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Abstract. In general equilibrium models of financial markets, the capital asset pricing
formula does not hold when agents have von Neumann–Morgenstern utility with constant
relative risk aversion. In this paper we examine under which conditions on endowments
and dividends the pricing formula provides a good benchmark for equilibrium returns.
While it is easy to construct examples where equilibrium returns are arbitrarily far from
those predicted by CAPM, we show that there is a large class of economies where CAPM
provides a very good approximation. Although the pricing formula does not hold exactly
for the chosen specification, it turns out that pricing-errors are extremely small.
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1. Introduction

The Capital Asset Pricing Model (CAPM) of Sharpe (1964) and Lintner (1965)
predicts that equilibrium returns of assets are a linear function of their market β,
the slope in the regression of a security’s return on the market’s return. This intu-
itively appealing result has long shaped the way practitioners think about average
returns and risk. While the empirical validity of the model is very controversial
(see for example Fama and French (1992)), it remains one of the central building
blocks in financial economics.

However, in consumption based asset pricing models where agents choose port-
folios in order to maximize von Neumann–Morgenstern utility over non-negative

∗ This paper is a substantial revision of our 2000 METEOR working paper, “The
Robustness of CAPM – A Computational Approach”. The research of Jean-Jacques Her-
ings has been made possible by a fellowship of the Royal Netherlands Academy of Arts
and Sciences and a grant of the Netherlands Organisation for Scientific Research (NWO).
While this paper was being written this author enjoyed the generous hospitality of the
Cowles Foundation for Research in Economics at Yale University, of CORE at Univer-
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consumption processes, the CAPM pricing formula only holds if one assumes
that all agents’ utility functions are quadratic (see Geanakoplos and Shubik,
1990; Berk, 1997). This is generally recognized as an unrealistic specification
of preferences, for instance because it implies increasing absolute risk aversion.
Instead, it is generally agreed upon that agents’ preferences exhibit decreasing
absolute risk-aversion and non-decreasing relative risk aversion. As a consequence,
the CAPM pricing formula will fail to hold.

The fact that the CAPM pricing formula fails to hold does not imply that
it does not hold approximately, and might therefore still be useful for practical
purposes. For the related problem of portfolio choice, it has been shown by
various authors that mean-variance analysis is valid in the limit, when either risk
is small in absolute terms (Samuelson, 1970) or risk is small relative to wealth as
discussed by Tsiang (1972).

In this paper we investigate under which conditions equilibrium asset prices can
be well approximated by the CAPM formula in economies where all agents have
constant relative risk aversion preferences (CRRA) and where individual income
uncertainty is relatively modest. For the problem of portfolio selection, this ques-
tion has also been addressed in Levy and Markowitz (1979). They show that port-
folios are well approximated by the model when individuals have either constant
absolute risk aversion (CARA) or CRRA-preferences, where CRRA-preferences
correspond to the most difficult case.

In applied general equilibrium, the assumption of CRRA is popular, see for
instance the paper of Mehra and Prescott (1985) and much of the work that
followed it. In infinite horizon models with growth this specification of utility
is necessary for obtaining a balanced growth path. CRRA has been tested non-
parametrically and found confirmed by Tversky and Kahneman (1992). Also
Arrow (1965) argues in favor of CRRA, arguing that relative risk aversion “must
hover around 1” (p. 37). For these reasons, we consider the CRRA-case the most
relevant one, and stick to these types of preferences in this paper.1 Under this
assumption CAPM does not hold and there are no general results linking an
asset’s equilibrium return to its covariance with the market’s return.

It is easy to construct examples where assets’ market β does not explain any
variation in cross sectional returns. In these economies any econometric test would
reject CAPM and empirical contradictions of CAPM might be explained by the
fact that some agents do not have quadratic utility. For example, when all assets
have the same price and each asset payoff has the same covariance with aggre-
gate endowments, CAPM predicts that the excess returns must be identical across
assets. But since higher moments matter when agents have CRRA preferences the
equilibrium returns generally differ across assets. We give a simple example where
these differences are quantitatively substantial.

