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1

Introduction

1.1 Objective of the thesis

The analysis of non-stationary panel data is a relatively young field of econometric research. It

emerged with the growing availability of large macro data sets which for example contain information

on countries over several decades. This contrasts with traditional (micro) panel data sets where the

time dimension usually has been small. The larger time dimension made it possible to adopt methods

advanced for the analysis of time-series data to panels. While early studies did not pay much attention

to cross-sectional dependence in the data, it was soon pointed out that it is a prevalent feature of

economic panel data and that cross-sectional dependence can have an adverse effect on the proposed

econometric methods if not properly accounted for. Several alternatives have been proposed in the

literature to allow for cross-sectional dependence.

In this thesis we focus on approaches that employ a common factor structure to model cross-

sectional dependence. The objectives are to study tests for non-stationary panels with persistent

common factors. In particular, we investigate the implications of non-stationary common factors on

panel data models. They provide an elegant way to model cross-member cointegration (Chapters

2 and 3), which has been shown to be a feature of some economic panels. We study differences

and communalities of several recently advance panel unit root tests which allow for common factors.

The considered methods differ in the way the common factors are allowed to influence the dynamic

properties of the data and are shown to test different data components (Chapter 2). We also consider

spurious regression in panels with non-stationary common factors. We show that methods developed

for cross-sectionally independent panels are not suited to test for no cointegration in that case and

propose a testing procedure based on defactoring the data (Chapter 3). Furthermore, we derive

a representation theorem for a cointegrated panel with non-stationary common factors. We use

the conditional error-correction model as a base to propose an alternative no cointegration test

(Chapter 4). Finally, we apply discussed methods in an empirical study to investigate the effect of

the introduction of the Euro on bilateral trade (Chapter 5).

1



2 CHAPTER 1. INTRODUCTION

1.2 Motivation

In recent years an increasing number of researchers in economics and business administration have

relied on panel data methods to analyze the dynamic behavior of individuals, firms, sectors, countries,

etc. One recently developed research area examines the properties of non-stationary panel data in

which both the number of entities (N) and the number of time periods (T ) are large. In traditional

panel data N is usually large but T is small. When T is large, it becomes feasible to study more

interesting (and more complex) issues, in particular to learn about the dynamic features of the data

and allow for more general heterogeneity. Two examples from macroeconomics for the application

of panel unit root and cointegration tests are the analysis of purchasing power parity (PPP) and the

study of growth convergence. To test the validity of purchasing power parity, one should examine

the properties of the (log) real exchange rate (strong PPP), or the joint behavior of the (log) nominal

exchange rate and (log) price differentials (weak PPP). The former is done by testing for a unit root

in the series, while the later requires tests for cointegration to examine whether the stochastic trends

in the data series are the same. Tests of growth convergence study the behavior of real per capita

output growth.

Methods used to analyze data when N and T are large combine elements of traditional panel

data/cross-sectional analysis and of non-stationary time-series analysis. In many empirical applica-

tion pooling information of several individuals arises naturally in the context of the underlying theory.

PPP for example is at least defined as a bilateral relationship but should also hold for larger groups

of countries. In the theory of growth convergence, countries with similar underlying fundamentals

should converge to similar steady state growth paths. Initially, much attention in the literature

has focused on the potential gains from pooling cross-sectional observations under the assumption

of cross-sectional independence, while loosening the assumption of parameter homogeneity. In unit

root/cointegration cases, the gains appear to be substantial because pooling converts non-standard

into more traditional limit theory by cross-sectional averaging, as shown for example by Phillips and

Moon (1999). This favorable property can be preserved when a deterministic common time effect

(CTE) is included to capture some contemporaneous dependencies. More general forms of cross-

sectional correlation (dynamic, long-run) are harder to model due to the lack of natural ordering, a

problem known from traditional panel data theory which is amplified in dynamic panels.

In early approaches to panel unit root testing, the often unrealistic assumption of cross-sectional

independence is made. For instance, the tests proposed in Levin, Lin, and Chu (2002) and Im,

Pesaran, and Shin (2003), denoted respectively as LLC and IPS, assume cross-sectional independence,
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but allow for heterogeneity of the form of individual deterministic effects (constant and/or linear time

trend) and heterogenous serial correlation structure of the error terms. Both methods test the same

null hypothesis of non-stationarity, but differ in terms of the considered alternative and hence, in the

way information is pooled. Levin et al. (2002) study balanced panels with N cross-sectional units

and T time series observations. They assume a homogenous first order autoregressive parameter and

their test is based on the pooled t-statistic of the estimator. Im et al. (2003) allow unbalanced panels

with N cross sectional units and Ti time series observations for each i = 1, . . . , N . They propose a

standardized average of individual ADF statistics to test the pooled unit root null hypothesis against

a heterogenous alternative. Maddala and Wu (1999) and Choi (2001) propose Fisher type tests based

on pooling p-values. The methods assume cross-sectional independence among panel units except

for a common time effect. In that case, the derived results remain valid if cross-sectional averages

are subtracted from the data.

The effect of persistent cross-sectional dependence on panel unit root tests has been recently

analyzed and documented in some detail in the literature. As shown by Monte Carlo simulations

(Banerjee, Marcellino, and Osbat, 2005) or by asymptotic analysis (Lyhagen, 2000; Pedroni and

Urbain, 2001), the standard (LLC or IPS) panel unit root tests are severely affected in that either

they display dramatic size distortions or even worse can be shown to diverge with the cross-sectional

dimension of the panel. Several studies have addressed the issue of cross-sectional correlation in non-

stationary panels. Bai and Ng (2004b), Moon and Perron (2004) and Pesaran (2007) all use common

factor structures to model cross-sectional correlation in a panel, but the assumed data generating

processes (DGP), as well as the developed estimation and testing procedures differ in important ways.

Moon and Perron (2004) and Pesaran (2007) use an autoregressive representation for the observed

data and assume common factors to be present in the unobserved (stationary) error terms. They

suggest different methods to effectively remove the common factors from the statistics used to test a

pooled unit root hypothesis. The DGP assumed by Bai and Ng (2004b) models the observed data as

the sum of unobserved common and idiosyncratic components with (possibly) heterogeneous dynamic

properties. They propose a procedure to estimate the unobserved components and test them for unit

roots separately. Breitung and Das (2008) propose an FGLS and robust t test to test for a unit root

in a cross-sectionally dependent panel. Sul (2007) proposes a recursive mean adjusted FGLS test

for a panel unit root and a recursive mean adjusted t test for the cross-sectional average to test for

a unit root in the common component if the data permits a common factor structure. While the

later two studies allow for persistent cross-sectional dependence they do not model this explicitly as
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a common factor structure.

The case of tests for the null of no-cointegration, has seen some attention recently. Kao (1999) and

Pedroni (1999, 2004a) propose residual based panel cointegration tests for independent panels, while

Westerlund (2007) investigates panel error-correction tests. Banerjee, Marcellino, and Osbat (2004)

conduct an extensive Monte Carlo study where they conclude that while all statistics investigated

(residual-based tests or likelihood based trace-type test) are affected, the presence of cross-member

cointegration appears much less harmful for single-equation tests than for the panel version of the

Johansen test. In many cases, the tests are affected by the presence of cointegration between mem-

bers in such a way that these tests cannot discriminate between cointegration across members and

cointegration within, that is for a single member of the panel. Banerjee and Carrion-i Silvestre (2005,

2006) and Bai and Kao (2006) study tests for panel no-cointegration with cross-sectional dependence.

These studies consider residual-based tests for a single cointegration relationship, where the error

term of the cointegrating equation follows a common factor structure as in Bai and Ng (2004b). Ur-

bain and Westerlund (2008) on the other hand studies analytically the issue of spurious regression in

panels when the units are cointegrated along the cross-sectional dimension, i.e. when there is cross-

member cointegration. In contrast to the spurious regression result for independent panel studied

by Phillips and Moon (1999), Pedroni (1995) or Kao (1999), in most of the cases considered these

estimators are not consistent and actually converge to non-degenerate limiting distribution once the

observed non-stationarity is generated by a reduced number of common stochastic trends.

In this thesis we focus on approaches that model the cross-sectional dependence by using a

common factor structure. Alternatively, Chang (2002) proposes a non-linear IV panel unit root test

allowing for general cross-sectional dependence. Based on the non-linear IV estimator of Chang

(2002), Demetrescu and Tarcolea (2005) propose a residual based no cointegration test. Bootstrap

panel unit root tests are considered by for example Chang (2004) or more recently Palm, Smeekes,

and Urbain (2008). As each chapter of this thesis contains a discussion of the relevant literature,

no review is provided here. Extensive overviews of the recent literature are provided by Breitung

and Pesaran (2008) and in Baltagi (2008, Chapter 12). Earlier literature overviews are provided by

Banerjee (1999) and Baltagi and Kao (2000).

1.3 Contributions and Thesis Structure

This thesis contributes to the econometric literature on non-stationary panel data in several regards.

In Chapter 2 we provide a detailed comparison of several second generation panel unit root tests that
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model cross-sectional dependence in the data using a common factor structure. The cross-sectionally

augmented unit root tests proposed by Pesaran (2007) are designed for cases where cross-sectional

dependence is due to a single common factor. The Moon and Perron (2004) tests which use defactored

data is similar in spirit but can account for multiple common factors. The Bai and Ng (2004b) tests

allow to determine the source of non-stationarity by testing for unit roots in the common factors

and the idiosyncratic factors separately. Breitung and Das (2008) and Sul (2007) propose panel unit

root tests when cross-section dependence is present possibly due to common factors, but the common

factor structure is not fully exploited. We compare the testing procedures in terms of similarities

and difference in the data generation process, tests, null and alternative hypotheses considered and

compare the small sample properties of the tests in models with up to two common factors using

Monte Carlo results. While most considered tests allow to detect a unit root in the idiosyncratic

component of the data, only the approaches of Bai and Ng (2004b) and Sul (2007) can detect

stochastic trends in the common factors. Consequently, only the later two approaches allow to detect

cross-member cointegration in a panel. Furthermore, we provide an application which illustrates the

use of the tests and finally it discusses the use of the tests in modelling in general.

In Chapter 3, we consider a spurious regression model for a panel with non-stationary common

factors. We assume that the observed variables permit a common factor representation as the one

proposed by Bai and Ng (2004b) for panel unit root tests. Our model allows to distinguish between

two different cases are considered that we believe are of theoretical and empirical relevance: (i) the

case where the observed non-stationarity in the variables originates from cross-sectional common

trends only (cross-member cointegration); (ii) the case where we have both cross-sectional common

and idiosyncratic stochastic trends. In the later case rejection of the null for both data compo-

nents is a necessary but not a sufficient condition for cointegration and we discuss the required

homogeneity restrictions on the cointegrating vectors resulting from the presence of common factor

cointegration. Furthermore, we study the asymptotic behavior of some existing, residual-based panel

no-cointegration, as suggested by Kao (1999) and Pedroni (1999, 2004a). Under the DGP used, the

test statistics are shown to be no longer asymptotically normal, and convergence occurs at rate T

rather than
√
NT as for independent panels. Following the work of Bai and Ng (2004b), we then ex-

amine the possibilities to test for various forms of no-cointegration by extracting the common factors

and individual components from the observed data directly and then test the estimated components

separately.

Chapter 4 considers a cointegrated panel data model with common factors. We develop alternative
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representations of a cointegrated panel that allows for the possibility of non-stationary common

factors. Starting from the triangular representation of the system used by for example Bai, Kao,

and Ng (2009), we derive a Granger type representation theorem similar the the one obtained by

Cappuccio and Lubian (1996) for a single time series. The conditional error correction representation

is obtained, which is used as a basis for developing two new tests for the null hypothesis of no error

correction. In particular we consider panel versions of the t-test as proposed by Banerjee, Dolado,

and Mestre (1998) and Boswijk (1994) and the Wald test of Boswijk (1994). We show that the

individual specific tests are asymptotically nuisance parameter free and only depend on the number

of non-stationary variables in the system. However, they are not cross-sectionally independent due to

the common factors. Nevertheless, the average of the test statistics converges to a random variable

with a distribution which, while not analytically tractable, can be simulated. This makes pooling

possible in spite of the cross-sectional dependence. We investigate the finite sample performance

of the proposed tests in a Monte Carlo experiment and compare them to the tests proposed by

Westerlund (2007). We also present two empirical applications of the new tests.

This thesis also contributes to the empirical literature of gravity models of bilateral trade and

common currency effect on trade. In Chapter 5 we revisit Bun and Klaassen (2007) for an inves-

tigation of the impact of the introduction of the Euro on bilateral trade. Although there is strong

evidence of a positive common currency effect on trade (see e.g. Rose and Stanley, 2005, for a meta

analysis of published studies), there is an ongoing discussion of the actual magnitude of the effect in

the empirical literature, starting with the pioneering work of Rose (2000). Accounting for determin-

istic trends in the residuals of the gravity equation Bun and Klaassen (2007) estimate an Euro effect

of about 3%, smaller than previous estimates in the range of 5% to 40%. We revisit their data, which

contains observations on the 15 members of the European Union prior to the 2004 expansion of the

union as well as Norway, Switzerland, Canada, Japan and the US over a time span from 1967 to 2002,

using methods recently advanced in the analysis of non-stationary panel data with cross-sectional

dependence. Using several panel unit root tests we find strong evidence that (the log of) bilateral

trade, as well as the product of GDP and GDP per capita have unit roots. However, we find cointe-

gration between these variables using the cointegration test of Gengenbach, Palm, and Urbain (2006)

and the error correction tests proposed by Gengenbach, Westerlund, and Urbain (2008). Employing

the common correlated effects (CCEP) estimator of Pesaran (2006) and the continuously updated

(CUP) estimator of Bai et al. (2009), we obtain estimates of the cointegrating vector and estimates

of the Euro effect on bilateral trade. Our estimates vary between models and estimators but seem
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to support the findings of Bun and Klaassen (2007).

Chapter 6 summarizes the main findings of the thesis, discusses the limit of the current work and

presents some outlines for further research.





2

Panel Unit Root Tests in the Presence of Cross-Sectional

Dependencies:

Comparison and Implications for Modelling1

2.1 Introduction

For many economic applications it is important to know whether an observed time series is stationary

or non-stationary. For example, to test the validity of Purchasing Power Parity (PPP) one should

examine the properties of the real exchange rates. One needs to look at the behavior of differences

in real per capita output growth to test for growth convergence. Therefore, unit root tests are

an important tool for econometric analysis. However, univariate unit root tests are known to lack

power for samples of small or medium size. Unfortunately, for many macroeconomic variables data

is available only for a small sample span. But, since studies investigating for example PPP or growth

convergence are concerned with the behavior of similar data series from several countries, a natural

attempt is to pool the information contained in a data panel. Indeed, that is the general idea of

panel unit root tests, and they only differ in the way the information is pooled. Unfortunately,

simple pooling is only valid if the units of the panel are independent of each other and sufficiently

homogenous. Independence however is unlikely to hold in most applications of panel unit root tests.

In cross-country analysis there might be common influences to all panel members, e.g. in PPP-studies

one usually uses a common numeraire country to calculate real exchange rates.

In early approaches to panel unit root testing, the often unrealistic assumption of cross-sectional

independence is made. For instance, the tests proposed in Levin et al. (2002) and Im et al. (2003), de-

noted respectively as LLC and IPS, assume cross-sectional independence, but allow for heterogeneity

of the form of individual deterministic effects (constant and/or linear time trend) and heterogenous

1This Chapter is based on Gengenbach, Palm, and Urbain (2009).

9



10 CHAPTER 2. PANEL UNIT ROOT TESTS

serial correlation structure of the error terms. Both methods test the same null hypothesis of non-

stationarity, but differ in terms of the considered alternative and hence, in the way information is

pooled. Levin et al. (2002) study balanced panels with N cross-sectional units and T time series

observations. They assume a homogenous first order autoregressive parameter and their test is based

on the pooled t-statistic of the estimator. Im et al. (2003) allow unbalanced panels with N cross

sectional units and Ti time series observations for each i = 1, . . . , N . They propose a standardized

average of individual ADF statistics to test the pooled unit root null hypothesis against a heteroge-

nous alternative. Both methods assume cross-sectional independence among panel units except for

a common time effect. In that case, the derived results remain valid if cross-sectional averages are

subtracted from the data.

Attention has been drawn recently to the assumption of cross-sectional independence on which

the asymptotic results of both procedures rely. Among the first to analyze the effect of cross-sectional

correlation on panel unit root tests was O’Connell (1998). Using Monte Carlo simulations he shows

that the LLC test severely suffers from cross-correlation in terms of increased size and reduced power.

He suggests using FGLS estimation to overcome this problem. However, estimation of the error

covariance matrix becomes infeasible as N and T grow large. Flôres, Jorion, Preumont, and Szafarz

(1999) use SUR estimation of the (possibly heterogenous) AR parameter, and determine critical

values for their test via Monte Carlo simulations. Their methodology has the disadvantage that it

requires extensive simulations to determine critical values and does only account for contemporaneous

cross-sectional correlation. In simulation studies, Banerjee et al. (2004, 2005) assess the finite sample

performance of panel unit root and cointegration tests when panel members are cross-correlated or

even cross-sectionally cointegrated2. Their finding is, that all methods experience size distortions

when panel members are cointegrated. This means that procedures such as the LLC or IPS test

would over-reject the non-stationarity null when there are common sources of non-stationarity. This

is analytically confirmed by Lyhagen (2000).

Recently, panel unit root tests have been proposed model cross-sectional correlation using a

common factor representation of the data, or robust methods allowing for a general form of cross-

sectional dependence, e.g. Chang (2002). The purpose of this chapter is to study some of the new

methods which assume a factor structure and compare them in terms of modelling, assumptions and

statistical properties of the test statistics. A Monte Carlo study assesses the finite sample properties

of the test statistics in terms of size and power in order to compare them.

2The notation of panel cointegration tests refers to tests for cointegration between several variables of one panel
member, in contrast to cointegration between panel members.
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Three different newly proposed unit root tests will be considered. Pesaran (2007) suggests a cross-

sectionally augmented Dickey-Fuller (CADF) test where the standard DF regressions are augmented

with cross-sectional averages of lagged levels and first differences of the individual series. He also

considers a cross-sectional augmented IPS (CIPS) test, which is a simple average of the individual

CADF-tests. The data generating process (DGP) is a simple dynamic linear heterogenous panel data

model. The error term is assumed to have an unobserved one-common-factor structure accounting

for cross-sectional correlation and an idiosyncratic component.

A second type of panel unit root tests has been proposed by Moon and Perron (2004). We

consider two feasible t-statistics proposed by them to test for unit roots in a dynamic panel model

allowing for fixed effects. The stationary error term follows a K-unobserved-common-factor model

to which an idiosyncratic shock is added. The t-statistics are based on appropriately standardized

pooled estimators of the first order serial correlation coefficients of the data series.

The third type of panel unit root tests has been proposed by Bai and Ng (2004b). In their

“Panel Analysis of Non-stationarity in Idiosyncratic and Common Components” (PANIC) approach

the space spanned by the unobserved common factors and idiosyncratic disturbances is consistently

estimated without knowing whether they are stationary or integrated. Next, the number of inde-

pendent stochastic trends driving the common factors is determined. Both individual and pooled

individual statistics are proposed to test separately for unit roots in the unobserved common and

idiosyncratic components of the data instead of the observed series. Both common and idiosyncratic

components may be stationary or integrated.

These three panel unit root tests have been selected for the following reasons. First of all, the

model specifications are sufficiently close to each other and some are partly nested to allow for com-

parison. At the same time, the test procedures differ in important ways to make it interesting to

compare their properties and provide some guidelines for the empirical analysis of non-stationary

panel data. Second, in all the approaches an unobserved common factor structure is assumed to

explain cross-sectional correlation. Common factor structures have several advantages. Statisti-

cal estimation and testing methods, and selection procedures for the number of factors are at the

disposal of the empirical researcher. The statistical properties of these procedures are in general well-

understood. These method recently experienced a revival in the common features literature. Using

common factors to explain cross-sectional correlation allows to deal with the curse of dimensionality

problem in a natural way, which has been found to work well in empirical econometrics. Finally,

common factor structures often result from theoretical considerations in economics. For instance the
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CAPM and the APT models used in finance are common factor models, and many intertemporal

microeconomic models imply factor structures for the data.

The chapter is organized as follows: In Section 2.2 we present the DGPs used in the three

approaches mentioned above. Wherever one DGP is nested in another this will be pointed out. Also,

the testing procedures used will be described in some detail. We briefly discuss which features of the

three approaches will be compared. In Section 2.3, we present the results of an extensive simulation

study which compares the three approaches to panel unit root testing for models with factor structures

and two panel unit root tests proposed by Breitung and Das (2008) and by Sul (2007) which do not

fully exploit factor structure. A PPP test using the described methods is presented in Section 2.4 as

an illustrative example. Section 2.5 is devoted to conclusions. In particular, the implications of the

findings for modeling in practice will be discussed.

2.2 Testing for unit roots in panel data with unobserved common

factors

This section describes three approaches to panel unit root testing in the presence of cross-sectional

correlation which employ factor models. In particular, the methods proposed by Pesaran (2007),

Moon and Perron (2004) and Bai and Ng (2004b) will be presented. For reasons of comparison, it

also briefly describes the panel unit root tests by Breitung and Das (2008) and by Sul (2007) which

assume a factor structure but do not fully exploit it.

The factor structure used by all approaches is a convenient form to model cross-correlation, or

even cointegration between panel members. Therefore, the (for pooled testing necessary) assumption

of independence between the individual specific components of the data is far less restrictive than

the assumption of independent cross-sections, underlying the IPS and LLC test.

A note on notation: Throughout this chapter, M is used to denote a finite, generic constant. For

a matrix A, A > 0 denotes that A is positive definite. Common factors which are denoted by ft

are always assumed to be stationary. Common factors denoted by Ft result from an autoregressive

transformation of ft. Ft has a unit root when there is a unit root in the autoregression. Whenever

we refer to nonstationary common factors, this means nonstationarity of Ft.
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2.2.1 Pesaran (2007): A dynamic panel model with one common factor

For a panel of observed data with N cross-sectional units and T time series observations, Pesaran

(2007) uses a simple dynamic linear heterogenous model

Yi,t = (1− δi)µi + δiYi,t−1 + ui,t, i = 1, . . . , N, t = 1, . . . , T, (2.1)

with given initial values Yi,0 and a one-factor structure for the disturbance

ui,t = λift + ei,t. (2.2)

Considering serially uncorrelated disturbances, the idiosyncratic components, ei,t, i = 1, . . . , N ,

t = 1, . . . , T are assumed to be independently distributed both across i and t, have zero mean,

variance σ2
i , and finite forth-order moment. The common factor ft is serially uncorrelated with mean

zero and constant variance σ2
f , and finite forth-order moment. Without loss of generality, σ2

f is set

equal to one. ei,t, λi and ft are assumed to be mutually independent for all i and t.

It is convenient to write (2.1) and (2.2) as

∆Yi,t = αi − (1− δi)Yi,t−1 + λift + ei,t, (2.3)

where αi = (1 − δi)µi and ∆Yi,t = Yi,t − Yi,t−1. The unit root hypothesis considered by Pesaran

(2007), δi = 1 for all i is tested against the possibly heterogenous alternative δi < 1 for i = 1, . . . , N1,

δi = 1 for i = N1 +1, . . . , N . Pesaran (2007) assumes that N1
N , the fraction of the individual processes

that is stationary, is non-zero and tends to some fixed value κ such that 0 < κ ≤ 1 as N →∞.

It is important to notice that any non-stationarity of the observations Yi,t in the setting considered

by Pesaran (2007) is due to the presence of a unit root in the autoregressive part of (2.1), i.e. δi = 1.

For the unit root null hypothesis considered by Pesaran (2007), he proposes a test based on the

t-ratio of the OLS estimate b̂i in the following cross-sectionally augmented DF (CADF) regression

∆Yi,t = ai + biYi,t−1 + ciȲt−1 + di∆Ȳt + εi,t, (2.4)

where Ȳt = 1
N

∑N
i=1 Yi,t, ∆Ȳt = 1

N

∑N
i=1 ∆Yi,t, and εi,t is the regression error.

The cross-sectional averages, Ȳt−1 and ∆Ȳt, are included into (2.4) as a proxy for the unobserved

common factor ft. For analytical convenience when deriving the asymptotic properties, Pesaran
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(2007) replaces the usual estimator for σ2
i in the t-value for bi by a slightly modified and also

consistent one. He derives the asymptotic distribution of the modified t-statistic and shows that

it is free of nuisance parameters as N →∞ for any fixed T > 3, as well as for the case where N →∞

followed by T →∞.

In line with Im et al. (2003), Pesaran (2007) proposes a cross-sectional augmented version of the

IPS-test

CIPS =
1
N

N∑
i=1

CADFi, (2.5)

where CADFi is the cross-sectionally augmented Dickey-Fuller statistic for the i-th cross-sectional

unit given by the t-ratio of bi in the CADF regression (2.4). Due to the presence of the common

factor, the CADFi statistics will not be cross-sectionally independent3. Thus, a central limit theorem

cannot be applied to derive the limiting distribution of the CIPS statistic, and it is shown to be

non-standard even for large N . Furthermore, to ensure the existence of moments for the distribution

of CADFi in finite samples, Pesaran (2007) advocates the use of a truncated version of the CIPS

test, where for positive constants K1 and K2 such that Pr[−K1 < CADFi < K2] is sufficiently large,

values of CADFi smaller than −K1 or larger than K2 are replaced by the respective bounds. Pesaran

(2007) provides values for K1 and K2 obtained by simulations.

The presentation above outlines the procedure for serially uncorrelated disturbances. If there is

serial correlation present in the common factors or idiosyncratic errors, additional lags of ∆Yi,t and

its cross-sectional average ∆Ȳt have to be included in the ADF regression (2.4).

2.2.2 Moon and Perron (2004): A dynamic panel model with K common factors

For a panel of observed data with N cross-sectional units and T time series observations, Moon and

Perron (2004) model the DGP for Yi,t as an AR(1) process and assume, similar to Pesaran (2007),

that common factors are present in the error term. They assume a K-factor model for the error term

ui,t

Yi,t = (1− δi)µi + δiYi,t−1 + ui,t, (2.6)

ui,t = λ′ift + ei,t, (2.7)

3Under the null hypothesis of a unit root, CADFi converges to a functional of Brownian motions, say G(Wf ,Wi),
where Wf and Wi are Brownian motions driven by the common factor and idiosyncratic error, respectively.
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for i = 1, . . . , N and t = 1, . . . , T , where ft is a (K × 1) vector of common factors, λi is the

corresponding vector of factor loadings for cross-section i, and ei,t is an idiosyncratic disturbance

term.

The DGPs considered by Pesaran (2007) and Moon and Perron (2004) are identical if a single

common factor is present in the composite error term. For the components of the composite error

term in (2.7) similar assumptions are made as by Pesaran (2007). The idiosyncratic part ei,t follows

a stationary and invertible infinite MA process, and is cross-sectionally uncorrelated, so that ei,t =

Γi(L)εi,t, where Γi(L) =
∑∞

j=0 γi,jL
j and εi,t ∼ i.i.d.(0, 1) across i and t. Also the common factors

ft are assumed to have a stationary, invertible MA(∞) representation, i.e. ft = Φ(L)ηt. Here,

Φ(L) =
∑∞

j=0 φjL
j is a K-dimensional lag polynomial and ηt ∼ i.i.d.(0, IK). Furthermore, the

covariance matrix of ft is (asymptotically) positive definite. Although more than one common factor

are permitted to be present in the data, some maximum number K̄(≥ K) is supposed to be known.

Also, redundant factors, i.e. factors that asymptotically influence only a finite number of observed

series, are excluded by imposing 1
N

∑N
i=1 λiλ

′
i →p Σλ > 0. Furthermore, short-run and long-run

variances, σ2
ei

(
=
∑∞

j=0 γ
2
i,j

)
and ω2

ei

(
= (
∑∞

j=0 γi,j)
2
)
, as well as the one sided long-run covariance

ϕei
(

=
∑∞

l=1

∑∞
j=0 γi,jγi,j+l

)
are supposed to exist for all idiosyncratic disturbances ei,t. Additionally,

these parameters are assumed to have non-zero cross-sectional averages, σ2
e = 1

N

∑N
i=1 σ

2
ei , ω

2
e =

1
N

∑N
i=1 ω

2
ei and ϕ2

e = 1
N

∑N
i=1 ϕ

2
ei .

The unit root null hypothesis considered by Moon and Perron (2004) is H0 : δi = 1 for all

i = 1, . . . , N , which is tested against the heterogenous alternative H1 : δi < 1 for some i4. To test

this hypothesis, two modified t-statistics are suggested, based on pooled estimation of the first-order

serial correlation coefficient of the data. The estimation and testing procedure relies on de-factoring

the data by a projection onto the space orthogonal to that spanned by the common factors. For that

purpose, the matrix of factor loading Λ = (λ1, . . . , λN )′ has to be estimated to construct a projection

matrix QΛ = IN − Λ(Λ′Λ)−1Λ′.

Imposing δi = δ for all i, the pooled OLS estimator, denoted as δ̂pooled, is T -consistent for 1

under the unit root null, as well as under the local alternative considered by Moon and Perron

(2004). The usual t-ratio to test this hypothesis has a non-standard limiting distribution, due to the

persistent cross-sectional correlation introduced by the common factors. From the residuals of the
4To analyze local power properties of their test, Moon and Perron (2004) consider the following local alternative

hypothesis:

δi = 1− θi√
NT

,

where θi is a random variable with mean µθ on finite support [0, M̄ ]. The considered null hypothesis is H ′0 : µθ = 0,
which is tested against the local alternative H ′1 : µθ > 0.
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pooled regression (under the null where the intercept is equal to zero)

ûi,t = Yi,t − δ̂pooledYi,t−1, (2.8)

the matrix of factor loadings is estimated by the method of principal components5. With the estima-

tor Λ̂ one can then construct an estimator of the projection matrix denoted as QΛ̂K
. Additionally,

consistent estimates of the above defined nuisance parameters can be obtained non-parametrically

from the de-factored residuals ê = ûQΛ̂K
, where û = (û1, . . . , ûN ) with ûi = (ûi,1, . . . , ûi,T )′. Denote

the estimates as ϕ̂ei and ω̂2
ei , and their cross-sectional averages as ϕ̂e and ω̂2

e . Then the modified

pooled estimator of δ suggested by Moon and Perron (2004) is

δ∗pooled =

∑T
t=2 Y

′
t−1QΛ̂K

Yt −NTϕ̂e∑T
t=2 Y

′
t−1QΛ̂K

Yt−1

, (2.9)

where Yt = (Y1,t, . . . , YN,t)′. Based on this estimator, the following two t-statistics can be used to

test the pooled unit root null hypothesis,

t∗a =

√
NT (δ̂∗pooled − 1)√

2φ̂4
e

ω̂4
e

(2.10)

and

t∗b =
√
NT (δ̂∗pooled − 1)

√√√√ 1
NT 2

T∑
t=2

Y ′t−1QΛ̂K
Yt−1

(
ω̂e

φ̂2
e

)
, (2.11)

where φ̂4
e = 1

N

∑N
i=1 φ̂

4
ei , φ̂

4
ei = ω̂4

ei . Moon and Perron (2004) analyze the asymptotic behavior of the

two statistics as N → ∞ and T → ∞ with6 lim inf(N,T→∞)
log T
logN > 1. Both test statistics have a

limiting standard normal distribution under the null, and diverge under the stationary alternative.

2.2.3 Bai and Ng (2004b): A common factor model with unobserved common

and idiosyncratic components of unknown order of integration.

In contrast to Pesaran (2007) or Moon and Perron (2004), the PANIC model of Bai and Ng (2004b)

permits the non-stationarity in a panel of observed data to come either from a common source, or

5The principal component estimator is in general not unique. Moon and Perron (2004) use the normalization
1
T

∑T
t=1 ftf

′
t = IK and re-scale the obtained estimate.

6The restriction on the relative divergence rate of N and T is necessary, as ft and ei,t are unobserved.
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from the idiosyncratic errors, or from both7. Therefore, they focus on consistent estimation of the

common factors and error terms, to test the properties of these series separately.

The model Bai and Ng (2004b) consider describes the observed data Yi,t as the sum of a deter-

ministic part, a common (stochastic) component, and the idiosyncratic error. In particular,

Yi,t = Di,t + λ′iFt + Ei,t i = 1, . . . , N, t = 1, . . . , T, (2.12)

where as before λi is a (K × 1) vector of factor loadings, Ft is a (K × 1) vector of common factors8,

and Ei,t is an error term. The deterministic component Di,t contains either a constant αi or a linear

trend αi+βit. As the two aforementioned approaches, Bai and Ng (2004b) consider a balanced panel

with N cross-sectional units and, T time series observations.

The common factors are assumed to follow an AR(1) process, such that

Ft = Ft−1 + ft, (2.13)

where ft = Φ(L)ηt, Φ(L) =
∑∞

j=1 φjL
j is a K−dimensional lag polynomial and rk

(
Φ(1)

)
= k1. So,

Ft contains k1 ≤ K independent stochastic trends and consequently K − k1 stationary components.

The shock ηt is assumed to be i.i.d.(0,Ση) with finite fourth-order moment. The idiosyncratic terms

are allowed to be either I(0) and I(1), and are also modelled as AR(1) processes

Ei,t = δiEi,t−1 + ei,t, (2.14)

where ei,t follows a mean zero, stationary, invertible MA process, such that ei,t = Γi(L)εi,t with εi,t ∼

i.i.d.(0, σ2
εi). Bai and Ng (2004b) do not assume cross-sectional independence of the idiosyncratic

term9 from the outset, but impose it later to validate pooled testing. The assumption that Ση is

not (necessarily) a diagonal matrix is more general than the corresponding assumption in Moon and

Perron (2004), where the innovations of the common factors are assumed to be uncorrelated. The

short-run covariance matrix of ∆Ft has full rank while the long-run covariance matrix has reduced

rank and hence permits cointegration among the common factors. As in Moon and Perron (2004),

(asymptotically) redundant factors are ruled out.

7Under the unit root null the data in the Pesaran (2007) or Moon and Perron (2004) model contains a common, as
well as an idiosyncratic stochastic trend.

8K is assumed to be known here.
9Bai and Ng (2004b) allow for some weak cross-sectional dependence of the shock terms driving the ei,t. The full

set of assumptions can be found in their paper.
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In this setup, the goal of PANIC is to determine the number of non-stationary factors k1, and to

test for each i = 1, . . . , N , whether δi = 1. Bai and Ng (2004b) suggest using principal components

to consistently estimate the unobserved components Ft and Ei,t. However, to derive consistent

estimates even if some elements of Ft and Ei,t are I(1), a suitable transformation of Yi,t is used. In

particular, if the DGP does not contain a deterministic linear trend, the first differences of the data

are employed, while in the presence of a deterministic linear trend, demeaned first-differences are

used. So, in the former case yi,t = ∆Yi,t = Yi,t− Yi,t−1, while in the latter yi,t = ∆Yi,t− ¯∆Yi,t, where

¯∆Yi,t = 1
T−1

∑T
t=2 ∆Yi,t. As the estimated common factors and idiosyncratic errors, denoted as f̂t

and êi,t respectively, are derived applying the method of principal components to first-differenced or

de-trended data, Bai and Ng (2004b) propose to re-accumulate them to remove the effect of possible

over-differencing. This yields

F̂t =
t∑

s=2

f̂s, (2.15)

Êi,t =
t∑

s=2

êi,s. (2.16)

These estimates are now individually tested for unit roots.

For the idiosyncratic components, Bai and Ng (2004b) suggest to compute an ADF statistic based

on up to p lags. Denote the t-statistic to test the unit root hypothesis for each Êi,t as ADF c
Êi

or

ADF τ
Êi

, depending on whether a constant, or a constant and linear trend is included in the DGP.

Bai and Ng (2004b) derive the limiting distributions, which are non-standard. For the case where a

constant is present in the DGP given by (2.12), the distribution coincides with the usual Dickey-Fuller

(DF) distribution where no constant is included in the estimation. The 5% critical value is −1.95. If

the DGP in (2.12) contains a constant and a linear trend, the limiting distribution is proportional to

the reciprocal of a Brownian bridge. Critical values for this distribution are not tabulated yet, and

have to be simulated.

Both ADF statistics given above do not have the advantage of a standard normal limiting dis-

tribution, as do the other panel unit root tests described so far. That is due to the fact that the

panel information has only been used to consistently estimate Ei,t, but not to analyze its dynamic

properties. Only if independence among the error terms is assumed, pooled testing is valid. In that

case, Bai and Ng (2004b) propose a Fisher-type test10 as suggested in Maddala and Wu (1999), using

10In principal, also an IPS-type test using a standardized average of the above described t-statistics should be
possible. See also Bai and Ng (2007).
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the correction proposed by Choi (2001). The test statistic, denoted as P c
Ê

or P τ
Ê

depending on the

deterministic specification, is given by

P c
Ê
, P τ

Ê
=
−2
∑N

i=1 log πi − 2N√
4N

, (2.17)

where πi is the p-value of the ADF test for the i-th cross-section. These two panel unit root test

statistics have standard normal limiting distributions.

Depending on whether there is just one, or several common factors, Bai and Ng (2004b) suggest

to use either an ADF test based on up to p lags, or a rank test for F̂t. Denote the t-statistic for the

unit root hypothesis as ADF c
F̂

when only a constant is accounted for, and as ADF τ
F̂

in the linear

trend case. Then, Bai and Ng (2004b) derive their limiting distributions, which coincide with the

DF distributions for the cases where only a constant, or a constant and a linear trend are included

in the ADF estimation. The asymptotic 5% critical values are -2.86 and -3.41, respectively.

If there are K > 1 common factors, Bai and Ng (2004b) suggest an iterative procedure, com-

parable to the Johansen trace test for cointegration to select k1. They use demeaned or de-trended

factor estimates, depending on whether (2.12) contains just a constant, or a constant and linear

trend. Define F̃t = F̂t − ¯̂
Ft with ¯̂

Ft = 1
T−2

∑T
t=2 F̂t in the former case. In the latter, let F̃t denote

the residuals from a regression of F̂t on a constant and linear trend. Using F̃t, the following steps

describe the proposed test.

Starting with m = K,

1. Let β̂⊥ be the m eigenvectors associated with the m largest eigenvalues of 1
T 2

∑T
t=2 F̃tF̃

′
t . Let

X̂t = β̂′⊥F̃t. Two statistics can be considered:

2. (a) Let K(j) = 1− j
J+1 , j = 1, . . . , J ;

i. Let ξ̂t be the residuals from estimating a VAR(1) in X̂t, and let

Σ̂1 =
J∑
j=1

K(j)
( 1
T

T∑
t=2

ξ̂t−j ξ̂
′
t

)
.

ii. Let ν̂c(m) be the smallest eigenvalue of

Φ̂c(m) =
1
2

[ T∑
t=2

(X̂tX̂
′
t−1 + X̂t−1X̂

′
t)− T (Σ̂1 + Σ̂′1)

]( T∑
t=2

X̂t−1X̂
′
t−1

)−1
.

iii. Denote T [ν̂c(m) − 1] as MQcc(m) in the constant only case, or as MQτc (m) in the
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linear trend case.

(b) For p fixed that does not depend on N or T ,

i. Estimate a Var(p) in ∆X̂t in order to obtain Π̂(L) = Im − Π̂1L− · · · − Π̂pL
P . Filter

X̂t by Π̂(L) to get x̂t = Π̂(L)X̂t.

ii. Let ν̂f (m) be the smallest eigenvalue of

Φ̂f (m) =
1
2

[ T∑
t=2

(x̂tx̂′t−1 + x̂t−1x̂
′
t)
]( T∑

t=2

x̂t−1x̂
′
t−1

)−1
.

iii. Denote T [ν̂f (m) − 1] as MQcf (m) in the constant only case, or as MQτf (m) in the

linear trend case.

3. If H0 : k1 = m is rejected, set m = m − 1 and return to Step 1. Otherwise, set k̂1 = m and

stop.

For theMQc,τc andMQc,τf statistics described above, Bai and Ng (2004b) derive limiting distributions,

which are again non-standard, and they provide 1%, 5%, and 10% critical values for all four statistics

and for various values of m.

The PANIC procedure has the advantage that the estimated common factors and idiosyncratic

components are consistent whether they are stationarity or non-stationarity. This is due to the

practice of estimating the unobserved components from the first-differenced (or de-trended) data,

and re-accumulating the estimates to remove the effect of possible over-differencing if the factors or

errors are stationary. Hence, the obtained estimates could also be used for stationarity tests, which

is discussed in Bai and Ng (2004a).

2.2.4 Alternative panel unit root tests in the presence of cross-sectional depen-

dencies

The three approaches to panel unit root testing presented in the previous sections explicitly account

for the common factors employed to model the cross-sectional dependence in the data by using

methods that require large N to be valid. In this section we introduce alternative panel unit root

tests which do not necessarily exploit the common factor structure, and could provide alternatives

to the aforementioned tests in small N panels. In particular, we will consider two test statistics

proposed by Breitung and Das (2008) and the tests proposed by Sul (2007).
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Breitung and Das (2008)

Breitung and Das (2008) study the behaviour of several panel unit root tests when cross-sectional

dependence in the data is present in the form of a common factor. The DGP they employ is similar to

that of Bai and Ng (2004b) presented in Section 2.2.3, Equations (2.12) to (2.14). However, Breitung

and Das (2008) focus on the special case where (2.13) can is replaced by

Ft = ρFt−1 + ft,

with the scalar first order autoregressive parameter |ρ| ≤ 1. They consider test statistics on the

“reduced form” regression equation below, which is obtained when δi = δ for all i and ρ = δ:

∆Yt = φYt−1 + ut, (2.18)

where ∆Yt = (∆Y1,t, . . . ,∆YN,t)′, Yt−1 = (Y1,t−1, . . . , YN,t−1)′, ut = (u1,t, . . . , uN,t)′ with ui,t =

λift + ei,t and φ = (δ − 1). Breitung and Das (2008) present their analysis for a DGP and model

without individual specific constant or time trend. The deterministic component in (2.12) has been

assumed to be zero in this case. If a model with individual specific constant is employed, Breitung

and Das (2008) suggest to remove it by considering data in deviation from the first observation,

Y ∗i,t = Yi,t − Yi,0.

Breitung and Das (2008) particularly consider a robust OLS t-statistic trob and a GLS t-statistic

tgls to test for the unit root null hypothesis φ = 0 against the homogenous alternative φ < 0. The

robust OLS statistic is given by

trob =
∑T

t=1 Y
′
t−1∆Yt(∑T

t=1 Y
′
t−1Ω̂Yt−1

) 1
2

,

with Ω̂ =
∑T

t=1 ûtû
′
t where ût = ∆Yt − φ̂Yt−1 are the OLS residuals. The GLS statistic, tgls, is given

by

tgls =
∑T

t=1 Y
′
t−1Ω̂−1∆Yt(∑T

t=1 Y
′
t−1Ω̂−1Yt−1

) 1
2

.

Note that this statistic can only be computed for T > N , as otherwise Ω̂ is singular. Also, if a

common factor structure is assumed for the data, one could exploit this in for the GLS statistic by

taking the factor structure into account when estimating the covariance matrix Ω. For the static

factor model with orthonormal factors, Ω = ΛΛ′+ Σ, where Λ is the N × k matrix of factor loadings
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and Σ is the covariance matrix of the idiosyncratic innovations. Estimates of Λ and Σ can be obtained

using a principal component approach as in Bai and Ng (2004b) or Moon and Perron (2004). If there

is higher order serial correlation present in the residuals, a Newey-West type estimator for Ω can be

employed, or an ADF regression estimated in the first step.

Breitung and Das (2008) consider 3 cases in their analysis, where the reduced form (2.18) is

misspecified in cases 2 and 3, namely an I(1) common factor combined with I(1) idiosyncratic com-

ponents, an I(1) common factor and I(0) idiosyncratic components (cross-member cointegration) and

the case where a unit root is present in the idiosyncratic component but the common factor is I(0).

If N3

T → 0, tgls is asymptotically normally distributed in the first and third case, while it diverges

in the second case. trob converges to a Dickey-Fuller distribution in the first case if there is a single

common factor. It is equivalent to an ADF test on the first principal component of Yt in that case.

In the other cases, the test is not valid.

Sul (2007)

Sul (2007) proposes to use recursive mean adjustment for panel unit root tests to increase their power.

