat
says that the probability distribution of ef conditional on its entire past equals
the probability distribution conditional on its first previous value only:

P{ef ==j\ef., = i, ef.2, el,,...) = P{eJ =j\ef., = i) - l,j, A.!

Where i,; = 1,2; and t = 2 , . . . , T. Ay, is the probability of being in state; at time
f, coming from state i at time t — 1. The transition probabilities are assumed to
be time independent (the subscript t can now be deleted), allowing us to define
{ef} as a homogeneous first order Markov chain. A second order homogeneous
Markov chain will also be used to test for second order ARCH effects. In this
case the transition probabilities are defined as;

X^j, = P{ef = k\eU =j, ef.2 = 0 i>j =U2 t = 2 7 A.2

A t̂ is the probability of being in state k at time t, coming from state; at time
I — 1 and from state i at time t - 2. The ML estimates of the transition
probabilities for the first order Markov chain are determined as Â  = Wy/
("ii + "/2)' where n,j is the number of times that a transition from i to ;' is
observed, For the second order Markov chain they are determined as Ayn =
"(jfc/("oi + "oi)) where n̂ ^ is the number of transitions from i to;' to k. For the
first order Markov chain the log-likeiihood value at the ML estimates becomes:

X Z ^ ( y / , ) A.3
(=1 j=i

where /V, is the number of times that state i is observed. For the second order
Markov chain the log-likelihood value at the ML estimates becomes:

LLM2 = 1 1 1 n^ju Hn^JN.j) A.4
i = l j = l fc=l

where Ny is the number of times that a transition from i to ;' occurs. These
hkelihoods are necessary to develop tests for the null hypothesis of homoskeda-
sticity. If this hypothesis were true then there would be no serial dependence in
the squared residuals and the transition probabilities would be without any
structure. This means that the probability of observing a current state k, is
independent of previous realizations (i and;). This translates into;

Ho; A,j = Aj A.5

when testing independence against a first order Markov chain, and into;

•'^o- ^ijk = K A.6

when testing independence against a second order Markov chain. The ML
estimates under both null hypotheses are; Aj- = NjlN\ N is the total number of
observations used in the estimation procedure. The log-likehhood value under
the null at the ML estimates is;
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LU=JlNi \n{NJN) A.7

Two likelihood ratio tests can now be constructed: The first one is a test of
independence against a first order homogeneous Markov chain;

LR{I/M1) = -2{LU - LLMl)^ xO) A.8

The second one is a test of independence against a second order homogeneous
Markov chain;

LR{I/M2) = -2{IU ~ LLM2) - x'{3) A.9

These are the tests that arc used in the main text.
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