On the other hand we argue by means of a computational approach that for
a large class of economies the CAPM pricing formula provides a very good
prediction for actual equilibrium returns.
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It is clear that the examples we provide may not be representative of real life
scenarios. It is well documented in the literature that extensions and modifica-
tions of standard CAPM outperform the original model (see e.g. Dittmar, 2002).
However, we do believe that our examples are interesting because they describe a
large class of economies where standard CAPM does very well. In our examples,
utility functions are not well approximated by a low-order Taylor expansion, yet
the general equilibrium implications are similar to CAPM. These examples imply
that empirical evidence against the validity of CAPM cannot simply be explained
by the fact that individuals do not have quadratic utility. Downside risk and
skewness in return distributions (as for example empirically documented in Ang
et al. (2005)) must be a crucial ingredient for any explanation of why CAPM fails
empirically.

We consider economies with three agents and 32,768 states of nature and
we examine the robustness of CAPM with respect to different specifications of
preferences, payoffs and endowments. We assume that the agents have CRRA
utility functions (but different degrees of risk aversion) and examine the following
cases:

• Endowments and dividends are drawn from a uniform distribution. We
randomly generate 100 economies which differ with respect to the support of
the uniform distributions.

• Endowments and dividends are drawn from a log-normal distribution. We ran-
domly generate 100 economies which differ with respect to the agents’ coeffi-
cients of risk aversion.

• Endowments and dividends are determined by two factors and an idiosyncratic
shock each of which is drawn from a log-normal distribution. We randomly
generate 100 economies which differ with respect to the factor-loads.

• Endowments and dividends are drawn from a log-normal distribution and there
is an option on one of the stocks. We randomly generate 100 economies which
differ with respect to the strike-price of the option.

For all economies under consideration we compare the computed return on
individual stocks to the return predicted by the CAPM-pricing formula. We find
that in all 400 cases the average mean squared pricing errors (for returns) across
stocks lie below 0.04%. The average error across all simulations is in the order
of magnitude of 0.005%. In these economies standard statistical procedures would
accept CAPM.

The paper is organized as follows. In Section 2 we introduce the general equi-
librium model and summarize several results on CAPM in this setting. We give a
simple example that demonstrates that CAPM may fail to hold in our setup. In
Section 3 we provide a novel way to measure how well CAPM returns approxi-
mate actual returns, and compute this measure for several hundred examples. We
show that CAPM does very well in an approximate sense for all cases considered.
Section 4 concludes.



16 P. JEAN-JACQUES HERINGS AND F. KUBLER

2. The Two-Period Finance Economy

The finance version of the general equilibrium model with incomplete asset
markets (GEI-model) describes an economy over two periods of time, t =0,1, with
uncertainty over the state of nature resolving in period t = 1. We describe the
model, introduce the necessary notation and discuss the CAPM. For a thorough
description of the GEI-model see for example Magill and Quinzii (1996).

2.1. THE MODEL

There are S +1 states in the economy; at time t =0 the economy is in state s =0,

at time t = 1 one state of nature s out of S possible states of nature realizes. In
each state s =0, . . . , S, there is a single non-durable consumption good.

There are H agents, indexed by h = 1, . . . , H , that participate in the economy.
An agent h is characterized by initial endowments (the initial income stream)
eh = (eh

0 , eh
1 , . . . , eh

S)� ∈ IRS+1++ . Here eh
s denotes the amount of income of agent h

available for consumption in state of nature s when the agent abstains from trad-
ing. In particular, eh