Similar to Moon and Perron (2004), Sul (2007) models cross-sectional dependence by employing a

common factor structure for the error term. The DGP is similar to that given in Equations (2.6) and

(2.7). To account for the cross-sectional dependence, Sul (2007) suggests a (feasible) GLS statistic

to test for the unit root null hypothesis δi = 1 for all i against the heterogenous alternative δi < 1

for some i in

Yi,t = (1− δi)µi + δiYi,t−1 + ui,t, (2.19)

The test procedure follows multiple steps, where the regression can be augmented by lagged first

differences of Yi,t to account for higher order serial correlation in the residuals:

1. Run the following regression for each unit individually

Yi,t − ci,t−1 = δi(Yi,t−1 − ci,t−1) +
pi∑
j=1

ϕij∆Yi,t−j + εi,t, (2.20)

where ci,t−1 = (t− 1)−1
∑t−1

s=1 Yi,s is the recursive mean, to obtain the LS estimator δ̂i.

2. If δ̂i > 1 set δ̂i = 1 and run the regression

Yi,t − δ̂iYi,t−1 = ai +
p∑
j=1

ϕij∆Yi,t−j + εi,t. (2.21)
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Construct the sample covariance matrix Ω̂ = (T − p− 1)−1
∑T

t=p+1 ε̂tε̂
′
t, where

ε̂t = (ε̂1,t, . . . , ε̂N,t)′ are the vectors of residuals from the previous regression.

3. Project (Yi,t − ci,t−1) and (Yi,t−1 − ci,t−1) on the lagged first differences

(Yi,t − ci,t−1) =
p∑
j=1

φij∆Yi,t−j + ξi,t,

(Yi,t−1 − ci,t−1) =
p∑
j=1

ζij∆Yi,t−j + ξi,t−1.

4. Define ω̂′ij as the ijth element of Ω̂−1, one can now obtain the pooled FGLS estimator of δ and

the associated t-statistic as

δ̂fglsrma =

∑N
i=1

∑N
j=1 ω̂

′
ij

∑T
t=p+1 ξ̂i,t−1ξ̂j,t∑N

i=1

∑N
j=1 ω̂

′
ij

∑T
t=p+1 ξ̂

2
i,t−1

, (2.22)

tfglsrma =
δ̂fglsrma − 1√∑N

i=1

∑N
j=1 ω̂

′
ij

∑T
t=p+1 ξ̂

2
i,t−1

. (2.23)

Sul (2007) shows that the tfglsrma converges to a Dickey-Fuller distribution, and he provides finite

sample critical values to account for finite sample bias.

Similar to Breitung and Das (2008), Sul’s tfglsrma effectively tests for a unit root in the idiosyn-

cratic component of the data if the error term ui,t in (2.19) permits a common factor structure. To

test for a unit root in the common component, Sul (2007) proposes to apply a recursive mean ad-

justed covariate augmented DF test to the cross-sectional averages of the data, Ȳt = N−1
∑N

i=1 Yi,t.

The steps of the procedure are similar to the ones outlined above, and the resulting t-statistic is

denoted as tcrma. Sul (2007) provides some evidence that his test is precise and powerful, especially

when T is larger than N , a case for which it has been designed.

2.2.5 Differences and similarities

This section discusses differences and similarities of the panel unit root tests relying on a factor

structure, presented in the previous subsections. For all considered DGPs, we can write the data as

the sum of the deterministic component (Di,t), a “common component” (CCi,t) and an “idiosyncratic

component” (ICi,t) such that

Yi,t = Di,t + CCi,t + ICi,t.
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For the DGP of Bai and Ng (2004b), we have CCi,t = λ′iFt and ICi,t = Ei,t. For a DGP as assumed

by Pesaran (2007) or Moon and Perron (2004) given in e.g. (2.6)-(2.7) where the common factor

structure is assumed for the error term, we obtain for a simple AR(1),

Yi,t = (1− δti)µi + λ′i

t−1∑
s=0

δt−si ft−s +
t−1∑
s=0

δt−si ei,t−s.

Hence, CCi,t = λ′i
∑t−1

s=0 δ
t−s
i ft−s and ICi,t =

∑t−1
s=0 δ

t−s
i ei,t−s for those DGPs. The approaches

to panel unit root testing presented above may differ in terms of assumptions made which place

restriction on the DGP, in particular whether the order of integration is allowed to differ between

CCi,t and ICi,t and thus whether the possibility of cross-member cointegration is excluded or not, and

the number of common factors. Furthermore, the presented test statistics are applied to different data

components. For example, the Moon and Perron (2004) tests apply to the idiosyncratic component

only, as has been shown by Breitung and Das (2008) and forcefully argued by Bai and Ng (2007).

DGP

The DGP assumed by Pesaran (2007) for a single common factor and Moon and Perron (2004) for

K ≥ 1 restrict the common and idiosyncratic component to have the same order of integration. Bai

and Ng (2004b) explicitly allow the order of integration to differ between CCit, and ICi,t and they

allow for the presence of K ≥ 1 factors. Sul (2007) considers a DGP similar to Bai and Ng (2004b)

as well and proposes to proxy a single common factor with the cross-sectional average of the data.

Breitung and Das (2008) analyze the behaviour of their tests in DGPs as assumed by Bai and Ng

(2004b).

Null Hypothesis and Tested Data Component

All considered tests have non-stationarity as null hypothesis. The statistics proposed by Pesaran

(2007) and Moon and Perron (2004) test defactored data (ICi,t) for a unit root. The common

component is not tested, although it is non-stationary if ICi,t is non-stationary given that the as-

sumptions on the DGP are true. Bai and Ng (2004b) suggest test statistics for the idiosyncratic and

common component separately, where the null hypothesis is non-stationarity of the given component.

Breitung and Das (2008) formulate the null hypothesis in terms of the reduced form regression (2.18)

as a unit root in the observed data. However, they show that their FGLS statistic effectively tests for

a unit root in the idiosyncratic component, while their robust OLS statistic is equivalent to an ADF
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test for the first principal component only if both CCi,t and ICi,t are non-stationary. Sul’s FGLS

statistic also tests for a unit root in the idiosyncratic component, while cross-sectional averages are

used as a proxy for a single common factor and tested for a unit root with the tcrma test.

The CIPS test of Pesaran (2007), the tests of Moon and Perron (2004), the P c,τ
Ê

statistics of

Bai and Ng (2004b) and the FGLS statistics proposed by Breitung and Das (2008) and Sul (2007)

are pooled tests for the null hypothesis that the defactored data are unit root processes for all i.

All approaches except Breitung and Das (2008) use a heterogenous alternative, namely that some

series have a unit root and some do not. Moon and Perron (2004) use a pooled estimator of the first

order autoregressive coefficient δi in the construction of their statistics. Similarly, the FGLS tests of

Breitung and Das (2008) and Sul (2007) are based on pooled estimators δ̂. The individual specific

CADF statistic of Pesaran (2007) and the ADF c,τ
Ê

statistic of Bai and Ng (2004b) test for a unit

root in the idiosyncratic component for a given i, and the alternative hypothesis is stationarity of

that component.

Bai and Ng’s ADF c,τ
F̂

statistic and Sul’s tcrma test for a unit root in a single common factor. Also,

Bai and Ng (2004b) allow for more than one common factor and the MQc,τc and MQc,τf statistics are

designed to determine the number of independent stochastic trends in Ft.

Panel dimensions N and T

The three type of tests proposed by Pesaran (2007), Moon and Perron (2004) and Bai and Ng (2004b)

are designed for large N and T due to the estimation of the common factor(s) either by using principal

components or by including the cross-sectional mean as proposed by Pesaran (2007). The FGLS tests

of Breitung and Das (2008) and Sul (2007) on the other hand can only be constructed if T > N .

Cointegration

While Pesaran (2007) and Moon and Perron (2004) exclude the possibility of cointegration among

the Yi,t, as well as between the observed data and the common factors, Bai and Ng (2004b) include

both possibilities in their model. In particular, if k1 ≥ 1 and Ei,t(= ICi,t) is stationary for some i,

then the observed data and the common factors are cointegrated for those i with cointegrating vector

(1,−λ′i)′. Furthermore, if all idiosyncratic errors are I(0), then the orthogonalization matrix used

by Moon and Perron (2004) to eliminate the common factors, QΛ, serves as cointegration matrix

for the Yi,t. So, Bai and Ng’s procedure can be used as a cointegration test11, by investigating the

11What is meant here is a cointegration test between panel members, in contrast to panel cointegration tests. The
latter ones are used to test for cointegration between several variables for the same i.
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hypotheses k1 ≥ 1 and all idiosyncratic errors are stationary12. Breitung and Das (2008) consider

the case of cross-member cointegration in their analysis, however their tests are not able to detect it.

Sul’s tests could be used to detect cross-member cointegration, namely if the tfglsrma statistic rejects

a unit root for the idiosyncratic component while the tcrma test fails to reject the unit root for the

cross-sectional averages.

Common Factors and Estimation of K

For the tests proposed by Moon and Perron (2004) and Bai and Ng (2004b), an important aspect

in application is the selection of the number of common factors K. Consistent estimation of K is

discussed in Bai and Ng (2002) for a factor model as given by (2.12) with stationary errors, and also

briefly treated in Moon and Perron (2004). It should be noted that while the information criteria

designed to estimate the number of common factors work well in simulations, their application in

practice is difficult as they are usually observed to select the maximum number of common factors

allowed.

In terms of computational burden, all procedures are rather easy to implement. Pesaran (2007)

provides tables with critical values for his tests. The PANIC procedure of Bai and Ng (2004b) also

requires some tabulated critical values for the rank test statistics MQc(·) and MQf(·), as well as for

the ADF τ
Êi,t

statistic. Also, a procedure to calculate the p-values of ADF c
Êi,t

and ADF τ
Êi,t

is needed

to implement the suggested pooled tests. Sul (2007) also provides simulated finite sample critical

values for his test statistics.

2.3 Small sample performance: Monte Carlo results

2.3.1 Monte Carlo simulation setup

In this section we study the small sample performance of the tests proposed by Pesaran (2007), Moon

and Perron (2004) and Bai and Ng (2004b) for various types of DGPs. Furthermore, we consider

the robust OLS t-test trob and the FGLS t-test tGLS described in Breitung and Das (2008) and the

recursive mean adjusted FGLS test tρfglsrma and the recursive mean adjusted test for the average

data proposed by Sul (2007). All considered DGPs with one exception have the following structure

12Note that the null hypothesis for the ADF tests using the estimated error terms remains that of non-stationarity.
Rejecting the unit root hypothesis for all i is thus one part of not rejecting cointegration between panel members.
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which corresponds to the framework of Bai and Ng (2004b):

Yi,t = λ′iFt + Ei,t,

Fm,t = ϕFm,t−1 + fm,t,

Ei,t = δiEi,t−1 + ei,t, (2.24)

with i = 1, . . . , N , t = 1, . . . , T and m = 1, . . . ,K. We consider three different values for N and T

each, namely 20, 50 and 10013. The method of principle components estimates the space spanned

by the common factors when N is large. We have chosen N and T at least equal to 20 to assure

that common factors are estimated with sufficient precision or approximated reasonably well by

cross-sectional averages. Notice that the regularity condition N 6= T needed for some tests is not

satisfied in some cases. First a single common factor is considered, which is generated by a first order

autoregression, or a random walk when ϕ = 1. We also consider the case of two common factors

which are generated using the same parameter values for ϕ and σ2
f , but different drawings for the

error terms. The idiosyncratic terms Ei,t are also generated by a first order autoregression or random

walk with first order moving average, depending on whether or not δi = 1.

In addition, a DGP as assumed by Pesaran (2007) and Moon and Perron (2004) is used:

Yi,t = δiYi,t−1 + ui,t,

ui,t = λift + ei,t. (2.25)

In (2.24) and (2.25) the error terms are generated as MA(1) processes such that

fm,t = ηm,t + γmηm,t−1,

ei,t = εi,t + ρiεi,t−1.

The shocks are drawn from independent normal distributions, such that ηt ∼ i.i.d.N(0,Σ2
f ), with

Σ2
f = σ2

fIK , and εi,t ∼ i.i.d.N(0, 1). We consider three different values for the signal-to-noise ratio,

such that σ2
f = 0.5, 1 and 214. The MA parameters γm and ρi are independently, uniformly distributed

13Pesaran (2007) reports Monte Carlo results for his tests with N , T = 10, 20, 30, 50, 100, Moon and Perron (2004)
choose N = 10, 20 and T = 100, 300, Bai and Ng (2004b) report results for N = 40, T = 100 while Bai and Ng (2007)
choose N , T = 20, 50, 100, Sul (2007) performs simulations with N = 5, 10, 15, 20 and T = 50, 100, 200, and Breitung
and Das (2008) select N = 10, 20, 50 and T = 20, 50, 100.

14In the tables we only report the values for σ2
f = 1. The other results are available at

http://www.personeel.unimaas.nl/J.Urbain/.
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on [0.2, 0.5]. The factor loading λi are uniformly distributed on [−1, 3]15.

Three different types of non-stationarity are considered as null hypothesis, as well as different

settings for the stationary alternative hypothesis. In particular, we consider the following 5 cases,

where 1 to 4 use the DGP given by (2.24) and 5 uses DGP (2.25)16:

1. Common and idiosyncratic unit roots

HA
0 : ϕ = 1, and δi = 1 for all i.

2. Common unit root, nearly stationary idiosyncratic components

HB
0 : ϕ = 1, and δi ∼ U [0.8, 1] for all i,

3. Stationary common component, integrated idiosyncratic components

HC
0 : ϕ = 0.95, and δi = 1 for all i,

4. Stationary common and idiosyncratic components

HA
A : ϕ = 0.95 and δi ∼ U [0.8, 1].

5. Stationary data using a DGP as given by (2.25) with heterogenous roots

HE
A : δi ∼ U [0.8, 1] for all i.

The results are obtained with GAUSS 8.0 using 1000 replications. The reported rejection fre-

quencies are based on 5% nominal size. All power results are size unadjusted. For Pesaran’s CADF

and CIPS we use the critical values reported in Pesaran (2007, Tables 1b and 3b). Results for Moon

and Perron’s statistics, Bai and Ng’s P c
Ê

statistic and Breitung and Das’s trob and tgls are based

on a critical value from the standard normal distribution. Rejection frequencies of the ADF c
Ê

and

ADF c
F̂

statistics are obtained using the critical values from DF distributions for the no intercept

15Consistency of the test procedure of Pesaran (2007) requires a non-zero mean for the factor loadings. This
assumption is not necessary for the other approaches.

16Please note that under setup 1 (2.24) and (2.25) are equivalent. In cases 4 and 5 we have stationarity provided
δi 6= 1.
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and intercept only cases, respectively. Critical values for the MQcc and MQcf are provided in Bai

and Ng (2004b, Table 1). ForSul’s tρfglsrma test we use finite sample critical values reported in Sul

(2007, Table 5) and for the tcrma we use the asymptotic critical value of −1.88. When obtaining the

tcrma statistic we use ∆Y1,t as stationary covariate and calculate the cross-sectional averages over the

remaining N − 1 panel members such that Ȳt = (N − 1)−1
∑N

i=2 Yi,t.

Similar to Moon and Perron (2004), we use the Andrews and Monahan (1992) estimator employing

the quadratic spectral kernel in the estimation of the nuisance parameters for the t∗a and t∗b statistics.

For Bai and Ng’s ADF c
Ê

and ADF c
F̂

and Pesaran’s CADF and CIPS we use the Akaike information

criterion (AIC) to determine the lag length, starting with a maximum lag length of pmax = 6. For the

test of Sul (2007) and Breitung and Das (2008) we use the Bayesian information criterion (BIC). For

the MQcc statistic we use the Bartlett kernel with a bandwidth as suggested in Andrews (1991). The

lag length for the MQcf statistic is determined using the criteria proposed by Aznar and Salvador

(2002). We do not estimate the number of common factors K but assume it known. However, in

addition to results where the number of common factors is correctly specified we also report results

for a case where the this number is misspecified. We do so to show sensitivity of the tests to this form

of misspecification and not to be unfair to authors of any of these tests when evaluating the adequacy

of the asymptotic approximations since the theory does not incorporate sampling variability due to

the number of common factors17.

Although the considered DGPs do not include deterministic components, we do account for

individual fixed effects in the simulation by including constants in the regressions. Following the

advise of Breitung and Das (2008) for the trob and tgls test we consider data in deviation from the

initial observation to remove the effect of an individual specific constant18.

The finite sample performance of the considered test statistics depend on these choices. For

reasons of comparison, we follow the original authors with the choices they report or we select a

procedure that performs better in terms of size in our simulations.

17Bai and Ng (2007) also obtain Monte Carlo results assuming the true number of common factors to be known.
Bai and Ng (2004b) and Moon and Perron (2004) provide Monte Carlo simulations for their respective tests where the
number of common factors is estimated.

18As already noted by Breitung and Das (2008), applying the tests to demeaned data leads to dependence on nuisance
parameter unless applied to the GLS transformed data, and severe finite sample size distortions.
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2.3.2 Monte Carlo results

A general finding is that the presence of serial correlation19 leads to size distortions for almost all

statistics when T is small, which can be quite strong in some cases and even persist for T = 100.

For a single common factor, the signal-to-noise ratio seems to have little to no effect on the tests

proposed by Pesaran (2007) and Bai and Ng (2004b). For two common factors in the DGP, Bai

and Ng’s MQcc and MQcf statistics usually select maximum possible number of common stochastic

trends, leading to low size and low power for these tests when the auto-regressive root is close to

unity. The FGLS statistics of Breitung and Das (2008) and Sul (2007) behave quite similarly in

terms of size and power. Sul’s tcrma statistic applied to the cross-sectional averages of the data has

similar size properties as Bai and Ng’s ADF c
F̂

. Power properties of the two tests are similar too for

most cases.

The results in Table 2.1 are obtained for the case where a unit root is present in the common

factors and in all idiosyncratic errors. Both statistics proposed by Pesaran (2007), the CADF 20 and

the CIPS test show size distortions when T is small (20), which are stronger for the CIPS test. For

a single common factor those size distortions are reduced as T increases and for T = 100 the tests

are only slightly over-sized. For K = 2, size distortions increasing in the signal-to-noise ratio remain

even for large T , in particular for the CIPS test. Both statistics proposed by Moon and Perron

(2004) show slight size distortions which seem to increase with the signal-to-noise ratio when K is

correctly specified. The size distortions are decreasing in T and higher for t∗a than for t∗b . The later is

actually undersized for small signal-to-noise ratios. If K is misspecified, both statistics show strong

size distortions increasing in the signal-to-noise ratio, but size distortions are lower when K is over-

estimated. Bai and Ng’s ADF c
Ê

and ADF c
F̂

statistics for the extracted individual idiosyncratic error

series and the single common factor respectively, are oversized for small T (= 20) but size distortions

decrease as T gets large. The pooled statistic P c
Ê

has strong size distortions when T is small and

size increases in N . For T = 100, size rages from 0.12 to 0.18 for the different values of N . Similar

to Moon and Perron’s tests, size distortions are less severe when the number of common factors is

over-specified if K̂ 6= K. Both rank statistics MQcc and MQcf usually pick the maximum number

of possible common stochastic trends, leading to good properties when K is specified correctly but

failure to estimate the correct number of common factors if K̂ = 3 is used. Breitung and Das’s trob

is under-sized for small T with rejection frequencies increasing in T but decreasing with N , leading

19Results for the case of i.i.d. N(0, 1) error terms ei,t and ft in (2.24) are not included here. They are are available
at http://www.personeel.unimaas.nl/J.Urbain/.

20Entries for the CADF-statistics are average rejection frequencies of the individual unit root tests.
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to rejection frequencies between 0.00 and 0.11. The tgls test has a size of about 0.05 for N = 20 and

is under-sized for N = 50, similarly to Sul’s tρfglsrma tests. The tcrma test for the cross-sectional

averages is slightly oversized with size distortions decreasing in T . All four statistics behave similarly

whether a single or two common factors are present in the data.

Table 2.2 considers the case of a unit root in the common factors and near-unit roots in the

idiosyncratic factors, i.e. the case of cross-member cointegration. For K = 1, Pesaran’s CADF

statistic has an average rejection frequency of about 0.32 for T = 20 and between 0.17 and 0.21 for

larger T . The rejection frequencies of the CIPS test are high and go to 1 for large N and T . For

K = 2, rejection frequencies are reduced, in particular for CIPS where they also decrease as the

signal-to-noise ratio increases. Both statistics proposed by Moon and Perron (2004) have rejection

increasing to 1 in N and T , with rejection frequencies for t∗a slightly higher than those for t∗b when the

correct number of common factors is employed. When K is under-estimated, rejection frequencies

are strongly reduced. Bai and Ng’s ADF c
Ê

statistic has an average power increasing from about 0.23

to 0.48 as both N and T increase. The pooled P c
Ê

test has a power of 1 for almost all combinations of

N and T considered, when K is correctly specified or over-specified. When a single common factor

is extracted but two common factors are present in the data, rejection frequencies are reduced. The

ADF c
F̂

tests has some size distortions, but rejection frequencies decrease from about 0.40 for T = 20

to 0.07 to 0.10 for T = 100. The MQcc and MQcf statistics again pick the maximum number of

possible trends, leading to good properties only when K is correctly specified. Rejection frequencies

for Breitung and Das’s trob statistics decrease for higher signal-to-noise ratios, whereas they increase

with T . The tgls statistic has rejection frequencies between 0.44 and 0.64, increasing with T . Sul’s

tρfglrma statistic has similar rejection frequencies ranging between 0.38 and 0.66, which also increase

in T . The tcrma test is slightly oversized with size distortions lower for T = 100.

Table 2.3 covers the case of integrated idiosyncratic errors combined with a stationary common

factor. The statistics proposed by Pesaran (2007) behave similar to the case of I(1) idiosyncratic

and common component (Table 2.1), but size is slightly reduced for the CIPS test, which is now

under-sized for T = 100 and K = 1. Moon and Perron’s t∗a and t∗b also behave similar to Table 2.1

but have slightly higher rejection frequencies, increasing in the signal-to-noise ratio in particular for

K = 2. When K is misspecified, rejection frequencies for both statistics increase in N , T and the

signal-to-noise ratio. Bai and Ng’s ADF c
Ê

and P c
Ê

tests have sizes close to the one shown in Table 2.1.

The power of the ADF c
F̂

is smaller than 0.20 for T ≥ 50. The MQcc and MQcf statistics fail to detect

the correct number of common stochastic trends. Breitung and Das’s trob test has size increasing
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in T but decreasing in N . The tgls and Sul’s tfglsrma tests are slightly over-sized for N = 20 and

under-sized for N = 50, with size increasing in the signal-to-noise ratio. The tcrma test has rejection

frequencies ranging from 0.15 to 0.24, increasing in N and T but decreasing as the signal-to-noise

ratio increases. Also, rejection frequencies for the tests of Breitung and Das (2008) and Sul (2006)

are slightly larger when K = 2.

Tables 2.4 and 2.5 consider stationary data. For Table 2.4 the DGP is given by (2.24) with I(0)

idiosyncratic and common components. Pesaran’s CADF has low power while the power of the

CIPS test is relatively high and increasing in N , reaching 1 for N,T = 100 when K = 1. For K = 2,

power is reduced and furthermore decreasing in the signal-to-noise ratio. Moon and Perron’s tests

both have power increasing to 1 as N and T increase. The average power of Bai and Ng’s ADF c
Ê

is relatively low (0.52 for N,T = 100) while the pooled test P c
Ê

has a power of 1 for N > 20 or

T > 20. The power of the ADF c
F̂

is low and both rank tests MQcc and MQcf fail to select the correct

number of common stochastic trends. Breitung and Das’s trob test has power increasing in T but

decreasing the signal-to-noise ratio. The tgls test has a power between 0.55 and 0.84, increasing in

T but decreasing in N , similar to Sul’s tfglsrma test which has power between 0.51 and 0.87. Power

for these 3 tests is increased for K = 2. Rejection frequencies for the tcrma are 0.10 and 0.27 when

K = 1 and 0.07 and 0.30 for K = 2, increasing in T but decreasing in N and the signal-to-noise

ratio.

Table 2.5 considers stationary data generated using (2.25). Rejection frequencies for most tests

are reduced and now decrease as the signal-to-noise ration increases, in particular for Moon and

Perron’s t∗a and t∗b and Breitung and Das’s tgls and Sul’s tfglsrma tests. Bai and Ng’s ADF c
F̂

has a

higher power now, but it is still relatively low. Sul’s tcrma test also has an increased power now,

increasing in N , T and the signal-to-noise ratio.

From the Monte Carlo simulations, several general conclusions can be drawn. The presence of

serial correlation in the error term leads to size distortions which can be quite large in small samples.

The Moon and Perron (2004) tests, the tests of Pesaran (2007), the P c
Ê

and ADF c
Ê

statistics of

Bai and Ng (2004b) and the FGLS statistics proposed by Breitung and Das (2008) and Sul (2007)

indeed test for a unit root in the idiosyncratic component, and reject a unit root if it is present in the

common factor alone. The pooled CIPS test of Pesaran (2007) and P c
Ê

test of Bai and Ng (2004b) are

more powerful than the individual test statistics they are based on, CADF and ADF c
Ê

respectively.

However, the pooled tests show higher size distortions for small T . The CIPS test has good size

and power for large N and T if a single common factor is present. However, an additional common
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factor leads to size distortions and reduced power. The P c
Ê

statistic has high power, but some size

distortions remain even for N,T = 100. The t∗a statistic has slightly larger size distortions that the

t∗b test, with power being high for both statistics. The later three statistics are not distorted by the

presence of a second common factor if K is correctly specified in the estimation. If K is misspecified,

the statistics exhibit size distortions, but over-estimating K seems to be less harmful in terms of

power. The two FGLS statistics are slightly undersized for N = 50 but have a high power. Also,

their performance remains good in terms of size and power if two factors are included in the data.

Bai and Ng’s ADF c
F̂

statistic and Sul’s tcrma statistic have been proposed test whether there is

a unit root in a single common factor. The ADF c
F̂

has low power and some size distortions even for

large N , T . Sul’s tcrma test shows similar size and power in most cases, but has a higher power when

the DGP given in (2.25) is used. Bai and Ng’s MQcc and MQcf are designed to test for the number

of common stochastic trends if more than one common factor is present, but have very low power

against alternatives close to a unit root.

We have not studied the issue of which test to choose if the common factor model representation

is not appropriate to describe cross-sectional dependence. Bootstrap unit root tests might be used

in such an instance, but this question is left for future research. Furthermore, we do not consider

DGPs with idiosyncratic linear deterministic trends. Moon and Perron (2004) show that their tests

have no local power in that case, but all other authors consider propose their tests for such DGPs as

well. Bai and Ng (2007) provide simulation results for some tests for DGPs including idiosyncratic

linear deterministic trends.

2.4 An illustrative application: Testing for PPP using the new

approaches

This section presents an application of the new panel unit root tests described in Section 2.2 to

illustrate their use in an empirical study of the validity of purchasing power parity (PPP). For

this purpose we consider the potential existence of a unit root in real exchange rate series that are

constructed as

Yi,t = si,t − p∗t + pi,t, (2.26)

where si,t is the ln of country i’s nominal exchange rate versus some numeraire currency, p∗t is the

ln of the aggregate price level in the numeraire country, and pi,t is the ln of country i’s domestic

aggregate price level.



34 CHAPTER 2. PANEL UNIT ROOT TESTS

The numerous analyzes of PPP in the literature do not come to a common conclusion with respect

to PPP. Some studies report stronger rejection of the unit root null, if the German Mark instead of the

US Dollar is used as a numeraire currency. Also, studies using univariate unit root or cointegration

tests reject PPP, while tests using panel methods as the LLC or IPS test tend to find evidence in

favor of it, see for example Oh (1996). However, as was already discussed in the introduction, several

studies have analyzed the properties of early panel unit root tests in the presence of cross-sectional

dependence since then, and argued against their use for PPP tests. Lyhagen (2000) analytically

derives the cross-correlation structure in a panel of real exchange rates, constructed with a common

numeraire country. He also derives the effect of the common stochastic trend in the data introduced

by the numeraire on the limiting distributions of various panel statistics. In Monte Carlo simulations,

he finds size distortions similar to those reported by Banerjee et al. (2004, 2005)).

In the analysis presented in this section, monthly data from 14 European countries is considered.

The data set includes information on the nominal exchange rates of local currency versus US Dollar

($US) for Austria, Denmark, Finland, France, Germany, Greece, Italy, the Netherlands, Norway,

Portugal, Spain, Sweden, Switzerland and the UK. Furthermore, the Consumer Price Index (CPI)

as a proxy for aggregate price levels is included for those 14 countries and the US. The sample

includes monthly observations on all variables for the period from February 1986 to September 2002,

so 200 observations. For such a sample, one can expect to find high correlation between panel units,

due to a high degree of economic integration and political co-operation. As far as monetary policy

is concerned, the most important mechanism of co-operation is the European Monetary System

(EMS), to which some panel members belong, and which finally led to the introduction of the Euro

as a common currency in some countries.

As a starting point of the analysis, the real exchange rate series are individually tested for a unit

root using an ADF test. The lag length p is set to 12 for all countries. The individual ADF statistics

are shown in Table 2.6. Only for the UK, the unit root null can be rejected for both real exchange

rate series. Using the real exchange rate versus DM, also for Switzerland the ADF test rejects at

a 5% significance level. These findings are representative for those of studies using univariate tests.

The problem here is that it remains unclear whether the non-rejection of the unit root is due to a

failure of PPP, or the low power of the ADF test against near unit root alternative.

Next, the panel unit root tests described in Section 2.2 are performed. For each test, it is

assumed that a single common factor is present in the data. Given that the real exchange rate series

are constructed using a common base currency, this assumption seems reasonable. For the tests of
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Pesaran (2007) and Moon and Perron (2004), the data representation in (2.1)-(2.2) is assumed to

be valid. The results of the CADFi tests suggested by Pesaran (2007) are given in Table 2.6, and

Table 2.7 presents Pesaran’s CIPS statistic and those proposed by Moon and Perron (2004). Except

for the French real exchange rate when measured against the German Mark, the CADFi statistics

fail to reject the unit root null. Also, the pooled CIPS test does not reject the null in both panels.

This provides some evidence against PPP. The t∗a and t∗b statistics of Moon and Perron (2004) do not

provide such a clear picture. While the former one rejects PPP in both panels, the latter one does

not reject it when the US Dollar is used as a numeraire currency.

The results for the panel unit root tests proposed by Breitung and Das (2008) and by Sul (2007)

are given in Table 2.7. While the unit root null hypothesis is not rejected by any test for real

exchange rates constructed with the US as base country, the tgls test of Breitung and Das (2008)

and the tfglsrma test of Sul (2007) reject the unit root when real exchange rates are constructed with

Germany as base country.

For the application of the Bai and Ng (2004b) procedure, it is assumed that the data can be

represented as in (2.12). With this representation, there is an interpretive problem. Clearly, if both

Ft and Ei,t are stationary, the real exchange rate is stationary and PPP holds in the long run at

least. Also, if both common and idiosyncratic components are I(1), PPP can be rejected. But, if

just the common factors are non-stationary the real exchange rate series are pairwise cointegrated

along the cross-section but individually non-stationary, so that PPP in the usual sense does not hold

between panel members and the base country. However, in the special case λi = λj , the cointegrating

vector for Y B
i,t and Y B

j,t is [1,−1], where the superscript B denotes the base country. Then PPP holds

between countries i and j, since

Y B
i,t − Y B

j,t = sBi,t − sBj,t + pi,t − pj,t = sji,t + pi,t − pj,t = Y j
i,t ∼ I(0). (2.27)

The results for the test statistics suggested by Bai and Ng (2004b) are presented in Table 2.7.

Most of the individual tests for the idiosyncratic errors, as well as the test for the common factor

reject the unit root. Also, the pooled error test rejects the unit root for both panels of real exchange

rates. This provides some evidence in favor of PPP.
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2.5 Conclusion

In this chapter several panel unit root tests that account for cross section dependence assuming or

using a common factor structure have been compared, notably Pesaran (2007), Moon and Perron

(2004), Bai and Ng (2004b), Breitung and Das (2008) and Sul (2007). There are often valid theoretical

and empirical reasons why a common factor structure can be expected to yield sensible results.

Therefore, panels with dynamic factors are of interest in economic modelling.

We have studied these approaches to unit root testing in panels with dynamic factors, compared

them in terms of DGP, tests, null and alternative hypotheses. We have studied the small sam-

ple behavior of the tests proposed in a common framework and discussed their use in econometric

modelling. In addition, we have applied them in an empirical study of purchasing power parity.

The main conclusions are:

• In the case where the observed non-stationarity is only due to a non-stationary common factor,

the individual series are pairwise cointegrated along the cross sectional dimension. Only the

Bai and Ng (2004b) and Sul (2007) tests allow for this type of structure to be detected, if the

unit root is rejected for the idiosyncratic component but not for the common factor.

• The ADF c
F̂

for testing for the presence of unit roots in a single common factor is found to have

low power. Similarly, in a multi-factor setting, the MQcc and MQcf tests fail to distinguish

high but stationary serial correlation from non-stationarity in the common factors. For the one

factor model, Bai and Ng’s ADF c
F̂

test has similar size and power than Sul’s tcrma test in most

cases, except when a DGP as given in (2.25) is employed in which case the later test is more

powerful.

• Testing the idiosyncratic component for a unit root: Pesaran’s CADF and CIPS tests are

indeed designed for testing for unit roots when cross-sectional dependence is due to a single

common factor, and size and power are adversely affected by a second common factor. The

pooled CIPS test has better power properties than the individual specific CADF tests. Sim-

ilarly, Bai and Ng’s pooled P c
Ê

tests is more powerful than the individual specific ADF c
Ê

in

detecting unit roots in the idiosyncratic components, although the former can have strong size

distortion when the time dimension of the panel is small. However, the P c
Ê

and ADF c
Ê

statistic

can accommodate to more than one common factor. The Moon and Perron (2004) tests can

also account for multiple common factors. The two tests proposed by Moon and Perron (2004)

are found to have similar small sample power, but the t∗a statistic is found to have slightly larger
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size distortions than the t∗b . When the FGLS tests considered by Breitung and Das (2008) and

Sul (2007) can be computed, i.e. when N < T , they provide good alternatives to test for unit

roots in the idiosyncratic component.

• When the number of common factors is unknown and has to be selected, it is less harmful in

terms of power to include too many factors than too few in the test procedures of Bai and Ng

(2004b) and Moon and Perron (2004). The statistics exhibits size distortions if the number of

common factors is misspecified.
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2.A Tables
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Table 2.1: Finite sample (average) rejection rates for DGP (2.24) with I(1) common factor(s) and
I(1) idiosyncratic components.

K N T t∗a t∗b P c
Ê

ADF c
Ê

ADF c
F̂

CADF CIPS trob tgls tfglsrma tcrma

1 20 20 0.09 0.04 0.64 0.16 0.37 0.28 0.52 0.03 - - -
1 20 50 0.08 0.05 0.15 0.07 0.15 0.12 0.16 0.09 0.09 0.07 0.12
1 20 100 0.09 0.05 0.12 0.06 0.08 0.07 0.07 0.10 0.06 0.05 0.07
1 50 20 0.11 0.06 0.86 0.16 0.37 0.28 0.59 0.00 - - -
1 50 50 0.06 0.04 0.20 0.07 0.14 0.12 0.16 0.04 - - -
1 50 100 0.06 0.04 0.14 0.06 0.07 0.07 0.07 0.08 0.01 0.01 0.08
1 100 20 0.09 0.05 0.96 0.16 0.35 0.28 0.64 0.00 - - -
1 100 50 0.05 0.04 0.28 0.07 0.13 0.12 0.16 0.00 - - -
1 100 100 0.05 0.04 0.18 0.06 0.09 0.07 0.05 0.02 - - -

K N T t∗a t∗b P c
Ê

MQcc MQcf CADF CIPS trob tgls tfglsrma tcrma

2 20 20 0.11 0.05 0.63 1.00 0.97 0.32 0.53 0.04 - - -
2 20 50 0.08 0.05 0.16 1.00 1.00 0.15 0.30 0.09 0.09 0.06 0.12
2 20 100 0.10 0.05 0.12 1.00 1.00 0.09 0.24 0.09 0.06 0.07 0.10
2 50 20 0.14 0.10 0.82 1.00 0.98 0.31 0.59 0.01 - - -
2 50 50 0.05 0.03 0.20 1.00 1.00 0.15 0.34 0.03 - - -
2 50 100 0.06 0.04 0.14 1.00 1.00 0.08 0.25 0.09 0.01 0.01 0.08
2 100 20 0.12 0.09 0.96 1.00 0.99 0.31 0.60 0.00 - - -
2 100 50 0.06 0.04 0.31 1.00 1.00 0.14 0.33 0.01 - - -
2 100 100 0.04 0.03 0.15 1.00 1.00 0.08 0.28 0.01 - - -

K̂ = 1 K̂ = 3
K N T t∗a t∗b P c

Ê
ADF c

Ê
ADF c

F̂
t∗a t∗b P c

Ê
MQcc MQcf

2 20 20 0.31 0.22 0.58 0.16 0.40 0.25 0.22 0.61 0.00 0.01
2 20 50 0.32 0.23 0.25 0.07 0.12 0.18 0.14 0.16 0.00 0.00
2 20 100 0.32 0.23 0.21 0.06 0.08 0.15 0.11 0.13 0.00 0.00
2 50 20 0.38 0.32 0.75 0.16 0.39 0.37 0.36 0.82 0.00 0.01
2 50 50 0.38 0.33 0.32 0.07 0.13 0.25 0.26 0.19 0.00 0.00
2 50 100 0.41 0.37 0.26 0.06 0.09 0.22 0.21 0.12 0.00 0.00
2 100 20 0.45 0.42 0.78 0.16 0.38 0.37 0.36 0.92 0.00 0.01
2 100 50 0.48 0.46 0.42 0.07 0.14 0.30 0.29 0.30 0.00 0.00
2 100 100 0.50 0.49 0.38 0.06 0.10 0.22 0.21 0.18 0.00 0.00

Finite sample (average) rejection rates for Pesaran’s (2007) CADF and CIPS statistics, Moon and Perron’s (2004)
t∗a and t∗b statistics, Bai and Ng’s (2004b) ADF c

Ê
, P c

Ê
, and ADF c

F̂
statistics, Breitung and Das’s (2008) trob and tgls

statistics, and Sul’s (2007) tfglsrma and tcrma statistics. Proportions of repetitions when Bai and Ng’s (2004b) MQcc
and MQcf statistics chose the correct number of common stochastic trends. Finite sample (average) rejection rates
for Moon and Perron’s (2004) t∗a and t∗b statistics, and Bai and Ng’s (2004b) ADF c

Ê
, P c

Ê
, and ADF c

F̂
statistics, the

proportions of repetitions when Bai and Ng’s (2004b) MQcc and MQcf statistics chose the correct number of common
stochastic trends, when the number of common factors is misspecified. K denotes the number of common factors in the
DGP. K̂ specifies the number of common factors used when testing if K̂ is different from K. Rejection frequencies are
based on 5% cutoff values from Pesaran (2007, Tables 1b and 3b), Sul (2007, Table 5), Bai and Ng (2004b, Table 1)
Table 1, 5% cutoff values of the standard normal distribution, or 5% Dickey-Fuller critical values for the test statistics
as specified in the text. Results are obtained with GAUSS 8.0 using 1000 replications.
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Table 2.2: Finite sample (average) rejection rates for DGP (2.24) with I(1) common factor(s) and
I(0) idiosyncratic components.

K N T t∗a t∗b P c
Ê

ADF c
Ê

ADF c
F̂

CADF CIPS trob tgls tfglsrma tcrma

1 20 20 0.57 0.40 0.94 0.23 0.40 0.32 0.68 0.06 - - -
1 20 50 0.85 0.76 1.00 0.25 0.14 0.17 0.55 0.19 0.45 0.39 0.10
1 20 100 0.92 0.85 1.00 0.44 0.07 0.18 0.85 0.16 0.62 0.65 0.09
1 50 20 0.75 0.67 1.00 0.23 0.38 0.31 0.79 0.02 - - -
1 50 50 0.98 0.96 1.00 0.26 0.13 0.18 0.71 0.11 - - -
1 50 100 1.00 0.99 1.00 0.46 0.09 0.19 0.98 0.17 0.56 0.59 0.07
1 100 20 0.99 0.85 1.00 0.24 0.38 0.32 0.86 0.02 - - -
1 100 50 1.00 1.00 1.00 0.27 0.14 0.19 0.81 0.07 - - -
1 100 100 1.00 1.00 1.00 0.48 0.09 0.21 1.00 0.11 - - -

K N T t∗a t∗b P c
Ê

MQcc MQcf CADF CIPS trob tgls tfglsrma tcrma

2 20 20 0.48 0.37 0.91 1.00 0.98 0.33 0.59 0.05 - - -
2 20 50 0.84 0.75 0.99 1.00 1.00 0.16 0.44 0.13 0.42 0.35 0.11
2 20 100 0.93 0.88 1.00 1.00 1.00 0.13 0.48 0.12 0.64 0.62 0.09
2 50 20 0.72 0.62 1.00 1.00 0.98 0.33 0.63 0.04 - - -
2 50 50 0.98 0.96 1.00 1.00 1.00 0.17 0.51 0.06 - - -
2 50 100 1.00 0.99 1.00 1.00 1.00 0.12 0.55 0.11 0.47 0.56 0.06
2 100 20 0.85 0.81 1.00 1.00 0.98 0.34 0.68 0.03 - - -
2 100 50 1.00 1.00 1.00 1.00 1.00 0.16 0.51 0.04 - - -
2 100 100 1.00 1.00 1.00 1.00 1.00 0.12 0.54 0.07 - - -

K̂ = 1 K̂ = 3
K N T t∗a t∗b P c

Ê
ADF c

Ê
ADF c

F̂
t∗a t∗b P c

Ê
MQcc MQcf

2 20 20 0.46 0.40 0.69 0.19 0.38 0.41 0.31 0.84 0.00 0.01
2 20 50 0.56 0.49 0.56 0.14 0.15 0.78 0.69 0.96 0.00 0.00
2 20 100 0.60 0.54 0.61 0.18 0.08 0.90 0.86 1.00 0.00 0.00
2 50 20 0.58 0.56 0.79 0.19 0.39 0.54 0.49 0.99 0.00 0.03
2 50 50 0.57 0.56 0.64 0.14 0.14 0.95 0.92 1.00 0.00 0.00
2 50 100 0.65 0.62 0.70 0.19 0.09 0.99 0.99 1.00 0.00 0.00
2 100 20 0.64 0.62 0.83 0.20 0.37 0.68 0.64 1.00 0.00 0.03
2 100 50 0.67 0.66 0.66 0.13 0.12 1.00 0.99 1.00 0.00 0.00
2 100 100 0.70 0.69 0.73 0.18 0.08 1.00 1.00 1.00 0.00 0.00

See notes Table 2.1.
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Table 2.3: Finite sample (average) rejection rates for DGP (2.24) with I(0) common factor(s) and
I(1) idiosyncratic components.

K N T t∗a t∗b P c
Ê

ADF c
Ê

ADF c
F̂

CADF CIPS trob tgls tfglsrma tcrma

1 20 20 0.13 0.06 0.61 0.16 0.41 0.27 0.47 0.04 - - -
1 20 50 0.11 0.06 0.12 0.07 0.19 0.11 0.10 0.22 0.11 0.10 0.18
1 20 100 0.12 0.06 0.12 0.06 0.19 0.06 0.02 0.43 0.09 0.09 0.20
1 50 20 0.17 0.10 0.84 0.16 0.40 0.27 0.55 0.00 - - -
1 50 50 0.09 0.06 0.20 0.07 0.17 0.11 0.08 0.08 - - -
1 50 100 0.08 0.06 0.12 0.06 0.19 0.05 0.01 0.31 0.01 0.01 0.23
1 100 20 0.13 0.08 0.95 0.16 0.40 0.27 0.58 0.00 - - -
1 100 50 0.08 0.06 0.25 0.07 0.16 0.11 0.06 0.01 - - -
1 100 100 0.07 0.06 0.15 0.06 0.19 0.06 0.01 0.09 - - -

K N T t∗a t∗b P c
Ê

MQcc MQcf CADF CIPS trob tgls tfglsrma tcrma

2 20 20 0.16 0.08 0.59 0.00 0.00 0.32 0.54 0.06 - - -
2 20 50 0.13 0.08 0.14 0.00 0.00 0.14 0.24 0.30 0.10 0.11 0.21
2 20 100 0.15 0.09 0.10 0.00 0.00 0.08 0.15 0.57 0.11 0.14 0.29
2 50 20 0.23 0.16 0.78 0.00 0.00 0.31 0.59 0.02 - - -
2 50 50 0.12 0.08 0.14 0.00 0.00 0.14 0.26 0.13 - - -
2 50 100 0.14 0.10 0.11 0.00 0.00 0.07 0.12 0.53 0.01 0.04 0.24
2 100 20 0.25 0.19 0.94 0.00 0.00 0.31 0.59 0.00 - - -
2 100 50 0.15 0.11 0.21 0.00 0.00 0.14 0.31 0.06 - - -
2 100 100 0.12 0.09 0.12 0.00 0.00 0.08 0.18 0.28 - - -

K̂ = 1 K̂ = 3
K N T t∗a t∗b P c

Ê
ADF c

Ê
ADF c

F̂
t∗a t∗b P c

Ê
MQcc MQcf

2 20 20 0.45 0.33 0.63 0.17 0.42 0.42 0.38 0.57 0.00 0.00
2 20 50 0.62 0.48 0.39 0.10 0.17 0.52 0.45 0.14 0.00 0.00
2 20 100 0.77 0.64 0.48 0.10 0.15 0.59 0.52 0.10 0.00 0.00
2 50 20 0.56 0.50 0.82 0.17 0.41 0.62 0.60 0.79 0.00 0.00
2 50 50 0.74 0.66 0.50 0.09 0.16 0.76 0.75 0.15 0.00 0.00
2 50 100 0.89 0.83 0.63 0.09 0.18 0.89 0.89 0.11 0.00 0.00
2 100 20 0.64 0.60 0.87 0.17 0.41 0.67 0.67 0.90 0.00 0.00
2 100 50 0.85 0.84 0.68 0.10 0.19 0.81 0.81 0.24 0.00 0.00
2 100 100 0.97 0.95 0.82 0.10 0.20 0.94 0.94 0.14 0.00 0.00

See notes Table 2.1.
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Table 2.4: Finite sample (average) rejection rates for DGP (2.24) with I(0) common factor(s) and
I(0) idiosyncratic components.