0 is the amount of income available for consumption at t = 0
and (eh

1 , . . . , eh
S) denotes the random amount of income available for consumption

at t = 1. To distinguish between amounts of income t t = 0 and random amounts
of income at t =1, we define x̃ = (x1, . . . , xS)� for any vector x = (x0, x1, . . . , xS)�.
Aggregate endowments (aggregate incomes) are e =∑H

h=1 eh .
Agents have preferences over consumption bundles (income streams available

for consumption) ch = (ch
0 , ch

1 , . . . , ch
S)� ∈ IRS+1+ . Each agents’ preferences are

represented by a von Neumann–Morgenstern utility function

uh(ch)=vh(ch
0 )+ δ

S
∑

s=1

ρsv
h(ch

s ),

where ρs denotes the probability of occurrence of future state of nature s, δ is a
discount factor, and vh is the Bernoulli function that measure instantaneous utility
derived from consumption ch

s by agent h in state of nature s. We assume that
ρ1, . . . , ρS > 0,

∑S
s=1 ρs = 1, δ > 0, that probabilities and the discount factor are

identical across agents, and that the Bernoulli function vh : IR+ → IR is assumed to
be strictly increasing and strictly concave.

There are J assets. Asset j pays (random) dividends at date t = 1 which we
denote by d j ∈ IRS . The price of asset j at time t = 0 is q j . Without loss of
generality, we assume in this section that the assets are in zero net supply, i.e., the
trades by agents are the agents’ net trades, and we collect all assets’ dividends in
a pay-off matrix

A = (d1, ....,dJ )∈ IRS×J .

Without loss of generality, we assume A to have full column rank.2
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At time t = 0 agent h chooses a portfolio-holding θh = (θh
1 , . . . , θh

J ) ∈ IRJ which
uniquely defines the agents’ consumption by c̃h = ẽh + Aθh and ch

0 =eh
0 −θh ·q. The

net demand of agent h, c̃h − ẽh , therefore belongs to the so-called marketed sub-
space 〈A〉={z ∈ IRS | ∃θ ∈ IRJ , z = Aθ}.

The exogenous parameters defining a finance economy E = ((uh, eh)h=1,...,H ; A)

are agents’ utility functions and endowments, and the pay-off matrix.
We define asset prices to be arbitrage free if it is not possible to achieve a

positive income stream in all states by trading in the available assets. It is well
known that a price system q ∈ IRJ precludes arbitrage if and only if there exists
a state price vector π ∈ IRS++ such that q =π� A.

DEFINITION 1. (Competitive Equilibrium): A competitive equilibrium for an
economy E is a collection of portfolio-holdings θ∗ = (θ1∗, . . . , θ H∗) ∈ IRH J ,
consumptions c∗ = (c1∗, . . . , cH∗) and asset prices q∗ ∈ IRJ that satisfy the follow-
ing conditions:

(1) (ch∗, θh∗) ∈ arg maxch ,θh uh(ch) s. t. ch = eh +
(

−q∗�

A

)

θh and ch ∈ IRS+1+ ,

h =1, . . . , H ;
(2)

∑H
h=1 θh∗ =0.

Existence of an equilibrium follows from the results of Geanakoplos and
Polemarchakis (1986).

2.2. THE CAPITAL ASSET PRICING MODEL

Under the assumption that all agents are mean-variance optimizers, Sharpe (1964)
and Lintner (1965) derive a closed-form solution for equilibrium returns, the so-
called β-pricing formula. This formula relates the return of a risky asset to the
return of the market portfolio by the covariance of that asset with the market. It
is well known that the β-pricing formula can be derived in the finance GEI-model
as presented in the previous subsection, see Geanakoplos and Shubik (1990). We
summarize the findings in the literature (Geanakoplos and Shubik, 1990; Magill
and Quinzii, 1996; Oh, 1996; Willen, 1997) in order to define appropriate ways to
measure deviations from CAPM in Section 3.

We denote by 1n = (1, . . . ,1)� ∈IRn the vector of all ones. We assume that asset 1
is a riskless bond, so d1 =1S . For a random variable x ∈ IRS, we define its expected
value E(x)=∑S

s=1 ρs xs , for two random variables x, y ∈ IRS, we define the covari-
ance as cov(x, y)=∑S

s=1 ρs xs ys −E(x)E(y). The variance of a random variable x ∈
IRS is given by var(x)=cov(x, x). Finally, we define x ·ρ y =∑S

s=1 ρs xs ys for vectors
x, y ∈ IRS .

Given asset prices q ∈ IRJ , we define the return of a portfolio θ ∈ IRJ with
q ·θ 	=0 by rθ = Aθ/q ·θ and we denote the return of the riskless bond by Rf =1/q1.
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For any competitive equilibrium (θ∗,q∗), the absence of arbitrage implies that
there exists at least one state price vector π ∈ IRS++ such that, for all assets
j,q∗

j = π ·ρ d j . It is easy to show and well-known that if one projects any state
price vector π ∈ IRS++ for which, for all assets j,q∗

j = π ·ρ d j , onto the marketed
subspace 〈A〉, one obtains a unique pricing vector, denoted by π∗

A. For example,
under the assumption that one agent h’s utility function is differentiable and that
in an equilibrium with individual consumption (ch∗)h∈H , agent h’s utility maximi-
zation problem has an interior solution, π∗

A can be characterized as

π∗
A =proj〈A〉

(

∂ch
1
uh(ch∗)/ρ1

∂ch
0
uh(ch∗)

, . . . ,
∂ch

S
uh(ch∗)/ρS

∂ch
0
uh(ch∗)

)

,

where proj〈A〉 denotes the projection on 〈A〉 under the inner product ρ. The
assumption of mean-variance utility allows for a sharp prediction on π∗

A which
does not hold in general for other specifications of utility. Below we will use this
deviation as a measure of how well CAPM holds.

In general, agent h’s first period endowments can be decomposed into a
marketed part and a non-marketed part, where the latter part lies orthogonal to
the marketed subspace under the inner product ρ. More precisely,

ẽh = ẽh
M + ẽh⊥,

where by definition ẽh
M = proj〈A〉ẽh and ẽh⊥ = ẽh − ẽh

M. Moreover, by definition,
ẽh⊥ ·ρ z =0 for all z ∈〈A〉. This decomposition is uniquely determined. We define the
marketed endowments by ẽM =∑H

h=1 ẽh
M. The market portfolio θM is then defined

as the unique portfolio satisfying

AθM = ẽM.

For a competitive equilibrium (θ∗, c∗,q∗), we define βθ for a portfolio θ ∈ IRJ

by

βθ = cov(rθ , rθM)

var(rθM)
.

Then the following result can be found in the literature (see e.g. Willen (1997) for
a derivation in the GEI-framework).

THEOREM 1. Under the assumptions that all agents have quadratic utility, that
var(̃eM)>0, and that there is a riskless bond, each equilibrium (θ∗, c∗,q∗) of E with
equilibrium consumption (c1∗, . . . , cH∗)�0 has the following properties.3

1. The CAPM-pricing formula holds; when q∗ · θM 	=0, then for each θ ∈ IRJ ,

E(rθ )− Rf =βθ (E(rθM)− Rf). (1)
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2. The pricing vector satisfies π∗
A =α11S −α2ẽM, with α1 >α2E(̃eM) and α2 strictly

positive.

Note that for the case where the endowments are spanned, i.e. where eh⊥ =0 for
all h, the pricing formula reduces to the standard CAPM-formula (see Magill and
Quinzii, 1996). This is the (rather restrictive) case that is typically considered in the
finance literature. Theorem 1 shows that for an appropriate definition of the mar-
ket portfolio, the standard CAPM-result with spanned endowments can be gener-
alized substantially.

It might be sensible to define the market portfolio somewhat differently as a
portfolio of risky assets only. In this case define ̂θM = (0, θM,2, . . . , θM,J ). If we
define ̂βθ = cov(rθ , r

̂θM
)/var(r

̂θM
) it turns out that the pricing formula still holds.

After some substitutions, one obtains

E(rθ )− Rf = ̂βθ (E(r
̂θM

)− Rf).