K N T t∗a t∗b P c
Ê

ADF c
Ê

ADF c
F̂

CADF CIPS trob tgls tfglsrma tcrma

1 20 20 0.66 0.49 0.94 0.23 0.43 0.31 0.64 0.08 - - -
1 20 50 0.91 0.83 1.00 0.26 0.17 0.16 0.48 0.36 0.56 0.51 0.18
1 20 100 0.95 0.90 1.00 0.48 0.17 0.16 0.74 0.63 0.81 0.83 0.24
1 50 20 0.86 0.78 1.00 0.24 0.41 0.30 0.73 0.03 - - -
1 50 50 0.99 0.98 1.00 0.27 0.17 0.17 0.59 0.25 - - -
1 50 100 1.00 1.00 1.00 0.49 0.20 0.17 0.95 0.62 0.69 0.75 0.13
1 100 20 0.95 0.94 1.00 0.24 0.41 0.31 0.82 0.04 - - -
1 100 50 1.00 1.00 1.00 0.29 0.18 0.17 0.69 0.20 - - -
1 100 100 1.00 1.00 1.00 0.52 0.15 0.19 1.00 0.51 - - -

K N T t∗a t∗b P c
Ê

MQcc MQcf CADF CIPS trob tgls tfglsrma tcrma

2 20 20 0.62 0.48 0.90 0.00 0.00 0.33 0.59 0.10 - - -
2 20 50 0.91 0.86 1.00 0.00 0.00 0.17 0.47 0.43 0.67 0.60 0.22
2 20 100 0.97 0.93 1.00 0.00 0.00 0.14 0.62 0.77 0.89 0.88 0.29
2 50 20 0.87 0.80 1.00 0.00 0.00 0.34 0.67 0.06 - - -
2 50 50 1.00 0.99 1.00 0.00 0.00 0.18 0.53 0.32 - - -
2 50 100 1.00 1.00 1.00 0.00 0.00 0.14 0.68 0.77 0.70 0.88 0.07
2 100 20 0.96 0.94 1.00 0.00 0.00 0.35 0.69 0.07 - - -
2 100 50 1.00 1.00 1.00 0.00 0.00 0.17 0.54 0.27 - - -
2 100 100 1.00 1.00 1.00 0.00 0.00 0.15 0.67 0.66 - - -

K̂ = 1 K̂ = 3
K N T t∗a t∗b P c

Ê
ADF c

Ê
ADF c

F̂
t∗a t∗b P c

Ê
MQcc MQcf

2 20 20 0.63 0.57 0.78 0.21 0.42 0.58 0.50 0.83 0.00 0.00
2 20 50 0.89 0.85 0.87 0.23 0.17 0.93 0.87 0.99 0.00 0.00
2 20 100 0.99 0.98 1.00 0.40 0.19 0.98 0.96 1.00 0.00 0.00
2 50 20 0.75 0.73 0.88 0.22 0.43 0.77 0.72 0.99 0.00 0.00
2 50 50 0.96 0.95 0.94 0.22 0.17 1.00 1.00 1.00 0.00 0.00
2 50 100 1.00 1.00 1.00 0.40 0.18 1.00 1.00 1.00 0.00 0.00
2 100 20 0.82 0.82 0.90 0.21 0.41 0.87 0.84 1.00 0.00 0.00
2 100 50 0.97 0.97 0.95 0.21 0.16 1.00 1.00 1.00 0.00 0.00
2 100 100 1.00 1.00 1.00 0.39 0.17 1.00 1.00 1.00 0.00 0.00

See notes Table 2.1.



2.A. Tables 43

Table 2.5: Finite sample (average) rejection rates for DGP (2.25) with I(0) common factor(s) I(0)
idiosyncratic components.

K N T t∗a t∗b P c
Ê

ADF c
Ê

ADF c
F̂

CADF CIPS trob tgls tfglsrma tcrma

1 20 20 0.49 0.35 0.90 0.22 0.45 0.30 0.60 0.09 - - -
1 20 50 0.59 0.52 0.97 0.22 0.26 0.16 0.39 0.37 0.37 0.31 0.39
1 20 100 0.55 0.51 1.00 0.39 0.31 0.18 0.80 0.54 0.54 0.37 0.63
1 50 20 0.60 0.53 1.00 0.23 0.41 0.29 0.70 0.03 - - -
1 50 50 0.68 0.65 1.00 0.22 0.20 0.16 0.54 0.20 - - -
1 50 100 0.69 0.67 1.00 0.40 0.29 0.18 0.97 0.39 0.47 0.28 0.87
1 100 20 0.77 0.73 1.00 0.23 0.42 0.30 0.77 0.04 - - -
1 100 50 0.82 0.80 1.00 0.24 0.25 0.16 0.59 0.18 - - -
1 100 100 0.81 0.80 1.00 0.41 0.34 0.20 1.00 0.40 - - -

K N T t∗a t∗b P c
Ê

MQcc MQcf CADF CIPS trob tgls tfglsrma tcrma

2 20 20 0.41 0.29 0.83 0.00 0.00 0.33 0.57 0.11 - - -
2 20 50 0.45 0.38 0.87 0.00 0.00 0.17 0.44 0.37 0.28 0.21 0.27
2 20 100 0.48 0.41 1.00 0.00 0.00 0.18 0.73 0.55 0.37 0.25 0.40
2 50 20 0.61 0.53 0.98 0.00 0.00 0.33 0.68 0.07 - - -
2 50 50 0.62 0.56 1.00 0.00 0.00 0.18 0.56 0.29 - - -
2 50 100 0.61 0.57 1.00 0.00 0.00 0.19 0.84 0.57 0.25 0.18 0.95
2 100 20 0.69 0.65 1.00 0.00 0.00 0.33 0.69 0.07 - - -
2 100 50 0.70 0.67 1.00 0.00 0.00 0.17 0.57 0.24 - - -
2 100 100 0.67 0.65 1.00 0.00 0.00 0.18 0.81 0.45 - - -

K̂ = 1 K̂ = 3
K N T t∗a t∗b P c

Ê
ADF c

Ê
ADF c

F̂
t∗a t∗b P c

Ê
MQcc MQcf

2 20 20 0.51 0.43 0.83 0.22 0.44 0.53 0.46 0.75 0.00 0.00
2 20 50 0.57 0.50 0.94 0.25 0.27 0.66 0.60 0.84 0.00 0.00
2 20 100 0.62 0.55 1.00 0.45 0.40 0.67 0.62 0.99 0.00 0.00
2 50 20 0.69 0.65 0.93 0.47 0.46 0.70 0.67 0.96 0.00 0.00
2 50 50 0.82 0.78 0.99 0.27 0.27 0.88 0.87 1.00 0.00 0.00
2 50 100 0.85 0.82 1.00 0.37 0.36 0.87 0.86 1.00 0.00 0.00
2 100 20 0.75 0.74 0.96 0.22 0.43 0.80 0.78 0.99 0.00 0.00
2 100 50 0.82 0.81 0.99 0.24 0.22 0.94 0.93 1.00 0.00 0.00
2 100 100 0.86 0.84 1.00 0.47 0.31 0.94 0.93 1.00 0.00 0.00

See notes Table 2.1.
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Table 2.6: Unit root test statistics for individual series of real exchange rates.
ADFi CADFi ADF c

Ê

Country
Austria
Denmark
Finland
France
Germany
Greece
Italy
NL
Norway
Portugal
Spain
Sweden
Switzerland
UK
factor

Y $
i,t Y DMi,t

−1.4546 −1.9706
−1.7667 −1.8571
−1.4707 −1.7878
−1.3803 −1.9697
−1.3537 -
−1.3602 −2.0247
−1.1971 −1.9952
−1.8189 −1.1789
−1.6895 −1.8398
−1.9609 −1.9522
−1.0189 −1.9702
−1.3288 −1.9717
−2.0188 −3.0893∗∗

−3.2172∗∗ −2.8032∗

- -

Y $
i,t Y DMi,t

−1.4507 −1.7930
−2.6133 −2.3326
−0.8203 −1.5242
−2.1514 −3.5277∗∗

−1.6298 -
−1.2353 −2.4531
−1.5815 −2.2758
−1.8504 0.4805
−1.4439 −2.4683
−0.6468 −1.5935
−0.6811 −1.2196
−2.3255 −1.5175
−1.9543 −2.4054
−1.7646 −2.7754

- -

Y $
i,t Y DMi,t

−2.0148∗∗ −1.0179
−2.5865∗∗ −12.3785∗∗

−1.7758∗ −14.8259∗∗

−5.3264∗∗ −7.9788∗∗

−8.1950∗∗ -
−0.1947 −0.5564
−1.9926∗∗ −3.4528∗∗

−12.4864∗∗ −2.4592∗∗

−3.2075∗∗ −2.6420∗∗

−1.3352 −2.2390∗∗

−1.6539∗ −1.5992
−13.3224∗∗ −10.7084∗∗

−2.8777∗∗ −14.4867∗∗

−3.7003∗∗ −12.4749∗∗

−7.6314∗∗ −7.749∗∗

∗ indicates rejection at 10% significance level;

∗∗ indicates rejection at 5% significance level.

Table 2.7: Pooled unit root test statistics panels of real exchange rates.
Pesaran (2007) Moon and Perron (2004) Bai and Ng (2004b)

CIPS t∗a t∗b P c
Ê

q$
i,t −1.5821 −0.1214 −2.9890∗∗ 16.6123∗∗

qDMi,t −1.9543 −0.0358 −0.2076 18.4179∗∗

Breitung and Das (2008) Sul (2007)
trob tgls tfglsrma tcrma

q$
i,t −0.9687 0.1789 0.5708 −0.6639
qDMi,t −1.0903 −3.3914∗∗ −4.0404∗∗ 0.6835

∗ indicates rejection at 10% significance level;

∗∗ indicates rejection at 5% significance level.
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Cointegration Testing in Panels with Common Factors1

3.1 Introduction

The effect of persistent cross-sectional dependence on panel unit root tests has been analyzed in

some detail in Monte Carlo simulations (Banerjee, Marcellino, and Osbat, 2005) or by asymptotic

analysis (Lyhagen, 2000; Pedroni and Urbain, 2001). First generation panel unit root tests are found

to display dramatic size distortions or even worse to diverge with the cross-sectional dimension of

the panel. To overcome these problems, new panel unit root tests have been proposed that model

the possibly persistent cross-sectional dependency using common factor models (see Breitung and

Pesaran, 2008, for a recent overview).

For tests for the null of no-cointegration, not much work has been done yet. Banerjee et al. (2004)

conduct an extensive Monte Carlo study where they conclude that while all statistics investigated

(residual-based tests or likelihood-based trace-type test) are affected, the presence of cross-member

cointegration appears much less harmful for single-equation tests than for the panel version of the

Johansen test. In many cases, in the presence of cointegration between members these tests can-

not discriminate between cointegration among members and cointegration for a single member of

the panel. Bai and Kao (2006) and Banerjee and Carrion-i Silvestre (2005) study tests for panel

no-cointegration with cross-sectional dependence using residual-based tests for a single cointegration

relationship. The error term of the cointegrating equation follows a common factor structure as

in Bai and Ng (2004b). Urbain and Westerlund (2008) on the other hand studies analytically the

issue of spurious regression in panels when the units are cointegrated along the cross-sectional di-

mension, i.e. when there is cross-member cointegration. In contrast to the spurious regression result

for independent panels studied by Phillips and Moon (1999), Pedroni (1995) or Kao (1999), these

estimators are often not consistent and actually converge to non-degenerate limiting distributions

once the observed non-stationarity is generated by a reduced number of common stochastic trends.

1This Chapter is based on Gengenbach et al. (2006).
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This chapter builds on these results to study panel tests for no-cointegration when the cross-

sectional dependence in the panel is modelled by a common factor structure as in Bai and Ng (2004b).

Two different cases are considered that we believe are of theoretical and empirical relevance: (i) the

case where the observed non-stationarity in the variables originates from cross-sectional common

trends only; (ii) the case where we have both cross-sectional common and idiosyncratic stochastic

trends. The spurious regression analysis for the first case reported in Urbain and Westerlund (2008)

corresponds to the cross-member cointegration case. The second case is considered by Moon and

Perron (2004) and Pesaran (2007) in the context of panel unit root analysis and excludes the existence

of cross-unit cointegration in the panel since both components are I(1).

For both classes of DGP’s, we discuss the homogeneity restrictions on the cointegrating vectors

resulting from the presence of common factor cointegration. These implications of the common

factor cointegration are important reasons to propose a sequential approach whereby the data are

decomposed into common and idiosyncratic components and the (no-)cointegration is tested for these

components separately. Then, we study analytically the behavior of several tests for panel cointe-

gration including residual-based panel no-cointegration tests proposed by Kao (1999) and Pedroni

(1999, 2004a) that have been widely used in empirical work. For example, when the number of

common factors generating the non-stationarity in the panel is kept fixed while the cross-sectional

dimension of the panel increases, the Gaussian limiting results derived for the independent case are

not valid anymore. Tests that are based on pooled or LSDV estimation of the underlying panel

cointegration static regression in some cases diverge with
√
N and hence important size distortions

can occur for moderate values of N . Group mean statistics are also affected and not asymptotically

Gaussian anymore. These results complement and help to have a better understanding of some of

the Monte Carlo results reported by Banerjee et al. (2004). We then examine the possibilities to test

for no-cointegration, using residual-based panel tests applied to the defactored data.

The chapter is organized as follows: In Section 3.2 we present our model for panel no-cointegration

with a common factor structure. In Section 3.3 we examine the asymptotic behavior of some residual-

based panel no-cointegration tests when the data is generated by our DGP. Section 3.4 discusses

defactoring the data prior to testing for various forms of no-cointegration when the data contains

unobserved common factors. The finite sample behavior of the proposed approach is analyzed in

Section 3.5. Conclusions are drawn in Section 3.6.

A note on notation: throughout the text, M is used to denote a generic positive number, not

depending on T or N . For a matrixA,A > 0 denotes thatA is positive definite. Furthermore, ‖A‖ =
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trace(A′A)
1
2 . We write the integral

∫ 1
0 B(r)dr as

∫
B, and

∫ 1
0 B(r)B(r)′dr as

∫
BB′. Furthermore,

=⇒ denotes weak convergence, and
p−→ denotes convergence in probability. For any number x,

bxc denotes the largest integer smaller than x. For any variable Xi,t, X̃i,t = Xi,t − 1
T

∑T
s=1Xi,s.

Similarly, for any Brownian motion B, B̃ = B −
∫
B.Throughout the chapter we employ sequential

limit theory2, where we consider T →∞ followed by N →∞.

3.2 The Model

We consider balanced panels with N cross-sectional units and T time-series observations, indexed

by i = 1, . . . , N and t = 1, . . . , T respectively. For each unit in the panel we observe a (1 + m)-

dimensional vector of variables Zi,t = (Yi,t, X ′i,t)
′, where Yi,t is a scalar time series and Xi,t is a

m-vector time series3. We assume that the DGP for Zi,t has a common factor structure as e.g. in

Bai and Ng (2004b), and we assume the presence of k common factors in the data. Furthermore, we

assume the number of common factors to be fixed as T,N →∞ throughout the chapter. Our model

is given by

Zi,t = Di,t + ΛiFt + Ei,t, (3.1)

t = 1, . . . , T , i = 1, . . . , N . Di,t is an unobserved deterministic component such that either Di,t = 0

for all i and t if there are no deterministic components present, Di,t = d0i for all t if the data

contains individual specific fixed effects, or Di = d0i + d1it if the data contains individual specific

deterministic linear time trends, where the coefficients d0i and d1i depend on i only. For the remainder

of the chapter we assume Di,t = 0 unless mentioned otherwise. The common component in Zi,t is

given by Ft in (3.1). Ft is a k-vector of common I(1) factors given by

Ft = Ft−1 + ft, (3.2)

where ft = Φ(L)ηt, ηt is a sequence of (k × 1) iid(0, Ik) random vectors, Φ(L) =
∑∞

j=0 ΦjL
j . The

(1 + m) × k matrix of factor loadings Λi is assumed to be of full rank and block-diagonal, with

block-diagonality corresponding to the partition of Zi,t, and diagonal blocks denotes a λ′1i and λ′2i

for the upper left and lower right block respectively.

2Although sequential limits are sometimes restrictive, they correspond to joint limits under certain restrictions (see
e.g. Phillips and Moon, 1999). Furthermore, sequential asymptotic theory is well established in the literature.

3We assume that e.g. economic theory leads to a natural choice of Y in such a way that swapping some X for Y
would not make sense. Nevertheless, the choice of Y is an interesting topic in cointegration analysis, but beyond the
scope of this work.
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As for the vectors of observations Zi,t, we have partitions for the unobserved vector of common

factors Ft = (F Y
′

t , FX
′

t )′ where F Yt and FXt have kY and kX elements respectively, and the partition

of Ft corresponds to the structure of Λi, such that λ1i is kY ×1 and λ2i is kX×m. The block diagonal

structure for the factor loadings is necessary to ensure that Yi,t and Xi,t are not cointegrated when

the non-stationarity in the data is driven by the common factors alone. When the idiosyncratic

components are non-stationary as well, this assumption on Λi might be relaxed and a more general

structure can be considered.

For the idiosyncratic component in (3.1), Ei,t, we distinguish two cases, namely stationary and

non-stationary idiosyncratic components. For the former case we have

Ei,t = ei,t, (3.3)

while in the latter case we assume

Ei,t = Ei,t−1 + ei,t, (3.4)

where the stationary vector ei,t = Γi(L)εi,t with εi,t being a sequence of random iid(0,Σi) random

vectors, Γi(L) =
∑∞

j=0 ΓijLj . Again, we partition Ei,t conformable with the data Zi,t, such that

Ei,t = (EYi,t, E
X′
i,t )′, where EYi,t is a scalar time series and EXi,t has m elements.

For the above given model we specify the following assumptions, where M denotes a generic

positive real number:

Assumption 3.1 Common factors: (i) ηt ∼ iid(0, Ik) with finite 4th moments, (ii) there is an M

such that
∑∞

j=0 j · ‖Φj‖ < M , (iii) rk(Φ(1)) = k, (iv) E‖F0‖ ≤M .

Assumption 3.2 Factor loadings: (i) for non-random λ1i and λ2i, ‖λ1i‖ ≤M and ‖λ2i‖ ≤M ; for

random λ1i and λ2i, E‖λ1i‖4 ≤M and E‖λ2i‖4 ≤M , (ii) N−1
∑N

i=1 Λ′iΛi
p−→ ΣΛ > 0, (iii) for non-

random λ1i and λ2i, N−1
∑N

i=1 λ1i 6= 0 and N−1
∑N

i=1 λ2i 6= 0; for random λ1i and λ2i, E(λ1i) 6= 0

and E(λ2i) 6= 0.

Assumption 3.3 Idiosyncratic components: for each i = 1, . . . , N , (i) εi,t ∼ iid(0,Σi) with finite 8th

moments, and εi,t and εj,s are independent for any t, s and i 6= j, (ii) E‖εi,0‖ < M , (iii) Γi(L) fulfills

the random coefficients and summability conditions from Phillips and Moon (1999), Assumptions 1

and 2 on p.1060 and p.1061 respectively, (iv) rk(Γi(1)) = m+ 1, ∀i.

Assumption 3.4 The errors, ηt, εi,t, and the factor loadings Λi form mutually independent groups.
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Under the conditions of Assumption 3.1, the common factors Ft form a k-dimensional I(1) process and

the possibility of cointegration between the common factors is excluded. The full rank assumption

on the long-run covariance matrix of Ft could in fact be relaxed, as long as the diagonal blocks

corresponding to the long-run covariances of F Yt and FXt have at least rank 1 each. The long-

run covariance matrix of the common factors is given by Ω = Φ(1)Φ(1)′ = Ξ + Θ + Θ′, where

Ξ = limT→∞
1
T

∑T
t=1 E(ftf ′t) and Θ = limT→∞

1
T

∑T
t=1 E(ftF ′t−1) (see e.g. Phillips and Durlauf, 1986).

Furthermore, an invariance principle holds such that

T−1/2FbrT c =⇒ BF (r) as T →∞, (3.5)

where BF is a k-vector Brownian motion with covariance matrix Ω. Assumptions 3.2(i) and 3.2(ii)

are standard assumptions for factor models and ensure that the factor loadings are identifiable.

Assumption 3.2(iii) is needed for the spurious regression results when the non-stationarity in the

data is only driven by the common factors. Assumption 3.3(iii) specifies that a panel functional

central limit theorem holds for Si,t =
∑t

s=1 ei,t, which corresponds to Ei,t in case the idiosyncratic

components are non-stationary as in (3.4), or to its cumulative sum if (3.3) is true. The long-run

covariance of Si,t is given by Ψi = Γi(1)ΣiΓi(1)′ = Υi+∆i+∆′i, where Υi = limT→∞
1
T

∑T
t=1 E(ei,te′i,t)

and ∆i = limT→∞
1
T

∑T
t=1 E(ei,tS′i,t−1), and an invariance principle ensures that

T−1/2Si,brT c =⇒ Bi(r) as T →∞, (3.6)

where Bi is a randomly scaled (1 +m)-vector Brownian motion with covariance matrix Ψi. Assump-

tion 3.3(iv) ensures that the idiosyncratic terms do not cointegrate in case these are I(1) vectors.

The implications of these assumptions are best understood by considering the Beveridge-Nelson

(BN) decomposition for Ft and for Ei,t =
∑t

s=1 ei,s:

Ft = Φ(1)
t∑

s=1

ηs + Φ∗(L)(ηt − η0) + F0, (3.7)

Ei,t = Γi(1)
t∑

s=1

εi,s + Γ∗i (L)(εi,t − εi,0) + Ei,0, (3.8)

where Φ∗(L) =
∑∞

j=0 Φ∗jL
j with Φ∗j = −

∑∞
l=j+1 Φl, Γ∗i (L) =

∑∞
j=0 Γ∗i,jL

j with Γ∗i,j = −
∑∞

l=j+1 Γi,l,

Φ∗(L)(ηt− η0) and Γ∗i (L)(εi,t− εi,0) are stationary with finite fourth order moments and F0 and Ei,0

are Op(1) by assumption.
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If (3.3) is true the idiosyncratic data components are I(0), and the I(1) trends of the common

factors contained in ΛiΦ(1)
∑t

s=1 ηs drive the non-stationarity in the data. Then, we might observe

cross-member cointegration between some Yi,t and Yj,t, and between some Xi,t and Xj,t for some i, j,

i 6= j, the exact cointegration structure depending on the individual loadings. The assumption on

the block-diagonal structure of the factor loadings Λi in turn implies that we have separation in a

cointegrating system, see Hecq, Palm, and Urbain (2002). Note that the assumption of cointegration

between Yi,t and Xi,t would only be possible if the common factors F Yt and FXt would cointegrate,

which is ruled out by Assumption 3.1 from which the full rank of the long-run covariance matrix of

Ft follows.

When Ei,t is given by (3.4), both common and idiosyncratic data components are non-stationary.

Furthermore, the idiosyncratic components do not cointegrate along the cross-section. Hence, we do

not have cointegration “within” units, e.g. between Yi,t or Xi,t. The BN decomposition of the Zi,t

is easily obtained from (1) and (3.7-3.8) and shows that the non-stationarity of Zi,t stems from the

term ΛiΦ(1)
∑t

s=1 ηs + Γi(1)
∑t

s=1 εi,s.

Remark 1. To investigate tests for no-cointegration we need to maintain the assumption that there

does not exist a full column rank matrix β′i such that β′iZit ∼ I(0). Different cases can be considered.

Two cases are important, namely one with cross-member cointegration where we have I(1) common

factors and I(0) idiosyncratic terms and one where the panel units contain common stochastic trends,

but do not cointegrate even along the cross-sectional dimension so that both the common and the

idiosyncratic components are I(1).

Remark 2: Heterogeneity and cross-sectional dependence. With I(1) common factors as

well as I(1) idiosyncratic components, we actually have two different sets of possible cointegrating

vectors that would annihilate the idiosyncratic and the common I(1) stochastic trends respectively,

see also the discussion in Gregoir (2005) and Breitung and Pesaran (2008). Combining (1) and

(3.7)-(3.8), the resulting BN representation of Zi,t shows that it will not be easy to annihilate both.

In particular, cointegrating vector(s), say δ, that annihilate the common I(1) components should lie

in the left null space of Λi, that is δΛiΦ(1) = 0 as Φ(1) is of full rank by Assumption 3.1, while

those for the idiosyncratic components, say γ′i would have to lie in the left null space of Γi(1), i.e.

γ′iΓi(1) = 0. If the intersection of these left null spaces is empty, there does not exist a cointegrating

relationship that annihilates both the unit roots from the common stochastic trends and those of the

idiosyncratic terms. In this case none of the Zi,t vectors are cointegrated. The components taken in

isolation could be cointegrated though.
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In fact, there is an important trade-off between the degree of heterogeneity that can be allowed

for and the existence of cross-sectional dependence modeled by common factors.

Without loss of generality, consider the following simple bivariate DGP where we have a single

I(1) common factor in Y and a single I(1) common factor in X:

Yi,t = λ1,iF
Y
t + EYi,t, (3.9)

Xi,t = λ2,iF
X
t + EXi,t, (3.10)

from which we see that any linear combination can be written as

Yi,t − βiXi,t = λ1,i(F Yt −
βiλ2,i

λ1,i
FXt ) + EYi,t − βiEXi,t. (3.11)

For the linear combination (1,−βi) to be a cointegrating vector such that Yi,t−βiXi,t ∼ I(0), two

conditions need to hold, namely (i) (F Yt −
βiλ2,i

λ1,i
FXt ) ∼ I(0) (ii) (EYi,t−βiEXi,t) ∼ I(0). Given that here

we have only two I(1) common factors, there can be at most a single linear cointegrating combination

between these factors and hence βiλ2,i

λ1,i
should be the same ∀i. Three different cases are compatible

with a constant (over i) ratio:

1. With homogeneity of the factor loadings and of the vector βi the ratio βiλ2,i

λ1,i
= βλ2

λ1
does not

depend on i. A similar restriction is considered by Gregoir (2005). Another possibility is

homogeneity of βi and constancy of the ratios of the factor loadings λ2,i

λ1,i
for all i which is also

excluded by Assumptions 3.1-3.4.

2. The second case allows for some degree of heterogeneity: the factor loadings vary with βi such

that the ratio βiλ2,i

λ1,i
is constant across i. This is excluded by Assumptions 3.1-3.4 where the

loadings and Ψi are assumed to vary independently from each other.

3. A third case arises when for all i the variables Yi,t and Xi,t have a single common source of

nonstationarity Ft only. The idiosyncratic component is assumed to be stationary (or could

be cointegrated with cointegrating vector βi). In this case, Yi,t and Xi,t are cointegrated with

βi = λ1,i

λ2,i
. It is ruled out by the assumption of block-diagonality of Λi, but it would be a natural

alternative hypothesis to the null of no-cointegration. Homogeneity of the cointegrating vector

then arises if λ1,i

λ2,i
is constant across entities i.

To conclude, if we allow for almost unrestricted (under Assumptions 3.1-3.4) heterogeneity, the

existence of cointegrating relations that annihilate both the common and idiosyncratic I(1) stochastic
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trends is very unlikely. The consequences of this for testing of the null of no-cointegration in this

factor set-up will be mentioned in Section 3.4.

Remark 3. A similar framework is also, independently of the present work, proposed by Dees,

di Mauro, Pesaran, and Smith (2007) for the study of macroeconomic linkages within the Euro area.

The purpose of their work is however different as no attempt to discuss tests for cointegration is

made. This work is thus complementary to theirs.

3.3 The behavior of panel residual based tests

The purpose of this section is to study, given the set-up introduced in the preceding section, the

asymptotic behavior of some standard and popular panel tests for no-cointegration. The statistics

we consider are designed to test for the presence of a single cointegration relationship between Yi,t

and Xi,t.4 Kao (1999) considers a homogenous cointegrating vector, whereas Pedroni (1999) allows

for heterogeneity. However, both rely on the cross-sectional independence of the panel unit to derive

asymptotic normality for their test statistics.

3.3.1 Kao (1999)

Kao (1999) proposes to estimate the homogeneous cointegrating relationship by pooled regression

allowing for individual fixed effects. The regression equation is given by

Yi,t = αi + βXi,t + ui,t, (3.12)

where β and Xi,t are row and column vectors respectively, and ui,t is a regression error. The least

squared dummy variable (LSDV) estimator for β is

β̃ =
( N∑
i=1

T∑
t=1

Ỹi,tX̃
′
i,t

)( N∑
i=1

T∑
t=1

X̃i,tX̃
′
i,t

)−1
,

where Ỹi,t = Yi,t − 1
T

∑T
s=1 Yi,s and X̃i,t = Xi,t − 1

T

∑T
s=1Xi,s. The residuals from this first stage

regression ũi,t = Ỹi,t−β̃X̃i,t will still contain a unit root under the null hypothesis of no cointegration.

4This is a restrictive assumption that we however will make in the sequel by assuming the existence of a single
cointegrating vector. Approaches that allow for more than one cointegrating vector, are reviewed in Breitung and
Pesaran (2008).
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We now estimate a pooled DF regression

∆ũi,t = (ρ− 1)ũi,t−1 + vi,t, (3.13)

where the pooled ordinary least squares (POLS) estimator of (ρ− 1) is given by

(ρ̃− 1) =
( N∑
i=1

T∑
t=2

∆ũi,tũi,t−1

)( N∑
i=1

T∑
t=2

ũ2
i,t−1

)−1
.

Kao’s tests are based on ρ̃ and the corresponding t-statistic

tρ̃ =
(
ρ̃− 1

)(
ŝ2
ũ(

N∑
i=1

T∑
t=2

ũ2
i,t−1)−1

)− 1
2 ,

where ŝ2
ũ = N−1T−1

∑N
i=1

∑T
t=2(∆ũi,t−1− (ρ̃− 1)ũi,t−1)2, corrected for endogeneity and serial corre-

lation. When the panel units are cross-sectionally independent, the test statistics are asymptotically

normally distributed as T →∞ followed by N →∞. However, for the model given by (3.1), (3.2) and

(3.3) or (3.4), this assumption is clearly violated. Using the results reported in Lemmas 3.B.1-3.B.3

in Appendix A, we obtain the following limit results, where vec(
∫

dBFΛB
′
FΛ) = Λ̌ vec(

∫
dBFB′F ),

vec(ΘFΛ) = Λ̌ vec(Θ), vec(
∫
BFΛB

′
FΛ) = Λ̌ vec(

∫
BFB

′
F ), vec(

∫
dBFΛB̃

′
FΛ) = Λ̌ vec(

∫
dBF B̃′F ) and

vec(
∫
B̃FΛB̃

′
FΛ) = Λ̌ vec(

∫
B̃F B̃

′
F ), and Λ̌ = plimN→∞

1
N

∑N
i=1(Λi ⊗ Λi), ΨY X is the average long

run covariance between the idiosyncratic errors in Yi,t and Xi,t, ΨXX is the average long run covari-

ance matrix of the idiosyncratic errors in Xi,t, and BF and Bi are given in Equations (3.5) and (3.6),

respectively.

Proposition 3.1 Given Assumptions 3.1, 3.2, 3.3 and 3.4:

(A) Consider the model given by (3.1), (3.2) and (3.3),

(a) β̃ =⇒ (
∫
B̃Y
FΛB̃

X′
FΛ)(

∫
B̃X
FΛB̃

X′
FΛ)−1 = b̃A as T,N →∞ sequentially,

(b) T (ρ̃ − 1) =⇒ (1, −b̃A)(
∫

dBFΛB̃
′
FΛ+ΘFΛ+γ1−Υ)(1, −b̃A)′

(1, −b̃A)(
∫
B̃FΛB̃

′
FΛ)(1, −b̃A)′

as T,N → ∞ sequentially, where

γ1 = E(γi1) and γi1 = E(ẽi,t−1ẽ
′
i,t),

(c) tρ̃ diverges at rate
√
N as T,N →∞ sequentially.

(B) Consider the model given by (3.1), (3.2) and (3.4),

(a) β̃ =⇒ (
∫
B̃Y
FΛB̃

X′
FΛ + 1

6ΨY X)(
∫
B̃X
FΛB̃

X′
FΛ + 1

6ΨXX)−1 = b̃B as T,N →∞ sequentially,
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(b) T (ρ̃− 1) =⇒ (1, −b̃B)(
∫

dBFΛB̃
′
FΛ+ΘFΛ− 1

2
Ψ+∆)(1, −b̃B)′

(1, −b̃B)(
∫
B̃FΛB̃

′
FΛ+ 1

6
Ψ)(1, −b̃B)′

as T,N →∞ sequentially,

(c) tρ̃ diverges at rate
√
N as T,N →∞ sequentially.

Proof: see Appendix 3.B.

The results summarized in Proposition 3.1 are clearly in contrast to the asymptotic normality

Kao (1999) derives for the tests statistics for independent panels, although we have not yet considered

corrections for serial correlation and endogenous regressors. Results A(a) and B(a) are similar to

those derived by Urbain and Westerlund (2008) for the pooled least squares estimator (PLS). This is

in sharp contrast with the
√
N consistency of the LSDV estimator in the case of a spurious regression

estimated from independent panel data, see Phillips and Moon (1999). The statistics proposed by

Kao (1999) rely on this consistency, namely on the fact that β̃
p−→ ΨY XΨXX−1 where ΨY X is the

average long-run covariance between the errors driving Xi,t and those driving Yi,t and ΨXX is the

average long covariance matrix of the Xi,t’s. The presence of common factors destroys this property

and consequently the asymptotic normality of these estimators and of the statistics relying on this

result. For the case of stationary idiosyncratic components, our findings are similar to the spurious

regression results from time-series analysis. With non-stationary idiosyncratic components we obtain

some mixture of time-series and panel spurious regression results in the limiting distributions. The

tests are inconsistent when the data has a common factor structure, and size distortions have to

be expected which will increase with N . The nuisance parameters in the limiting distributions

given in Proposition 3.1 introduced by the serial correlation in the common factors and idiosyncratic

components can be corrected for non-parametrically, i.e. the composite effect of ΘFΛ + γ1 − Υ or

ΘFΛ +∆ can be accounted for. However, it is not possible to identify nuisance parameters associated

with the common factors or the idiosyncratic components individually. So, the covariance of B̃FΛ as

well as the average long-run covariance matrix of idiosyncratic stochastic trends, Ψ, will in general

remain in the limits. The limit of tρ̃ will be the product of
√
N , the limit of (ρ̃− 1) and the limit of

the standard deviation of (ρ̃ − 1). Whereas the latter is positive, the driving factor of the limiting

distribution of (ρ̃− 1) is
∫

dBFΛB̃
′
FΛ∫

B̃FΛB̃
′
FΛ

which has a negative expected value. Thus, tρ̃ can be expected

to diverge to −∞.

3.3.2 Pedroni (1999)

Pedroni (1999) allows for heterogeneity of the slope coefficient β in the cointegration relationship

(3.12), which becomes βi. He proposes to estimate a first stage regression individually for each panel
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member to obtain an estimate of βi,

β̃i =
( T∑
t=1

Ỹi,tX̃
′
i,t

)( T∑
t=1

X̃i,tX̃
′
i,t

)−1
. (3.14)

Pedroni (1999) proposes two classes of statistics, namely those based on the within-dimension denoted

as “panel” statistics, and those based on the between-dimension denoted as “group mean” statistics.

For the former group, the residuals from the first stage regression, ũi,t = Ỹi,t− β̃iX̃i,t, are stacked and

a pooled DF regression is estimated as in (3.13).5 The group mean statistics are based on averages

of individual unit root statistics, derived from

∆ũi,t = (ρi − 1)ũi,t−1 + vi,t, (3.15)

to obtain

(ρ̃i − 1) =
( T∑
t=2

∆ũi,tũi,t−1

)( T∑
t=2

ũ2
i,t−1

)−1
.

Consider now the panel-rho statistic denoted by Zρ̃NT−1 and the group-mean rho statistic Z̃ρ̃NT−1

given by

Zρ̃NT−1 =
( N∑
i=1

T∑
t=2

(∆ũi,tũi,t−1 − λ̂i)
)( N∑

i=1

T∑
t=2

ũ2
i,t−1

)−1
, (3.16)

and

Z̃ρ̃NT−1 =
N∑
i=1

(( T∑
t=2

(∆ũi,tũi,t−1 − λ̂i)
)( T∑

t=2

ũ2
i,t−1

)−1
)
, (3.17)

with λ̂i = T−1
∑J

s=1 ωsJ
∑T

t=s+1 ṽi,tṽi,t−s where ṽi,t are the residuals of the second stage regression,

and J and ωsJ are suitable bandwidth and kernel functions, respectively. For these 2 statistics, we

obtain the following limiting results:

Proposition 3.2 Given Assumptions 3.1, 3.2, 3.3 and 3.4:

(A) Consider the model given by (3.1), (3.2) and (3.3),

(a) β̃i =⇒
(
λ′1i(

∫
B̃Y
F B̃

X′
F λ2i

)(
λ′2i(

∫
B̃X
F B̃

X′
F ) λ2i

)−1 = b̃iA as T →∞,

(b) TZρ̃NT−1 =⇒
∑N
i=1 λ

′
1iL
′
11

∫
dQF Q̃

′
FL11λ1i∑N

i=1 λ
′
1iL
′
11

∫
Q̃F Q̃

′
FL11λi1

as T →∞,

(c) TZ̃ρ̃NT−1 =⇒
∑N

i=1
λ′1iL

′
11

∫
dQF Q̃

′
FL11λ1i

λ′1iL
′
11

∫
Q̃F Q̃

′
FL11λi1

as T →∞,

5Note that although the estimated DF equation is the same for Kao (1999) and Pedroni (1999), the residuals used
in the estimation are obtained from individual regressions instead of a pooled one.
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where Q̃ = W̃ Y
F − (

∫
W̃ Y
F W̃

X
F
′)(
∫
W̃X
F W̃

X
F
′)−1W̃X

F , W̃F is a demeaned k-vector standard Brow-

nian motion, and L11 is upper left element of L, the block triangular decomposition of Ω = L′L.

(B) Consider the model given by (3.1), (3.2) and (3.4),

(a)

β̃i =⇒
(
λ′1i
∫
B̃Y
F B̃

X′
F λ2i +

∫
B̃Y
i B̃

X′
i + λ′1i

∫
B̃Y
F B̃

X′
i +

∫
B̃Y
i B̃

X′
F λ2i

)(
λ′2i
∫
B̃X
F B̃

X′
F λ2i +

∫
B̃X
i B̃

X′
i + λ′2i

∫
B̃X
F B̃

X′
i +

∫
B̃X
i B̃

X′
F λ2i

)−1

= b̃iB
as T →∞,

(b) TZρ̃NT−1 =⇒
∑N
i=1(1 −b̃iB)

(
Λ′i(
∫

dBF B̃
′
F )Λ′i+

∫
dBiB̃

′
i+Λi

∫
dBF B̃

′
i+
∫

dBiB̃
′
FΛ′i

)
(1 −b̃iB)′∑N

i=1(1 −b̃iB)
(

Λi
∫
B̃F B̃

′
FΛ′i+

∫
B̃iB̃′i+Λi

∫
B̃F B̃

′
i+
∫
B̃iB̃′FΛ′i

)
(1 −b̃iB)′

as T →

∞,

(c) TZ̃ρ̃NT−1 =⇒
∑N

i=1

(1 −b̃iB)
(

Λ′i(
∫

dBF B̃
′
F )Λ′i+

∫
dBiB̃

′
i+Λi

∫
dBF B̃

′
i+
∫

dBiB̃
′
FΛ′i

)
(1 −b̃iB)′

(1 −b̃iB)
(

Λi
∫
B̃F B̃

′
FΛ′i+

∫
B̃iB̃′i+Λi

∫
B̃F B̃

′
i+
∫
B̃iB̃′FΛ′i

)
(1 −b̃iB)′

as T →

∞.

Proof: see Appendix 3.B.

For the panel-rho and group-mean-rho statistics Pedroni (1999, 2004a) derives asymptotic normal-

ity when they are properly standardized. In particular,
√
NTZρ̃NT−1−

√
Nθ2θ

−1
1 and N−

1
2T Z̃ρ̃NT−1−

√
Nθ̃1 are asymptotically normally distributed for independent panels, where θ1, θ2 and θ̃1 are means

of functionals of Brownian motions (for details see Pedroni, 2004a). The results from Proposition

3.2 indicate that under the DGP we consider, TZρ̃NT−1 and N−1TZ̃ρ̃NT−1 converge, so that the two

test-statistics diverge at rate
√
N when standardized as above. Furthermore, due to the presence

of the common factors, the individual statistics will not be independent along the cross-section, so

that the use of a CLT to derive asymptotic normality of the average statistic will be invalid. The

result is similar to that derived by Lyhagen (2000) for the Im et al. (2003) (IPS) statistics. Also, for

independent panels the distributions of Zρ̃NT−1 and Z̃ρ̃NT−1 will be nuisance parameter free. For the

DGP we consider, this is not true in general. Although the composite effect of serial correlation in

the common factors and idiosyncratic components can be corrected for non-parametrically, nuisance

parameters coming only from the common factors or from the idiosyncratic components cannot be

identified. So, the limiting distributions will in general depend on the long-run covariances of the

common and/or idiosyncratic stochastic trends. A special case arises when there is a single common

factor in Yi,t and the idiosyncratic components are stationary. Then, λ1iL11 will cancel from the

limits given in Proposition 3.2 A (b) and (c).
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3.4 A two-step procedure to test for (no)cointegration in the pres-

ence of common factors

As shown in Section 3.3 standard panel tests for the null of no-cointegration suffer from serious

problems when applied to data with a common factor structure. To tackle the problem we propose

a simple approach based on the Bai and Ng (2004b) PANIC methodology.6

A related, albeit different, idea is exploited in the work of Banerjee and Carrion-i Silvestre (2005),

who assume a factor structure for the disturbance of a panel static regression model:

Yi,t = αi + βiXi,t + ui,t

ui,t = γ′iFt + Ei,t,

where Ft and Ei,t are the common factors and the idiosyncratic components respectively that can

be either I(1) or I(0). A similar framework is used by Bai and Kao (2004) for the estimation of a

cointegrating relationship in the presence of common factors. Under some conditions that bound

the possible heterogeneity, this framework leads to panel statistics for the null of no-cointegration

that have the same distribution as panel unit root tests and hence are not affected by the number of

regressors.7

Consider the simple bivariate DGP (3.9)-(3.10)8 and address the issue of no-cointegration at three

different levels.

(i) Testing for idiosyncratic component no-cointegration. This would mean to test the null hy-

pothesis that (EYi,t − βiEXi,t) ∼ I(1) against (EYi,t − βiEXi,t) ∼ I(0),

(ii) Testing for common factor no-cointegration. This would boil down to testing the null that

(F Yt − δFXt ) ∼ I(1) against (F Yt − δFXt ) ∼ I(0),

(iii) Testing for panel no-cointegration, that is testing the null that Yi,t − βiXi,t ∼ I(1) against

Yi,t − βiXi,t ∼ I(0). Rejecting the null of no-cointegration requires evidence of idiosyncratic

component cointegration with cointegrating vector (1,−βi) as well as of common factor coin-

tegration with cointegrating vector (1,−βiλ2,i

λ1,i
) which should be constant across the individuals

i.