2.3. AN EXAMPLE

As we have discussed in the introduction, Theorem 1 can only be obtained when
one is willing to make very restrictive assumptions. Magill and Quinzii (1996), page
140, comment on the CAPM: “As we indicated above these models are interesting
since they lead to clearcut results which have strong intuitive appeal. However the
restrictive nature of the hypothesis made could cast doubt on the generality of the
results.” In particular, the assumption that all agents maximize a quadratic utility
function is unattractive because it implies increasing absolute risk aversion. A more
realistic assumption, and one commonly made in macroeconomics and finance, is
that agents’ preferences exhibit CRRA. The question we want to address in this
paper is how much actual equilibrium prices will differ from the predictions of
CAPM in this more realistic setting.

We give a simple example that shows that the CAPM pricing formula might
be completely useless for explaining cross sectional returns. Consider an economy
with a representative agent with CRRA utility function, so the utility function of
the agent has the form

v(c)= c1−γ

1−γ
, γ 	=1,

v(c)= log(c), γ =1,

where γ is the coefficient of relative risk aversion. The agent’s initial endowments
consist of his labor income plus dividends from his asset holdings. In addition to
a bond there are two risky stocks which are independently distributed. There are
two independently distributed factors, ε1 and ε2. The first factor is 0.8 with prob-
ability 2/3 and 1.4 with probability 1/3. The second factor is 1.2 with probability
2/3 and 0.6 with probability 1/3. The two stocks’ dividends are

d1 = ε1 and d2 = ε2 +μ1S
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for some μ ≥ 0. The agent initially holds one unit of both stocks. The agent has
a non-stochastic labor income of 0.2−μ in the second period. Suppose the agent
also has 2 units available for consumption in the first period and does not discount
the future, i.e. δ =1. It follows that ẽ =0.2+ ε1 + ε2.

For μ = E((ε1 − ε2)/ẽγ )/E(1/ẽγ ) the equilibrium prices of the two stocks are
identical. Since both stocks have the same covariance with aggregate endowments,
CAPM predicts that the excess return of the two stocks must be equal. However,
the equilibrium excess returns are quite different and depend on γ as in Table I.

The key to this example lies in the fact that on the margin, a CRRA agent pre-
fers the dividends of asset 1 to the dividends of asset 2 – therefore for the same
expected payoffs, asset 2 must be cheaper than asset 1 and its returns higher. A
mean-variance agent with quadratic utility, on the other hand, would be indiffer-
ent between ε1 and ε2 since they have the same mean and variance.

Surprisingly, the next section will be used to demonstrate that this example
crucially depends on the specific construction used to define dividends and to
relate dividends to labor income. We show that, contrary to the example, for realis-
tically calibrated economies, returns predicted by CAPM provide excellent approx-
imations to actual equilibrium returns.

3. Robustness of CAPM

In applied general equilibrium, the assumption of CRRA is popular, see for
instance the paper of Mehra and Prescott (1985) and much of the work that
followed it. CRRA has been tested non-parametrically and found confirmed by
Tversky and Kahneman (1992). Also Arrow (1965) argues in favor of CRRA,
arguing that relative risk aversion “must hover around 1” (p. 37). We will therefore
assume CRRA utility functions for all agents in our economies.

We test the robustness of our results to variations in the distributions of
endowments and assets. We consider three different families of return processes
and compute 100 randomly generated examples within each class. We show
the histograms of two measures to be introduced in the sequel, called MSE
and Pricing R2, that measure how well CAPM-pricing approximates equilibrium
pricing. In all histograms the scaling is taken identically, so that results for
different models can be compared easily.

Table I. Equilibrium excess returns.

γ Excess return 1 Excess return 2 CAPM prediction

2 7.7 10.1 8.9
4 13.7 20.7 17.2
6 15.2 25.7 20.4
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3.1. HETEROGENEOUS AGENTS AND IDENTICAL FACTORS

One has to compute equilibria in order to assess how well CAPM predicts equi-
librium prices in economies with heterogeneous agents and incomplete markets.
From now on we examine economies with three heterogeneous agents, representing
classes of agents with low, medium and high incomes.