6Wagner and Müller-Fürstenberger (2004) use similar ideas in an empirical study of the Kuznets curve.
7A similar set-up is retained by Westerlund (2005) who proposes Durbin-Hausman tests for cointegration in panels.
8The discussion extends to a more general set-up.
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Provided the components have been extracted from the data, case (i) is tested using standard panel

tests for no-cointegration given in (3.16) and (3.17). Case (ii) can be investigated using standard time

series no-cointegration tests such as the Johansen rank test. Case (iii) is slightly more problematic

since rejecting the null of panel no-cointegration requires not only factor and idiosyncratic cointegra-

tion, but also cointegrating vector(s) for the factors of a very specific form. The restrictions between

the cointegrating coefficients result from the common factor structure and from the condition that

the left null spaces of the common factor and idiosyncratic component cointegration must have a

non-empty intersection.

There is however a useful indirect way of addressing this question. Consider (3.11) and write

(F Yt −
βiλ2,i

λ1,i
FXt ) ≡ Gt and (EYi,t − βiEXi,t) ≡ E∗i,t such that (3.11) becomes:

Yi,t − βiXi,t = λ1,iGt + E∗i,t (3.18)

which is nothing but the parametrization considered in Banerjee and Carrion-i Silvestre (2005).

Under this parametrization, (1,−βiλ2,i

λ1,i
) will be a cointegrating vector for the common factors if and

only if Gt ∼ I(0). One may consequently investigate the hypothesis of panel cointegration using the

approach proposed by these authors.

Now we shall outline a sequential testing procedure based on the factor structure under (3.1),

(3.2) and (3.3) or (3.4) that does not restrict the heterogeneity. The approach starts with a decom-

position of the data into common factors and idiosyncratic components as in Bai and Ng (2004b). It

investigates the cointegration properties of the extracted factors and components.

Step 1. Conduct a PANIC analysis of each variable Xi,t and Yi,t individually to extract the common

factors, e.g. using the principal components approach advocated by Bai and Ng (2004b). Test

for unit roots in both the factors and the idiosyncratic components using the Bai and Ng

(2004b) or the Breitung and Das (2008) approach.

Step 2. a. If I(1) common factors and I(0) idiosyncratic components are detected, we face the situation

of cross-member cointegration and consequently the nonstationarity in the panel is entirely

due to a reduced number of common stochastic trends. Cointegration between Yi,t and

Xi,t can only occur if the common factors for Yi,t cointegrate with those of Xi,t. The null

of no-cointegration between these estimated factors can be tested using a Johansen type

of likelihood ratio test for example.

b. If I(1) common factors and I(1) idiosyncratic components are detected, we carry out step
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a on the estimated common factors and we will work with defactored series. In contrast to

Banerjee and Carrion-i Silvestre (2005) however, who defactor the residuals from a static

regression (11) we defactor separately Yi,t and Xi,t. The defactored Yi,t (e.g. the estimated

idiosyncratic components) is simply obtained as ÊYi,t =
∑t

s=1 ê
Y
i,s =

∑t
s=1(∆Yi,s − λ̂′1,if̂s)

where f̂s is a consistent factor estimate of ft in (3.2) and λ̂′1,i a consistent estimate of the

loading. Testing for no-cointegration between the defactored data can be conducted using

standard panel tests for no-cointegration such as those of Pedroni (1999, 2004a) given in

(3.16) and (3.17).

The rejection of no-cointegration between Yi,t and Xi,t only occurs if the tests for both

common factor and idiosyncratic no-cointegration reject. However, this is a necessary

condition. If the three restrictions mentioned under (iii) hold as well for the cointegrat-

ing vectors, panel cointegration will hold. If the outcome of step 2.b is that both the

common factors and the idiosyncratic components cointegrate one might want to jointly

or sequentially test the restrictions on the cointegrating vectors. The required tests are

not available with the exception of a homogeneity test on the idiosyncratic component

cointegrating vectors proposed by Pedroni (2004b). Comparing point estimates of the

parameters involved could yield further insight into the structure of the model. Formal

testing of panel no-cointegration could be done using the Banerjee and Carrion-i Silvestre

(2005) test.

Remark 4. The sequential panel no-cointegration test outlined in Steps 1-2 is a multiple com-

parison procedure. Panel no-cointegration is rejected if both the hypotheses of common factor no-

cointegration and idiosyncratic component no-cointegration are rejected and the restrictions between

the cointegrating vector parameters are not rejected. An approximate test of the joint hypothesis

could use the Bonferroni procedure (see e.g. Savin, 1980). In a Monte Carlo simulation, the joint

hypothesis test of factor and idiosyncratic component (no-)cointegration is found to be undersized

due to the idiosyncratic component (no-)cointegration. Its power properties are shown to be fine.

The results are available upon request.

Remark 5. The theoretical justification for this sequential procedure is analogous to that of

the PANIC panel unit root analysis. Since the DGP implies that all series have a Bai and Ng

(2004b) representation, we proceed by analogy with the results derived in Bai and Ng (2004b).

Provided the number of common factors is known or consistently selected using one of the con-

sistent selection procedures discussed in Bai and Ng (2004b), then it holds that T−1/2
∑t

s=2 ê
Y
i,s =
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T−1/2
∑t

s=2 e
Y
i,s+Op(C

−1
NT ) where êYi,t is the estimated idiosyncratic component, êYi,t = ∆Yi,s−λ̂′1,if̂s, f̂s

a consistent factor estimate of ft, λ̂′1,i a consistent estimate of the loading and C−1
NT = min(N1/2, T 1/2).

Consequently, 1√
T

∑bTrc
t=1 êYi,t =⇒ BY

i (r), ∀i where BY
i (r) is the first element of the (1 + m)-vector

Brownian motion Bi(r). BY
i (r) and BY

j (r) are uncorrelated Brownian motions for i 6= j. The same

holds for Xi,t. Consequently, standard panel no-cointegration tests derived under the maintained

assumption of independent panel unit, such as those proposed by Pedroni (2004a), can be used on

the defactored observations.

Remark 6. This approach requires both large N and T which is one of the important limitations.

Also, this approach will have finite sample properties that can, at best, be close to those observed for

the tests when applied to a panel data set with independent units.

Remark 7. If the rank of the long-run covariance matrix of the factors turns out to be smaller than

k, that is if the factors cointegrate, then a further step is needed to assess overall lack of cointegration

between Yi,t and Xi,t. No cointegration then requires separability in cointegration as discussed and

analyzed in details in Hecq et al. (2002).

3.5 Some Monte Carlo Evidence

The theoretical foundation of the approach proposed in the preceding section requires both large N

and T which is not always met in typical applications of panel cointegration techniques. A Monte

Carlos analysis of some of its finite sample properties is called for. We focus on the empirical size

properties of the proposed approach, namely testing for no-cointegration using defactored data, as it

was shown that tests designed for cross-sectionally independent data may suffer from dramatic size

distortions when applied to panels with cross-member cointegration for example as pointed out by

Banerjee et al. (2004). The DGP is a simple bivariate process (i.e. m = 1) with k = 2 common

factors that obeys the representation (3.1)-(3.4).

Zi,t = ΛiFt + Ei,t, Ei,t = ei,t or Ei,t = Ei,t−1 + ei,t,

ei,t = εi,t + Γiεi,t−1,

Ft = Ft−1 + ft, ft = ηt + Φ1ηt−1,

where εi,t ∼ i.i.d.N(0,Σi), ηt ∼ i.i.d.N(0, I2). The loading matrix has a diagonal structure with diag-

onal elements λ1i, λ2i ∼ U [−1, 3] where U denotes uniform distributions. The remaining parameters

are also drawn from independent uniform distributions to allow for some degree of heterogeneity:
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Φ11,22 ∼ U [0.5, 0.7],Φ12,21 ∼ U [0, 0.5],Σi,11,22 ∼ U [1, 1.4],Γ11,22 ∼ U [0.5, 0.7],Φ12,21 ∼ U [0, 0.5] and

Σi,12,21 ∼ U [0, 0.2]. The sample size has been set to T ∈ {50, 100, 250} and the number of units in the

panel is set to N ∈ {25, 50, 100}. We consider the rejection frequencies based on 1000 replications9

for Kao’s pooled normalized coefficient (the ρ test) and pooled ADF test, and Pedroni’s panel-t,

panel-ρ, group mean t and group mean ρ statistics based on raw data. Furthermore, we consider

Pedroni’s panel ρ and Pedroni’s group mean ρ statistics applied to the defactored data, and Johansen

trace test for the estimated common factors, using the information criterion of Aznar and Salvador

(2002) to select the lag length of the VECM.

For the last two statistics based on the defactored data, we estimate the number of common

factors k using the IC1 criterion of Bai and Ng (2002) with kmax = 4. For the ADF type tests the

lag length is selected using the AIC. For the non-parametric correction for serial correlation, we use

a quadratic spectral kernel with a bandwidth of 3.21T
1
3 (see Andrews, 1991).

The two polar cases that we consider in the simulations are the cases discussed earlier, namely

the case of cross-member cointegration in which the common factors are I(1) and the idiosyncratic

components are I(0), and the case where both common factors and idiosyncratic components are I(1).

In addition, we consider cases where only the common factors are cointegrated but the idiosyncatic

components are not cointegrated, not cointegrated common factors are combined with cointegrated

idiosyncratic components, and cointegration in both the common factors and the idiosyncratic com-

ponents.

Tables 3.1 and 3.2 present simulation results for the 5 cases with MA(1) dynamics in the error

terms and k = 2 common factors, one common factor in Yi,t and one in Xi,t. Furthermore, the number

of common factors is estimated using the IC1 criterion of Bai and Ng (2002) with kmax = 4. Note

that the criterion always picks the correct number of common factors. Both Kao test statistics show

strong size distortions when either the common factors or the idiosyncratic components (or both)

cointegrate. The Pedroni tests exhibit very strong size distortions in the cross-member cointegration

case (Table 3.1). When non-stationary idiosyncratic components are combined with non-cointegrated

or cointegrated common factors (Tables 3.1 and 3.2) size distortions are reduced. The tests are even

undersized for some combinations of N and T . When both the common factors and the idiosyncratic

components cointegrate (Table 3.2), the Pedroni tests have rejection frequencies of up to 1. However,

as the factor loadings are heterogenous, panel cointegration is not present (see the discussion in

Section 3.4).

9All experiments are carried out using GAUSS 6.0.
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The tests applied to the estimated idiosyncratic components show rejection frequencies of (close

to) 1 when those are stationary or cointegrated. When the idiosyncratic components are not

cointegrated, the Idiosyncratic Panel-ρ and Idiosyncratic Group-ρ tests are undersized. The Az-

nar/Johansen test applied to the estimated common factors is slightly oversized when the common

factors do not cointegrate with rejection frequencies between 8% and 15%. When there is cointegra-

tion among the common factors, the test has a power between 61% and 92%.

We also perform simulations where we have introduced a second factor in Xi,t, such that k = 3

now.10 Again estimating the number of common factors using the IC1 criterion of Bai and Ng (2002),

we note that the second common factor of Xi,t is not picked up11. Nevertheless, simulation results

for the Kao and Pedroni tests applied to the raw data and the Aznar/Johansen test applied to the

extracted common factors do not change qualitatively compared to the results obtained for k = 2.

However, the Idiosyncratic Panel-ρ and Idiosyncratic Group-ρ applied to the estimated common

components exhibit a reduced power when the common components are cointegrated, in particular

when T=50.

3.6 Conclusions

We have considered the problem of testing for (no-)cointegration in panel data characterized by

strong cross-sectional dependencies resulting from common factors as in the work of Bai and Ng

(2004b). We focus on two polar cases that we believe are of empirical relevance.

For both classes of DGP’s, we discuss the homogeneity restrictions for the cointegrating vectors

resulting from the presence of common factor cointegration. We study analytically the behavior

of several test for panel cointegration including the residual-based panel no-cointegration tests of

Kao (1999) and Pedroni (1999, 2004a) that have been widely used in empirical work in the recent

years. The results complement and help to understand some of the Monte Carlo results reported by

Banerjee et al. (2004), such as the loss of Gaussian limiting results and occurrence of size distortions

resulting from the presence of cross-sectional dependence.

These observations provide sufficient reason to propose a two-step procedure for testing for no-

cointegration in panels with common factors. Our procedure is similar in spirit and complementary

to the work of Banerjee and Carrion-i Silvestre (2005). It has the advantages of covering many sub-

cases of interest and allowing to get a clear picture of the common and idiosyncratic components in
10Tables with the results for these simulations are included in the working paper version of this chapter Gengenbach

et al. (2006).
11Similarly, the PC1 or BIC3 criteria from Bai and Ng (2002) only select a single common factor for Xi,t
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the panel and about the homogeneity requirements for common factor cointegration. The procedure

is simple to apply and makes use of existing tools. Simulation results show the procedure to have

reasonable size properties.

While being attractive due, among other things, to its ease of application and nice properties, some

limitations are inherent in this approach. The theoretical validity of the proposed procedure, and that

of Banerjee and Carrion-i Silvestre (2005), relies on both large N and large T which may be unrealistic

for applications with ”moderate” N and large T . The performance of the proposed procedures,

in particular the power properties, in such situations needs to be further studied even if the size

properties reported in Monte Carlo section are promising. If a large N analysis is inappropriate for

the problem under study, an alternative could be to adopt the non-linear IV testing approach of

Demetrescu and Tarcolea (2005) or use bootstrapping techniques that seem to work well from an

empirical point of view (see Fachin, 2005). Future work should study the merits of these alternative

approaches both theoretically and empirically.

A second limitation lies in the fact that the approach is residual-based and hence it suffers from

the usual critiques against residual-based tests such as the maintained assumptions of a single cointe-

grating relationship (if it exists) as well as the imposition of the common factor restriction. Nothing

however precludes conceptually to extend the idea developed in this chapter to other cointegration

techniques that would not suffer from these drawbacks.
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3.A Tables

Table 3.1: k = 2 common factors; Non-stationary common factors Ft with I(0) or I(1) idiosyncratic
component Ei,t.

Ei,t N 25 50 100 25 50 100 25 50 100
Raw data

T Kao - ρ∗ Kao - ADF Pedroni - Panel − ρ

50 0.27 0.32 0.35 0.48 0.50 0.54 0.68 0.90 0.88
I(0) 100 0.39 0.47 0.49 0.54 0.62 0.62 0.84 0.96 0.95

250 0.52 0.54 0.55 0.64 0.67 0.69 0.93 1.00 0.96

50 0.17 0.17 0.23 0.59 0.65 0.69 0.00 0.00 0.00
I(1) 100 0.23 0.28 0.36 0.63 0.74 0.75 0.02 0.02 0.03

250 0.34 0.39 0.45 0.74 0.81 0.80 0.10 0.08 0.14

T Pedroni - Panel − t Pedroni - Group− ρ Pedroni - Group− t

50 0.76 0.92 0.91 0.33 0.67 0.62 0.52 0.79 0.77
I(0) 100 0.83 0.96 0.94 0.67 0.94 0.89 0.67 0.89 0.85

250 0.92 0.99 0.95 0.88 1.00 0.94 0.78 0.95 0.88

50 0.03 0.02 0.04 0.00 0.00 0.00 0.03 0.02 0.04
I(1) 100 0.06 0.04 0.08 0.00 0.00 0.01 0.04 0.03 0.06

250 0.13 0.10 0.18 0.02 0.01 0.04 0.07 0.05 0.10
Estimated components

T Idiosyncratic- Panel − t Idiosyncratic - Group− ρ Aznar/Johansen

50 1.00 1.00 1.00 1.00 1.00 1.00 0.12 0.12 0.11
I(0) 100 1.00 1.00 1.00 1.00 1.00 1.00 0.09 0.11 0.09

250 1.00 1.00 1.00 1.00 1.00 1.00 0.08 0.10 0.08

50 0.00 0.00 0.00 0.00 0.00 0.00 0.12 0.14 0.12
I(1) 100 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.12 0.09

250 0.02 0.01 0.00 0.00 0.00 0.00 0.11 0.10 0.09

Rejection frequencies are based on 5% asymptotic critical values.
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Table 3.2: k = 2 common factors; Cointegration in either Ft or Ei,t or both. NC denotes no
cointegration, C cointegration.

Ft Ei,t N 25 50 100 25 50 100 25 50 100
Raw data

T Kao-ρ∗ Kao-ADF Pedroni Panel − ρ

50 0.18 0.17 0.24 0.55 0.60 0.65 0.01 0.00 0.01
C NC 100 0.25 0.29 0.39 0.59 0.69 0.73 0.07 0.03 0.11

250 0.37 0.40 0.50 0.70 0.77 0.78 0.18 0.10 0.32

50 0.26 0.28 0.33 0.57 0.60 0.64 0.05 0.13 0.10
NC C 100 0.36 0.43 0.46 0.62 0.72 0.72 0.16 0.39 0.32

250 0.46 0.52 0.55 0.71 0.77 0.78 0.31 0.53 0.48

50 0.41 0.43 0.47 0.57 0.58 0.61 0.58 0.63 0.69
C C 100 0.50 0.56 0.59 0.60 0.67 0.69 0.84 0.91 0.97

250 0.60 0.63 0.63 0.69 0.72 0.74 0.96 0.99 1.00

T Pedroni Panel − t Pedroni Group− ρ Pedroni Group− t

50 0.05 0.03 0.06 0.00 0.00 0.00 0.03 0.02 0.05
C NC 100 0.09 0.06 0.19 0.05 0.01 0.10 0.07 0.03 0.15

250 0.17 0.11 0.33 0.25 0.13 0.57 0.19 0.10 0.42

50 0.14 0.23 0.23 0.01 0.03 0.03 0.10 0.17 0.18
NC C 100 0.20 0.42 0.38 0.06 0.32 0.18 0.14 0.35 0.29

250 0.29 0.52 0.50 0.21 0.68 0.40 0.24 0.55 0.44

50 0.69 0.77 0.84 0.74 0.81 0.91 0.86 0.94 0.98
C C 100 0.87 0.94 0.98 1.00 1.00 1.00 1.00 1.00 1.00

250 0.95 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Estimated components

T Idiosyncratic Panel − ρ Idiosyncratic Group− ρ Aznar/Johansen

50 0.00 0.00 0.00 0.00 0.00 0.00 0.61 0.61 0.74
C NC 100 0.00 0.00 0.00 0.00 0.00 0.00 0.70 0.78 0.85

250 0.02 0.00 0.00 0.00 0.00 0.00 0.68 0.85 0.87

50 0.92 0.99 1.00 0.94 1.00 1.00 0.12 0.12 0.11
NC C 100 1.00 1.00 1.00 1.00 1.00 1.00 0.10 0.11 0.10

250 1.00 1.00 1.00 1.00 1.00 1.00 0.09 0.10 0.08

50 0.98 1.00 1.00 0.99 1.00 1.00 0.67 0.65 0.75
C C 100 1.00 1.00 1.00 1.00 1.00 1.00 0.79 0.83 0.89

250 1.00 1.00 1.00 1.00 1.00 1.00 0.78 0.87 0.92

If Ft is cointegrated, FYt =
∑t
s=1 f

Y
s , FXt = FYt + fXt . If Ei,t is cointegrated, EYi,t =

∑T
s=1 e

Y
i,s,

EXi,t = EYi,t + eXi,s, where ft and ei,t are MA processes generated as described in Section 3.5.
Rejection frequencies are based on 5% asymptotic critical values.
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3.B Appendix

3.B.1 Lemma 3.B.1 to 3.B.3

Given Assumptions 3.1 to 3.4, we can summarize some convergence results. In the following lemmas, M

is used to denote a generic positive number, not depending on T or N . For a matrix A, A > 0 denotes

that A is positive definite. Furthermore, ‖A‖ = trace(A′A)
1
2 . We write the integral

∫ 1

0
B(r)dr as

∫
B,

and
∫ 1

0
B(r)B(r)′dr as

∫
BB′. Furthermore, =⇒ denotes weak convergence, and

p−→ denotes convergence

in probability. For any number x, bxc denotes the largest integer smaller than x. For any variable Xi,t,

X̃i,t = Xi,t − 1
T

∑T
s=1Xi,s. Similarly, for any Brownian motion B, B̃ = B −

∫
B.Throughout the chapter

we employ sequential limit theory, where we consider T → ∞ followed by N → ∞. Furthermore, for non-

random factor loadings, Λ̄ = limN→∞
1
N

∑N
i=1 Λi, while for random factor loadings Λ̄ = E(Λi), Ψ = E(Ψi) and

∆ = E(∆i).

Lemma 3.B.1 presents convergence results for the common data component ΛiFt. The limiting distributions

are functionals of Brownian motions weighted by the factor loadings, even as N → ∞. These results are

intuitive, as we assume a fixed number of common factors. Lemma 3.B.2 summarizes the convergence for the

idiosyncratic components, where we recover the panel spurious regression results for Phillips and Moon (1999).

In Lemma 3.B.3, the limits for the cross-products of the common and individual specific components are given.

It is evident that these cross-products will only affect limiting distributions for finite N , but as N →∞ these

effects will vanish due to the independence of the shock driving Ft and Ei,t.

Lemma 3.B.1: Common Component

Lemma 3.B.1 Common Component: Given Assumptions 3.1, 3.2 and 3.4,

(a)
1
T

∑T
t=1 ΛiftF ′t−1Λ′i =⇒ Λi(

∫
dBFB′F + Θ)Λ′i as T →∞, and

1
N

∑N
i=1 Λi(

∫
dBFB′F + Θ)Λ′i

p−→
∫

dBFΛB
′
FΛ + ΘFΛ as N →∞,

(b)
1
T 2

∑T
t=1 ΛiFtF ′tΛ

′
i =⇒ Λi(

∫
BFB

′
F )Λ′i as T →∞, and

1
N

∑N
i=1 Λi(

∫
BFB

′
F )Λ′i

p−→
∫
BFΛB

′
FΛ as N →∞,

(c)
1
T

∑T
t=1 ΛiftF̃ ′t−1Λ′i =⇒ Λi(

∫
dBF B̃′F + Θ)Λ′i as T →∞, and

1
N

∑N
i=1 Λi(

∫
dBF B̃′F + Θ)Λ′i

p−→
∫

dBFΛB̃
′
FΛ + ΘFΛ as N →∞,

(d)
1
T 2

∑T
t=1 ΛiF̃tF̃ ′tΛ

′
i =⇒ Λi(

∫
B̃F B̃

′
F )Λ′i as T →∞, and

1
N

∑N
i=1 Λi(

∫
B̃F B̃

′
F )Λ′i

p−→
∫
B̃FΛB̃

′
FΛ as N →∞,

where vec(
∫

dBFΛB
′
FΛ) = Λ̌ vec(

∫
dBFB′F ), vec(ΘFΛ) = Λ̌ vec(Θ), vec(

∫
BFΛB

′
FΛ) = Λ̌ vec(

∫
BFB

′
F ),

vec(
∫

dBFΛB̃
′
FΛ) = Λ̌ vec(

∫
dBF B̃′F ) and vec(

∫
B̃FΛB̃

′
FΛ) = Λ̌ vec(

∫
B̃F B̃

′
F ),

and Λ̌ = plimN→∞
1
N

∑N
i=1(Λi ⊗ Λi).
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Proof of Lemma 3.B.1

For the common factors given in (3.2) we find the following Beveridge-Nelson (BN) decomposition:

Ft = Φ(1)
t∑

s=1

ηs + Φ∗(L)(ηt − η0) + F0, (3.B.1)

where Φ∗(L) =
∑∞
j=0 Φ∗jL

j with Φ∗j = −
∑∞
l=j+1 Φl. Now, 1√

T
Φ(1)

∑brTc
s=1 ηs =⇒ Φ(1)WF (r) ≡ BF (r) by the

FCLT, where WF is standard Brownian Motion. Furthermore, Φ∗(L)(ηt − η0) is stationary with finite fourth

order moments such that 1√
T

Φ∗(L)(ηt − η0)
p−→ 0, and F0 is Op(1) by assumption.

(a) We have 1
T

∑T
t=1 ΛiftF ′t−1Λ′i = Λi( 1

T

∑T
t=1 ftF

′
t−1)Λ′i. Now, 1

T

∑T
t=1 ftF

′
t−1 =⇒

∫
dBFB′F + Θ

as T → ∞ as shown in e.g. Davidson and de Jong (2000), and the result of Lemma 3.B.1 (a)

follows immediately. Furthermore, vec(Λi(
∫

dBFB′F + Θ)Λ′i) = (Λi ⊗ Λi) vec(
∫

dBFB′F + Θ). As

E‖(Λi ⊗ Λi)‖2 = E‖Λi‖4 ≤ M by Assumption 3.2 (i), we can apply a LLN to 1
N

∑N
i=1(Λi ⊗ Λi).

Denote plim(Λi ⊗ Λi) = Λ̌ to obtain the second result of Lemma 3.B.1 (a).

(b) The proof of Lemma 3.B.1 (b) is similar to that of (a), except that 1
T 2

∑
FtF

′
t =⇒

∫
BFB

′
F as

shown in e.g. Phillips and Durlauf (1986) in the first step.

(c) 1
T

∑T
t=1 ftF̃

′
t−1 = 1

T

∑T
t=1 ftF

′
t−1−

(∑T
t=1

ft√
T

)(
1

T
3
2

∑T
s=1 F

′
s

)
. Now, 1

T

∑T
t=1 ftF

′
t−1 =⇒

∫
dBFB′F

+ Θ while
(∑T

t=1
ft√
T

)(
1

T
3
2

∑T
s=1 F

′
s

)
=⇒

∫
dBF (

∫
BF )′ as T → ∞, so that 1

T

∑T
t=1 ftF̃

′
t−1 =⇒∫

dBF B̃′F + Θ. The remainder of the proof follows the same arguments as above.

(d) Now,
∑T
t=1 F̃tF̃

′
t =⇒

∫
B̃F B̃

′
F as shown in Phillips and Moon (1999), and the limit as N → ∞

follows as above.

2

Lemma 3.B.2: Idiosyncratic Components

Lemma 3.B.2 Idiosyncratic Components: Given Assumption 3.3,

(a)
1
T

∑T
t=1 ei,tS

′
i,t−1 =⇒

( ∫
dBiB′i + ∆i

)
as T →∞, and

1
N

∑N
i=1

( ∫
dBiB′i + ∆i

) p−→ ∆ as N →∞,

(b)
1
T 2

∑T
t=1 Si,tS

′
i,t =⇒

∫
BiB

′
i as T →∞, and

1
N

∑N
i=1

∫
BiB

′
i

p−→ 1
2Ψ as N →∞,

(c)
1
T

∑T
t=1 ei,tS̃

′
i,t−1 =⇒

( ∫
dBiB̃′i + ∆i

)
as T →∞, and

1
N

∑N
i=1

( ∫
dBiB̃′i + ∆i

) p−→ − 1
2Ψ + ∆ as N →∞,

(d)
1
T 2

∑T
t=1 S̃i,tS̃

′
i,t =⇒

∫
B̃iB̃

′
i as T →∞, and

1
N

∑N
i=1

∫
B̃iB̃

′
i

p−→ 1
6Ψ as N →∞.
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Proof of Lemma 3.B.2

For the partial sum process Si,t =
∑t
s=1 ei,s we obtain a BN decomposition

Si,t = Γi(1)
t∑

s=1

εi,s + Γ∗i (L)(εi,t − εi,0) + Ei,0, (3.B.2)

where Γ∗i (L) =
∑∞
j=0 Γ∗i,jL

j with Γ∗i,j = −
∑∞
l=j+1 Γi,l. Now, 1√

T
Si,brTc =⇒ Γi(1)Σ

1
2
i Wi(r) ≡ Bi(r) as T →∞

for all i, where Wi is standard Brownian motion and Σ
1
2
i is the Cholesky decomposition of Σi such that

Σ
1
2
i Σ

1
2
i
′ = Σi as shown in Phillips and Moon (1999). Furthermore, Bi and Bj are i.i.d over the i-dimension.

(a) We have 1
T

∑T
t=1 ei,tS

′
i,t−1 =⇒

∫
dBiB′i+∆i as T →∞ as shown in Davidson and de Jong (2000).

Now,
∫

dBiB′i are i.i.d across the i-dimension with E(
∫

dBiB′i) = 0 and E‖ vec(
∫

dBiB′i)‖2 < M .

So, we can apply a LLN to find 1
N

∑N
i=1

∫
dBiB′i

p−→ 0. Furthermore, a LLN also applies such

that 1
N

∑N
i=1 ∆i

p−→ ∆ ≡ E(∆i), which proves the first result.

(b) This result is proven in Phillips and Moon (1999).

(c) 1
T

∑T
t=1 ei,tS̃

′
i,t−1 = 1

T

∑T
t=1 ei,tS

′
i,t−1 − 1

T

∑T
t=1 ei,tS̄

′
i, where S̄′i = 1

T

∑T
t=1 Si,t. Now,

1
T

∑T
t=1 ei,tS

′
i,t−1 =⇒

∫
dBiB′i + ∆i, while 1

T

∑T
t=1 ei,tS̄

′
i = 1√

T
ST

1

T
3
2

∑T
t=1 S

′
i,t =⇒ Bi(1)

∫
Bi as

T → ∞. So, 1
T

∑T
t=1 ei,tS̃

′
i,t−1 =⇒

∫
dBiB̃′i + ∆i as T → ∞. Furthermore, E(

∫
dBiB̃′i) = − 1

2Ψ

and hence, using similar arguments as in (a) 1
N

∑N
i=1

∫
dBiB̃′i + ∆i

p−→ − 1
2Ψ + ∆ as N →∞.

(d) See Phillips and Moon (1999).

2

Lemma 3.B.3

Lemma 3.B.3 Given Assumptions 3.1, 3.2, 3.3 and 3.4

(a)
1
T

∑T
t=1 ΛiFt−1e

′
i,t =⇒ Λi

∫
BFdB′i as T →∞, and

1
N

∑N
i=1 Λi

∫
BFdB′i

p−→ 0 as N →∞,

(b)
1
T

∑T
t=1 ΛiftS′i,t−1 =⇒ Λi

∫
dBFB′i as T →∞, and

1
N

∑N
i=1 Λi

∫
dBFB′i

p−→ 0 as N →∞,

(c)
1
T 2

∑T
t=1 ΛiFtS′i,t =⇒ Λi

∫
BFB

′
i as T →∞, and

1
N

∑N
i=1 Λi

∫
BFB

′
i

p−→ 0 as N →∞,

(d)
1
T

∑T
t=1 ΛiF̃t−1e

′
i,t =⇒ Λi

∫
B̃FdB′i as T →∞, and

1
N

∑N
i=1 Λi

∫
B̃FdB′i

p−→ 0 as N →∞,

(e)
1
T

∑T
t=1 ΛiF̃t−1ẽ

′
i,t =⇒ Λi

∫
B̃FdB′i as T →∞, and

1
N

∑N
i=1 Λi

∫
B̃FdB′i

p−→ 0 as N →∞,
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(f)
1
T

∑T
t=1 ΛiftS̃′i,t−1 =⇒ Λi

∫
dBF B̃′i as T →∞, and

1
N

∑N
i=1 Λi

∫
dBF B̃′i

p−→ 0 as N →∞,

(g)
1
T 2

∑T
t=1 ΛiF̃tS̃′i,t =⇒ Λi

∫
B̃F B̃

′
i as T →∞, and

1
N

∑N
i=1 Λi

∫
B̃F B̃

′
i

p−→ 0 as N →∞,

Proof of Lemma 3.B.3

For each i, the stacked error vector wi,t = (f ′t , e
′
i,t)
′ and the corresponding partial sum process Wi,t =∑t

s=1 wi,s = (F ′t , S
′
i,t)
′ fulfill the conditions for a FCLT, such that 1√

T
Wi,brTc =⇒ Bwi(r) = (BF (r)′, Bi(r)′)′.

Due to the independence of ft and ei,t, the covariance matrix of Bwi will have zero off-diagonal blocks. Now,

for every panel unit i we obtain time series spurious regression results as T →∞. Furthermore, the functionals

of BF and Bi we obtain in the first step have zero mean and finite variance, and are uncorrelated across the

i-dimension of the panel. So, we can apply a LLN to the average to find the limits as N → ∞. We present

the proof for (a), (b)-(g) are obtained using a similar line of argumentation.

(a) The limit as T → ∞ follows from applying a spurious regression result as above and noting that

E(Ft−1ei,t) = 0 for all i and t. Now, taking expectations we find E(Λi
∫
BFdBi) = 0, while

E‖ vec(Λi
∫
BFdBi)‖2 < M . for all i. Applying a LLN, we find

1
N

∑N
i=1 Λi

∫
BFdBi

p−→ 0.

2

3.B.2 Proof of Propositions 3.1 and 3.2

Proof of Proposition 3.1 (a): Convergence of β̃

The LSDV estimator of β is given by β̃ = (
∑N
i=1

∑T
t=1 Ỹi,tX̃

′
i,t)(

∑N
i=1

∑T
t=1 X̃i,tX̃

′
i,t)
−1. Consider the numer-

ator

N∑
i=1

T∑
t=1

Ỹi,tX̃
′
i,t =

N∑
i=1

T∑
t=1

(λ′1iF̃
Y
t F̃

X
t
′λ21 + ẼYi,tẼ

X
i,t
′ + λ′1iF̃

Y
t Ẽ

X
i,t
′ + ẼYi,tF̃

X
t
′λ21). (3.B.3)

If the idiosyncratic term is given by (3.3), we have
∑N
i=1(Op(T 2)+Op(T )+Op(T )+Op(T )) in (3.B.3). So,

as T → ∞,
∑N
i=1

1
T 2

∑T
t=1 Ỹi,tX̃

′
i,t =⇒

∑N
i=1 λ

′
1i

∫
B̃YF B̃

X
F
′λ2i from the first result of Lemma 3.B.1 (d). Now,

using the second result we obtain 1
N

∑N
i=1 λ

′
1i

∫
B̃YF B̃

X
F
′λ2i

p−→
∫
B̃YFΛB̃

X
FΛ
′ as N → ∞, where

∫
B̃YFΛB̃

X
FΛ
′ is

the 1×m upper right block of
∫
B̃FΛB̃

′
FΛ defined in Lemma 3.B.1.

If the idiosyncratic terms are also I(1), such that the DGP includes (3.4), all terms in (3.B.3) are Op(T 2)

when summed over T . However, the cross-products of the common factors and idiosyncratic components will

vanish in the limit as N → ∞. Using Lemmas 3.B.1 (d), 3.B.2 (d) and 3.B.3 (g) we find as T → ∞ followed
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by N →∞,
1
N

N∑
i=1

1
T 2

T∑
t=1

Ỹi,tX̃
′
i,t =⇒

∫
B̃YFΛB̃

X
FΛ
′ +

1
6

ΨY X ,

where ΨY X is the upper right 1×m block of Ψ.

Now the denominator of β̃ is given by

N∑
i=1

T∑
t=1

X̃i,tX̃
′
i,t =

N∑
i=1

T∑
t=1

(λ′2iF̃
X
t F̃

X
t
′λ21 + ẼXi,tẼ

X
i,t
′ + λ′2iF̃

X
t Ẽ

X
i,t
′ + ẼXi,tF̃

X
t
′λ21). (3.B.4)

Similar to the results for the numerator, the terms in (3.B.4) are
∑N
i=1

(
Op(T 2)+Op(T )+Op(T )+Op(T )

)
,

if the DGP contains (3.3). Hence,
∑N
i=1

1
T 2

∑T
t=1 X̃i,tX̃

′
i,t =⇒

∑N
i=1 λ

′
2i

∫
B̃XF B̃

X
F
′λ2i as T →∞. Furthermore,

the remaining term is Op(N), and we obtain 1
N

∑N
i=1

1
T 2

∑T
t=1 X̃i,tX̃

′
i,t =⇒

∫
B̃XFΛB̃

X
FΛ
′ as T →∞ followed by

N →∞, where
∫
B̃XFΛB̃

X
FΛ
′ is the lower right m×m block of

∫
B̃FΛB̃

′
FΛ.

If the true DGP contains (3.4), all terms in the summation over T in (3.B.4) are Op(T 2) and as above,

the cross-products between common and idiosyncratic components will vanish in the cross-sectional average

as N →∞. We find as T →∞ followed by N →∞,

1
N

N∑
i=1

1
T 2

T∑
t=1

X̃i,tX̃
′
i,t =⇒

∫
B̃XFΛB̃

X
FΛ
′ +

1
6

ΨXX ,

where ΨXX is the lower right m×m block of Ψ.

Combining the results given above yields Proposition 3.1 A(a) and B(a). 2

Proof of Proposition 3.1 (b): Convergence of ρ̃

The residuals from the first stage PLS regression are given by ũi,t = (1 − β̃)Zi,t = Yi,t− β̃Xi,t. For the pooled

regression given in (3.13) we have

(ρ̃− 1) =
( N∑
i=1

T∑
t=2

(1 − β̃)∆Zi,tZ̃ ′i,t−1(1 − β̃)′
)( N∑

i=1

T∑
t=2

(1 − β̃)Z̃i,t−1Z̃
′
i,t−1(1 − β̃)′

)−1
. (3.B.5)

For the numerator consider

N∑
i=1

T∑
t=2

∆Zi,tZ̃ ′i,t−1 =
N∑
i=1

T∑
t=2

(ΛiftF̃ ′t−1Λ′i + ∆Ei,tẼ′i,t−1 + ΛiftẼ′i,t−1 + ∆Ei,tF̃ ′t−1Λ′i). (3.B.6)

From Lemma 3.B.1 (c), 1
N

∑N
i=1

1
T

∑T
t=2 ΛiftF̃t−1Λ′i =⇒

∫
dBFΛB̃

′
FΛ + ΘFΛ as T →∞ followed by N →∞.

If the idiosyncratic terms are I(0), i.e. the true DGP is given by (3.3),

N∑
i=1

T∑
t=2

∆Ei,tẼ′i,t−1 =
N∑
i=1

T∑
t=2

(
(ei,t − ei,t−1)e′i,t−1 − (ei,t − ei,t−1)ē′i

)
,
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where ēi = 1
T

∑T
t=1 ei,t. Now, 1

T

∑T
t=2 ei,te

′
i,t−1

p−→ γi1 as T → ∞, with γi1 = limT→∞
1
T

∑T
i=1 E(ei,te′i,t−1),

and 1
N

∑N
i=1 γi1

p−→ γ1 as N → ∞, with γ1 ≡ E(γi1). Also, 1
T

∑T
t=2 ei,t−1e

′
i,t−1

p−→ Υi as T → ∞ and
1
N

∑N
i=1 Υi

p−→ Υ as N →∞. Furthermore, 1
T

∑T
t=2 ei,tē

′
i

p−→ 0 and 1
T

∑T
t=2 ei,t−1ē

′
i

p−→ 0 as T →∞. Hence,
1
N

∑N
i=1

1
T

∑T
t=2 ∆Ei,tẼ′i,t−1

p−→ γ1 −Υ as T →∞ followed by N →∞.

For the third term in (3.B.6) we have as T →∞,

1
T

∑T
t=2 ΛiftẼ′i,t−1 = 1

T

∑T
t=2 Λifte′i,t−1 − 1

T

∑T
t=2 Λiftē′i

p−→ 0,

Finally, as T →∞,

1
T

∑T
t=2 ∆Ei,tF̃ ′t−1Λ′i = 1

T ei,T F̃
′
T−1Λ′ − 1

T ei,1F̃
′
1Λ′ − 1

T

∑T
t=2 ei,t−1f

′
t−1Λ′i

p−→ 0.

Hence, as T →∞ followed by N →∞,

1
N

N∑
i=1

1
T

T∑
t=2

∆Zi,tZ̃ ′i,t−1 =⇒
∫

dBFΛB̃
′
FΛ + ΘFΛ + γ1 −Υ.

If the idiosyncratic components are I(1) and their true DGP includes (3.4), such that ∆Ei,t = ei,t and

Ẽi,t−1 = S̃i,t−1, using Lemmas 3.B.1 (c), 2 (c) and 3 (d) and (f), we obtain as T →∞ followed by N →∞,

1
N

N∑
i=1

1
T

T∑
t=2

∆Zi,tZ̃ ′i,t−1 =⇒
∫

dBFΛB̃FΛ + ΘFΛ −
1
2

Ψ + ∆.

For the denominator in (3.B.5) consider

N∑
i=1

T∑
t=2

Z̃i,t−1Z̃
′
i,t−1 =

N∑
i=1

T∑
t=2

(
ΛiF̃t−1F̃

′
t−1Λ′i + Ẽi,t−1Ẽ

′
i,t−1

+ ΛiF̃t−1Ẽ
′
i,t−1 + Ẽi,t−1F̃

′
t−1Λ′i

)
. (3.B.7)

If the idiosyncratic components are given by (3.3), we find, 1
N

∑N
i=1

1
T 2

∑T
t=2 Z̃i,t−1Z̃

′
i,t−1 =⇒

∫
B̃FΛB̃

′
FΛ as

as T →∞ followed by N →∞.

For I(1) idiosyncratic components given by (3.4), we find using Lemmas 3.B.1 (d), 3.B.2 (d) and 3.B.3(g)

1
N

N∑
i=1

1
T 2

T∑
t=2

Z̃i,t−1Z̃
′
i,t−1 =⇒

∫
B̃FΛB̃

′
FΛ +

1
6

Ψ

as T → ∞ followed by N → ∞. Combining the above given results with those of A (a) or B(a) yields

Proposition 3.1 A (b) and B(b). 2
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Proof of Proposition 3.1 (c): Divergence of tρ̃

The t-statistic for ρ̃ = 1 is given by

tρ̃ = (ρ̃− 1)s−1(
N∑
i=1

T∑
t=2

ũ2
i,t−1)

1
2 ,

where

s2 =
1
N

N∑
i=1

1
T

T∑
t=2

(
∆ũ2

i,t +Op(1)
)
.

As
1
N

N∑
i=1

1
T

T∑
t=2

∆ũ2
i,t =

1
N

N∑
i=1

1
T

T∑
t=2

(1 − β̃)∆Zi,t∆Z̃ ′i,t(1 − β̃)′,

which is Op(1) whether the idiosyncratic components are I(0) or I(1), s2 is Op(1). Furthermore, T (ρ̃− 1) and
1
N

∑N
i=1

1
T 2

∑T
t=2 ũi,t−1ũ

′
i,t−1 are Op(1) as well whether Ei,t is given by (3.3) or (3.4), as shown above. Hence,

tρ̃ =
√
NT (ρ̃− 1)s−1( 1

N

∑N
i=1

1
T 2

∑T
t=2 ũi,t−1ũ

′
i,t−1)

1
2 =

√
NOp(1),

which diverges at rate
√
N as T →∞ followed by N →∞. 2

Proof of Proposition 3.2 (a): Convergence of β̃i

For each panel unit i, the estimator of βi is given by β̃i = (
∑T
t=1 Ỹi,tX̃

′
i,t)(

∑T
t=1 X̃i,tX̃

′
i,t)
−1. Consider the

numerator

T∑
t=1

Ỹi,tX̃
′
i,t =

T∑
t=1

(λ′1iF̃
Y
t F̃

X
t
′λ21 + ẼYi,tẼ

X
i,t
′ + λ′1iF̃

Y
t Ẽ

X
i,t
′ + ẼYi,tF̃

X
t
′λ21). (3.B.8)

If the idiosyncratic term is given by (3.3), we have Op(T 2) + Op(T ) + Op(T ) + Op(T ) in (3.B.8). So, as

T →∞, 1
T 2

∑T
t=1 Ỹi,tX̃

′
i,t =⇒ λ′1i

∫
B̃YF B̃

X
F
′λ2i from the first result of Lemma 3.B.1 (d).

If the idiosyncratic terms are also I(1), such that the DGP includes (3.4), all terms in (3.B.8) are Op(T 2)

when summed over T . Using Lemmas 3.B.1 (d), 3.B.2 (d) and 3.B.3 (g) we find as T →∞,

1
T 2

T∑
t=1

Ỹi,tX̃
′
i,t =⇒ (λ′1i

∫
B̃YF B̃

X
F
′λ2i +

∫
B̃Yi B̃

X
i
′ + λ′1i

∫
B̃YF B̃

X
i
′ +
∫
B̃Yi B̃

X
F
′λ21).

Now the denominator of β̃i is given by

T∑
t=1

X̃i,tX̃
′
i,t =

T∑
t=1

(λ′2iF̃
X
t F̃

X
t
′λ21 + ẼXi,tẼ

X
i,t
′ + λ′2iF̃

X
t Ẽ

X
i,t
′ + ẼXi,tF̃

X
t
′λ21). (3.B.9)
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Similar to the results for the numerator, the terms in (3.B.9) are Op(T 2) +Op(T ) +Op(T ) +Op(T ), if the

DGP contains (3.3). Hence, 1
T 2

∑T
t=1 X̃i,tX̃

′
i,t =⇒ λ′2i

∫
B̃XF B̃

X
F
′λ2i as T →∞.