Agents have heterogeneous von Neumann–Morgenstern utility functions with
constant relative risk aversion, identical uniform probabilities over states and iden-
tical discount factors δh =0.95. We choose heterogeneous coefficients of risk aver-
sion: γ 1 =6, γ 2 =4 and γ 3 =2, i.e. the lower the income, the higher the coefficient
of relative risk aversion of the agent.

Each agent is endowed with an initial portfolio of assets and a set of contrac-
tual obligations to provide labor services, yielding labor income. The initial asset
portfolio consists of 0 units of a riskless bond and θh− ∈ IRJ−1 units of the available
stocks. We assume that the first agent has no capital income, θ1− =0. For the other
agents we have θ2− =1/3 ·1J−1 and θ3− =2/3 ·1J−1.

Labor income consists of current labor income lh
0 and stochastic future labor

income lh ∈ IRS++. The initial endowments at t = 0 are therefore equal to previous
dividends from θh− plus labor income, and are set equal to e1

0 = 2/3, e2
0 = 1, and

e3
0 =4/3. The initial endowments at t =1 equal

ẽh =
J

∑

j=2

θh
−, j d j + lh .

In the examples we represent the available assets by a riskless bond and seven
representative stocks. In most examples the dividends of asset j depend on
a single common factor which we now denote by f ∈ IRS as well as on an
idiosyncratic factor ε j ∈ IRS . We denote asset j ’s load in the common factor by
φ j , varying from 0.25 to 1.75 in steps of 0.25. In most examples, f and ε j are
S-dimensional approximations of continuously distributed random variables. In
these cases, we set S = 32,768. Using a large number of states guarantees that
our final samples are good approximations of continuous distributions. By taking
a large number of states we rule out finite sample effects on the prices of assets.
When we replicate the experiment and generate economies out of a newly drawn
sample, the equilibrium will be almost the same if the number of states is suffi-
ciently large.

Similar to the way f and ε j are constructed, we generate for each household h
the labor incomes lh

s by S independent draws from some given distribution. The
eleven random variables in the model are therefore ((lh)h=1,...,H , f, (ε j ) j=2,...,J ).

Aggregate consumption and capital share in the examples are calibrated to
yearly US data. The expected growth rate of aggregate consumption equals two
percent and the standard deviation of both the factor and the idiosyncratic shock
determining the dividends areabout 0.13 – giving an overall standard deviation
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of the stock market of about 0.17. The standard deviation of labor income
is chosen to be around 0.10 and labor income constitutes around 2/3 of total
income.

As a first example we analyze the case where the realization of each random
variable is either high or low with equal probability, and all random variables are
independent. The minimal state space to achieve this consists of 211 =2,048 states.
More specifically we have that

lh
s ∈{2/3 · (1.02−0.1),2/3 · (1.02+0.1)},
fs ∈{−0.13,0.13},
ε

j
s ∈{−0.13,0.13}.

Dividends of asset j are then determined by

d j
s =1/3 ·1/7 · (1.02+√

φ j fs + ε
j
s ).

We have taken the square-root of the factor load φ j in the specification of the
dividends in order to give it an interpretation as the (approximate) stock’s
market β.

With these specifications we compute the equilibrium prices and portfolio
holdings and compare them to the predictions of the CAPM in Figure 1. In
Herings and Kubler (2002) we develop an algorithm that is tailored to the finance
GEI-model with one good per state, and that is independent of the number of
states. We use this algorithm to approximate equilibria numerically.

The solid line in the figure is the security market line, i.e. the CAPM relation-
ship between a portfolio’s β and its risk premium. The actual equilibrium expected
returns of the seven securities are depicted by + and lie all almost exactly on the

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5
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Figure 1. Security market line with high-low returns.
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security market line. CAPM turns out to be an extraordinarily good predictor for
the actual equilibrium returns of assets in this example. This is surprising for two
reasons. First, the asset payoffs and dividends do not satisfy the assumptions in
Section 2.2. Secondly, the introduction of agents’ heterogeneity does not alter the
cross section of equilibrium returns significantly.