If the true DGP contains (3.4), all terms in (3.B.9) are Op(T 2) and we have, as T →∞,

1
T 2

T∑
t=1

X̃i,tX̃
′
i,t =⇒ (λ′2i

∫
B̃XF B̃

X
F
′λ2i +

∫
B̃Xi B̃

X
i
′ + λ′2i

∫
B̃XF B̃

X
i
′ +
∫
B̃Xi B̃

X
F
′λ21).

Combining the results given above yields Proposition 3.2 A(a) and B(a). 2

Proposition 3.2 (b): Convergence of Zρ̃NT−1 and Z̃ρ̃NT−1

The residuals from the individual first stage regression are given by ũi,t = (1, −β̃i)Zi,t = Yi,t−β̃iXi,t. Consider

first
T∑
t=2

∆ũi,tũi,t−1 =
T∑
t=2

(1, −β̃i)∆Zi,tZ̃ ′i,t−1(1, −β̃i)′. (3.B.10)

Now,

T∑
t=2

∆Zi,tZ̃ ′i,t−1 =
T∑
t=2

(Λift + ∆Ei,t)(ΛiF̃t−1 + Ẽi,t−1)′

=
T∑
t=2

(ΛiftF̃ ′t−1Λ′i + ∆Ei,tẼ′i,t−1 + ΛiftẼ′i,t−1 + ∆Ei,tF̃ ′t−1Λ′i). (3.B.11)

From Lemma 3.B.1 (c), 1
T

∑T
t=2 ΛiftF̃t−1Λ′i =⇒

∫
Λi(dBF B̃F + Θ)Λ′i as T → ∞. If the idiosyncratic terms

are I(0), i.e. the true DGP is given by (3.3),

T∑
t=2

∆Ei,tẼ′i,t−1 =
T∑
t=2

(
(ei,t − ei,t−1)e′i,t−1 − (ei,t − ei,t−1)ēi

)
,

where ēi = 1
T

∑T
t=1 ei,t. Now, 1

T

∑T
t=2 ei,te

′
i,t−1

p−→ γi1 as T → ∞, with γi1 = limT→∞
1
T

∑T
i=1 E(ei,tei,t−1).

Also, 1
T

∑T
t=2 ei,t−1e

′
i,t−1

p−→ Υi as T → ∞. Furthermore, 1
T

∑T
t=2 ei,tē

′
i

p−→ 0 and 1
T

∑T
t=2 ei,t−1ē

′
i

p−→ 0 as

T →∞. Hence, 1
T

∑T
t=2 ∆Ei,tẼ′i,t−1

p−→ γi1 −Υi as T →∞.

For the third term in (3.B.11) we have, as T →∞,

1
T

∑T
t=2 ΛiftẼ′i,t−1 = 1

T

∑T
t=2 Λifte′i,t−1 − 1

T

∑T
t=2 Λiftē′i

p−→ 0.

Finally, as T →∞,

1
T

∑T
t=2 ∆Ei,tF̃ ′t−1Λ′i = 1

T ei,T F̃
′
T−1Λ′ − 1

T ei,1F̃
′
1Λ′ − 1

T

∑T
t=2 ei,t−1f

′
t−1Λ′i

p−→ 0.
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Hence, as T →∞,
1
T

T∑
t=2

∆Zi,tZ̃ ′i,t−1 =⇒ Λi(
∫

dBF B̃F + Θ)Λ′i + γi1 −Υi.

If the idiosyncratic components are I(1) and their true DGP includes (3.4), such that ∆Ei,t = ei,t and

Ẽi,t−1 = S̃i,t−1, using Lemmas 3.B.1 (c), 3.B.2 (c) and 3.B.3 (d) and (f), we obtain, as T →∞,

1
T

T∑
t=2

∆Zi,tZ̃ ′i,t−1 =⇒
(
Λ′i(
∫

dBF B̃′F + Θ)Λ′i +
∫

dBiB̃′i + ∆i + Λi
∫

dBF B̃′i +
∫

dBiB̃′FΛ′i
)
.

Furthermore, note that the residuals ṽi,t = ∆ũi,t + op(1) regardless of whether they were obtained from

the poooled regression (3.13) or the individual regression (3.15). Now,

λ̂i = T−1
J∑
s=1

ωsJ

T∑
t=s+1

ṽi,tṽi,t−s

= T−1
J∑
s=1

ωsJ

T∑
t=s+1

∆ũi,t∆ũi,t−s + op(1)

= T−1
J∑
s=1

ωsJ

T∑
t=s+1

(1, −β̃i)∆Z̃i,t∆Z̃ ′i,t−s(1, −β̃i)′ + op(1).

Expanding ∆Z̃i,t∆Z̃ ′i,t−s in terms of the common factors and unobserved components we obtain the following

four terms and convergence results for suitable choices of bandwidth J and kernel function ωsJ . First,

T−1
J∑
s=1

ωsJ

T∑
t=s+1

Λif̃i,tf̃ ′i,t−sΛ
′
i

p−→ ΛiΩΛ′i. (3.B.12)

Next,

T−1
J∑
s=1

ωsJ

T∑
t=s+1

Λif̃i,t∆Ẽ′i,t−s
p−→ 0, (3.B.13)

and

T−1
J∑
s=1

ωsJ

T∑
t=s+1

∆Ẽi,tf̃ ′i,t−sΛi
p−→ 0, (3.B.14)

due to the independence of common factors and idiosyncratic components. Finally,

T−1
J∑
s=1

ωsJ

T∑
t=s+1

∆Ẽi,t∆Ẽ′i,t−s
p−→ lim

T→∞

1
T

T∑
t=1

E(ei,tẼi,t), (3.B.15)

which is γ1i −Υi if the idiosyncratic components are stationary, and ∆i if they are I(1).

Now consider
T∑
t=2

∆ũi,tũi,t−1 =
T∑
t=2

(1, −β̃i)∆Zi,tZ̃ ′i,t−1(1, −β̃i)′. (3.B.16)
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We have

T∑
t=2

Z̃i,t−1Z̃
′
i,t−1 =

T∑
t=2

(
ΛiF̃t−1F̃

′
t−1Λ′i + Ẽi,t−1Ẽ

′
i,t−1

+ ΛiF̃t−1Ẽ
′
i,t−1 + Ẽi,t−1F̃

′
t−1Λ′i

)
. (3.B.17)

If the idiosyncratic components are given by (3.3), when summed over T the first term in (3.B.17) is Op(T 2),

while the remaining three are Op(T ). So, 1
T 2

∑T
t=2 Z̃i,t−1Z̃

′
i,t−1 =⇒ Λi

∫
B̃F B̃

′
FΛ′i as T →∞.

For I(1) idiosyncratic components given by (3.4), we find using Lemmas 3.B.1 (d), 3.B.2 (d) and 3.B.3(g),

as T →∞,

1
T 2

T∑
t=2

Z̃i,t−1Z̃
′
i,t−1 =⇒

(
Λi
∫
B̃F B̃

′
FΛ′i +

∫
B̃iB̃

′
i + Λi

∫
B̃F B̃

′
i +
∫
B̃iB̃

′
FΛ′i

)
.

We use the block-triangular decomposition of the long-run covariance matrix of the common non-stationary

factors Ω, such that Ω = L′L with L11 = Ω11 − Ω′21Ω−1
22 Ω21)

1
2 , L21 = Ω−

1
2

22 Ω21, and L22 = Ω
1
2
22, where blocks

are conformable conformable to the partition of BF = (BYF
′, BXF

′)′. Note that Ω22 > 0 by Assumption 3.1.

Now, B̃F = L′W̃F , where W̃F is a demeaned k-vector standard Brownian motion. Furthermore, denote

η′i = (1,−b̃iA), and κ′ = (IkY
, −(

∫
W̃Y
F W̃

X
F
′)(
∫
W̃X
F W̃

X
F
′)−1)). Then, LΛ′iηi = κL11λ1i, and η′iB̃F =

λ′1iL
′
11Q̃F , with Q̃F = W̃Y

F − (
∫
W̃Y
F W̃

X
F
′)(
∫
W̃X
F W̃

X
F
′)−1W̃X

F . Finally,

η′i

∫
dBF B̃′Fηi = λ′1iL

′
11

∫
dQF Q̃′FL11λ1i,

and

η′i

∫
B̃F B̃

′
Fηi = λ′1iL

′
11

∫
Q̃F Q̃

′
FL11λ1i.

Combining the above given results with those of A (a) or B (a) yields the convergence results for Zρ̃NT−1

and Z̃ρ̃NT−1. 2





4

Panel Error Correction Testing with Global Stochastic

Trends1

4.1 Introduction

Consider two non-stationary panel data variables Xi,t and Yi,t, where i = 1, . . . , N and t = 1, . . . , T

indexes the cross-sectional and time series dimensions, respectively. The analysis of such variables

has been a growing field of econometric research in recent years. See for example Breitung and

Pesaran (2008) for an overview. In particular, in many economic applications it is an important

question whether Xi,t and Yi,t are cointegrated, that is whether there exists a meaningful long-run

relationship between them, or whether the relationship is spurious.

Kao (1999) and Pedroni (1999, 2004a) were among the first to propose residual-based tests for

the null hypothesis of no cointegration in cross-sectionally independent panels. But cross-sectional

independence is a restrictive assumption that is unlikely to be met in practice, in which case the

properties of this kind of tests become suspect. In fact, in a recent paper, Gengenbach et al. (2006)

show that the presence of cross-section dependence in the form of non-stationary common factors can

actually cause the residual-based tests of Kao (1999) and Pedroni (2004a) to become divergent. As

a response to this, they propose to estimate separately the common and idiosyncratic components

of Xi,t and Yi,t using the principal components method of Bai and Ng (2004b), and then to test for

cointegration in the resulting component estimates.

Banerjee and Carrion-i Silvestre (2006) propose a similar test but instead of applying the Bai and

Ng (2004b) approach to Xi,t and Yi,t directly, they apply it to the residuals of a first-stage regression

of Yi,t onto Xi,t. Cointegration requires that both the common and idiosyncratic components of

the residuals are stationary. The tests of Bai and Carrion-i Silvestre (2007), Westerlund (2007) and

Westerlund and Edgerton (2008) are basically the same in the sense that they are also based on

applying the Bai and Ng (2004b) approach to the residuals of a first-stage regression.
1This Chapter is based on Gengenbach et al. (2008).

77
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However, although very popular, this testing approach has at least two major drawbacks. One

lies with the use of residual rather than structural dynamics, which makes it subject to the common

factor critique of Kremers, Ericcson, and Dolado (1992), that may lead to tests with low power. The

second drawback is that the testing must be carried out in steps, with the estimation error from one

step being imported into subsequent steps, and it is not fully clear what effect this has on the final

test, see Westerlund and Larsson (2008).

By contrast to the test proposed by Pedroni for example, the tests of Westerlund (2007) are

not based on residuals but rather on the significance of the error correction term in a conditional

panel error correction model (ECM), and therefore do not impose any common factor restriction.

However, the tests are derived under cross-sectional independence, and the use of the bootstrap in

case of violations does not fit well with the otherwise parametric flavor of the tests. Another drawback

is that the bootstrap used is not equipped to handle the case with non-stationary common factors.

The current chapter can be seen as an attempt to overcome the drawbacks of both these ap-

proaches. We begin by developing alternative representations of a cointegrated panel that allows for

the possibility of non-stationary common factors. In particular, starting from the triangular repre-

sentation of the system used by for example Bai et al. (2009), we derive a Granger type representation

theorem that is similar to the one obtained by Cappuccio and Lubian (1996) in the case of a single

time series.

The Granger representation theorem provides not only moving average (MA) and autoregressive

moving average (ARMA) representations of the system, but also the conditional ECM representation,

which we use as a basis for developing tests for the null hypothesis of no error correction. In particular,

paralleling the development of the time series literature in this field, as pioneered by Banerjee et al.

(1998) and Boswijk (1994), we consider both a t-ratio type test, as well as a Wald type test. Besides

eliminating the need for a common factor assumption and a stepwise testing procedure, as shown by

Pesavento (2004), these tests are not only more powerful than most residual-based tests around, but

are also not worse in terms of size distortions.

It is shown that at the level of the individual unit the asymptotic distribution of the Wald

tests is free of nuisance parameters and only depends on the number of non-stationary variables in

the system. For the t-ratio an appropriate correction has to be employed to remove the nuisance

parameter dependence from the limiting distribution. Nevertheless, because of the common factors,

the individual tests are not independent, which of course makes pooling, or cross-sectional averaging,

difficult, as it invalidates the use of the conventional limit theory. However, although not analytically



4.2. Model representation 79

tractable, the average still converges to a random variable with a distribution that can be easily

simulated, which makes pooling possible in spite of the dependence. We begin by considering the

case when the common factors are known, and then we show how the results extend to the case when

the factors are approximated by means of cross-sectional averages of the observed data, as suggested

by Pesaran (2007).

The rest of this chapter is organized as follows. Section 4.2 presents the model of interest and

our version of the Granger representation theorem. Sections 4.3 and 4.4 then present the error

correction tests and their asymptotic properties, which are verified using both simulated and real

data in Sections 4.5 and 4.6, respectively. Section 4.7 concludes.

A word on notation. The symbols w−→ and
p−→ will be used to signify weak convergence and

convergence in probability, respectively. As usual, XT = Op(T r) will be used to signify that XT

is at most order T r in probability, while XT = op(T r) will be used in case XT is of smaller order

in probability than T r. In the case of a double indexed sequence XN,T , N, T → ∞ will be used

to signify that the limit has been taken while passing both indices to infinity jointly. For a square

matrix A, rk(A), adj(A) and ||A|| will denote its rank, adjoint and Euclidian norm, respectively.

For simplicity, the Brownian motion B(s) defined on the interval s ∈ [0, 1] will be written B, with

the measure of integration omitted. We write the integral
∫ 1

0 B(s)ds as
∫
B and

∫ 1
0 B(s)dB(s)′ as∫

BdB′. Finally, bxc will be used to denote the integer part of x.

4.2 Model representation

In this section we discuss the model under consideration, and some alternative representations thereof.

We start from the triangular representation for a single unit i, which is the same as the one used by

Bai et al. (2009). However, these authors focus on how to conduct inference if the variables are in

fact long-run related, and do not consider the problem of how to test for cointegration. Moreover,

the triangular representation is taken as given, and there is no consideration of other alternatives.

Thus, the results reported herein can in many ways be seen as complementary to those reported in

Bai et al. (2009).

The data generating process has two basic building blocks, a (r + m)-dimensional vector of

idiosyncratic variables, which is denoted by Zi,t = (Y ′i,t, X
′
i,t)
′, where Yi,t is r× 1 while Xi,t is m× 1,

and a k-dimensional vector of common factors, which is denoted by Ft. The grand vector containing

all three variables is denoted Z+
i,t = (Z ′i,t, F

′
t)
′, and for later use we will also let Vi,t = (X ′i,t, F

′
t)
′

denote the augmented Xi,t vector.
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The data generating process can be written in the following way

Yi,t − π′1iGt = b′iXi,t + λ′1iFt + u1i,t, (4.2.1)

∆Xi,t − π′2igt = λ′2i∆Ft + u2i,t, (4.2.2)

∆Ft − π′3gt = ft, (4.2.3)

where Gt and gt are vectors of deterministic components such that gt = ∆Gt with associated coeffi-

cients πi =
(
π1i π2i π3

)
.

We further assume that the vector u+
i,t = (u′1i,t, u

′
2i,t, f

′
t)
′ is a stationary linear process given by

u+
i,t =


Γ11i(L) Γ12i(L) 0

Γ21i(L) Γ22i(L) 0

0 0 Ψ(L)




ε1i,t

ε2i,t

ηt

 =

 Γi(L) 0

0 Ψ(L)

 εi,t

ηt


= Γ+

i (L)ε+
i,t, (4.2.4)

where Ψ(L) = Ik −
∑∞

j=1 Γ33jL
j and L is the lag operator. Similarly,

Γi(L) = I(r+m) −
∞∑
j=1

ΓijLj .

Equations (4.2.1) to (4.2.4) constitute the triangular representation of the model. The rest of the

assumptions can be summarized in the following way, where M <∞ denotes a generic positive real

number.

Assumption 4.1 (i) ηt ∼ i.i.d.(0, Ik) with finite fourth moments, (ii)
∑∞

j=0 j · ‖Ψj‖ < M , (iii)

rk(Ψ(1)) = k.

Assumption 4.2 (i) εi,t ∼ i.i.d.(0,Σi) with finite eighth moments and

Σi =

 Σ11i Σ12i

Σ21i Σ22i

 = cov(εi,t),

(ii) E(εi,tεj,s) = 0 for all i 6= j and t 6= s, (iii) Γi(L) fulfils the random coefficient and summability

conditions of Phillips and Moon (1999, Assumptions 1 and 2), (iv) rk(Γi(1)) = r +m.

Assumption 4.3 (i) Λi = (λ1i, λ2i)′ is a random matrix such that ‖Λi‖ < M , (ii) Λ = 1
N

∑N
i=1 Λi →

E(Λi) = Λ < M as N →∞, (iii) rk(Λ) = k ≤ r +m.
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Assumption 4.4 ηt, εi,t and Λi are mutually independent.

Assumptions 4.1, 4.2 and 4.4 imply that for any i, ε+
i,t ∼ i.i.d.(0,Σi) with

Σ+
i =

 Σi 0

0 Ik

 = cov(ε+
i,t).

They also imply that rk(Γ+
i (1)) = r + m + k. Under these assumptions, it is easy to see that the

system has r cointegrating relationships β′iZ
+
i,t, where by assumption

βi =
(
Ir −b′i −λ′1i

)′
is the cointegrating matrix.

Similar to the time series case considered by Cappuccio and Lubian (1996), given the triangular

representation in (4.2.1) to (4.2.4), we can derive a Granger type representation theorem for a given

panel member. This provides us with alternative model representations that are better suited for

testing the hypothesis of no cointegration.

Theorem 4.1 Given the triangular representation in (4.2.1) to (4.2.4), Z+
i,t is non-stationary with

cointegration rank r.

(a) The MA representation of ∆Z+
i,t is

∆Z+
i,t − (π∗i )

′gt = Ci(L)ε+
i,t, (4.2.5)

where Ci(L) is given in the appendix, rk(Ci(1)) = m+ k and

π∗i =
(
π1i + π2ibi + π3(λ1i + λ2ibi) π2i + π3λ2i π3

)
.

(b) The ARMA representation of Z+
i,t is given by

Ai(L)
(
Z+
i,t − (π∗i )

′gt
)

= ci(L)ε+
i,t, (4.2.6)
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where ci(L) = |Γ+
i (L)| is a scalar lag polynomial, and where the blocks of

Ai(L) =


A11i(L) A12i(L) A13i(L)

A21i(L) A22i(L) A23i(L)

0 0 A33i(L)


are given by

A11i(L) = |Ψ(L)||Γ22i(L)|adj(Γ11·2i(L)),

A12i(L) = −|Ψ(L)||Γ22i(L)|adj(Γ11·2i(L))((1− L)Γ12i(L)Γ22i(L)−1 + b′i),

A13i(L) = |Ψ(L)||Γ22i(L)|adj(Γ11·2i(L))((1− L)Γ12i(L)Γ22i(L)−1λ′2i − λ′1i),

A21i(L) = −|Ψ(L)|adj(Γ22i(L))Γ21i(L)adj(Γ11·2i(L)),

A22i(L) = |Ψ(L)|adj(Γ22i(L))
(
Γ21i(L)adj(Γ11·2i(L))((1− L)Γ12i(L)Γ22i(L)−1 + b′i)

+ (1− L)|Γ11·2i(L)|
)
,

A23i(L) = −|Ψ(L)|adj(Γ22i(L))
(
Γ21i(L)adj(Γ11·2i(L))

× ((1− L)Γ12i(L)Γ22i(L)−1λ′2i − λ′1i) + (1− L)|Γ11·2i(L)|λ′2i
)
,

A33i(L) = (1− L)|Γ22i(L)||Γ11·2i(L)|adj(Ψ(L)),

with Γ11·2i(L) = Γ11i(L)− Γ12i(L)Γ22i(L)−1Γ21i(L).

(c) Ai(1) has reduced rank r and can be decomposed as Ai(1) = α∗i β
′
i, where

α∗i =


|Ψ(1)||Γ22i(1)|adj(Γ11·2i(1))

−|Ψ(1)|adj(Γ22i(1))Γ21i(1)adj(Γ11·2i(1))

0

 .

(d) The vector ECM representation is

A∗i (L)
(
∆Z+

i,t − (π∗i )
′∆gt

)
= −α∗i β′i

(
Z+
i,t−1 − (π∗i )

′gt−1

)
+ ci(L)ε+

i,t, (4.2.7)

where A∗i (L) = A+
i (L) +Ai(1) with A+

i (L) satisfying Ai(L) = Ai(1) + (1−L)A+
i (L), A+

i (L) =∑∞
j=0A

+
ijL

J and A+
ij = −

∑∞
l=j+1Ail.
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(e) ξ′i,t = (Z+
i,t)
′βi has the following representation

ξi,t = β′i(π
∗
i )
′Gt +

(
Γ11i(L) Γ12i(L)

)
ε+
i,t,

∆ξi,t −Ki(L)(π∗i )
′gt = −β′iα∗i

(
ξi,t−1 − β′i(π∗i )′gt

)
+ Ji(L)ε+

i,t,

where Ki(L) and Ji(L) can be obtained as in Engle and Granger (1987).

Proof: see Appendix 4.B.1

From the vector ECM representation given in (4.2.7) we can obtain the conditional ECM for Yi,t

and the marginal ECM for Vi,t. Towards this end, let αi = −Ai(0)−1α∗i and Ã∗i (L) = Ai(0)−1A∗i (L),

where Ã∗∗i (L) =
∑∞

j=1 Ã
∗∗
ij L

j with Ã∗∗ij = −Ã∗ij+1 such that

∆Z+
i,t − Ã

∗
i (L)(π∗i )

′∆gt = αiβ
′
i

(
Z+
i,t−1 − (π∗i )

′gt−1

)
+ Ã∗∗i (L)∆Z+

i,t−1 + ci(L)ε+
i,t.

Defining B∗i =
(
Σ12iΣ−1

22i + b′i,−Σ12iΣ−1
22iλ

′
2i + λ′1i

)
and κi = (Ir,−B∗i ), the conditional ECM for Yi,t

is given by

∆Yi,t − κiÃ∗i (L)(π∗i )
′∆gt = B∗i ∆Vi,t + κiαiβ

′
i

(
Z+
i,t−1 − (π∗i )

′gt−1

)
+ κiÃ

∗∗
i (L)∆Z+

i,t−1

+ ci(L)ε1·2i,t, (4.2.8)

where ε1·2i,t = ε1i,t − Σ12iΣ−1
22iε2i,t, while the marginal models for Xi,t and Ft are

∆Xi,t − Ã∗2i(L)(π∗i )
′∆gt = α2iβ

′
i

(
Z+
i,t−1 − (π∗i )

′gt−1

)
+ Ã∗∗2i (L)∆Z+

i,t−1 + ci(L)ε∗2i,t, (4.2.9)

∆Ft − Ã∗33i(L)π′3∆gt = A∗∗33i(L)∆Ft−1 + ci(L)ηt, (4.2.10)

where Ã∗2i(L) and Ã∗∗2i (L) are the second rows of Ã∗i (L) and Ã∗∗i (L), respectively, and where ε∗2i,t =

ε2i,t + λ′2iηt.

Some remarks can be made here.

Remark: What this theorem shows is that alternative representations may lead naturally to

alternative approaches to cointegration testing. In particular, while the triangular representation is

better suited for developing residual-based tests, the vector ECM, and more precisely its factorization

into conditional and marginal models, is more suitable for developing tests based on error correction.

Remark: If Γ+
i (L) is a unimodular matrix polynomial, the MA part in the vector ECM in (4.2.7)

vanishes. Furthermore, if Γ+
i (L) is of order pi, Ai(L) is of order qi ≤ (r +m+ k − 1)pi.
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Remark: The common factor Ft is by assumption strongly exogenous for βi, see for example

Urbain (1992) for weak and strong exogeneity conditions in this class of models. Similarly, Xi,t is

weakly exogenous for βi if α∗2i = 0, which will be the case when Γ21i(1) = 0. It is strongly exogenous

if in addition Γ21i(L) = 0. The relevance of the two latter assumptions will be discussed later.

Remark: Depending on the specification of the deterministic component gt, we can distinguish

at least five variations of the ECM in (4.2.8) to (4.2.10). If gt = 0, henceforth referred to as Model

1, then there are no deterministic components present. If π1i = 0, then β′i(π
∗
i )
′ = 0 and hence gt

do not appear in the error correction term. If in addition gt = (1, t)′, then a constant should be

included, while if gt = (1, t, t2)′, then a linear trend should also be included. These specifications

are henceforth referred to as Models 2 and 3, respectively. Moreover, if π1i 6= 0, we have a constant

restricted to the error correction term if gt = 1, henceforth referred to as Model 4, or an unrestricted

constant and a linear trend in the error correction term if gt = (1, t)′, henceforth referred to as Model

5. Although higher order trend terms are certainly possible, such models are rarely used in practice,

and we therefore restrict our attention to these five.

4.3 Individual tests for no error correction

In this section we show how the conditional ECM in (4.2.8) can be used as a basis for constructing

cointegration tests. In particular, we propose two test statistics that are designed to test the null

hypothesis that unit i is not error correcting versus the alternative that it is error correcting. We

begin by considering the baseline case with known factors, and then we show how the testing can be

carried out in the more realistic case when Ft is no longer observed.

4.3.1 Observed factors

Assumptions 4.1 to 4.4 are quite relaxed in the sense that even at the level of the individual unit, the

models they imply are multivariate, which makes a full-blown system approach necessary. However,

the purpose of this section is not to devise the most general test possible, but rather to derive tests

that are simple, and easy to implement. This requires more assumptions.

Assumption 4.5 (i) r = 1, (ii) ci(L) = ci for some constant ci < M , (iii) Xi,t is weakly exogenous

for α1i and βi.

Remark: Assumption 4.5 implies that the r-dimensional conditional model in (4.2.8) can be

written as a well-specified single equation, with no serial correlation and with the scalar coefficient
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α1i measuring the extent of the error correcting behavior in Yi,t.

Under Assumption 4.5, and omitting any deterministic component for now, the conditional ECM

in (4.2.8) reduces to

∆Yi,t = α1iβ
′
iZ

+
i,t−1 +B11i(L)∆Yi,t−1 +B12i(L)∆Xi,t +B13i(L)∆Ft + ε1·2i,t, (4.3.1)

while the marginal models for Xi,t and Ft become

∆Xi,t = B21i(L)∆Yi,t−1 +B22i(L)∆Xi,t−1 +B23i(L)∆Ft−1 + ε∗2i,t, (4.3.2)

∆Ft = B33i(L)∆Ft−1 + ηt, (4.3.3)

where the lag polynomials Bjli(L) are obtained by simply collecting the appropriate terms from

(4.2.8) to (4.2.10).

Assumptions 4.1 to 4.5 ensure that the following functional central limit theorem holds as T →∞

1√
T

bsT c∑
t=1


ε1·2i,t

ε∗2i,t

ηt

 w−→ Bi,

where s ∈ [0, 1] and Bi = (B1i, B
′
2i, B

′
3)′ is a (1 +m+ k)-dimensional vector Brownian motion, which

can be partitioned as Bi = (B1i, B
′
2·i)
′ with B2·i = (B′2i, B

′
3)′ having dimension m+k. The covariance

matrix of Bi is given by

Ξi =


σ2
i 0 0

0 Σ22i + λ′2iλ2i λ′2i

0 λ2i Ik

 = cov(Bi),

where σ2
i = Σ11i − Σ12iΣ−1

22iΣ21i. Thus, Bi = Ξ
1
2
i Wi, where Wi = (W1i,W

′
2i,W

′
3)′ is a (1 + m + k)-

dimensional standard Brownian motion that is partitioned conformably with Bi. Furthermore, the

long-run covariance matrix of Z+
i,t is given by

Ωi = B̃i(1)ΞiB̃i(1)′ = Ω
1
2
i (Ω

1
2
i )′,

where the lag polynomial B̃i(L) is obtained from collecting the appropriate terms from (4.3.1) to

(4.3.3) and Ω
1
2
i = B̃i(1)Ξ

1
2
i .
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For later reference it is useful to consider the continuous time regression of W1i, the first element

of Wi, onto some vector Xi,

W1i = Pi(Xi)′Xi +QXW1i,

where

Pi(Xi) =
(∫

XiX
′
i

)−1 ∫
XiW1i = V (Xi)pi(Xi) (4.3.4)

is the ordinary least squares (OLS) projection with QXW1i being the associated projection error.

For example, if Xi = 1, then Pi(Xi) =
∫
W1i in which case Q1W1i = W1i −

∫
W1i is the demeaned

version of W1i.

As (4.3.1) makes clear, as long as Ft is observed, the problem of testing the null of no error

correction is equivalent to testing

H0i : α1i = 0

against

H1i : α1i < 0.

The problem is that, unless one resorts to nonlinear techniques, this parameter is not easily estimated.

One way to get around this is to assume that βi is known, and to estimate α1i using OLS. However,

as shown by Boswijk (1994) and Ziviot (2000), apart from the obvious drawback that βi is almost

never known in practice, tests based on a prespecified βi are generally not similar and depend on

nuisance parameters, even asymptotically.

As an alternative approach, note that (4.3.1) can be reparameterized as

∆Yi,t = α1iYi,t−1 + γ′1iXi,t−1 + γ′2iFt−1 +B11i(L)∆Yi,t−1 +B12i(L)∆Xi,t

+ B13i(L)∆Ft + ε1·2i,t, (4.3.5)

where γ′1i = −α1ib
′
i and γ′2i = −α1iλ

′
1i. The advantage of rewriting (4.3.1) in this way is that because

γ1i and γ2i are unrestricted, the cointegrating vector is implicitly estimated under the alternative

hypothesis. Hence, as long as we are not interested in βi, all the parameters of (4.3.5) can be

consistently estimated by simple OLS, which in turn suggests the OLS estimator of α1i as a natural

candidate for constructing asymptotically similar tests of the null hypothesis of no error correction.

In this section we propose two such tests, whose construction is described next.
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One obvious candidate is the t-test. Suppose that the lag polynomial B1ji(L) is of order qi, and

let

Wi,t =
(
∆Yi,t−1, . . . ,∆Yi,t−qi ,∆X

′
i,t, . . . ,∆X

′
i,t−qi ,∆F

′
t , . . . ,∆F

′
t−qi
)′

denote the vector of stationary, first-differenced, regressors, while Vi,t again denotes the vector of

weakly exogenous non-stationary, level, variables, then (4.3.5) can be written as

∆Yi,t = α1iYi,t−1 + γ′iVi,t−1 + Π′iWi,t + ε1·2i,t

= α1iYi,t−1 + Φ′iSi,t + ε1·2i,t, (4.3.6)

where Φi = (γ′i,Π
′
i)
′, Si,t = (V ′i,t−1,W

′
i,t)
′, γi = (γ′1i, γ

′
2i)
′ and Πi is the vector stacking the coefficient

vectors of the lag polynomials B11i(L), B12i(L) and B13i(L). This equation can in turn be written

as

∆(QSYi,t) = α1i(QSYi,t−1) +QSε1·2i,t,

where again QS is the OLS projection error operator, with

QSYi,t = Yi,t −
T∑
t=2

Yi,t−1S
′
i,t

(
T∑
t=2

Si,tS
′
i,t

)−1

Si,t

being the residual from projecting Yi,t onto Si,t.

In this notation, the OLS estimator of α1i is given by

α̂1i =

(
T∑
t=2

(QSYi,t−1)2

)−1 T∑
t=2

QSYi,t−1∆(QSYi,t),

whose estimated variance is given by

var(α̂1i) = σ̂2
i

(
T∑
t=2

(QSYi,t−1)2

)−1

,

where σ̂2
i = 1

T

∑T
t=2(∆(QSYi,t)− α̂1i(QSYi,t−1))2. The t-statistic for testing H0i can now be written

as

τα̂1i
=

α̂1i√
var(α̂1i)

.
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Another possibility is to follow Boswijk (1994), and to use a Wald statistic to test if α1i and γi

are jointly zero. In so doing, note that (4.3.6) can be rewritten as

∆Yi,t = δ′1iZ
+
i,t−1 + Π′iWi,t + ε1·2i,t,

where δ1i = (α1i, γ
′
i)
′, or in terms of projection residuals,

∆(QWYi,t) = δ′1i(QWZ
+
i,t−1) +QW ε1·2i,t.

The Wald statistic for testing the restriction that δ1i = 0 is given by

wδ̂1i = δ̂′1i
(

var(δ̂1i)
)−1

δ̂1i,

where

δ̂1i =

(
T∑
t=2

QWZ
+
i,t−1(QWZ+

i,t−1)′
)−1 T∑

t=2

QWZ
+
i,t−1∆(QWYi,t)

is the OLS estimator of δ1i, and

var(δ̂1i) = σ̂2
i

(
T∑
t=2

QWZ
+
i,t−1(QWZ+

i,t−1)′
)−1

is the associated variance.

The t-statistic τα̂1i
and the Wald statistic wδ̂1i are the two test statistics considered in this chapter.

Their limiting distributions under the no error correction null are given in the following theorem.

Theorem 4.2 Under H0i and Assumptions 4.1 to 4.5, as T →∞

(a) wδ̂1i
w−→ Di,w = pi(Wi)′Pi(Wi),

(b) τα̂1i

w−→ DΩ
i,τ =

di√
Di

,

where pi(·) and Pi(·) are defined in (4.3.4),

Di = σ2
i ω
−2
11·2iV (Ui)

+ σ2
i ω
−2
11·2iω11iV (Ui)

(
ρ′i(Ω

′
22i)
−1Pi(W2·i) + V (W2·i)pi(W2·i)′Ω−1

22iρi
)

+ σ2
i ω
−2
11·2iω

2
11iρ

′
i(Ω
′
22i)
−1
(
V (W2·i) + Pi(W2·i)V (Ui)V (W2·i)pi(W2·i)′

)
Ω−1

22iρi,

di = σiω
−1
11·2iPi(Ui) + ω−1

11·2iω11iρ
′
i(Ω
′
22i)
−1Pi(W2·i)(Pi(Ui)− 1),
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where Ui = W1i −
∫
W1iW

′
2·i
(∫
W2·iW

′
2·i
)−1

W2·i with W2·i = (W ′2i,W
′
3)′, and with ω11·2i, ω11i, Ω22i

and ρi depending on the parameters of Ω
1
2
i , as defined in the appendix.

Proof: see Appendix 4.B.2

The asymptotic distribution of τα̂1i
simplifies substantially if Xi,t is strongly exogenous.

Assumption 4.6 Xi,t is strongly exogenous for α1i and βi.

This is shown in the following corollary.

Corollary 4.1 Under Assumption 4.6 and the conditions of Theorem 4.2, as T →∞,

τα̂1i

w−→ Di,τ =
Pi(Ui)√
V (Ui)

.

Theorem 4.2 shows that the distribution of wδ̂1i as T → ∞ is nuisance parameter free and only

depends on m + k, the number of non-stationary exogenous variables in the system. By contrast,

the distribution of τα̂1i
depends on several nuisance parameters, and although these vanish under

Assumption 4.6, strong exogeneity is quite restrictive. Fortunately, as Ziviot (2000) points out relying

on results obtained by for example Saikkonen (1991), there is a simple modification available that

eliminates the nuisance parameters that are there under Assumption 4.5 (iii). The idea is to model

these parameters by making the lag polynomial B12i(L) double-sided, as in

B12i(L+ L−1) =
∞∑

j=−∞
B12ijL

j ,

where L−1 is the lead operator, which in in turn requires augmenting (4.3.6) not only by the lags, but

also by the leads of ∆Xi,t. If the number of leads is large enough, then the asymptotic distribution

of the resulting test statistic is given in Corollary 4.1.

In this sense, the results in Theorem 4.2 are basically the same as those provided by Banerjee

et al. (1998) and Boswijk (1994) for the pure time series case. The proof is therefore very similar.

The difference lies with the presence of Ft, which has two effects. One is that the number of unit

roots increases from 1+m to 1 +m+k, which is reflected through W3 in the asymptotic distribution

of the test. The second effect is that the test statistics across units are no longer independent of each

other, although the degree of the dependence between all pairs of units is the same.

In the presence of nonzero deterministic constant and trend terms, as in Models 2 to 5, the above

theorem needs to be modified in order to obtain similar tests. This requires replacing Ui in (a) and



90 CHAPTER 4. PANEL ERROR CORRECTION TESTING

Wi in (b) by their appropriately detrended counterparts. Specifically, Ui and Wi should be demeaned

in Model 1, and demeaned and detrended in Model 2. The t-test cannot be used in Models 4 and 5,

and so for these models there is only the Wald test. In Model 4, Wi is replaced by (W ′i , 1)′, while in

Model 5, Wi is replaced by (W ′i , 1, s)
′, where s is the limiting trend function, see Boswijk (1994).

Furthermore, under the alternative hypothesis of cointegration, τα̂1i
→ −∞ whereas wδ̂1i → ∞

as T →∞, suggesting that the tests are consistent. A proof of this is provided by Boswijk (1994).

4.3.2 Unobserved factors

So far we have assumed Ft to be observed, an assumption which is generally not true. To account

for this, in a recent unit root paper Bai and Ng (2004b) propose using the method of principal

components to estimate Ft, and then to use this estimate in place of Ft in the subsequent analysis.

This approach has proven very fruitful, and has also been extended to the case of cointegration, see

for example Bai et al. (2009), Banerjee and Carrion-i Silvestre (2006), Gengenbach et al. (2006) and

Westerlund (2008). The problem with this approach is that, regardless of whether one considers unit

roots or cointegration, the analysis must be carried out in steps, which means that the estimation

error from one step is imported in subsequent steps.

As a response to this, Pesaran (2007) proposes a joint approach, which is based on using cross-

sectional averages of the observed variables as proxies for the unobserved common factors. Apart

from the advantage that it eliminates the need for a two-step estimation procedure, this approach

fits very well with the parametric flavor of our conditional ECM, and it will therefore be used in this

chapter.

Part (b) of Theorem 4.1 implies that Zi,t can be written as

Zi,t = ΛiFt + Ei,t,

where Λi is the (1 + m) × k matrix of factor loadings, and where Ei,t is a vector representing the

idiosyncratic component of Zi,t. Denoting by Zt, Λ and Et the cross-sectional averages of Zi,t, Λi

and Ei,t, respectively, it is clear that

Zt = ΛFt + Et,

which, via Assumption 4.3 (iii) and the fact that Ei,t is cross-sectionally independent, suggests that
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Ft can be written as

Ft = (Λ′Λ)−1Λ′Zt + (Λ′Λ)−1Λ′Et = (Λ′Λ)−1Λ′Zt +Op

(
1√
N

)
.

The implication is that the common factors can be approximated by the cross-sectional averages

Zt, and that the resulting approximation error should become negligible as N →∞. Following this

argument, we propose using Zt to approximate Ft. In so doing, it is convenient to let W̃i,t, Ṽi,t

and Z̃+
i,t denote Wi,t, Vi,t and Z+

i,t, respectively, with Zt in place of Ft. Starting with (4.3.6) the

approximate test regression can now be written as

∆Yi,t = α1iYi,t−1 + Φ′iS̃i,t + ε̃1·2i,t,

or equivalently,

∆(QS̃Yi,t) = α1i(QS̃Yi,t−1) +QS̃ ε̃1·2i,t,

where the error ε̃1·2i,t depends on the accuracy of the approximation. Nevertheless, by regressing

∆(QS̃Yi,t) on QS̃Yi,t−1, we obtain another OLS estimator of α1i, which we will henceforth denote by

α̃1i. The associated t-statistic of H0i can be written in an obvious notation as

τα̃1i =
α̃1i√

var(α̃1i)
,

while the Wald statistic can be written as

wδ̃1i = (δ̃1i)′
(

var(δ̃1i)
)−1

δ̃1i,

where δ̃1i and var(δ̃1i) are defined just as in Section 4.3.1 but with QW̃ in place of QW .

Theorem 4.3 provides the limiting null distributions of these test statistics.

Theorem 4.3 Under the conditions of Theorem 4.2, as N, T →∞,

(a) wδ̃1i
w−→ Di,w,

(b) τα̃1i

w−→ D̃Ω
i,τ =

d̃i√
D̃i

,

where d̃i and D̃i are defined analogously to di and Di but depending on the parameters of Ω̃
1
2
i , as

defined in the appendix.
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Proof: see Appendix 4.B.3

Theorem 4.3 shows that the asymptotic distributions of wδ̃1i is the same as that of wδ̂1i provided

in Theorem 4.2, which is based on observed factors. The limiting distribution of τα̃1i is similar to

that of τα̂1i
but depending on different nuisance parameter due to the approximation of Ft by Zt.

The difference is that Theorem 4.2 only requires that T → ∞. If Ft is not observed, we require

N →∞ as well to ensure that Zt provides a sufficiently good approximation for Ft.

Similarly to the case of observed factors, if Xi,t is strongly exogenous the asymptotic distribution

of τα̃1i simplifies and is the same as that of τα̂1i
. This is shown in Corollary 4.2.

Corollary 4.2 Under Assumption 4.6 and the conditions of Theorem 4.3, as N, T →∞,

τα̃1i

w−→ Di,τ .

4.3.3 Critical values

As in the simple case with cross-sectionally independent units, our tests are one-sided. The t-test is

left-tailed, while the Wald test is right-tailed. The difference is that in our case the asymptotic test

distribution, and hence also the simulation of the critical values, is complicated by the dependence

across i. However, conditional on W3, the Brownian motion associated with Ft, the random variables

D1,w, . . . , DN,w, are identically and independently distributed for all values of N . We say that

D1,w, . . . , DN,w form an exchangeable sequence, similar to for example Pesaran (2007) and Gregoir

(2005). Thus, since Di,w is the same for all N , we can just as well set N = 1 in the simulations,

a finding also confirmed by our results. The same argument applies to Di,τ . However, this is only

valid for the limiting distribution of the t-test under strong exogeneity of Xi,t, or if an appropriate

correction is employed to remove the nuisance parameter dependence. Otherwise, the individual test

statistics are not identically distributed across i.

The simulated critical values at the 1%, 5% and 10% significance levels are reported in Table

4.1 for the t-test, and in Table 4.2 for the Wald test. These are based on making 1,000,000 draws

from the limiting test distributions, with normal random walks of length T = 1, 000. The results are

reported for all five deterministic model specifications, and for m = 1, . . . , 5.
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4.4 Panel tests for no error correction

In this section we build on the results of Section 4.3, and show how these can be used to construct

pooled tests for the null of no error correction at the overall panel level. As an example, we will

consider the t-statistic in the most simple case with known factors.

4.4.1 The tests

There are many ways in which one can combine a set of individual test statistics into a pooled test.

The by far most common way is to follow Im et al. (2003) and to take the average, which for the

t-statistic in case of known factors amounts to computing

τ α̂1 =
1
N

N∑
i=1

τα̂1i
.

This is a test of the null of no error correction against the alternative that there is a non-vanishing

fraction of error correcting units. Formally, the null and alternative hypotheses are formulated as

H0 : α1i = 0 for all i

against

H1 : α1i < 0 for i = 1, . . . , N1 with
N1

N
→ δ > 0

as N1, N →∞. However, due to the dependence across i, in our case it is not possible to follow the

usual practice in applying a central limit theorem to obtain a normal distribution for
√
N times τ α̂1 .

One possibility is to look directly at the average. Following similar arguments as Pesaran (2007),

because D1,τ , . . . , DN,τ are identically and independently distributed given W3, a law of large numbers

applies to the conditional average of these random variables. That is, we have that as N →∞

Dτ =
1
N

N∑
i=1

Di,τ
p−→ E(Dτ |W3),

where the i index in the expectation has been suppressed because all Di,τ have the same conditional

expectation. Thus, unconditionally the average converges to some random distribution. However,

unless τα̂1i
has finite moments for all N and T , this distribution is not necessarily the same as the

one that applies to τ α̂1 .

In order to get around this technical difficulty, we follow Pesaran (2007) and base our pooled test
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on a truncated version of τα̂1i
. Because this test has finite moments by construction, the associated

cross-sectional average converges to the same asymptotic distribution as Dτ .

The truncated statistic is defined as

τ∗α̂1i
=


Kl if τα̂1i

≤ Kl

τα̂1i
if Kl < τα̂1i

< Ku

Ku if τα̂1i
≥ Ku

,

where the thresholds Kl and Ku are such that the probability of observing τα̂1i
≤ Kl and τα̂1i

≥ Ku

is sufficiently small. In particular, by using the normal approximation of τα̂1i
, Kl = E(Dτ )−Φ−1

(
1−

ε
2

)√
var(Dτ ) and Ku = E(Dτ ) + Φ−1

(
1 − ε

2

)√
var(Dτ ), where ε > 0 is a small number, while Φ is

the standard normal cumulative distribution function.

The corresponding truncated version of τ α̂1 is given by

τ∗α̂1
=

1
N

N∑
i=1

τ∗α̂1i
.

Making use of Theorem 4.2, it is not difficult to see that as T →∞

τ∗α̂1

w−→ D
∗
τ =

1
N

N∑
i=1

D∗i,τ ,

where

D∗i,τ =


Kl if Di,τ ≤ Kl

Di,τ if Kl < Di,τ < Ku

Ku if Di,τ ≥ Ku

.

But all moments of D∗i,τ exist, so by conditioning on W3, as N →∞

D
∗
τ

p−→ E(D∗τ |W3),

where

E(D∗τ |W3) = Kl · Prob(Dτ ≤ Kl|W3) +Ku · Prob(Dτ ≥ Ku|W3)

+ E(Dτ |W3,Kl < Dτ < Ku)→ E(Dτ |W3)

as Kl, Ku → ∞, and so we get the same result as for Dτ . This suggests that τ∗α̂1
can be used for
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the test of H0 versus H1. Another possibility is to use w∗
δ̂1

, the average of the truncated Wald test

statistics.

4.4.2 Critical values

The above results show that if Kl, Ku → ∞, τ∗α̂1
converges to a distribution that only depends on

number of non-stationary variables in the system. With Kl and Ku finite, however, then there is not

just this dependence, but also a dependence on the specific threshold values. Similarly, if N is finite,

then there is also a dependence on the size of the cross-section. The generation of the critical values

has to account for all these dependencies.

We begin by simulating values of E(Dτ ) and var(Dτ ) for all five deterministic model specifications,

and for m = 1, . . . , 5. These are needed in order to compute Kl and Ku. Just as in Section 4.3.3

we make 1,000,000 draws from the limiting test distribution, with normal random walks of length

T = 1, 000. The results for the t-test are reported in Table 4.1, while the results for the Wald test

are reported in Table 4.2.

The next step is to simulate N -tuples D∗1,τ , . . . , D
∗
N,τ using ε = 1

106 , and the first-step moments

to compute Kl and Ku. The average is then taken, which yields one simulated value of D∗τ . By

repeating this exercise 10,000 times, we obtain the simulated distribution of D∗τ . The critical values

at the 1%, 5% and 10% levels are reported in Table 4.3 for the t-test and in Table 4.4 for the Wald

test, in which case D∗τ is replaced by D∗w, the average of the truncated Wald test distributions.

4.5 Monte Carlo simulations

In this section we report the findings of a small set of simulations. We do not intend to give a

comprehensive account of all the merits and drawbacks of the tests, but rather we want to convey a

rough idea of their relative performance, also when compared to some of the more conventional tests

from the literature.

The data generating conditional ECM is given by

∆Yi,t = α1

(
Yi,t−1 −Xi,t−1 − ι′2Ft−1

)
+ ∆Xi,t +B13i∆Ft + ε1·2i,t,
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while the marginal models for Xi,t and Ft are generated as

∆Xi,t = B23i∆Ft−1 + ε∗2i,t,

∆Ft = ηt,

where the elements of B23i and B13i are drawn from N(1, 1), while ι2 = (1, 1)′ is a two-dimensional

vector of ones. Thus, in this setup Xi,t is a scalar, while Ft is two-dimensional. For simplicity, we

assume that there are no deterministic components in the data generating process, and that there is

a common error correction parameter α1, which is equal to zero under the null hypothesis, and equal

to −0.05 under the alternative.

The results are organized in four parts depending on whether there is any serial correlation

present or not. If there is no serial correlation, then ε1·2i,t, ε∗2i,t and ηt are drawn from the standard

normal distribution, while if there is serial correlation, then one of these errors is specified as a first-

order autoregressive (AR) process with standard normal innovations, and a common AR coefficient of

magnitude 0.5, while the remaining two errors are again drawn from the standard normal distribution.

All experiments are based on generating 5, 000 panels with N individual and T + 50 time series

observations, where the first 50 observations for each series are discarded in order to attenuate the

effect of the initial conditions, which are all set to zero.

For comparison, the error correction tests of Westerlund (2007) are also simulated. Two are based

on the group mean, or between, principle and are denoted Gτ and Gρ, while the corresponding panel,

or within, type statistics are denoted Pτ and Pρ. Analogous to τ∗α̂1
, Gτ and Pτ are constructed as

t-ratios, while Gρ and Pρ are coefficient type statistics.

The problem with these tests is that they are based on assuming cross-sectional independence, as

explained earlier, and are therefore not expected to work in a setup as general as this one. Therefore,

for better comparability, we follow the suggestion of Gengenbach et al. (2006), and run the tests on

the defactored data. Specifically, we begin by estimating separately the common component of Xi,t

and Yi,t using the method of Bai and Ng (2004b), which involves applying the principal components

method to the variables in their first differences. The estimated common component is then removed,

and the defactored data are cumulated back to levels again. The number of factors are determined

using the IC1 information criterion of Bai and Ng (2002) with a maximum of five factors.

For the number of lags and leads to use in the conditional ECM, we used the Schwarz Bayesian

information criterion, which facilitates a data dependent choice. Consistent with the results of Ng
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and Perron (1995), the maximum number of lags and leads is permitted to grow with T at rate

4
(
T

100

)2/9. The same rate is used for picking the bandwidth needed for constructing Gρ and Pρ. Also,

for better comparability across all tests, we do not consider Models 4 and 5 when the deterministic

constant and trend terms are restricted to the error correction term. All tests are performed at the

5% significance level, and all powers are adjusted for size.

The results for the case with no deterministic components are reported in Table 4.5. The first

thing to note is the relative performance of the new t-tests, which is very good. This is especially

true when the data are serially correlated, in which case there are only one other test with roughly

the same performance as ours, Gτ . The overall best performance is obtained by using the individual

τα̂1i
and τα̃1i tests, which seem to maintain the nominal level very well in all cases considered. At

the other end of the scale we have the wδ̂1 test, which generally suffers from severe distortions, even

if it is based on the true factors.

Pesavento (2004) reports some results for the original Wald test of Boswijk (1994), and find it to

be oversized when the serial correlation is of the positive AR type considered here. The overall poor

performance of the new Wald tests is therefore not very surprising. On the other hand, unreported

results suggest that the relative performance of these tests is much improved if the serial correlation

is of the negative MA type, which is also what Pesavento (2004) finds in her simulation study. In

any case, the size distortions generally decrease substantially as T increases, which corroborates our

asymptotic results.2

Among the different versions of the new tests considered, the best size accuracy is not surprisingly

obtained by using the true factors. The tests based on using the cross-sectional averages of the

observed data as proxies for the factors are, however, almost as accurate, and perform only slightly

less well. Thus, the approximation seem to be effective even when N is as small as 10. The defactored

versions of the tests of Westerlund (2007) also seem to perform quite well, which is in agreement

with consistency of the principal components method, as shown by Bai and Ng (2004b). However,

although improving in N , we also see that the size accuracy is basically unaffected by T , which

is unexpected because theoretically the precision of the principal components estimator should get

better as T grows.

Consider next the results reported in Table 4.5 for the power of the tests, which can be summarized

as follows. Firstly, the power increases rapidly as T and N increase, which is presumably a reflection

of the consistency of the tests. Secondly, the Westerlund (2007) tests generally suffer from poor

2One possibility here is to follow Palm, Smeekes, and Urbain (2007), and to use bootstrap methods to eliminate
the size distortions of the Wald test.
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power, especially when ε1·2i,t is serially correlated, in which case the power is only rarely in excess

of the size. The Gρ test suffers most, and can actually be less powerful than some of the individual

tests. Thirdly, as expected, the power of the new tests is generally greatly improved by pooling.

Similarly, the tests based on the true factors are generally more powerful than those based on the

cross-sectional averages of the observed data.

The results for the models with a constant, and constant and trend reported in Tables 4.6 and

4.7, respectively, are very similar to those reported in Table 4.5. Nevertheless, there are still a

few differences that are noteworthy. One difference is the magnitude of the size distortions, which

has a slight tendency to increase as more deterministic components are added. Similarly, we see

that inclusion of more deterministic components reduces the power of the tests, especially for the

individual ones. Another difference is that the relative power of the Wald tests is generally much

higher in Tables 4.6 and 4.7 than in Table 4.5.

We also examined the effects of a violation of the weak exogeneity assumption. We used the

same data generating process as before but this time we allowed the equation for ∆Xi,t to be error

correcting. The results, which are not reported but available from the corresponding author upon

request, conforms well with our expectations. In particular, while the size of the tests is not effected,

the power can be very low in cases when it is mainly ∆Xi,t that is error correcting. Thus, even

though the tests continue to perform well in some setups, in general we need the weak exogeneity

assumption to ensure that they work properly.3

The above results are all based on the truncated panel statistics. We carried out the same

simulations for their non-truncated versions, and obtained identical results. In fact, the two types

of statistics differ only for very small values of T , and are basically indistinguishable for T > 20.

Thus, although little is gained in the present case, the truncation of the extreme test statistics seem

to pay out when T is very small. This effect is particularly strong when the number parameters of

the underlying ECM regressions is large.

4.6 Empirical Applications

In this section we present two empirical applications of the tests developed in this chapter. The first

is concerned with the Fisher effect, while the second is concerned with the monetary exchange rate

model.

3Ziviot (2000) examines the performance of the time series tests of Banerjee et al. (1998) and Boswijk (1994), and
reach the same conclusions.
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4.6.1 The Fisher effect

There are very few theoretical economic relationships with as much intuitive appeal as the Fisher

effect, which states that a one-time permanent shock in monetary variables has no long-run effect on

the real economy. A simple implication of this theory is that changes in inflation should be reflected

fully in subsequent movements of the nominal interest rate, thus leaving the real interest rate constant

over time. Yet, oddly, for a theory so widely accepted, the postulated long-run relationship between

inflation and nominal interest rates has proven extremely difficult to establish empirically. In fact,

most studies are unable to reject the null hypothesis of no cointegration between inflation and nominal

interest rates.

Westerlund (2008) argues that this lack of empirical support can be partly explained by the

poor precision of the routinely applied time series approach, and that the use of panel data can

produce more accurate tests. Consistent with this story, drawing upon a panel of 20 OECD countries

between the first quarter of 1980 and the fourth quarter of 2004, the author shows that while the null

hypothesis of no cointegration cannot be rejected at conventional significance levels when using data

on individual countries, panel testing leads to a safe rejection. Low power in the tests is therefore

one possible explanation for why cointegration has been so difficult to find.

Our findings suggest that there is an alternative interpretation of these results. Namely, that

inflation and nominal interest rates are cross-sectionally correlated via the presence of non-stationary

common factors, which then invalidates the use of conventional critical values.4 Thus, according to

this view, it is the factors, and not a lack of power, that make the tests unable to reject the no

cointegration null at the individual country level.5

In this section, we therefore apply our new tests to the same data to reevaluate the cointegration

test results reported by Westerlund (2008). In so doing, we will assume that his unit root test results

hold, and hence that the rates of inflation and nominal interest are non-stationary. Hence, in this

application Yi,t = ii,t and Xi,t = πi,t, where ii,t is the nominal interest rate for country i in quarter

t, while πi,t is inflation.

The tests are constructed in the same way as in Section 4.5, using the Schwarz Bayesian infor-

mation criterion with the same maximum to determine the number of lags and leads. One difference

in comparison to the simulations is that the common factors are no longer observed, which means

4Although the panel tests of Westerlund (2008) are immune to the presence of common factors, his time series tests
are not. This means that the two sets of results are not really comparable in the sense that the observed non-rejections
at the individual country level could be due to the factors.

5One rationale for these factors is that they represent in part oil price shocks and other unanticipated changes in
inflation.
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that we cannot evaluate the tests at the true factors. Therefore, as a feasible alternative, in this sec-

tion we consider replacing the factors by their first differenced and cumulated principal components

estimates, which are consistent even if the factors are non-stationary, see Bai and Ng (2004b). In

agreement with the so-called full Fisher effect, the estimation is carried out while imposing a unit

slope coefficient on inflation. That is, the factors are estimated from the real interest rate, ii,t − πi,t,

which is consistent with the idea of the existence of a world real interest rate, see for example Lee

(2002).

The principal components method is implemented as described in Section 4.5, but with the

number of factors restricted to two, which ensures that the rank condition in Assumption 4.3 (iii)

is fulfilled. As in the simulations, the defactored versions of the error correction tests of Westerlund

(2007) are also considered. We focus on the results for Model 2 with an unrestricted constant, but

include the results for Model 3 with both constant and trend for comparison.

The results reported in Table 4.8 suggest that there is strong evidence against the no cointegration

null, even at the individual country level, which goes against the power argument of Westerlund

(2008). Indeed, looking at the baseline specification with no trend, we end up rejecting the null for

13 out of the 20 countries when using the τα̃1i test, and for 11 countries when using the wδ̃1i test.

Similarly, the pooled tests are way out in the critical region and lead to a safe rejection, even at the

conservative 1% level. In other words, there is not much evidence against the Fisher effect. This

conclusion is not altered by the inclusion of a linear trend.

In fact, the no cointegration null is rejected even when the factors are estimated with the slope

on inflation fixed at unity. Specifically, although weaker at the individual level, the evidence at the

overall panel level is still strong. Thus, we also have some evidence of the full Fisher effect.

To formally test for the presence of unit roots in the estimated factors, we follow the recommenda-

tion of Bai and Ng (2004b) and use the augmented Dickey and Fuller (1979) test, ADF henceforth.6

The estimated first order AR coefficient for the two factors are 0.81 and 0.89, indicating that there

is considerable persistency in the factors. This evidence is reinforced by the associated ADF test

values, −1.69 and −1.79, respectively, which lead to an acceptance of the unit root null for both

factors. Thus, if these factors are to be interpreted as emanating from the world real interest rate,

then this rate must be non-stationary.

The lesson we draw from these results is that a failure to reject the null of no cointegration at the

individual country level need not be taken as an indication of low power, as the possibility remains

6The test allow for an intercept and the lag orders are determined using the Schwarz Bayesian information criterion.
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that it can be due to the presence of non-stationary common factors.

4.6.2 The monetary exchange rate model

In this section we take a closer look at the monetary exchange rate model, which postulates a strong

link between the nominal exchange rate and a set of monetary fundamentals. The by far most

scrutinized proposition being that the nominal exchange rate between the domestic and the foreign

reference country, usually the United States, should cointegrate with the relative money supply and

relative output of these countries.

However, as with the Fisher effect, despite its strong theoretical appeal, the empirical success

of the monetary model has been rather limited, to say the least. Westerlund (2008), Mark and Sul

(2001) and Rapach and Wohar (2004) for example argue that this is due to low power. They then

proceed to show that the use of panel data leads to a much more favorable picture, with strong

evidence of cointegration at the aggregate panel level. Therefore, since the countries appear to be

cointegrated, the authors proceed to estimate the cointegration vector.

The problem is that since all variables are measured relative to the United States, this means

that the common factors are there by construction. Furthermore, both money supply and output are

generally believed to possess unit roots, even for the United States, such that the common factors

must be non-stationary as well. The potential consequences of unattended non-stationary factors on

residual-based panel cointegration tests have been studied by Banerjee et al. (2004) and Gengenbach

et al. (2006). The effects may lead to size distortions in small samples or even divergence in large

samples. While Mark and Sul (2001) employ a block bootstrap to correct for some weak cross

section dependence among the error term. It is not clear whether their test can correct for strong

cross sectional dependence induced by non-stationary common factors. Rapach and Wohar (2004)

only allow for cross section dependence in form of a common time effect.

In this section we revisit the results of Mark and Sul (2001) and Rapach and Wohar (2004). The

data are taken directly from Mark and Sul (2001), and cover 18 countries between the first quarter

of 1973 and the first quarter of 1997. Thus, in this application, Yi,t = ei,t and

Xi,t =

 m∗t −mi,t

y∗t − yi,t

 ,

where ei,t, mi,t and yi,t are the logarithm of the nominal exchange rate, money supply and real income

for country i at quarter t, respectively. Asterisks denote the United States.
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The average-based tests are computed in the same ways as before, but now we consider two new

versions of the factor-based tests. The first is based on using m∗t and y∗t as observed factors, which

is very interesting in the sense that it provides an example of the scenario considered in Section

4.3.1. The second version is based on pre-specifying the cointegrating relationship as in Mark and

Sul (2001). In particular, it is assumed that the relationship can be written as

β′Zi,t =
(

1, −1, 1
) Yi,t

Xi,t

 = ei,t − (m∗t −mi,t) + (y∗t − yi,t),

which imposes monetary neutrality and a unit negative income elasticity.7 Three factors are estimated

from this relationship, which again ensures that Assumption 4.6 is satisfied. Once again we focus on

Model 2 with an unrestricted constant as the deterministic component. For simplicity, in this section

we drop the Westerlund (2007) tests.

The results are reported in Table 4.9. The first thing to note is that for the first 11 countries

there is almost no evidence of cointegration at all, except possibly for Belgium, where we count four

rejections at the 5% level. The pooled tests are generally much more significant, especially the Wald

tests, displaying evidence of cointegration for all five panels. Just as before the results show almost

no variation at all depending on whether the trend is included or not.

These two sets of results suggest that the evidence at the aggregate panel level could very well be

due to only a few cointergrated countries. Indeed, a closer look at the different panel members reveals

that the significance at the aggregate panel level is mainly due to three individually cointegrated

countries, Italy, Spain and Korea. Although these differences could of course also be due to the

relatively low power of the individual tests, they nevertheless show that one should take caution

in interpreting test results at the aggregate panel level. Indeed, based on the results reported here

it seems very hazardous, and borderline erroneous, to treat all five panels as cointegrated, and to

proceed with the analysis as if all members are individually cointegrated.

When we compare the results from across the different tests, in agreement with our simulations,

we see that the average-based Wald test leads to most rejections. As a final piece of evidence, Table

4.10 reports some summary statistics for the estimated factors. As in the Fisher application, we see

that the estimated AR coefficients are very close to one, indicating the presence of unit roots, which

is again supported by the ADF test results.

7In order to avoid the problem with nuisance parameter dependency discussed in Section 4.3.1, the cointegrating
relationship is only pre-specified for the purpose of estimating the factors. In other words, although restricted in the
factor estimation, in the implementation of the error correction tests the cointegrating relationship is still unrestricted.
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4.7 Conclusions

In this chapter we consider the issue of testing for cointegration in a panel data model with non-

stationary common factors. We begin by showing that the model admits to an ECM representation,

a result that is then used for developing two new cointegration tests based on the significance of the

error correction term.

It is shown that under the null of no error correction the asymptotic distributions of the tests are

free of nuisance parameters, and that they only depend on the number of non-stationary variables in

the system. However, the individual tests are not independent along the cross-sectional dimension,

which makes pooling difficult. Nonetheless, the cross-sectional averages of these tests are shown

to converge to well-defined distributions. These results hold regardless of whether the factors are

treated as known or if they are estimated using the averages of the observed data. Some simulation

evidence is also provided showing that the tests behave quite well in small samples.

A number of concluding remarks can be made. Firstly, the assumption of weak exogeneity of the

regressors in the ECM is crucial for correct interpretation of the tests. This assumption is clearly

a weakness in comparison to the residual-based test approach, in which the regressors can be fully

endogenous by means of a non-parametric correction. However, it should be pointed out that in

principle there is nothing that precludes the use of a similar correction in the current setup. An

alternative approach would be to pre-test the validity of the weak exogeneity assumption using panel

extensions of the Lagrange multiplier tests proposed by Boswijk and Urbain (1997).

Secondly, the simulations show that the new tests can still be distorted in some cases when the

factors are treated as unknown. One possibility towards this end would be to follow Palm et al. (2007),

and to consider bootstrap versions of our tests, which are expected to have better size properties in

small samples.

Finally, a crucial assumption is that of a single cointegrating vector under the alternative. This is

obviously an important limitation of our tests that is shared with most existing residual-based tests.

When the dimension of the cointegrating space is unknown it is probably best to analyze the data

using system-based approaches, see for example Larsson, Lyhagen, and Lötgren (2001).
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4.A Tables

Table 4.1: Critical values and moments for the individual t-tests.

Critical values Moments
Model m 10% 5% 1% E(Dτ ) var(Dτ )

1 1 −2.985 −3.315 −3.932 −1.709 1.069
2 −3.484 −3.819 −4.434 −2.212 1.044
3 −3.883 −4.219 −4.848 −2.617 1.026
4 −4.233 −4.570 −5.191 −2.965 1.020
5 −4.538 −4.876 −5.503 −3.272 1.012

2 1 −3.426 −3.744 −4.339 −2.250 0.884
2 −3.845 −4.168 −4.775 −2.644 0.915
3 −4.199 −4.528 −5.138 −2.985 0.931
4 −4.512 −4.841 −5.454 −3.287 0.943
5 −4.792 −5.123 −5.747 −3.564 0.947

3 1 −3.814 −4.122 −4.697 −2.704 0.779
2 −4.175 −4.488 −5.078 −3.024 0.837
3 −4.494 −4.815 −5.411 −3.316 0.872
4 −4.780 −5.103 −5.703 −3.589 0.892
5 −5.043 −5.370 −5.973 −3.841 0.904

Notes: Model 1 refers to the specification with no deterministic component,
while Models 2 and 3 refer to the specifications with an unrestricted constant,
and unrestricted constant and trend, respectively. The value m refers to the
number of regressors contained in Xi,t.
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Table 4.2: Critical values and moments for the individual Wald tests.

Critical values Moments
Model m 10% 5% 1% E(Dw) var(Dw)

1 1 12.209 14.291 18.726 6.979 15.188
2 17.399 19.839 24.913 10.937 23.438
3 22.344 25.010 30.634 14.872 31.381
4 27.108 30.061 36.132 18.785 39.317
5 31.795 34.966 41.435 22.709 47.043

2 1 14.821 17.081 21.870 8.944 19.467
2 19.870 22.460 27.817 12.886 27.601
3 24.750 27.571 33.400 16.833 35.554
4 29.484 32.542 38.789 20.756 43.392
5 34.076 37.329 43.941 24.639 50.867

3 1 17.525 19.940 24.973 11.091 23.396
2 22.424 25.113 30.674 14.988 31.266
3 27.190 30.127 36.200 18.891 39.200
4 31.840 34.992 41.404 22.767 46.941
5 36.389 39.768 46.581 26.639 54.563

4 1 15.769 18.012 22.789 9.964 18.782
2 20.781 23.337 28.680 13.898 26.598
3 25.629 28.422 34.305 17.824 34.284
4 30.368 33.430 39.625 21.756 42.014
5 34.995 38.236 44.840 25.648 49.671

5 1 18.412 20.800 25.830 12.093 22.321
2 23.297 25.968 31.550 15.982 30.128
3 28.084 31.016 37.034 19.888 37.981
4 32.708 35.839 42.256 23.757 45.521
5 37.293 40.612 47.334 27.628 53.097

Notes: Models 4 and 5 refer to the specifications with a constant, and
constant and trend in the error correction term, respectively. See Table 4.1
for an explanation of the remaining features of the table.
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3.371

−
3.491

−
3.556

−
3
.672

70
−

2
.012

−
2.087

−
2.212

−
2
.457

−
2.520

−
2.627

−
2.838

−
2
.897

−
3.004

−
3.169

−
3
.222

−
3.332

−
3.470

−
3.525

−
3
.623

100
−

1
.995

−
2.065

−
2.190

−
2.440

−
2
.505

−
2.616

−
2.822

−
2
.876

−
2.975

−
3.152

−
3.204

−
3
.297

−
3.451

−
3.503

−
3
.594

M
odel

2
10

−
2
.658

−
2.772

−
2.971

−
3.056

−
3
.167

−
3.377

−
3.393

−
3.513

−
3
.728

−
3.692

−
3.804

−
4
.010

−
3.966

−
4.082

−
4.284

15
−

2.603
−

2
.698

−
2.866

−
2.993

−
3
.083

−
3.265

−
3.325

−
3.420

−
3
.599

−
3.624

−
3.714

−
3
.887

−
3
.897

−
3.997

−
4.179

20
−

2.568
−

2
.653

−
2.796

−
2.948

−
3.033

−
3
.196

−
3.283

−
3.370

−
3
.525

−
3
.588

−
3.670

−
3.820

−
3
.862

−
3.941

−
4.096

25
−

2.544
−

2.623
−

2
.773

−
2.925

−
3.000

−
3
.139

−
3.258

−
3.331

−
3.468

−
3
.560

−
3.643

−
3.784

−
3.832

−
3
.906

−
4.066

30
−

2.530
−

2.601
−

2
.735

−
2.909

−
2.981

−
3
.120

−
3
.238

−
3.305

−
3.438

−
3
.538

−
3.607

−
3.746

−
3.810

−
3
.882

−
4.008

40
−

2.504
−

2.574
−

2
.694

−
2
.885

−
2.949

−
3.071

−
3
.221

−
3.285

−
3.404

−
3.515

−
3
.579

−
3.702

−
3.785

−
3
.848

−
3.956

50
−

2.492
−

2.554
−

2
.672

−
2
.863

−
2.924

−
3.032

−
3
.200

−
3.259

−
3.374

−
3.496

−
3
.551

−
3.658

−
3.774

−
3.830

−
3
.925

70
−

2
.477

−
2.536

−
2.650

−
2
.848

−
2.903

−
3.016

−
3.181

−
3
.234

−
3.332

−
3.475

−
3
.523

−
3.620

−
3.751

−
3.799

−
3
.894

100
−

2
.458

−
2.517

−
2.611

−
2.835

−
2
.886

−
2.983

−
3.162

−
3
.213

−
3.301

−
3.459

−
3.507

−
3
.584

−
3.729

−
3.776

−
3
.862

M
odel

3
10

−
3
.085

−
3.188

−
3.382

−
3.410

−
3
.514

−
3.707

−
3.709

−
3.820

−
4
.021

−
3.983

−
4.098

−
4
.299

−
4.231

−
4.347

−
4.555

15
−

3.026
−

3
.112

−
3.276

−
3.351

−
3
.441

−
3.616

−
3.644

−
3.737

−
3
.904

−
3.921

−
4.009

−
4
.185

−
4
.173

−
4.263

−
4.428

20
−

2.980
−

3
.060

−
3.212

−
3.306

−
3.389

−
3
.531

−
3.595

−
3.677

−
3
.827

−
3
.878

−
3.955

−
4.108

−
4
.130

−
4.208

−
4.344

25
−

2.965
−

3.041
−

3
.189

−
3.286

−
3.361

−
3
.490

−
3.577

−
3.657

−
3.784

−
3
.853

−
3.927

−
4.064

−
4.101

−
4
.172

−
4.299

30
−

2.948
−

3.013
−

3
.130

−
3.269

−
3.337

−
3
.460

−
3
.563

−
3.632

−
3.756

−
3
.831

−
3.898

−
4.025

−
4.083

−
4
.147

−
4.284

40
−

2.921
−

2.982
−

3
.095

−
3
.244

−
3.306

−
3.420

−
3
.535

−
3.594

−
3.706

−
3.805

−
3
.865

−
3.972

−
4.053

−
4
.113

−
4.223

50
−

2.906
−

2.964
−

3
.067

−
3
.227

−
3.282

−
3.395

−
3
.519

−
3.576

−
3.681

−
3.785

−
3
.845

−
3.953

−
4.037

−
4.091

−
4
.202

70
−

2
.892

−
2.946

−
3.045

−
3
.210

−
3.258

−
3.355

−
3.500

−
3
.548

−
3.645

−
3.764

−
3
.817

−
3.906

−
4.015

−
4.063

−
4
.148

100
−

2
.875

−
2.925

−
3.010

−
3.193

−
3
.237

−
3.319

−
3.485

−
3
.526

−
3.606

−
3.749

−
3.793

−
3
.881

−
3.996

−
4.040

−
4
.119

N
otes:

See
T

able
4.1

for
an

explanation
of

the
various

features
of

this
table.



4.A. Tables 107

T
able

4.4:
C

ritical
values

for
the

pooled
W

ald
tests.

m
=

1
m

=
2

m
=

3
m

=
4

m
=

5
N

10%
5%

1%
10%

5%
1%

10%
5%

1%
10%

5%
1%

10%
5%

1%
M

odel
1

10
8.724

9
.296

10
.478

13
.053

13
.689

14
.974

17
.246

17
.988

19
.383

21
.394

22.227
23
.772

25
.514

26.366
28
.032

15
8.466

8
.927

9
.785

12
.710

13
.244

14
.282

16
.895

17
.511

18
.625

20
.965

21.708
23
.022

25
.138

25
.843

27
.185

20
8.311

8
.709

9
.419

12
.521

13
.016

13
.882

16
.671

17.234
18
.186

20
.728

21.327
22
.422

24
.829

25
.430

26
.690

25
8.209

8
.570

9
.275

12
.403

12
.858

13
.681

16
.525

16.979
17
.872

20
.591

21.114
22
.067

24
.627

25
.218

26
.224

30
8.164

8
.505

9
.211

12
.304

12
.698

13
.571

16
.406

16.855
17
.690

20
.473

21
.013

21
.908

24
.488

25
.030

26.023
40

8.087
8
.389

8
.947

12
.163

12.523
13
.149

16
.219

16.649
17
.425

20
.293

20
.743

21
.635

24
.265

24
.731

25.578
50

7.989
8
.307

8
.877

12
.097

12.430
13
.068

16
.152

16.528
17
.258

20
.187

20
.627

21
.347

24
.168

24
.595

25.431
70

7.921
8
.207

8
.719

11
.993

12.310
12
.913

16
.036

16.363
16
.975

20
.032

20
.391

21
.065

24
.032

24
.409

25.102
100

7
.883

8.135
8
.593

11
.911

12.197
12
.696

15
.913

16
.219

16
.788

19
.867

20
.205

20.787
23
.891

24
.227

24.790
M

odel
2

10
10
.881

11.499
12
.781

15
.158

15.862
17
.156

19
.386

20
.153

21
.721

23
.543

24
.373

26.042
27
.693

28
.571

30.120
15

10
.564

11.051
12
.045

14
.801

15
.344

16
.447

18
.980

19
.603

20.786
23
.075

23
.722

25.053
27
.128

27
.853

29
.419

20
10
.438

10
.875

11
.728

14
.587

15
.137

16.077
18
.695

19
.266

20.364
22
.768

23
.332

24
.393

26
.823

27
.540

28
.805

25
10
.275

10
.667

11
.487

14
.394

14
.871

15.684
18
.506

19
.004

20
.033

22
.576

23
.117

24
.145

26
.644

27
.231

28
.323

30
10
.212

10
.584

11.262
14
.348

14
.767

15
.499

18
.433

18
.897

19
.819

22
.432

22
.910

23
.860

26
.502

27
.063

28
.126

40
10
.103

10
.437

11
.036

14
.194

14
.530

15
.248

18
.247

18
.648

19
.446

22
.307

22
.741

23
.542

26
.240

26
.698

27
.550

50
10
.042

10
.364

10
.940

14
.083

14
.423

15
.042

18
.133

18
.526

19
.200

22
.156

22
.564

23
.359

26
.136

26
.580

27
.380

70
9
.897

10
.183

10
.736

14
.008

14
.322

14
.901

17
.980

18
.332

19
.010

22
.010

22
.363

22
.998

25
.968

26
.355

27
.020

100
9
.845

10
.096

10
.585

13
.866

14
.150

14
.727

17
.910

18
.206

18
.755

21
.898

22
.213

22
.813

25
.794

26.142
26
.754

M
odel

3
10

13.240
13
.882

15
.123

17
.414

18
.194

19
.572

21
.541

22
.401

24
.024

25
.675

26.537
28
.143

29
.711

30.684
32
.492

15
12.837

13
.403

14
.406

17
.002

17
.607

18
.702

21
.051

21
.678

22
.975

25
.144

25.879
27
.175

29
.221

30.010
31
.559

20
12.608

13
.072

13
.969

16
.722

17
.273

18
.381

20
.798

21
.358

22
.425

24
.943

25.624
26
.776

28
.863

29
.572

30
.719

25
12.461

12
.903

13
.748

16
.568

17
.023

17
.870

20
.658

21.168
22
.180

24
.700

25.240
26
.273

28
.699

29
.277

30
.319

30
12.398

12
.793

13
.514

16
.500

16
.929

17
.811

20
.499

20.998
21
.938

24
.469

25.007
25
.956

28
.509

29
.090

30
.142

40
12.254

12
.585

13
.239

16
.316

16
.674

17
.393

20
.372

20.804
21
.575

24
.347

24
.806

25
.699

28
.367

28
.875

29.820
50

12.188
12
.514

13
.124

16
.229

16.585
17
.313

20
.231

20.617
21
.389

24
.190

24
.626

25
.453

28
.173

28
.620

29.488
70

12.099
12
.389

12
.950

16
.096

16.429
17
.017

20
.103

20.456
21
.109

24
.035

24
.393

25
.102

27
.987

28
.421

29.132
100

11
.977

12.243
12
.721

15
.993

16.268
16
.778

19
.960

20
.265

20
.876

23
.908

24
.229

24.895
27
.837

28
.203

28.849
C

ontinued
overleaf



108 CHAPTER 4. PANEL ERROR CORRECTION TESTING

T
able

4.4:
C

ontinued.

m
=

1
m

=
2

m
=

3
m

=
4

m
=

5
N

10%
5%

1%
10%

5%
1%

10%
5%

1%
10%

5%
1%

10%
5%

1%
M

odel
4

10
11.913

12
.551

13
.708

16
.139

16
.817

18
.132

20
.376

21
.180

22
.669

24
.463

25.285
26
.872

28
.600

29.452
31
.153

15
11.541

12
.033

12
.903

15
.822

16
.386

17
.485

19
.900

20
.509

21
.757

24
.061

24.685
26
.021

28
.135

28
.969

30
.308

20
11.386

11
.789

12
.690

15
.554

16
.047

17
.081

19
.640

20.200
21
.258

23
.734

24.360
25
.445

27
.774

28
.407

29
.622

25
11.294

11
.689

12
.471

15
.404

15
.858

16
.751

19
.497

19.989
20
.886

23
.544

24.079
25
.155

27
.629

28
.202

29
.327

30
11.215

11
.556

12
.241

15
.302

15
.715

16
.543

19
.373

19.840
20
.720

23
.449

23
.932

24
.891

27
.490

28
.024

28.947
40

11.082
11
.403

12
.080

15
.218

15.591
16
.334

19
.227

19.605
20
.445

23
.257

23
.714

24
.520

27
.278

27
.748

28.660
50

11.014
11
.347

11
.861

15
.098

15.465
16
.150

19
.124

19.499
20
.163

23
.163

23
.566

24
.348

27
.135

27
.565

28.413
70

10.944
11
.223

11
.755

14
.955

15.264
15
.857

18
.967

19.299
19
.932

22
.979

23
.323

24
.069

26
.975

27
.361

28.086
100

10
.880

11.137
11
.633

14
.886

15.175
15
.696

18
.874

19
.179

19
.719

22
.848

23
.208

23.781
26
.810

27
.139

27.771
M

odel
5

10
14
.166

14.818
16
.222

18
.334

19.047
20
.452

22
.525

23
.277

24
.967

26
.616

27
.443

29.169
30
.711

31
.665

33.368
15

13
.813

14.310
15
.340

17
.970

18
.555

19
.613

22
.095

22
.788

24.037
26
.075

26
.827

28.317
30
.177

30
.902

32
.330

20
13
.600

14
.088

14
.941

17
.695

18
.183

19.263
21
.788

22
.358

23.424
25
.801

26
.437

27
.596

29
.846

30
.514

31
.755

25
13
.485

13
.904

14
.624

17
.547

18
.006

18.937
21
.576

22
.145

23
.133

25
.658

26
.177

27
.292

29
.657

30
.245

31
.412

30
13
.377

13
.766

14.479
17
.458

17
.902

18
.653

21
.507

21
.972

22
.871

25
.502

26
.007

26
.931

29
.563

30
.100

31
.168

40
13
.269

13
.620

14
.257

17
.321

17
.699

18
.419

21
.305

21
.729

22
.515

25
.334

25
.758

26
.561

29
.323

29
.811

30
.696

50
13
.203

13
.529

14
.155

17
.199

17
.534

18
.167

21
.193

21
.583

22
.284

25
.212

25
.641

26
.503

29
.156

29
.568

30
.452

70
13
.068

13
.347

13
.893

17
.082

17
.411

18
.020

21
.058

21
.392

22
.033

25
.047

25
.411

26
.104

28
.985

29
.398

30
.127

100
12
.989

13
.251

13
.744

16
.981

17
.276

17
.793

20
.939

21
.267

21
.884

24
.903

25
.226

25
.848

28
.798

29.140
29
.777

N
otes:

See
T

ables
4.1

and
4.2

for
an

explanation
of

the
various

features
of

this
table.
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T
able

4.5:
Size

and
size-adjusted

pow
er

in
M

odel
1

w
ith

no
determ

inistic
com

ponents.

T
his

study
W

esterlund
(2007)

A
R

case
N

T
τ
α̂

1
i

τ
α̃

1
i

w
δ̂
1

i
w
δ̃
1

i
τ
∗α̂

1
τ
∗α̃

1
w
∗δ̂
1

w
∗δ̃
1

G
τ

G
ρ

P
τ

P
ρ

Size
1

10
100

5.7
6
.1

7.5
7.6

5.4
7.1

12.0
15.5

9
.5

5
.8

11.8
17.0

10
200

5
.3

5
.5

6.1
6.3

5.5
6.1

8.0
11.2

7
.9

6
.1

11.1
16
.1

20
100

5
.6

5
.8

7.6
7.6

4.4
5.8

14.3
19.5

7
.6

4.4
8.0

11
.1

20
200

5
.4

5
.6

6.2
6.4

4.9
7.1

9.5
14.9

5
.8

4.0
8.1

11
.2

2
10

100
6.1

6
.1

7.9
8.4

6.7
6.6

13.3
18.1

2
.1

0.9
2.9

3
.4

10
200

5
.6

5
.1

6.3
6.5

5.9
5.1

8.3
11.7

2
.1

1.2
2.5

3
.0

20
100

6
.1

6
.0

8.0
8.4

5.7
6.3

16.9
22.8

2
.2

0.9
2.6

3
.7

20
200

5
.6

5
.3

6.4
6.7

5.5
5.2

10.5
16.2

1
.4

0.7
2.7

3
.1

3
10

100
5.1

5
.5

23.3
18.6

0.7
1.9

68.1
52.1

4
.1

1.7
2.3

1
.9

10
200

5
.0

4
.8

12.1
9.3

2.7
2.7

28.0
19.2

5
.2

2.0
7.3

7
.9

20
100

5
.1

5
.5

23.7
18.3

0.3
0.6

86.4
69.5

4
.0

0.7
1.8

1
.6

20
200

5
.0

4
.8

12.0
9.1

1.5
2.0

37.7
23.3

4
.2

0.6
6.2

5
.2

4
10

100
7.0

6
.4

8.7
12.3

8.4
6.3

16.0
31
.1

9
.8

6
.6

12.0
17.5

10
200

5
.9

5
.3

6.5
10.0

6.7
5.3

9.5
22
.6

8
.1

6
.4

11.0
16.3

20
100

6
.8

6
.0

8.9
12.8

7.9
5.5

22.1
38
.9

7
.9

4
.4

8.1
11.5

20
200

5
.9

5
.5

6.7
10.6

6.7
5.0

12.6
30
.9

6
.0

4
.2

7.6
11.0

C
ontinued

overleaf
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T
able

4.5:
C

ontinued.

T
his

study
W

esterlund
(2007)

A
R

case
N

T
τ
α̂

1
i

τ
α̃

1
i

w
δ̂
1

i
w
δ̃
1

i
τ
∗α̂

1
τ
∗α̃

1
w
∗δ̂
1

w
∗δ̃
1

G
τ

G
ρ

P
τ

P
ρ

Size-adjusted
pow

er
1

10
100

16
.4

13
.0

28.4
13.1

77
.6

60.8
85.9

39.0
28
.7

20.3
34.3

45
.9

10
200

49
.7

35
.6

58.2
30.3

100
.0

99.5
99.9

88.4
47
.7

45.7
50.9

62
.3

20
100

16
.8

13
.6

28.4
13.8

95
.6

81.8
97.1

50.8
54
.5

41.6
55.2

62
.8

20
200

49
.9

36
.0

58.5
31.2

100
.0

100.0
100.0

97.1
76
.3

74.1
69.0

74
.1

2
10

100
15
.8

13
.1

28.0
12.4

74
.7

58.0
85.3

37.5
4
.1

2.5
5.7

7
.2

10
200

48
.8

33
.9

57.7
29.5

100
.0

98.2
99.9

86.9
6
.6

5.4
7.3

11
.1

20
100

16
.0

13
.7

27.9
13.2

94
.2

76.6
96.4

48.9
20
.0

12.7
21.9

28
.6

20
200

49
.2

34
.5

58.1
30.3

100
.0

99.8
100.0

96.9
34
.1

32.2
33.1

41
.5

3
10

100
12
.0

9
.9

6.8
3.5

56
.2

44.8
14.7

4.8
25
.9

13.1
11.6

14
.2

10
200

30
.2

23
.9

16.4
10.1

98
.7

96.1
74.9

40.1
70
.9

58.3
57.7

64
.2

20
100

12
.5

10
.0

6.6
3.6

79
.8

68.9
22.0

6.2
67
.5

36.9
19.5

19
.7

20
200

30
.9

24
.1

17.1
11.0

100
.0

99.8
94.9

60.6
96
.8

91.4
87.4

88
.5

4
10

100
25
.8

15
.5

56.8
22.4

90
.7

58.8
99.4

51.2
18
.9

13.9
22.6

31
.7

10
200

71
.1

46
.8

82.6
43.2

100
.0

99.0
100.0

91.8
29
.2

28.5
32.2

42
.2

20
100

26
.6

16
.4

56.5
22.6

98
.9

76.4
100.0

57.7
32
.0

22.7
32.7

38
.9

20
200

71
.3

47
.6

82.6
43.4

100
.0

99.9
100.0

98.1
47
.8

47.3
43.0

47
.6

N
otes:

A
R

case
1

refers
to

the
setup

w
ith

no
serial

correlation,
w

hile
cases

2
to

4
refer

to
the

setup
w

ith
serial

correlation
in

the
errors

driving
∆
Y
i,t ,

∆
X
i,t

and
∆
F
t ,

respectively.
In

all
cases,

the
serial

correlation
is

of
the

first-order
A

R
type

w
ith

a
com

m
on

A
R

param
eter

of
m

agnitude
0.5.

T
he

error
correction

param
eter

α
1

is
zero

under
the

null
and
−

0.05
under

the
alternative.
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T
able

4.6:
Size

and
size-adjusted

pow
er

in
M

odel
2

w
ith

an
unrestricted

constant.

T
his

study
W

esterlund
(2007)

A
R

case
N

T
τ
α̂

1
i

τ
α̃

1
i

w
δ̂
1

i
w
δ̃
1

i
τ
∗α̂

1
τ
∗α̃

1
w
∗δ̂
1

w
∗δ̃
1

G
τ

G
ρ

P
τ

P
ρ

Size
1

10
100

6.2
6
.3

8.1
8.2

6
.1

7.4
13.4

16
.0

12.5
6
.4

13.2
14.9

10
200

5
.7

5
.7

6.5
6.4

6
.0

6.9
8.6

11
.7

9.1
6
.5

11.8
14.2

20
100

6
.0

6
.2

8.1
8.0

5
.6

7.3
15.9

20
.5

12.2
4
.9

10.5
10.0

20
200

5
.5

5
.7

6.5
6.6

5
.9

7.8
9.8

15
.0

9.0
5
.1

10.1
10.4

2
10

100
6.9

6
.3

8.6
9.1

7
.9

7.9
15.5

20
.3

4.4
1
.0

4.0
1.2

10
200

6
.0

5
.3

6.8
7.0

6
.9

5.7
9.4

13
.1

2.6
0
.8

2.9
1.1

20
100

6
.7

6
.3

8.7
8.9

7
.9

7.7
19.7

26
.1

4.8
1
.1

3.9
2.4

20
200

5
.9

5
.2

6.8
7.0

7
.1

6.1
11.3

18
.0

2.5
0
.5

3.0
1.3

3
10

100
4.7

5
.3

19.3
16.3

0
.6

1.1
50.1

41
.2

6.6
1
.3

3.3
1.1

10
200

5
.1

4
.8

11.1
8.7

2
.5

2.5
22.1

15
.2

7.0
1
.9

7.9
4.5

20
100

4
.7

5
.1

19.6
16.1

0
.1

0.4
68.9

52
.7

7.3
0
.6

2.5
0.8

20
200

5
.0

4
.6

10.8
8.4

1
.5

1.8
27.3

18
.4

5.9
0
.5

7.1
2.0

4
10

100
7.8

6
.5

9.7
11.2

10
.6

6.5
20.2

25
.8

12.7
6
.6

14.1
15.4

10
200

6
.5

5
.4

7.3
8.8

7
.8

5.5
11.3

19
.2

9.2
6
.7

11.7
14.0

20
100

7
.7

6
.4

9.8
11.2

12
.2

6.6
26.2

32
.0

12.9
5
.3

11.4
10.9

20
200

6
.3

5
.4

7.2
9.2

8
.7

5.5
13.8

24
.6

8.4
4
.8

9.2
9.4

C
ontinued

overleaf
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T
able

4.6:
C

ontinued.

T
his

study
W

esterlund
(2007)

A
R

case
N

T
τ
α̂

1
i

τ
α̃

1
i

w
δ̂
1

i
w
δ̃
1

i
τ
∗α̂

1
τ
∗α̃

1
w
∗δ̂
1

w
∗δ̃
1

G
τ

G
ρ

P
τ

P
ρ

Size-adjusted
pow

er
1

10
200

9
.1

8
.7

17.6
10.1

31.7
26.7

60
.5

25.1
29.9

21
.3

34.2
43.5

10
200

32
.2

23.0
45.7

24.1
98.5

88.7
99
.5

75.7
48.4

51.1
52.9

67.0
20

100
9
.4

8
.6

18.0
10.3

49.5
39.4

82
.2

33.8
55.2

45.2
56.4

65.5
20

200
32
.7

23.3
46.7

24.5
100.0

98.3
100

.0
90.5

79.8
82.8

76.3
83.2

2
10

100
8
.7

9
.0

17.1
9.4

29.4
25.1

59
.4

23.2
6.5

2.3
6.5

3.5
10

200
31
.5

22.4
45.6

22.9
98.4

85.7
99
.6

73.9
7.4

4.8
7.3

6.9
20

100
9
.0

9
.0

17.4
9.9

45.9
36.3

80
.9

31.0
22.8

14.0
22.4

25.2
20

200
32
.0

23.1
46.3

23.4
99.9

96.2
100

.0
88
.4

34.8
33.7

33.7
41.9

3
10

100
8
.4

7
.3

7.4
5.0

25.3
22.0

15
.6

8
.5

21.5
11.0

7.5
6.7

10
200

19
.8

15.6
15.2

9.8
84.8

75.1
68
.0

34
.9

60.5
53.6

50
.5

55.2
20

100
8
.8

7
.5

7.2
5.1

41.6
34.0

23
.5

11
.1

54.1
28.1

17
.4

17.5
20

200
20
.2

16.4
15.7

10.3
97.7

93.3
90
.1

54
.5

95.6
90.8

84
.9

85.2

4
10

100
12
.4

8
.7

40.5
18.3

41.3
23.6

94
.6

41
.9

23.4
16.0

25
.4

30.9
10

200
53
.6

31.9
74.2

40.2
99.8

89.4
100

.0
88
.9

32.6
32.6

35
.3

44.4
20

100
13
.1

8
.8

40.7
18.9

61.7
31.5

99
.3

49
.5

38.0
26.4

37
.4

41.5
20

200
54
.3

32.7
74.6

40.1
100.0

97.1
100

.0
96
.1

52.6
53.9

48
.3

52.2

N
otes:

See
T

able
4.5

for
an

explanation
of

the
various

features
of

this
table.
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T
able

4.7:
Size

and
size-adjusted

pow
er

in
M

odel
3

w
ith

unrestricted
constant

and
trend

term
s.

T
his

study
W

esterlund
(2007)

A
R

case
N

T
τ
α̂

1
i

τ
α̃

1
i

w
δ̂
1

i
w
δ̃
1

i
τ
∗α̂

1
τ
∗α̃

1
w
∗δ̂
1

w
∗δ̃
1

G
τ

G
ρ

P
τ

P
ρ

Size
1

10
100

6.6
6
.8

8.4
8.4

6
.3

8.2
14.4

17
.8

16.6
5
.4

14.9
11.2

10
200

5
.9

5
.9

6.6
6.5

6
.1

7.4
9.2

12
.6

9.8
6
.0

11.6
10.9

20
100

6
.4

6
.6

8.7
8.5

5
.8

8.8
19.0

23
.7

15.0
3
.3

11.1
6.6

20
200

5
.8

6
.0

6.8
6.9

6
.2

9.2
11.7

18
.4

8.7
3
.6

8.3
6.5

2
10

100
7.3

6
.7

9.1
9.7

8
.5

7.5
17.2

22
.7

3.8
0
.7

1.7
0.4

10
200

6
.3

5
.4

6.9
7.2

7
.2

5.3
10.5

15
.0

1.7
0
.2

0.9
0.2

20
100

7
.2

6
.6

9.4
9.7

9
.0

8.8
24.2

31
.6

4.2
0
.9

2.1
0.6

20
200

6
.3

5
.4

7.2
7.4

7
.5

6.7
13.6

21
.8

1.2
0
.2

1.0
0.3

3
10

100
4.3

5
.1

15.7
14.1

0
.5

1.0
34.8

30
.3

6.9
1
.2

2.2
1.0

10
200

5
.1

4
.7

9.7
7.8

1
.8

2.1
16.6

12
.8

5.7
1
.6

5.7
2.7

20
100

4
.3

5
.0

16.1
14.2

0
.1

0.2
50.3

42
.6

7.2
0
.5

2.3
0.6

20
200

5
.1

4
.5

10.0
8.1

1
.4

1.6
22.6

17
.5

4.8
0
.2

5.1
0.6

4
10

100
8.4

6
.9

10.4
10.2

12
.3

6.9
23.7

22
.4

17.0
6
.2

15.9
12.0

10
200

6
.9

5
.4

7.5
7.7

8
.5

5.1
12.1

15
.6

10.3
5
.5

12.0
10.7

20
100

8
.4

6
.7

10.7
10.3

14
.1

7.8
35.2

28
.3

16.8
4
.1

11.6
6.9

20
200

6
.8

5
.5

7.8
8.1

10
.0

6.4
17.0

21
.5

8.1
3
.4

7.6
5.8

C
ontinued

overleaf



114 CHAPTER 4. PANEL ERROR CORRECTION TESTING

T
able

4.7:
C

ontinued.

T
his

study
W

esterlund
(2007)

A
R

case
N

T
τ
α̂

1
i

τ
α̃

1
i

w
δ̂
1

i
w
δ̃
1

i
τ
∗α̂

1
τ
∗α̃

1
w
∗δ̂
1

w
∗δ̃
1

G
τ

G
ρ

P
τ

P
ρ

Size-adjusted
pow

er
1

10
200

6
.2

6.4
11.7

8.0
10
.5

12.3
37.1

16
.3

26.3
11.5

26
.2

22.4
10

200
18
.5

14.1
35.5

19.1
80.2

61.2
96
.4

59
.4

39.7
32.3

44
.9

50.3
20

100
6
.4

6.6
11.9

8.2
14.9

15.6
53
.5

19
.3

40.7
15.9

35
.7

28.3
20

200
18
.8

14.5
36.0

19.2
96.9

81.1
99
.8

73
.4

69.1
61.1

69
.5

72.0

2
10

100
6
.1

6.6
11.5

7.4
9.6

13.9
36
.0

14
.3

4.6
1.3

2
.4

0.8
10

200
17
.7

14.6
35.0

17.5
78.7

58.9
96
.3

55
.0

4.4
2.0

2
.9

1.6
20

100
6
.2

6.9
11.6

7.7
13.0

16.2
52
.3

16
.3

13.9
3.8

8
.9

4.9
20

200
18
.2

15.0
35.8

18.0
96.5

75.2
99
.8

70
.2

19.8
12.4

18.6
17.5

3
10

100
6
.5

6.1
7.3

5.9
13.0

10.1
14
.3

9.1
13.1

3.5
3.7

2.3
10

200
12
.9

11.1
13.9

9.3
54.3

45.4
55
.7

29.3
39.3

20.8
36.8

31.5
20

100
6
.7

6.2
7.3

5.8
17.3

14.0
20
.4

11.1
28.5

3.9
11.1

4.9
20

200
13
.1

11
.5

14.1
9.4

76.5
65.8

78
.6

42.2
79.9

43.0
77.8

67.3

4
10

100
5
.7

5
.4

27.4
14.4

6.8
7.2

79
.3

31.2
23.4

9.8
21.8

18.0
10

200
33
.2

18
.4

65.6
36.7

95.3
60.5

100
.0

82.4
27.6

20.5
30.2

32.8
20

100
5
.9

5
.5

27.6
14.9

8.1
7.0

92
.1

34.8
29.8

10.9
25.1

19.0
20

200
33
.8

18
.6

65.6
36.0

99.8
75.2

100
.0

91.9
42.3

33.1
40.0

39.5

N
otes:

See
T

able
4.5

for
an

explanation
of

the
various

features
of

this
table.
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T
able

4.8:
C

ointegration
test

results
for

the
F

isher
effect.

M
odel

2
M

odel
3

C
ountry

τ
α̂

?1
i

τ
α̃

1
i

w
δ̂

?1
i

w
δ̃
1

i
τ
α̂

?1
i

τ
α̃

1
i

w
δ̂

?1
i

w
δ̃
1

i

A
ustralia

−
3.43

∗
−

4.22
∗∗

5
.19

13.95
−

2
.01

−
2
.82

17
.77
∗

18
.34
∗

B
elgium

−
1.84

−
3.36

6
.40

12.98
−

2
.82

−
3
.69

10
.80

15.63
C

anada
−

2.33
−

4.51
∗∗∗

9
.16

22.38
∗∗∗

−
3
.26

−
4
.10
∗

15
.89

24.82
∗∗∗

Sw
itzerland

−
0.70

−
2.18

3
.74

5.72
−

1
.09

−
1
.85

8
.51

5.50
G

erm
any

−
2.93

−
2.27

6
.25

7.69
−

3
.30

−
2
.70

8
.61

7.92
D

enm
ark

−
4.90

∗∗∗
−

5.55
∗∗∗

28.43
∗∗∗

28.43
∗∗∗

−
5
.06
∗∗∗

−
4.69

∗∗
32
.46
∗∗∗

32
.46
∗∗∗

Spain
−

3.72
∗

−
4.57

∗∗∗
14.57

22.46
∗∗∗

−
4
.48
∗∗

−
4.62

∗∗
21
.16
∗∗

23
.09
∗∗

F
inland

−
2.74

−
3
.43
∗∗∗

9.97
13
.27

−
2
.89

−
3.32

10
.83

13.04
France

−
1.82

−
2
.54

7
.49

7.70
−

2
.12

−
3.18

11
.01

12.95
U

nited
K

ingdom
−

4.39
∗∗∗

−
4.57

∗∗∗
24.07

∗∗∗
25
.54
∗∗∗

−
4
.41
∗∗

−
4.36

∗∗
23
.28
∗∗

24
.89
∗∗

Ireland
−

6.40
∗∗∗

−
4
.46
∗∗∗

28.43
∗∗∗

28
.43
∗∗∗

−
6.60

∗∗∗
−

4.45
∗∗

32
.46
∗∗∗

32.46
∗∗∗

Italy
−

3.14
−

4
.16
∗∗

18.84
∗∗

25
.10
∗∗∗

−
3.72

−
3.82

∗
22
.96
∗∗

24.38
∗∗

Japan
−

2.83
−

5
.60
∗∗∗

24
.39
∗∗∗

28
.43
∗∗∗

−
3.30

−
5.76

∗∗∗
22
.40
∗∗

32.46
∗∗∗

L
uxem

bourg
−

2
.83

−
4
.18
∗∗

11
.46

23.01
∗∗∗

−
3.84

∗
−

4.37
∗

18
.35
∗

23.89
∗∗

N
etherlands

−
0
.31

−
2
.39

4
.57

10.96
−

0.97
−

2.89
6
.19

13.17
N

orw
ay

−
2
.70

−
3
.00

8
.83

11.71
−

4.15
∗

−
3.93

∗
8
.67

11.23
N

ew
Z

ealand
−

6
.40
∗∗∗

−
6
.40
∗∗∗

28
.43
∗∗∗

28
.43
∗∗∗

−
6.14

∗∗∗
−

6.19
∗∗∗

32
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−
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.
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Table 4.10: Descriptive statistics for the common factors in the monetary exchange rate model.

Principal components Observed
Value Factor 1 Factor 2 Factor 3 m∗t y∗t
AR 0.97 0.98 0.97 1.00 1.00
SE 0.03 0.05 0.02 0.00 0.01
ADF −1.09 −0.34 −1.79 −3.06∗∗ −0.42

Notes: AR refers to the estimated first order AR coefficient, SE refers to its
standard error and ADF refers to the augmented Dickey and Fuller (1979)
test. The autoregressions are fitted with an intercept and the lag orders
are determined using the Schwarz Bayesian criterion. See Table 4.8 for an
explanation of the remaining features of the table.
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4.B Appendix

4.B.1 Proof of Theorem 4.1.

Consider (a). From (4.2.3) and (4.2.4) we have ∆Ft − π′3gt = Ψ(L)ηt. Substituting for ∆Ft in (4.2.2) and

using (4.2.4) we obtain

∆Xi,t − π∗2i′gt = Γ21i(L)ε1i,t + Γ22i(L)ε2i,t + λ′2iΨ(L)ηt. (4.B.1)

Taking first differences of (4.2.1) and substituting for ∆Ft and ∆Xi,t from (4.B.1) we obtain the following MA

representation

∆Yi,t − π∗1i′gt = ((1− L)Γ11i + b′iΓ21i(L))ε1i,t

+((1− L)Γ21i + b′iΓ22i(L))ε2i,t + (λ′1i + b′iλ
′
2i)Ψ(L)ηt. (4.B.2)

Combining the results above we find

Ci(L) =


(1− L)Γ11i(L) + b′iΓ21i(L) (1− L)Γ12i(L) + b′iΓ22i(L) (λ′1i + b′iλ

′
2i)Ψ(L)

Γ21i(L) Γ22i(L) λ′2iΨ(L)

0 0 Ψ(L)

 .

Furthermore,

Ci(1) =


b′i (λ′1i + b′iλ

′
2i)

Im λ′2i

0 Ik


 Γ21i(1) Γ22i(1) 0

0 0 Ψ(1)


such that Ci(1) has rank m+ k. This establishes part (a) of the theorem.

Next, consider (b). Partition Ci(L) such that the diagonal blocks C11i(L) and C22i(L) are of dimension

r × r and (m+ k)× (m+ k), respectively. Since

C22i(L) =

 Γ22i(L) λ′2iΨ(L)

0 Ψ(L)


is invertible, we can decompose Ci(L) as

Ci(L) =

 Ir C12i(L)C22i(L)−1

0 I(m+k)

 C11·2i(L) 0

C21i(L) C22i(L)

 .
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As C11·2i = (1− L)Γ11·2i(L) we can further write

Ci(L) =

 Ir C12i(L)C22i(L)−1

0 I(m+k)

 (1− L)Ir 0

0 I(m+k)

 Γ11·2i(L) 0

C21i(L) C22i(L)


= Ui(L)−1M(L)Vi(L)−1, (4.B.3)

where the lag polynomials

Vi(L) =


Γ11·2i(L)−1 0 0

−Γ22i(L)−1Γ21i(L)Γ11·2i(L)−1 Γ22i(L)−1 −Γ22i(L)−1λ′2i

0 0 Ψ(L)−1


and

Ui(L) =


Ir −((1− L)Γ12i(L)Γ22i(L)−1 + b′i) (1− L)Γ12i(L)Γ22i(L)−1λ′2i − λ′1i
0 Im 0

0 0 Ik


are invertible.

Substituting (4.B.3) for Ci(L) in the MA representation of ∆Z+
i,t and pre-multiplying by Ui(L) and M̄(L),

where

M̄(L) =

 Ir 0

0 (1− L)I(m+k)

 ,

we obtain

M̄(L)Ui(L)(1− L)
(
Z+
i,t − (π∗i )′gt

)
= (1− L)Vi(L)−1ε+

i,t.

Eliminating (1 − L) from both sides and pre-multiplying by Vi(L) yields the following possibly infinite AR

representation for Z+
i,t

Vi(L)M̄(L)Ui(L)
(
Z+
i,t − (π∗i )′gt

)
= ε+

i,t.

Using that Γ11·2i(L)−1 = |Γ11·2i(L)|−1adj(Γ11·2i(L)), Γ22i(L)−1 = |Γ22i(L)|−1adj(Γ22i(L)),

Ψ(L)−1 = |Ψ(L)|−1adj(Ψ(L)) and |Γ+
i (L)| = |Γ11·2i(L)||Γ22i(L)||Ψ(L)|, we can recover both the scalar lag

polynomial ci(L) = |Γ+
i (L)| and the lag polynomial matrix Ai(L) given in the theorem. This establishes part

(b).

Consider (c). Direct computation of Ai(1) yields

Ai(1) =


|Ψ(1)||Γ22i(1)|adj(Γ11·2i(1))

−|Ψ(1)|adj(Γ22i(1))Γ21i(1)adj(Γ11·2i(1))

0

( Ir −b′i −λ′1i
)

= α∗i β
′
i.
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Since

Ci(1) =


b′i (λ′1i + b′iλ

′
2i)

Im λ′2i

0 Ik


 Γ21i(1) Γ22i(1) 0

0 0 Ψ(1)

 = β̃i(α̃∗i )
′,

where α̃∗i and β̃i denote the matrices orthogonal to α∗i and βi, respectively. It follows that β′iCi(1) = 0 and

Ci(1)αi = 0, and so the proof of (c) is complete.

Parts (d) and (e) follow by manipulating of the lag polynomial matrix Ai(L) and rearranging terms, as in

Engle and Granger (1987).

4.B.2 Proof of Theorem 4.2.

Before we come to the proof of the theorem we need some preliminary results, which are summarized in Lemma

4.B.1.

Lemma 4.B.1 Under H0i and Assumptions 4.1, 4.2, 4.4 and 4.5, as T →∞

(a) T−
1
2Z+

i,t−1
w−→ Ω

1
2
i Wi,

(b) T−2
T∑
t=2

QWZ
+
i,t−1(QWZ+

i,t−1)′ w−→ Ω
1
2
i

∫
WiW

′
i (Ω

1
2
i )′,

(c) T−1
T∑
t=2

QWZ
+
i,t−1QW ε1·2i,t

w−→ σiΩ
1
2
i pi(Wi),

where

Ω
1
2
i =

 σiB̃
−1
11·2i B̃−1

11·2iM1iM2i

σiB̃
−1
11·2iρi (M2i + B̃−1

11·2iρiM1iM2i)


=

 ω11i Ω12i

Ω21i Ω22i

 ,

where B̃jji(L) = I − Bjji(L)L, Bjli = Bjli(1), B̃jli = B̃jli(1), B̃−1
11·2i = (B̃11i − B12iB̃

−1
22iB21i)−1, ρ′i =(

B′21i(B̃
−1
22i)
′ 0

)
, M1i =

(
B12i B13i

)
and

M2i =

 B̃−1
22iΣ

1
2
22i B̃−1

22i(B23iB̃
−1
33i + λ′2i)

0 B̃−1
33i

 .

Note that Ω21i = ω11iρi and define for future use ω11·2i = ω11i − ω11iΩ12Ω−1
22iρi.
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Proof of Lemma 4.B.1.

Consider (a). Note that under H0i,
B̃11i(1) −B12i(1) −B13i(1)

−B21i(1)L B̃22i(1) −B23i(1)L

0 0 B̃33i(1)

∆Z+
i,t =


ε1·2i,t

ε∗2i,t

ηt

 ,

such that

Z+
i,t =


B̃11i(1) −B12i(1) −B13i(1)

−B21i(1) B̃22i(1) −B23i(1)

0 0 B̃33i(1)


−1

t∑
s=1


ε1·2i,t

ε∗2i,t

ηt



+


−B̃+

11i(L) B+
12i(L) B+

13i(L)

B+
21i(L)L −B̃+

22i(L) B+
23i(L)L

0 0 −B̃+
33i(L)

∆Z+
i,t

 , (4.B.4)

where B+
jli(L) and B̃+

jli(L) are obtained from the Beveridge-Nelson decompositions of Bjli(L) and B̃jli(L) as

Bjli(L) = Bjli(1) +B+
jli(L)(1− L) and B̃jli(L) = B̃jli(1) + B̃+

jli(L)(1− L), respectively.

Substituting ε∗2i,t = ε2i,t + λ′2iηt into (4.B.4) we obtain

T−
1
2Z+

i,t =


B̃11i(1) −B12i(1) −B13i(1)

−B21i(1) B̃22i(1) −B23i(1)

0 0 B̃33i(1)


−1

σi 0 0

0 Σ
1
2
22i λ′2i

0 0 Ik



× T−
1
2

t∑
s=1


σ−1
i ε1·2i,t

Σ−
1
2

22i ε2i,t

ηt

+ op(1),

such that

T−
1
2Z+

i,t
w−→ Ω

1
2
i Wi (4.B.5)

as T →∞, proving (a).

Now, by using the rules for projections,
∑T
t=2QWZ

+
i,t−1(QWZ+

i,t−1)′ can be written as

T∑
t=2

QWZ
+
i,t−1(QWZ+

i,t−1)′ =
T∑
t=2

Z+
i,t−1(Z+

i,t−1)′

−
T∑
t=2

Z+
i,t−1W

′
i,t

(
T∑
t=2

Wi,tW
′
i,t

)−1 T∑
t=2

Wi,t(Z+
i,t−1)′. (4.B.6)

By Lemma 2.1 of Park and Phillips (1988),
∑T
t=2 Z

+
i,t−1W

′
i,t = Op(T ),

∑T
t=2 Z

+
i,t−1(Z+

i,t−1)′ = Op(T 2) and
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∑T
t=2Wi,tW

′
i,t = Op(T ) such that (4.B.6) reduces to

T−2
T∑
t=2

QWZ
+
i,t−1(QWZ+

i,t−1)′ = T−2
T∑
t=2

Z+
i,t−1(Z+

i,t−1)′ + T−2Op(T )Op(T−1)Op(T )

= T−2
T∑
t=2

Z+
i,t−1(Z+

i,t−1)′ +Op(T−1),

where we can make use of (a) to show that as T →∞

T−2
T∑
t=2

Z+
i,t−1(Z+

i,t−1)′ w−→ Ω
1
2
i

∫
WiW

′
i (Ω

1
2
i )′.

This proves (b).

Finally, consider (c). By definition,

T∑
t=2

QWZ
+
i,t−1(QW ε1·2i,t) =

T∑
t=2

Z+
i,t−1ε1·2i,t −

T∑
t=2

Z+
i,t−1W

′
i,t

(
T∑
t=2

Wi,tW
′
i,t

)−1 T∑
t=2

Wi,tε1·2i,t,

where
∑T
t=2Wi,tε1·2i,t = Op(

√
T ). Thus, by using the same arguments as above,

T−1
T∑
t=2

QWZ
+
i,t−1(QW ε1·2i,t) = T−1

T∑
t=2

Z+
i,t−1ε1·2i,t +Op(T−

1
2 ), (4.B.7)

where the limit of the first term on the right-hand side is given by

T−1
T∑
t=2

Z+
i,t−1ε1·2i,t

w−→ σiΩ
1
2
i

∫
WidW1i = σiΩ

1
2
i pi(Wi).

This establishes (c), and hence the proof of Lemma 4.B.1 is complete. 2

Now, since under the null hypothesis,

∆(QWYi,t) = δ′1i(QWZ
+
i,t−1) +QW ε1·2i,t = QW ε1·2i,t,

we have

δ̂1i =

(
T∑
t=2

QWZ
+
i,t−1(QWZ+

i,t−1)′
)−1 T∑

t=2

QWZ
+
i,t−1(QW ε1·2i,t).

From Lemma 4.B.1 (b) and (c) we have that

T δ̂1i
w−→ σi

(
Ω

1
2
i

∫
WiW

′
i (Ω

1
2
i )′
)−1

Ω
1
2
i

∫
WidW1i = σi(Ω

− 1
2

i )′Pi(Wi). (4.B.8)
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Similarly, under the null the Wald statistic is given by

wδ̂1i
= σ̂−2

i

T∑
t=2

QW ε1·2i,t(QWZ+
i,t)
′

(
T∑
t=2

QWZ
+
i,t−1(QWZ+

i,t−1)′
)−1 T∑

t=2

QWZ
+
i,t−1(QW ε1·2i,t).

Consider σ̂2
i = T−1

∑T
t=2(∆(QWYi,t) − δ̂′1i(QWZ

+
i,t−1))2. By making use of Lemma 4.B.1, and the fact that

under the null, ∆(QWYi,t) = QW ε1·2i,t, we get

σ̂2
i = T−1

T∑
t=2

(∆(QWYi,t − δ̂1i(QWZ+
i,t−1))2

= T−1
T∑
t=2

(QW ε1·2i,t)2 − 2δ̂′1iT
−1

T∑
t=2

QWZ
+
i,t−1(QW ε1·2i,t)

+ δ̂′1iT
−1

T∑
t=2

QWZ
+
i,t−1(QWZ+

i,t−1)′δ̂1i

= T−1
T∑
t=2

(QW ε1·2i,t)2 +Op(T−1)Op(1) + T−1Op(T−1)Op(T 2)Op(T−1)

= T−1
T∑
t=2

(QW ε1·2i,t)2 +Op(T−1). (4.B.9)

As for the first term on the right-hand side, we have

T∑
t=2

(QW ε1·2i,t)2 =
T∑
t=2

ε2
1·2i,t −

T∑
t=2

ε1·2i,tW
′
i,t

(
T∑
t=2

Wi,tW
′
i,t

)−1 T∑
t=2

Wi,tε1·2i,t

=
T∑
t=2

ε2
1·2i,t +Op(

√
T )Op(T−1)Op(

√
T ).

Hence, by inserting this into (4.B.9), and then taking the limit as T →∞, we obtain

σ̂2
i = T−1

T∑
t=2

ε2
1·2i,t +Op(T−1)

p−→ σ2
i . (4.B.10)

Combining this result with Lemma 4.B.1 (b) and (c) we get the following limit as T →∞

wδ̂1i

w−→ σ−2
i σi

∫
dW1iW

′
i (Ω

1
2
i )′
(

Ω
1
2
i

∫
WiW

′
i (Ω

1
2
i )′
)−1

σiΩ
1
2
i

∫
WidW1i

= pi(Wi)′Pi(Wi), (4.B.11)

which establishes part (a) of the theorem.

Consider (b). Under the null hypothesis, ∆(QSYi,t) = QSε1·2i,t. By using this result, (4.B.8) and the rules
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for partitioned regressions, we obtain as T →∞

T α̂1i =

(
T−2

T∑
t=2

(QSYi,t−1)2

)−1

T−1
T∑
t=2

QSYi,t−1(QSε1·2i,t)

w−→ σiω
−1
11·2iPi(Ui) + ω−1

11·2iω11iρ
′
i(Ω
′
22i)
−1Pi(W2·i)(Pi(Ui)− 1) = di. (4.B.12)

Next, consider

var(α̂1i) = σ̂2
i

(
T−2

T∑
t=2

(QSYi,t−1)2

)−1

.

We have already shown that σ̂2
i

p−→ σ2
i as T → ∞. From this result and arguments similar to those used in

the proof of Lemma 4.B.1 we obtain as T →∞

T 2 var(α̂1i)
w−→ σ2

i ω
−2
11·2iV (Ui)

+ σ2
i ω
−2
11·2iω11iV (Ui)

(
ρ′i(Ω

′
22i)
−1Pi(W2·i) + V (W2·i)pi(W2·i)′Ω−1

22iρi
)

+ σ2
i ω
−2
11·2iω

2
11iρ

′
i(Ω
′
22i)
−1

× (V (W2·i) + Pi(W2·i)V (Ui)V (W2·i)pi(W2·i)′) Ω−1
22iρi = Di. (4.B.13)

The proof is completed by noting that

DΩ
i,τ = lim

T→∞

T α̂1i√
T 2 var(α̂1i)

=
di√
Di

. (4.B.14)

2

Proof of Corollary 4.1

If Xi,t is strongly exogenous, B21i = 0 such that ρi = 0. Thus, (4.B.14) simplifies to

Di,τ =
di√
Di

=
B̃11iPi(Ui)√
B̃2

11iV (Ui)
=

Pi(Ui)√
V (Ui)

. (4.B.15)

This completes the proof. 2

4.B.3 Proof of Theorem 4.3

We begin with the following lemma.

Lemma 4.B.2 Under H0i and Assumptions 4.1 to 4.6, as N, T →∞

(a) T−
1
2Zt

w−→M3W3,

(b) T−
1
2 Z̃+

i,t−1
w−→ Ω̃

1
2
i Wi,
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(c) T−2
T∑
t=2

QW̃ Z̃
+
i,t(QW̃ Z̃

+
i,t)
′ w−→ Ω̃

1
2
i

(∫
WiW

′
i

)
(Ω̃

1
2
i )′,

(d) T−1
T∑
t=2

QW̃ Z̃
+
i,t−1(QW̃ ε̃1·2i,t)

w−→ σiΩ̃
1
2
i pi(Wi),

where M3 = lim
N→∞

M3, M3 = 1
N

∑N
i=1M3i,

M3i =

 B̃−1
11·2i
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B12iB̃

−1
22i(B23iB̃

−1
33i + λ′2i) +B13iB̃

−1
33i
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B̃−1

22i(B23iB̃
−1
33i + λ′2i) + B̃−1

22iB21iB̃
−1
11·2i

(
B12iB̃

−1
22i(B23iB̃

−1
33i + λ′2i) +B13iB̃

−1
33i

)
 ,

M4i =

 B̃−1
22iΣ

1
2
22i B̃−1

22i(B23iB̃
−1
33i + λ′2i)

0 M3

 ,

ρ̃i =
(
B′21i(B̃

−1
22i)
′ 0

)
and

Ω̃
1
2
i =

 σiB̃
−1
11·2i B̃−1

11·2iM1iM2i

σiB̃
−1
11·2iφ̃i (M4i + B̃−1

11·2iφ̃iM1iM2i)


=

 ω̃11i Ω̃12i

Ω̃21i Ω̃22i

 .

Furthermore, we have Ω̃21i = ω̃11iρ̃i and we define ω̃11·2i = ω̃11i − ω̃11iΩ̃12iΩ̃−1
22iρ̃i.

Proof of Lemma 4.B.2

Letting ϕi = B̃−1
11·2iB12i(1)B̃22i(1)−1, we have

T−
1
2Zt = M3T

− 1
2

t∑
s=1

ε3s +
1
N

N∑
i=1

 B̃−1
11·2i ϕi

ϕ′i (B̃22i(1)−1 + B̃22i(1)−1B21i(1)ϕi)


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1
2
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 ε1·2i,s

ε2i,s

+Op

(
1√
NT

)
+Op

(
1√
T

)
,

from which it follows that as N, T →∞

T−
1
2Zt = M3T

− 1
2

t∑
s=1

ε3s +Op

(
1√
N

)
+Op

(
1√
NT

)
+Op

(
1√
T

)
w−→ M3W3. (4.B.16)

This proves (a).
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Moreover, by combining (a) with (4.B.5), we find that as N, T →∞

T−
1
2 Z̃+

i,t
w−→ Ω̃

1
2
i Wi,

which proves (b).

Analogous to the prove of Lemma 4.B.1, we have

T∑
t=2

QW̃ Z̃
+
i,t−1(QW̃ Z̃

+
i,t−1)′ =

T∑
t=2

Z̃+
i,t−1(Z̃+

i,t−1)′ −
T∑
t=2

Z̃+
i,t−1(W̃i,t)′

(
T∑
t=2

W̃i,t(W̃i,t)′
)−1

×
T∑
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W̃i,t(Z̃+
i,t−1)′

=
T∑
t=2

Z̃+
i,t−1(Z̃+

i,t−1)′ +Op(T ).

Combining this with (b) we obtain as N, T →∞

T−2
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QW̃ Z̃
+
i,t−1(QW̃ Z̃

+
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i,t−1)′ +Op(T−1)
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1
2
i

(∫
WiW

′
i

)
(Ω̃

1
2
i )′. (4.B.17)

This proves (c).

Finally,

T∑
t=2

QW̃ Z̃
+
i,t−1(QW̃ ε̃1·2i,t) =

T∑
t=2

Z̃+
i,t−1ε̃1·2i,t −

T∑
t=2

Z̃+
i,t−1(W̃i,t)′

(
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W̃i,t(W̃i,t)′
)−1

×
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=
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Z̃+
i,t−1ε̃1·2i,t +Op(T )Op(T−1)Op(

√
T ).

Thus,

T−1
T∑
t=2

QW̃ Z̃
+
i,t−1(QW̃ ε̃1·2i,t) = T−1

T∑
t=2

Z̃+
i,t−1ε̃1·2i,t +Op(T−

1
2 )

w−→ σiΩ̃
1
2
i pi(Wi) (4.B.18)

as N, T →∞. This proves (d) and hence the proof of Lemma 4.B.2 is complete. 2

The proof of Theorem 4.3 follows similar arguments as the proof of Theorem 4.2. However, if k < m+ 1,

Ω̃
1
2
i and Ω̃22i are no longer square matrices such that we have to make use of generalized inverse in that case.
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The Wald statistic wδ̃1i
is given by

wδ̃1i
= σ̌−2

i

T∑
t=2

QW̃ ε̃1·2i,t(QW̃ Z̃
+
i,t)
′

(
T∑
t=2

QW̃ Z̃
+
i,t−1(QW̃ Z̃

+
i,t−1)′

)−1

(4.B.19)

×
T∑
t=2

QW̃ Z̃
+
i,t−1(QW̃ ε̃1·2i,t), (4.B.20)

where σ̃2
i is σ̂2

i with QW̃ in place of QW . By using the same steps as for σ̂2
i in Theorem 4.2, we obtain σ̃2

i
p−→ σ2

i

as N,T →∞. This result, together with Lemma 4.B.2 (c) and (d), implies that as N,T →∞

wδ̃1i

w−→ σ−2
i σi

∫
dW1iW

′
i (Ω̃

1
2
i )′
(

Ω̃
1
2
i

∫
WiW

′
i (Ω̃

1
2
i )′
)−1

σiΩ̃
1
2
i

∫
WidW1i

= pi(Wi)′Pi(Wi), (4.B.21)

which establishes the required result for (a).

Furthermore, similarly to the prove of Theorem 4.2, by the rules for partitioned regressions, T α̃1i
w−→ d̃i

and T 2 var(α̃1i)
w−→ D̃i as N, T →∞, where d̃i and D̃i are defined similarly to di and Di above, but replacing

ω11i, ω11·2i and Ω22i with ω̃11i, ω̃11·2i and Ω̃22i respectively. This yields the required result for (b). 2

Proof of Corollary 4.2

The proof of Corollary 4.2 is completed by noting that ρ̃i = 0 if Xi,t is strongly exogenous. 2
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A Panel Cointegration Study of the Euro Effect on Trade:

Revisiting Bun and Klaassen (2007)

5.1 Introduction

The gravity model of trade has been widely used in the empirical literature to study the effect of

various policy decisions (see e.g. Tinbergen, 1962, for an early application). In its original form the

gravity model explains trade flows between country pairs as being proportional to their national

income and inverse proportional to their distance. It has been successful in empirical studies of the

effect of various variables on trade and also received several theoretical foundations (see e.g. Ander-

son, 1979; Bergstrand, 1985, 1989). The original gravity model has been augmented by numerous

additional variables. Population size or GDP per capita have been added as additional measures

of mass. Features of the geographic location such as longitude/latitude or dummy variables for

landlocked or island nations. Furthermore, variables measuring whether country pairs share certain

aspects have been added, such as common border, common language or a common colonial history.

One particular area of interest is the impact of currency unions on trade. Rose (2000) first

estimates the effect of currency unions on trade in a cross-sectional study and finds that adopting a

currency union leads to a 200% increase in bilateral trade. Glick and Rose (2002) and Frankel and

Rose (2002) perform panel data studies of the common currency effect on trade and obtain similarly

large estimates. It is also found that the increase in trade between countries sharing a common

currency is not due to a deviation of trade from other partners but due to an increase in total trade.

Frankel and Rose (2002) also investigate the effect of trade on income and find that a 1% increase in

total trade leads to an increase in income per capita by about one-third of a percent. These very high

estimates have led to a controversy in the empirical literature. In particular, most observations on

currency unions in Rose’s data comes from poorer or small countries or dependencies. This has led

to the question whether the result applies to bigger countries such as the members of the European

Monetary Union (EMU) (see the discussion in e.g. Glick and Rose, 2002; Frankel and Rose, 2002).

129
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In 1999, 11 countries of the EMU (Austria, Belgium, Finland, France, Germany, Ireland, Italy,

Luxembourg, the Netherlands, Portugal and Spain) introduced the Euro as a common currency.

Greece joined the Euro in 2001, after the initial launch but before the introduction of Euro notes

and coins. Since then, also Slovenia, Cyprus, Malta and Slovakia have joined the Euro. At the

same time, other member states of the European Union (EU) have decided not to adopt the Euro,

namely Denmark, Sweden and the United Kingdom. It is therefore an important question if there is

a Euro effect on bilateral trade, i.e if there is an economic reward for joining the common currency.

Furthermore, the introduction of the Euro itself was preceded by the European Monetary System

(EMS) aimed at aligning the European exchange rates. The EMS might have had a mitigating effect

on the introduction of the Euro on bilateral trade. But it might be interesting to investigate whether

there is an additional benefit of a common currency over (relative) exchange rate stability. Early

studies report an Euro effect between 5% and 40%. Micco, Stein, and Ordoñez (2003) estimate an

increase in bilateral trade due to the introduction of the Euro between 8% and 16% when compared

to trade between non-EMU countries. Flam and Nordström (2003) estimate the Euro effect between

5% and 15%. Bun and Klaassen (2002) estimate a dynamic panel data model of the gravity equation

and find a long-run Euro effect of about 38%, where the immediate effect is estimated at about 3.9%

increase in 1999. Rose and Stanley (2005) perform a meta analysis of the results of 34 studies of

the effect of currency unions on trade. Although they find evidence of publication bias, they also

find evidence that currency unions have a significant positive effect on bilateral trade, and obtain a

combined estimate of the trade effect between 30% and 90%.

Bun and Klaassen (2007) estimate the gravity equation allowing for country pair specific time

trends to account trending behavior observed in the residuals. This reduces the estimate of the Euro

effect on bilateral trade to about 3%. They also investigate whether the data is non-stationary and

find unit roots in the (log of) bilateral trade, GDP and GDP per capita using the panel unit root test

of Harris and Tzervalis (1999) and the panel stationarity test of Hadri (2000). Furthermore, they

find cointegration between these variables using the panel cointegration test of Pedroni (1999) and

estimate the coefficients using the dynamic OLS (DOLS) estimator of Mark and Sul (2003). However,

the employed methods assume that the data is cross-sectionally independent, an assumption unlikely

to hold bilateral trade data.

Cross-sectional dependence has received much attention recently in the literature on non-

stationary panel data as the assumption of cross-sectional independence is unlikely to hold in many

data sets. It is of particular interest here as bilateral trade data by construction is highly cross-
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sectionally related. Furthermore, the gravity model itself implies spatial dependence in the data due

to the hypothesized effect of distance on trade. Several new panel unit root or cointegration tests

have been proposed that allow from cross-sectional dependence in the form of common factors. See

for example Breitung and Pesaran (2008) for an overview of the literature and Gengenbach et al.

(2009) for a comparison of panel unit root tests. We use the panel unit root tests proposed by

Pesaran (2007), Moon and Perron (2004), Breitung and Das (2008), Sul (2007), Bai and Ng (2004b)

and Palm et al. (2008) to test whether the variables entering the gravity model are non-stationary.

We then test for cointegration between the variables using the panel no-cointegration test proposed

by Gengenbach et al. (2006) and the panel no error-correction tests suggested by Gengenbach et al.

(2008) to investigate whether the variables are cointegrated. Both approaches allow for persistent

cross-sectional dependence in the data in form of unobserved common factors. We estimate the

cointegrating vector using the CUP estimator of Bai et al. (2009) and the CCEP estimator of Pesaran

(2006) and obtain an estimate of the Euro effect on bilateral trade.

The remainder of this chapter is organized as follows. Section 5.2 describes the data, summarizes

the main findings of Bun and Klaassen (2007) and presents a brief overview of other studies of the

Euro effect on trade. Section 5.3 presents the results of the panel unit root and panel cointegration

tests. We obtain estimates of parameters of the cointegrated gravity model in Section 5.4. Section

5.5 concludes.

5.2 Data and previous studies

We use the data set of Bun and Klaassen (2007) which contains data on all bilateral combinations

in a panel of 19 countries, namely the 15 member countries of the EU prior to the 2004 expansion

as well as Norway, Switzerland, Canada, Japan and the US. The data for Belgium and Luxembourg

is combined because trade data for these countries is only available for the Belgium-Luxembourg

Economic Union. The data spans the time period between 1967 and 2002. Thus we have a balance

panel with N=171 country pairs and T=36 time series observations.

The data set includes the following variables. TRADEijt is the log of real bilateral trade between

countries i and j at time t, where real bilateral trade is measured as the sum of nominal bilateral

exports and imports in US dollars divide by the US producer price index. GDPijt is the log of the

product of countries’ real GDP. GDPCAPijt measures the log of the product of the countries’ real

GDP per capita. Furthermore, 2 dummy variables are included in the data, namely EUROijt which

is 1 if both countries have adopted the Euro at time t and FTAijt which is 1 if both countries have
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a free trade agreement at time t. The model estimated by Bun and Klaassen (2007) is given by the

following equation.

TRADEijt = β1GDPijt + β2GDPCAPijt + δ1EUROijt + δ2FTAijt + ηij + τij · t+ λt + εijt, (5.2.1)

where ηij is a country pair specific fixed effect, λt is a common time effect, tij · t is a country pair

specific time trend and εijt is the error term. The current model does not include distance between

countries as a dependent variable. Nevertheless, country pair specific fixed effects will account for

part of the distance effect, and any time invariant measure of distance would be removed by the

within transformation. Furthermore, Pesaran and Tosetti (2009) show that cross-sectional averages

are well suited to account for spatial dependence.

Table 5.1: Estimation results Bun and Klaassen (2007)

LSDV DOLS
no trends trends no trends trends

δ1 0.410 0.032 0.374 0.034
δ2 0.41 0.06 0.38 0.05
β1 1.41 0.70 0.59 0.94
β2 -0.68 -0.23 0.20 -0.49

Notes: “No trends” indicates that τij is set to 0 in (5.2.1). LSDV gives results for LSDV-type estimates from Bun and

Klaassen (2007, Table 2, p. 480). DOLS give the estimates from Bun and Klaassen (2007, Table 5, p. 491).

Table 5.1 presents the estimates of the parameters of Equation (5.2.1) obtained by Bun and

Klaassen (2007). When not allowing for time trends the estimated Euro effects are 51% and 45% for

the LSDV and DOLS estimators, respectively. These estimates are above effects reported in earlier

studies. However, the effect is reduced to only about 3% for both estimators when time trends are

included in the model. The reduced estimate is robust to various other specifications employed by

Bun and Klaassen (2007).

Similar to the Euro effect, the estimated effect of a free trade agreement between countries is also

reduced when accounting for time trends in the estimation. The coefficient of GDPijt is positive,

but there are some differences in the size of the estimated effect, ranging from 0.59 to 1.41. The

coefficient of GDPCAPijt is negative for 3 out of the 4 case.

Bun and Klaassen (2002) estimate a dynamic gravity model for real exports. They have annual

data ranging from 1965 to 2001 for the 15 EU member countries before the 2004 expansion as well as

on Canada, Japan and the US. They estimate an ADL model using the LSDV estimator and obtain
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a Euro effect estimate of about 4% in the first year with an estimated long-run effect of about 40%.

However, they do not consider models with deterministic or stochastic trends. Flam and Nordström

(2003) estimate the Euro effect in a panel of 20 OECD countries with annual observations from

1989 to 2002. The panel includes data on the 10 countries (combining the data on Belgium and

Luxembourg) that entered the EMU in 1999 as well as Australia, Canada, Denmark, Japan, New

Zealand, Norway, Sweden, Switzerland, the UK and the US. They detect a break associated with the

introduction of the Euro already in 1998. For the period of 1998 to 2002, they estimate an average

increase in exports between EMU countries of about 15% compared to average exports in the 1989 to

1997 period. Flam and Nordström (2003) also detect a spill-over effect of the Euro. They estimate

an increase in exports from the Euro zone to non-Euro countries of about 8% and an increase in

exports to the Euro zone from non-Euro countries of approximately 5%. Flam and Nordström (2003)

also analyze sector specific data and find significant Euro concentrated to a few sectors. Micco et al.

(2003) consider two data sets in their analysis: a panel of 22 industrialized countries included in

the IMF’s Directions of Trade Statistics data set and a panel including only the 15 EU member

countries prior to the 2004 expansion. Using different specification of the gravity equation, Micco

et al. (2003) estimate a Euro effect between 4% and 26%. Furthermore, they also identify the Euro

having an effect on trade starting in 1998, similar to Flam and Nordström (2003). They also estimate

a spill-over effect of the Euro, increasing trade between Euro zone countries and non-Euro countries

by up to 9%.

5.3 Panel unit root and cointegration tests

In this section we test for unit roots in the variables of the model and then test for cointegration

between the non-stationary variables. We employ the tests proposed by Pesaran (2007), citetMoon-

Perron2004, Breitung and Das (2008), Sul (2007), Palm et al. (2008) and Bai and Ng (2004b) to test

for unit roots. We then use the no cointegration test advanced by Gengenbach et al. (2006) and the

no error correction tests proposed by Gengenbach et al. (2008) to investigate whether the variables

are cointegrated. We briefly outline the test procedures before presenting the results.
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5.3.1 Panel Unit Root Tests

Considers a heterogenous, linear model for a balanced panel with N cross sectional units and T times

series observations. In particular,

Yi,t = (1− ρi)µi + ρiYi,t−1 + ui,t, (5.3.1)

where the error term uit has a common factor structure, such that

ui,t = γift + ei,t.

Here, ft is an unobserved common factor, γi is the corresponding factor loading and ei,t is an id-

iosyncratic error term independent across i and independent of the common factor. It is convenient

to re-write (5.3.1) as

∆Yi,t = α0i + α1iYi,t−1 + γift + ei,t, (5.3.2)

where α01 = (1 − ρi)µi and α1i = (ρi − 1). Pesaran (2007) suggests to cross-sectionally augment

the test equation (5.3.2) with cross-sectional averages of the first differences and the lagged levels to

account for the cross-sectional dependence induced by a single common factor. The cross-sectionally

augmented (CA)DF equation is then given by

∆Yi,t = ai + biYi,t−1 + ciȲt−1 + di∆Ȳt + εi,t, (5.3.3)

where Ȳt−1 =
∑N

i=1 Yi,t−1, ∆Ȳt =
∑N

i=1 ∆Yi,t and εi,t is the regression error. The individual specific

test statistic for the hypothesis H0i : ρi = 1 for a given i is now the t-statistic of bi in (5.3.3), denoted

by CADFi. The panel unit root for the hypothesis H0 : ρi = 1 for all i against the heterogenous

alternative H1 : ρi < 1 for some i is given by the cross-sectional average of the CADFi tests, such

that

CADF = N−1
N∑
i=1

CADFi.

For computational reasons, Pesaran (2007) advocates the use of a truncated version, CADF ∗, where

for positive constants K1 and K2 such that Pr[−K1 < CADFi < K2] is sufficiently large values of

CADFi smaller than −K1 or larger than K2 are replaced by the respective bound. Pesaran (2007)

provides values for K1 and K2 as well as critical values for the test statistics obtained via stochastic

simulation. In case the error terms or the common factor are serially the CADF equation (5.3.3) can
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be augmented by additional lags of Ȳt−1, ∆Ȳt and ∆Yi,t−1.

Moon and Perron (2004) propose two test statistics for the null hypothesis H0 : ρi = 1 for all

i against the heterogenous alternative H1 : ρi < 1 for some i. They allow for k common factors in

ui,t. Their method relies on de-factoring the data by a projection onto the space orthogonal to that

spanned by the factor loadings. They propose to estimate the factor loadings by method of principle

components from the residuals of a pooled first stage regression,

ûi,t = Yi,t − ρ̂polsYi,t−1,

where ρ̂pols is the pooled OLS estimator of ρi in (5.3.1). The de-factored data is now given by

Y ∗i,t = Yi,t − γ̂i

 N∑
i=j

γ̂′j γ̂j

−1
N∑
j=1

γ̂′jYj,t.

The two test statistics suggested by Moon and Perron (2004) are based on a modified pooled estimator

of ρ,

ρ̂∗ =

(
N∑
i=1

T∑
t=2

(Y ∗i,t−1)2

)−1( N∑
i=1

T∑
t=2

Y ∗i,t−1Y
∗
i,t −NTϕ̂e

)
,

where ϕ̂e is the average estimated one-sided long-run covariance. The tests are given by

t∗a =
√
NT (ρ̂∗ − 1)√

2φ̂4
e

ω̂4
e

(5.3.4)

and

t∗b =
√
NT (ρ̂∗ − 1)

√√√√ 1
NT 2

N∑
i=1

T∑
t=2

(Y ∗i,t−1)2

(
ω̂e

φ̂2
e

)
, (5.3.5)

where ω̂2
e is the average estimated long-run covariance and φ̂4

e = N−1
∑N

i=1 ω̂
4
e . Moon and Perron

(2004) show that both test statistics have a standard normal limiting distribution.

Breitung and Das (2008) propose two tests for a unit root in (5.3.1), namely a generalized least

squares (GLS) t-test, which is only feasible if N < T , and a robust t-test, trob. The later is given by

trob =

(
T∑
t=2

Y ′t−1Ω̂Yt−1

)− 1
2
(

T∑
t=2

Yt−1∆Yt

)
, (5.3.6)
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where Yt−1 = (Y1,t−1, . . . , YN,t−1)′, ∆Yt = (∆Y1,t, . . . ,∆YN,t)′ and Ω̂ =
∑T

t=2 ûtû
′
t, with ût =

(û1,t, . . . , ûN,t)′ being the pooled OLS residuals. Breitung and Das (2008) show that trob converges

to a Dickey-Fuller (DF) distribution under the null hypothesis H0 : ρi = 1 for all i.

Palm et al. (2008) propose several bootstrap panel unit roots. They consider pooled Levin et al.

(2002) type tests based on the pooled OLS estimate of ρi in (5.3.1) and group mean Im et al. (2003)

type tests based on individual specific estimates of ρi. In particular, the pooled statistic is defined as

τp = T (ρ̂pols − 1). (5.3.7)

The group mean statistic is given by the following equation,

τgm = N−1
N∑
i=1

T (ρ̂i − 1), (5.3.8)

where

ρi =

(
T∑
t=2

Y 2
i,t−1

)−1( T∑
t=2

Yi,t−1Yi,t

)
.

Palm et al. (2008) also consider τmed which is given by T times the median of (ρ̂i− 1),as the median

might be more robust to outliers. Palm et al. (2008) propose a block bootstrap and show that it is

asymptotically valid for a number of cross-sectional correlation models.

Bai and Ng (2004b) consider a more general model than (5.3.1). In particular,

Yi,t = γiFt + Ei,t, (5.3.9)

where Ft is a k-vector common factor and Ei,t is the idiosyncratic component. They allow either Ft

or Ei,t to be non-stationary and propose to test them separately. As both common and idiosyncratic

components are unobserved, Bai and Ng (2004b) propose a consistent estimator. They apply the

methods of principle components to the (demeaned) first differences of the data and re-accumulate

the estimates to preserve the order of integration.

For the estimated idiosyncratic component, Êi,t, Bai and Ng (2004b) propose an ADF test to test

for individual unit roots. To test the pooled unit root hypothesis that all Êi,t are non-stationary, Bai

and Ng (2004b) suggest a Fisher-type, using the correction proposed by Choi (2001) for the test of
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Maddala and Wu (1999). In particular, the test statistic is given by

P c,τ
Ê

=
−2
∑N

i=1 log πi − 2N√
4N

, (5.3.10)

where πi is the p-value of the ADF test for the i-th cross section and c and τ denote the constant only

or linear deterministic trend case, respectively. Bai and Ng (2004b) show that P c,τ
Ê

has a standard

normal limiting distribution.

Bai and Ng (2004b) propose several tests to select the number of independent stochastic trends,

k1 in the estimated common factors, F̂t. If a single common factor is estimated, they propose an

ADF test, ADF c,τ
F̂

. Bai and Ng (2004b) show that the limiting distribution of ADF c,τ
F̂

coincides

with the Dickey-Fuller distribution for the respective cases. If more than one common factor is

estimated, Bai and Ng (2004b) propose an iterative procedure to select k1, similar to Johansen trace

test for cointegration. Bai and Ng (2004b) propose two modified Q statistics to test the hypothesis

of k1 = m against the alternative k1 < m for m starting from k̂. The procedure terminates if at any

step k1 = m cannot be rejected. The two test statistics are denoted as MQc,τc and MQc,τf , where the

former uses a non-parametric correction to account for additional serial correlation while the later

employs a parametric correction. Both statistics have a non standard limiting distribution and Bai

and Ng (2004b) provide critical values for several m.

Sul (2007) proposes recursive mean adjusted panel unit roots. He proposes a GLS test to test the

hypothesis H0 : ρi = 1 for all i against the heterogenous alternative H1 : ρi < 1 for some i. However,

the GLS test is not feasible if T < N . In case the data permits a Bai and Ng type representation as

in (5.3.9), Sul (2007) proposes a recursive mean adjusted unit root test applied to the cross-sectional

average of the data to test for a unit root in the common component. The test statistic is given by

the FGLS t-test for H0 : ρ = 1 in the following regression

Ȳt − C̄t−1 = ρ(Ȳt−1 − C̄t−1) +
p∑
j=1

φj∆Ȳt−j + εi,t, (5.3.11)

where C̄t−1 =
∑N

i=1Ci,t−1 with Ci,t−1 = (t − 1)−1
∑t−1

s=1 Yi,s. Sul (2007) provides simulated critical

values for the test statistics, tcrma.

We apply the panel unit root tests described above to test for unit roots in TRADEijt, GDPijt

and GDPCAPijt. The appropriate lag-lengths for tests is selected using the Akaike information

criterion with a maximum p = 4. We use the Andrews and Monahan (1992) estimator employing

the quadratic spectral kernel to estimate the nuisance parameters for the Moon and Perron (2004)
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tests. The number of common factors for the Moon and Perron (2004) and Bai and Ng (2004b) test

is estimated using the BIC3 criterion of Bai and Ng (2002)1 allowing for at most kmax = 4 factors.

For the bootstrap tests of Palm et al. (2008)2 we draw 10000 bootstrap samples. We use a fixed

block length of b = 63. We allow for a linear trend in data.

The critical value for the CADF ∗ test from is -2.56 at 5% level (see Pesaran, 2007, Table II(c)).

With test statistic of −2.360, −1.778 and −1.827 for TRADEijt, GDPijt and GDPCAPijt, respec-

tively, we cannot reject the null hypothesis for all 3 panels. Using the asymptotic critical value of

-1.645, the t∗a test of Moon and Perron (2004) can reject the unit root null for GDPCAPijt with a

statistic of -9.620. The t∗b test reject the null in all three panels with values of -3.795, -11.402 and

-11.982, respectively. The Breitung and Das (2008) trob test rejects the unit root null for TRADEijt

with a statistic of -4.606, using the asymptotic critical value of -3.41. Given the 5% asymptotic crit-

ical value of -1.86, the tcrma test of Sul (2007) rejects the unit root for all three panels. The P τ
Ê

test

of Bai and Ng (2004b) cannot reject the unit root null using the asymptotic critical value of 1.645

for the estimated idiosyncratic component of either TRADEijt, GDPijt or GDPCAPijt. Estimating

a single common factor for TRADEijt, the ADF τ
F̂

test does not reject the unit root. Estimating 4

common factors in each panel for GDPijt or GDPCAPijt, both MQτc and MQτf cannot reject the null

hypothesis that there are 4 independent stochastic trends. The critical values for the two statistics

are -40.442 and -48.421, respectively (see Bai and Ng, 2004b, Table I). The bootstrap panel unit root

tests of Palm et al. (2008) cannot reject the unit root null in either of the three panels. For a block

length of b = 6, the 5% bootstrap critical values for TRADEijt are -12.491, -13.815 and -13.120 for

τp, τgm and τmed, respectively. For GDPijt, we obtain bootstrap critical values of -12.894, -13.627

and -13.475, while the critical values for the GDPCAPijt panel are -12.777, -13.565 and -13.453.

As only the t∗b of Moon and Perron (2004) and the tcrma of Sul (2007) are able to reject the unit

root null for all three panels, there is strong evidence that the data is non-stationary4.

5.3.2 Panel Cointegration Tests

Gengenbach et al. (2006) consider the problem of testing for no cointegration in a balanced panel

with N cross-sections and T time series observations. For each cross-sectional unit, a 1 + m vector

Zi,t = (Yi,t, X ′i,t)
′ is observed. Gengenbach et al. (2006) assume that both Yi,t and Xi,t allow a Bai

1The results are robust to using other selecting criterions and selecting different numbers of common factors.
2The author would like to thank Stephan Smeekes for providing the GAUSS codes for the test procedures.
3The results are robust for various block lengths b = 1, . . . , T

2
.

4Bayer and Hanck (2009) consider the possibility of combining several no cointegration tests. In principle, it should
be possible to apply their method also to panel unit root tests.
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Table 5.2: Panel unit root and cointegration tests

Panel unit root tests

variable CADF
∗

τp τgm τmed t∗a t∗b trob tcrma

TRADEijt −2.360 −8.936 −9.438 −8.309 −1.225 −3.795† −4.606† −6.315†

GDPijt −1.778 −5.730 −5.975 −5.842 −1.539 −11.402† −2.154 −2.322†

GDPCAPijt −1.827 −5.841 −6.064 −5.899 −9.620† −11.982† −2.120 −2.361†

variable P τ
Ê

ADF τ
F̂

MQτc MQτf

TRADEijt −10.49 −2.560 - -
GDPijt −11.12 - −17.07 −20.83
GDPCAPijt −11.07 - −16.23 −21.67

Panel cointegration tests
Zpρ Zgmρ Zpt Zgmt LFtrace τ̄∗αi w̄∗δi

0.501 5.249 −4.949† −5.425† 52.87† −5.051† 62.60†

Notes: † denotes rejection at 5% level. Critical values are -2.56 for CADF
∗
, -1.645 for t∗a and t∗b , -1.86 for -4.040 for

tcrma, -3.41 for trob and ADF τ
F̂

, 1.645 for P τ
Ê

, -40.442 for MQτc and -48.421 for MQτf . Bootstrap 5% critical values

for τp are -12.491, -12.894 and -12.777 for TRADEijt, GDPijt and GDPCAPijt, respectively. Bootstrap 5% critical

values are -13.815, -13.627 and -13.565 for τgm and -13.120, -13.475 and -13.453 for τmed.

The critical value for Zpρ , Zgmρ , Zpt and Zgmt is -1.645. The critical value for LFtrace is 27.169. Critical values are

-4.040 for τ̄∗αi
and 28.203 for w̄∗δi

.

and Ng type representation as in (5.3.9). They propose to estimate the common and idiosyncratic

components of the panels using the principle component estimator of Bai and Ng (2004b). To test

for no cointegration between the estimated idiosyncratic components, ÊYi,t and ÊXi,t, they suggest to

use the panel no cointegration tests of Pedroni (1999). In particular, we consider the pooled and

group mean coefficient test, Zpρ and Zgmρ , as well as the pooled and group mean t-test, Zpt and

Zgmt . Gengenbach et al. (2006) propose the Johansen trace test to test for cointegration between the

estimated common factors F̂ Yt and F̂Xt . Denote the statistic as LFtrace. As discussed in Gengenbach

et al. (2006), rejection of the null hypothesis of no cointegration for both the idiosyncratic component

and the common factor is a necessary but not a sufficient condition for cointegration between Yi,t

and Xi,t.

Gengenbach et al. (2008) propose tests for panel (no) error correction. Starting from the triangular

representation of a cointegrated panel with non-stationary (unobserved) common factors, they derive

the following conditional error correction model (ECM).

∆Yi,t = αiYi,t−1+γ1iXi,t−1+γ2iFt−1+
pi∑
s=1

π1is∆Yi,t−s+
pi∑
s=0

π2is∆Xi,t−s+
pi∑
s=0

π3is∆Ft−s+εi,t, (5.3.12)

where γ1i = −αiθ1i and γ2i = −αiθ2i such that (1,−θ′1i,−θ′2i)′ is the cointegrating vector, Xi,t is a

m× 1 vector of idiosyncratic weakly exogenous variables, Ft is a k× 1 vector of possibly unobserved,
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strongly exogenous common factors and εi,t is an i.i.d. error term. Gengenbach et al. (2008) consider

2 tests for the individual specific null hypothesis of no error correction, namely the t-statistic for

Ht
0i : αi = 0, ταi , and the Wald test for Hw

0i : δi = 0, wδi , where δi = (αi, γ′1i, γ
′
2i)
′. Following the

ideas of Pesaran (2007), they propose to augment the conditional ECM (5.3.12) with cross-sectional

averages of Yi,t−1 and Xi,t−1 as well as the contemporaneous and lagged averages of ∆Yi,t and ∆Xi,t.

The panel test statistics for the null hypothesis of no error correction for all i are given by the

(truncated) averages of the individual specific statistics, denoted as τ̄∗αi and w̄∗δi for the t and Wald

test, respectively. Gengenbach et al. (2008) provide critical values for both test statistics obtained

via stochastic simulations.

We test for cointegration between TRADEijt, GDPijt and GDPCAPijt using both test proce-

dures outlined above. Using the BIC3 criterion of Bai and Ng (2002)5 we find one common factor in

TRADEijt and three in the joint panel of GDPijt and GDPCAPijt. The coefficient based tests Zpρ

and Zgmρ cannot reject the null of no cointegration between the estimated common factors. However,

both t-tests, Zpt and Zgmt , can reject the null. The Johansen trace test, LFtrace, applied to the 4

estimated common factors finds a single cointegrating relationship6. For the tests of panel no error

correction, τ̄∗αi and w̄∗δi , allowing for a constant and linear trend in the ECM, we select the lag length

pi using the Akaike information criterion with pmax = 4. The critical value for τ̄∗αi is −4.040 at

5% significance while the corresponding critical value for w̄∗δi is 28.203 (see Gengenbach et al., 2008,

Tables 3 and 4). With statistics of −4.958 and 62.21 for the t and Wald test respectively we can

reject the null of no error correct. As only the coefficient based tests for the estimated idiosyncratic

components cannot reject the null of no cointegration, there is evidence that TRADEijt, GDPijt and

GDPCAPijt are cointegrated.

5.4 Estimation of the gravity equation

In the previous section we have found evidence that the variables entering the gravity equation

are non-stationary and cointegrated. Therefore, equation (5.2.1) describes a long-run equilibrium

relationship between TRADEijt, GDPijt and GDPCAPijt. In this section, we use the CUP estimator

of Bai et al. (2009) and the CCEP estimator of Pesaran (2006) to obtain estimates of the parameters

of the static long-run model given in (5.2.1). Furthermore, we estimate a dynamic error correction

model with a CCEP estimator. All considered estimators allow for a heterogenous effect of the
5The results are qualitatively robust to using different criterions.
6We also select the cointegration rank using an information criteria adavanced by Aznar and Salvador (2002) which

finds 3 cointegrating relation ships.



5.4. Estimation of the gravity equation 141

common factors. Furthermore, we allow for heterogenous short-run dynamics when estimating the

ECM.

Bai et al. (2009) consider the problem of estimating the cointegrating vector in a cointegrated

panel data model with non stationary common factors. They consider the following model,

Yi,t = βXi,t + γiFt + ei,t, (5.4.1)

where Ft is a k vector of common factors, γi is the corresponding vector of factor loadings and eit is

an idiosyncratic error term. Bai and Kao (2006) propose a 2-stage fully modified (FM) estimator of

β in the case of stationary Ft. However, if Ft is non-stationary the least-squares (LS) estimator of

β is inconsistent. Bai et al. (2009) propose a bias corrected (BC) and fully modified (FM) estimator

for β for the case of observed Ft. However, those are infeasible in the case of unobserved common

factors. The proposed solution is an iterative procedure where Ft is estimated given an estimate of

β and then β is re-estimated given the estimate of Ft. The objective function of the procedure is

SNT (β, F,Γ) =
N∑
i=1

T∑
t=1

(Yi,t − βXi,t − γiFt)2, (5.4.2)

which is minimized subject to the constraints T−2
∑T

t=1 FtF
′
t = Ik and Γ′Γ is positive definite, where

Γ = (γ′1, . . . , γ
′
N )′.

Now, given Ft the LS estimator of β is given by

β̂ =

(
N∑
i=1

T∑
t=1

QFXit(QFXit)′
)−1( N∑

i=1

T∑
t=1

QFXitQFYit

)
, (5.4.3)

where QF is the OLS projection error operator such that

QFXi,t = Xi,t −
T∑
t=1

Xi,tF
′
t

(
T∑
t=1

FtF
′
t

)−1

Ft.

Define

Wi,t = Yi,t − βXi,t,

and Wi = (Wi,1, . . .Wi,T )′. The estimator of Ft given β̂ is the given by the k largest eigenvectors of
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the matrix (NT 2)−1
∑N

i=1WiW
′
i . Concentrating out Γ, the objective function can be rewritten as

SNT (β, F ) =
N∑
i=1

T∑
t=1

(QFWi,t)2.

The continuously updated (CUP) estimator is then given by

(β̂CUP , F̂CUP ) = arg minSNT (β, F ).

The procedure outlined above requires that k, the number of common factors, is known. In general

that is not the case and k has to be estimated. Bai and Ng (2002) propose several information criteria

which can be used to obtain consistent estimates.

We obtain CUP estimates of β1 and β2 in (5.2.1) after concentrating out the fixed effects. We

estimate the number of common factors using the BIC3 criterion of Bai and Ng (2002) which performs

well in empirical studies. With kmax = 4 we estimate a single common factor, such that k̂ = 1. We

then obtain estimates of the long run parameters β1 and β2 and estimates of the coefficient of the

two dummy variables EUROijt and FTAijt which minimize (5.4.2).

Pesaran (2006) proposes a consistent estimator for the slope parameter βi in a heterogenous

panel data model similar to (5.4.1). He allows for both observed and unobserved common factors,

Dt and Ft respectively. Furthermore, he assumes that Xi,t also permits a common factor structure.

In particular, his model is given by the following equations:

Yi,t = βiXi,t + αiDt + γiFt + ei,t, (5.4.4)

Xi,t = AiDt + ΓiFt + vi,t, (5.4.5)

where ei,t and vi,t are idiosyncratic errors. Pesaran (2006) suggests to use the cross-sectional average

of Zi,t = (Yi,t, X ′i,t)
′ as a proxy for the unobserved common factors. The pooled estimator for β is

now give by

β̂CCEP =

(
N∑
i=1

T∑
t=1

QD,Z̄Xit(QD,Z̄Xi,t)′
)−1( N∑

i=1

T∑
t=1

QD,Z̄XitQD,Z̄Yi,t

)
. (5.4.6)

Pesaran (2006) shows that βCCEP is consistent for the mean of βi. However, he only considers weakly

stationary variables. Kapetanios, Pesaran, and Yamagata (2008) expand the analysis to allow for

non-stationary common factors and show that the CCEP estimator remains consistent.
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Table 5.3: Parameter estimates for static and dynamic models

Static model estimates
Bun and Klaassen (2007) current study

LSDV DOLS CCEP CUP
no trends trends no trends trends no trends trends no trends trends

β̂1 1.410 0.700 0.590 0.940 0.014 0.334 1.351 0.359
β̂2 −0.680 −0.230 0.200 −0.490 0.354 0.091 −0.710 0.179
δ̂1 0.410 0.032 0.374 0.034 0.043 0.006 0.417 0.075
δ̂2 0.410 0.060 0.380 0.050 0.033 0.011 0.418 0.016

Dynamic model estimates
Bun and Klaassen (2002) CCEP for ECM

LSDV for ADL p = 0 p̂ = 4
no trends trends no trends trends no trends trends

α̂ - - −0.407 −0.487 −0.782 −0.785
γ̂1 - - 0.303 0.340 0.257 0.021
γ̂2 - - −0.238 −0.232 0.170 0.574
δ̂1 0.040 - 0.196 0.016 −0.030 0.012
δ̂2 0.080 - 0.025 0.008 0.020 0.008

Long-run estimates
no trends trends no trends trends no trends trends

β̂1 - - 0.744 0.698 0.329 0.027
β̂2 - - −0.585 −0.476 0.217 0.731
δ̂1 0.330 - 0.482 0.033 −0.038 0.015
δ̂2 0.710 - 0.061 0.016 0.026 0.010

Notes: “No trends” indicates that τij is set to 0. LSDV gives results for LSDV-type estimates from Bun and Klaassen

(2007, Table 2, p. 480). DOLS give the estimates from Bun and Klaassen (2007, Table 5, p. 491). Dynamic model

estimates for a stationary ADL are taken from Bun and Klaassen (2002, Table 1, p. 11), where results are reported for

the European FTA dummy.

Results for Bai, Kao, and Ng’s CUP estimator are obtained with k̂ = 1 common factor, as selected by BIC3. For the

ECM a lag length of p̂ = 4 is selected by the BIC.

Augmenting the gravity equation (5.2.1) with cross-sectional averages of TRADEijt, GDPijt and

GDPCAPijt we obtain CCEP estimates of β1 and β2 as well as of δ1 and δ2.

Furthermore, we estimate a dynamic ECM as given in (5.3.12). We obtain CCEP-type estimates

by including cross-sectional averages the lagged level and (lagged) first-differences of TRADEijt,

GDPijt and GDPCAPijt as a proxy for the common factors in the regression. Allowing for a

maximum lag length of pmax = 6 we select an appropriate lag length of p̂ = 4 using the BIC.

Table 5.3 reports the obtained parameter estimates as well as the results obtained by Bun and

Klaassen (2007, 2002)7 for direct comparison. For the ECM estimates results are sensitive to the

7Bun and Klaassen (2002) use a different data set. However, we include their results as a comparison for the
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specified lag length. We report findings for the estimated lag length p̂ = 4 as well as for estimates

obtained without allowing for additional short-run dynamics in the model (p = 0). Similarly to the

findings of Bun and Klaassen (2007), the CUP estimate and the CCEP-ECM estimate for the case

without short-run dynamics observed a strong drop in the estimated coefficients when allowing for

country pair specific trends. Without trends, the CUP estimate of the Euro effect on trade is about

52% and the CCEP-ECM estimate even 62%. However, these estimates are reduced to 7.8% and

3.4%, respectively, in the trend case. The CCEP estimator for the static model finds a Euro effect

on bilateral trade of about 4.4% when not allowing for trends which is reduced to only 0.6% in the

trend case. The CCEP-ECM estimate in the model with short-run dynamics is even negative in the

no trend case with an estimated long-run effect of about -3.7%. When allowing for trends, the effect

is estimated at about 1.5%.

Estimates for β1 and β2 also vary between estimators and models. While the estimates of β1 all

have the expected sign, the static CCEP estimate in the no trend case and the CCEP-ECM estimate

with short-run dynamics and trend are very small at 0.014 and 0.027, respectively. For these two

estimators we observe a stronger positive effect of GDP per capita than GDP on trade, with estimates

of β2 at 0.354 and 0.731, respectively. In 3 cases we obtain negative estimates of β2, namely for the

CUP estimator without trends and for the CCEP-ECM estimators without short-run dynamics. In

those cases the estimate of β2 is smaller than the estimate of β1 in absolute value. Our estimates of

the trade effect of a free trade area are in general smaller than previously reported estimates. We

find a positive effect between 1% and 6.3%. Only the CUP estimator in the no trend case finds a

strong effect of about 52%.

While the standard errors of δ1 and δ2 are relatively small and the estimated coefficients seem

significant in most considered models, the standard errors of β1 and β2 are very large relative to

the estimates. This is in contrast to (invalid) OLS standard errors, where all coefficients would be

significant. The large standard errors of the pooled estimates seem to be due to a strong heterogeneity

in the data with regards to the effect of GDPijt and GDPCAPijt on TRADEijt. This would indicate

that a pooled model is not correctly specified in the considered setting and that further control

variables beyond fixed effects have to be included in the model as in e.g. Glick and Rose (2002).

dynamic model.
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5.5 Conclusion

Using the data of Bun and Klaassen (2007) we have estimated the Euro effect on bilateral trade using

a cointegrated panel data model. Bilateral trade data is by construction strongly cross-sectionally

correlated and we have allowed for persistent cross-sectional dependencies by allowing for (unob-

served) common factors. Using several panel unit root tests, we have found strong evidence that

the variables entering the gravity equation are non-stationary. However, TRADEijt, GDPijt and

GDPCAPijt seem to be cointegrated as indicated by the panel cointegration test of Gengenbach

et al. (2006) and the panel error correction tests of Gengenbach et al. (2008). Using the CCEP

estimator of Pesaran (2006) and the CUP estimator of Bai et al. (2009) we obtain estimates of the

parameters of the static long-run model. We also obtain CCEP-type estimates for the parameter of

a dynamic ECM. Our parameter estimates vary between models and estimators but seem to confirm

the findings of Bun and Klaassen (2007) of a smaller Euro effect than previously estimated. Only

the CUP and CCEP-ECM estimator find strong effects of the Euro on trade when not accounting

for country pair specific trends.





6

Conclusion and Further Research

6.1 Summary, limitations and further research

In this thesis we have studied tests for non-stationary panels with persistent cross-sectional de-

pendence. In particular, Chapter 2 has compared several panel unit root tests that account for

cross-section dependence using a common factor structure. We have discussed the differences and

similarities of the considered tests and studied their small sample properties in a Monte Carlo experi-

ment. Only the tests proposed by Bai and Ng (2004b) and Sul (2007) allow to detect non-stationarity

that is only due to non-stationary common factors. In this case, the individual series are pairwise

cointegrated along the cross-sectional dimension. Test designed to detect non-stationarity in the

common factors do not gain in power from the cross-sectional dimension of the panel. However, large

N is required to obtain consistent estimates of the common and idiosyncratic components. Further-

more, tests that rely on estimating the number common factors are distorted if it is misspecified, but

it seems less harmful to overestimate the number of common factors.

In Chapter 3 we considered the problem of testing for no cointegration in a panel with non-

stationary common factors. We have shown that panel unit root tests proposed for independent

panels (Kao, 1999; Pedroni, 1999, 2004a) diverge at rate
√
N in this case. We proposed a two-

step procedure for testing for no cointegration in panels with common factors. First, the common

factors and idiosyncratic components from the data are consistently estimated using the principal

component estimator of Bai and Ng (2004b). Then, both data components are separately tested for

no cointegration. We can distinguish the case of cross-member cointegration, where the observed non-

stationarity is only due to non-stationary common factors and the case of non-stationarity on both

data components. However, rejection of the null hypothesis for both common factor and idiosyncratic

component is only a necessary, not a sufficient condition for panel cointegration. We discussed

the additional homogeneity requirements on the cointegrating vector resulting from the presence of

common factor cointegration.

147
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In Chapter 4 we have derived a Granger-type representation theorem for a cointegrated panel with

non-stationary common factors. Starting from the triangular representation of the model considered

by Bai et al. (2009) we have obtained the MA, ARMA and ECM representations. Based on the

conditional ECM, we proposed two tests for no error-correction which are panel extensions of the t

and Wald tests proposed by Banerjee et al. (1998) and Boswijk (1994) in the time-series literature.

While the individual test statistics are asymptotically nuisance parameter free and only depend

on the number of non-stationary variable, they are not independent along the cross-section due to

the presence of non-stationary common factors. Nevertheless, their averages converge to a random

variable with a distribution that, while not analytically tractable, can be obtained via stochastic

simulation. This makes pooled testing possible. We have provided simulated critical values for the

proposed tests and obtained some simulation evidence that the tests perform quite well in small

samples.

In Chapter 5 we have applied the methods discussed in the previous chapters in a study of the

Euro effect on bilateral trade. We use the data set of Bun and Klaassen (2007) containing data on

the 15 pre-2004 member stated of the European Union, Norway, Switzerland, Canada, Japan and

the US from 1967 to 2002. Applying the panel unit root tests discussed in Chapter 2 as well as

bootstrap panel unit root tests of Palm et al. (2008) we obtained evidence that the variables entering

the gravity equation are non-stationary. However, the no-cointegration and no-error correction tests

proposed in Chapters 3 and 4, respectively, indicate that the variables are cointegrated. We obtained

estimates of the parameters of the gravity equations using the CCEP estimator of Pesaran (2006)

and the CUP estimator of Bai et al. (2009).

Throughout the thesis we have seen the importance of accounting for cross-sectional correlation.

Furthermore, the results show the important implications of the way the common factors enter the

model. Some approaches differ in terms of restrictions placed on the factor structure and thus in the

way the common factors are allowed to influence the dynamic properties of the data. Furthermore,

some tests apply to different data components. Consequently not all tests are robust to cross-member

cointegration, which might be an important feature of the data in empirical studies.

While the test for the absence of cointegration proposed in Chapter 3 is robust to cross-member

cointegration, the parameter restrictions on the cointegrating vector resulting from the presence of

common factor cointegration require additional testing. Thus, it is not possible to say whether

cointegration holds between the observed variables or the observed variables and the common factors

(or conditional on the common factors). The model considered in Chapter 4 and in Bai et al. (2009)
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include the common factors into the cointegrating relationship and therefore fall under the later

case. The error correction tests proposed in Chapter 4 require weak exogeneity of the explanatory

variables. However, this assumption is not tested. A panel extension of the Lagrange multiplier test

of Boswijk and Urbain (1997) could be developed to pre-test that assumption. Furthermore, the

tests developed in Chapters 3 and 4 test for a single cointegrating relationship under the alternative.

The extension of system based approaches to panel data allowing for more than one cointegrating

relationship has not seem much attention yet beyond the study of e.g. Larsson et al. (2001).

The methods considered throughout this thesis also differ in the way they estimate or approximate

the common factors. One approach is to follow Bai and Ng (2004b) and estimate the common

factors using the method of principal components, while an alternative is to follow the suggestion of

Pesaran (2006) and use cross-sectional averages as a proxy. While the principal component estimator

is consistent, the simple augmentation by cross-sectional averages is shown to work very well in

theoretical studies and empirical applications. The analysis of the relationship between principal

components and cross-sectional averages thus merits further research.

Estimating a cointegrating relationship in a panel with common factors is a problem that has

not been considered in this thesis beyond the empirical study in Chapter 5. While several estimators

have been proposed in the literature recently, we obtain varying results which are sensitive to model

specifications. The properties of different estimators could be analyzed further. Furthermore, a

proper extension to the estimation of dynamic models could be considered. From an empirical point

of view it has to be remarked that the data set used in the analysis ends in 2002 and thus only

includes 3 observations that have the Euro. Extending the data set should yield better estimates of

the trade effect of the common currency.
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Flôres, R., P. Jorion, P.-Y. Preumont, and A. Szafarz (1999). Multivariate unit root tests of the PPP

hypothesis. Journal of Empirical Finance 6, 335–353.

Frankel, J. and A. K. Rose (2002). An estimate of the effect of common currencies on trade and

income. The Quarterly Journal of Economics 117, 437–466.

Gengenbach, C., F. C. Palm, and J.-P. Urbain (2006). Panel cointegration testing in the presence of

common factors. Oxford Bulletin of Economics and Statistics 68, 683–719.

Gengenbach, C., F. C. Palm, and J.-P. Urbain (2009). Panel unit root tests in the presence of

cross-sectional dependencies: Comparison and implications for modelling. Econometric Reviews,

forthcoming.

Gengenbach, C., J. Westerlund, and J.-P. Urbain (2008). Panel error correction testing with global

stochastic trends. METEOR Reseach Memorandum RM/08/051, Maastricht University.

Glick, R. and A. K. Rose (2002). Deas a currency union affect trade? the time-series evidence.

European Economic Review 46, 1125–1151.

Gregoir, S. (2005). Representation and statistical analysis of weakly linearly exchangeable dynamic

panels. Working Paper, CREST.

Hadri, K. (2000). Testing for stationarity in heterogenous panel data. Econometrics Journal 3,

148–161.

Harris, R. D. F. and E. Tzervalis (1999). Inference for unit roots in dynamic panels where the time

dimension is fixed. Journal of Econometrics 91, 201–226.

Hecq, A., F. C. Palm, and J.-P. Urbain (2002). Seperation, weak exogeneity and P-T decomposition

in cointegrated VAR systems with common features. Econometric Reviews 21, 273–307.



BIBLIOGRAPHY 155

Im, K. S., M. H. Pesaran, and Y. Shin (2003). Testing for unit roots in heterogenous panels. Journal

of Econometrics 115, 53–74.

Kao, C. (1999). Spurious regression and residual-based tests for cointegration in panel data. Journal

of Econometrics 90, 1–44.

Kapetanios, G., M. H. Pesaran, and T. Yamagata (2008). Panels with nonstationary multifactor

error structures. mimeo, University of Cambridge.

Kremers, J. J. M., N. R. Ericcson, and J. J. Dolado (1992). The power of cointegration tests. Oxford

Bulletin of Economics and Statistics 54, 325–348.
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Nederlandse samenvatting

De analyse van niet-stationaire panel data is een relatief jong onderzoeksgebied binnen de econome-

trie. Het begon met de toenemende beschikbaarheid van grote macro-economische databases die

bijvoorbeeld informatie bevatten over landen gedurende tientallen jaren. Dit staat in contrast tot

traditionele (micro) panel data waar er meestal slechts observaties voor enkele tijdsperiodes zijn. De

grotere tijdsdimensie heeft het mogelijk gemaakt om methodes te gebruiken die ontwikkeld zijn voor

de analyse van niet-stationaire tijdreeksen. Hoewel vroege studies besteedden niet veel aandacht aan

afhankelijkheid tussen eenheden in de data, werd het snel duidelijk dat dit een cruciale eigenschap

van economische panel data en dat deze afhankelijkheid een negatief effect kan hebben op de ge-

bruikte econometrische methodes indien genegeerd. Verschillende alternatieven zijn voorgesteld in

de literatuur om afhankelijkheid tussen eenheden toe te kunnen staan.

In dit proefschrift richten we onze aandacht op methodes die een structuur van gemeenschappeli-

jke factoren gebruiken om de afhankelijkheid te modelleren. We dragen op verschillende manieren

bij aan de econometrische literatuur op het gebied van niet-stationaire panel data. In Hoofdstuk

2 vergelijken we verschillende tweede generatie panel toetsen op eenheidswortels die de afhankeli-

jkheid tussen eenheden modelleren met gemeenschappelijke factoren. De toetsen op eenheidswortels

van Pesaran (2007) zijn ontworpen voor gevallen waar de afhankelijkheid tussen de eenheden wordt

veroorzaakt door een enkele gemeenschappelijke factor. De toetsen van Moon and Perron (2004),

die gedefactoreerde data gebruiken zijn vergelijkbaar maar kunnen meerdere factoren meenemen.

De toetsen van Bai and Ng (2004b) kunnen de bron van de niet-stationariteit bepalen door het af-

zonderlijk toetsen op de gemeenschappelijke factoren en de idiosyncratische componenten. Breitung

and Das (2008) en Sul (2007) stellen panel toetsen op eenheidswortels voor wanneer er mogelijk

afhankelijkheid tussen eenheden aanwezig is door gemeenschappelijke factoren, maar de structuur
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van de factoren niet volledig benut wordt. We vergelijken de methodes op basis van het data gener-

erende proces, de toetsen, de nul en alternatieve hypothese en we vergelijken de eigenschappen in

kleine steekproeven door middel van Monte Carlo resultaten. De meeste toetsen kunnen alleen een

eenheidswortel in de idiosyncratische componenten detecteren; alleen de methodes van Bai and Ng

(2004b) en Sul (2007) kunnen stochastische trends in de gemeenschappelijke factoren waarnemen.

Als gevolg hiervan zijn alleen de laatste twee methodes in staat om cöıntegratie tussen eenheden

waar te nemen. Daarnaast verschaffen we ook nog een toepassing die het gebruik van de toetsen

illustreert. Uiteindelijk wordt besproken hoe de toetsen gebruikt kunnen worden voor modelleren in

het algemeen.

In Hoofdstuk 3 bekijken we een spurious regressie model voor een panel met niet-stationaire

gemeenschappelijke factoren. We nemen aan dat de geobserveerde variabelen een factor structuur

volgens als die voorgesteld in Bai and Ng (2004b) voor panel toetsen op eenheidswortels. Ons model

staat ons toe onderscheid te maken tussen twee verschillende gevallen waarvan wij denken dat ze

van theoretisch en empirisch belang zijn: (i) het geval waar de niet-stationariteit in de variabelen

enkel voortkomt uit gemeenschappelijke trends (cöıntegratie tussen eenheden); (ii) het geval waar

er zowel gemeenschappelijke als idiosyncratische trends zijn. In het tweede geval is het verwerpen

van de nul hypothese voor beide componenten noodzakelijk maar niet voldoende voor cöıntegratie

and we bespreken de vereiste homogeniteitrestricties op de cöıntegrerende vectoren die resulteren uit

de aanwezigheid van cöıntegratie van/door gemeenschappelijke factoren. Bovendien bestuderen we

het asymptotische gedrag van enkele bestaande toetsen op cöıntegratie in panels die gebaseerd zijn

op residuen, zoals bekeken door Kao (1999) en Pedroni (1999, 2004a). We laten zien dat voor het

gebruikte data genererende proces de toetsingsgrootheden niet langer asymptotisch normaal verdeeld

zijn, en dat convergentie plaatsvindt met snelheid T in plaats van
√
NT , zoals voor onafhankelijke

panels. Naar het werk van Bai and Ng (2004b) beschouwen we dan de mogelijkheden om te toetsen

op de verschillende vormen van geen-cöıntegratie door de factoren en de individuele componenten

rechtstreeks aan de geobserveerde data te onttrekken en dan de geschatte componenten afzonderlijk

te toetsen.

Hoofdstuk 4 bekijkt een gecöıntegreerd panel data model met gemeenschappelijke factoren. We

ontwikkelen alternatieve representaties van een gecöıntegreerd panel dat niet-stationaire factoren

toe laat. Vanuit de triangulaire representatie van het systeem, die bijvoorbeeld door Bai et al.

(2009) gebruikt wordt, leiden we een Granger-achtige representatie stelling af vergelijkbaar met

degene afgeleid door Cappuccio and Lubian (1996) voor een enkelvoudige tijdreeks. De conditionele
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error correction representatie wordt verkregen en gebruikt als basis voor het onwikkelen van twee

nieuwe toetsen voor de nul hypothese van geen error correction. In het bijzonder bekijken we panel

versies van de t-toets zoals voorgesteld door Banerjee et al. (1998) en Boswijk (1994) en de Wald

toets van Boswijk (1994). We laten zien dat de toetsen specifiek voor een individu asymptotisch

zonder onbekende parameters zijn en alleen afhangen van het aantal niet-stationaire variabelen in

het systeem. Echter, ze zijn niet onafhankelijk tussen eenheden door de gemeenschappelijke factoren.

Desondanks convergeert het gemiddelde van de toetsingsgrootheden naar een kansvariabele met een

distributie die, hoewel analytisch niet achterhaalbaar, wel gesimuleerd kan worden. Dit maakt poolen

mogelijk ondanks de afhankelijkheid. We onderzoeken de eigenschappen van de toetsen in kleine

steekproeven in een Monte Carlo experiment en vergelijken ze met de toetsen van Westerlund (2007).

We bekijken ook twee empirische toepassingen van de nieuwe toetsen.

Dit proefschrift draagt ook bij aan de empirische literatuur over zwaartekracht modellen van

bilaterale handel en het effect van een gezamenlijke munteenheid op handel. In Hoofdstuk 5 bekijken

we Bun and Klaassen (2007) opnieuw voor een onderzoek naar de impact van de introductie van de

euro op bilaterale handel. Hoewel er overtuigend bewijs is van een positief effect van een gezamenlijke

munteenheid op handel, is er een voortdurende discussie over de daadwerkelijke grootte van het

effect in de empirische literatuur, beginnende met het werk van Rose (2000). Rekening houdend met

deterministische trend in de residuen van de zwaartekracht vergelijking schatten Bun and Klaassen

(2007) een euro effect van ongeveer 3%, kleiner dan eerdere schattingen tussen 5% en 40%. Wij

bekijken hun data opnieuw, die waarnemingen bevat van de 15 lidstaten van de Europese Unie voor

de uitbreiding in 2004, en van Noorwegen, Zwitserland, Canada, Japan en de VS over een periode

van 1967 to 2002, gebruik makend van nieuwe methodes die recentelijk zijn ontworpen voor de

analyse van niet-stationaire panel data met afhankelijkheid tussen de eenheden. Gebruik makend

van verschillende panel toetsen op eenheidswortels vinden we sterk bewijs dat (de logaritme van)

bilaterale handel, als ook het product van BBP en BBP per capita een eenheidswortel bevat. Echter,

we vinden cöıntegratie tussen deze variabelen met de cöıntegratie toetsen ontwikkeld in Hoofdstuk 3

en 4. Met de CCEP schatter van Pesaran (2006) en the CUP schatter van Bai et al. (2009) verkrijgen

we schattingen van de cöıntegrerende vector en schattingen van het euro effect op bilaterale handel.

Onze schattingen variren tussen modellen en schatters maar lijken de bevindingen van Bun and

Klaassen (2007) te onderschrijven.
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