Although the graph of Figure 1 looks very convincing, it is clear that we need
more objective measures to quantify the deviation of equilibrium prices and port-
folio-holdings from the CAPM predictions.

The most straightforward approach to measure the accuracy of CAPM-pricing
is to take the Mean Squared Error (MSE), which is defined by

MSE=

√

√

√

√

√

1
J −1

J
∑

j=2

(r∗
j − r̂ j )2,

where r∗
j denotes the equilibrium expected return of asset j and r̂ j the prediction

by CAPM, using (1) and the true equilibrium interest rates and market return.
A different approach consists of the following. It is well-known that π∗

A ∈〈1S, ẽM〉
is sufficient for CAPM-pricing. That this is necessary as well follows from the obser-
vation that otherwise π∗

A is equal to the sum of its projection on 〈1S, ẽM〉 plus a
non-zero orthogonal part in 〈A〉 under the inner product ρ. When CAPM-pricing
is valid, the orthogonal part should have zero price, which is obviously not the case
when priced by π∗

A. Therefore, an interesting alternative to MSE is to take the OLS
R2 of the regression with

proj〈A〉

(

∂ch
1
uh(ch∗)/ρ1

∂ch
0
uh(ch∗)

, . . . ,
∂ch

S
uh(ch∗)/ρS

∂ch
0
uh(ch∗)

)

as regressand and 1S and ẽM as regressors. Notice that this measure is independent
of h. We call it Pricing R2.

We believe that our approach of assessing the validity of CAPM-pricing is both
novel and appropriate. Since this equilibrium state price vector is equal to the pro-
jection of the equilibrium marginal utility vector of all agents on the marketed
subspace, it can be used for pricing all marketed securities. When the pricing R2

is close to one, actual equilibrium returns of securities will be close to the CAPM-
predictions.

Table II confirms that CAPM provides an outstanding prediction for the
economy under consideration.

3.2. UNIFORM RETURNS

In order to verify whether our results depend crucially on all factors having the
same distribution we now assume uniformly distributed shocks, which all have
different support. We also allow for some variation in the ratio of labor income
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to total income, in the variance of the factor and in the variance of the idiosyn-
cratic shocks.

More specifically, we start each example by randomly generating parameters
a1, a2, a3 and a4, where

a1 ∼U(1.02 ·0.5,1.02 ·0.9),

a2 ∼U(1.02 ·1.1,1.02 ·1.5),

a3 ∼U(−0.5,−0.1),

a4 ∼U(0.1,0.5).

Given a realization for a1, . . . ,a4, we continue the construction of the economy by
taking independent drawings for lh

s , fs and ε
j
s , where

lh
s ∼U(2/3 ·0.8,2/3 ·1.24),

fs ∼U((a1 −a2)/2, (a2 −a1)/2),

ε
j
s ∼U(a3,a4).

Finally, dividends are determined by

d j
s =1/3 ·1/7 ·

(

a1 +a2

2
+√

φ j fs + ε
j
s

)

.

Given the realizations for the parameters a1 and a2, 1/3 · 1/7 · (a1 + a2)/2 equals
expected dividends from asset j . The realization of the factor belongs to the
interval [(a1 −a2)/2, (a2 −a1)/2] and the realizations of the idiosyncratic shocks to
the interval [a3,a4]. The expected labor income and the variance of labor income
are taken as before.

Figure 2a, b shows that the ability of CAPM to predict portfolio-holdings and
excess returns is robust to variations in the distribution of shocks.

Figure 2 shows that CAPM is an excellent predictor for the class of CRRA util-
ity functions and uniform factors. While the factors are no longer iid, in most
cases the MSE is around 1×10−4. The worst Pricing R2 found is 0.9999.

The high values of the Pricing R2 provides very useful information for the pric-
ing of assets. Recall that the price of asset j is given by π∗

A · d j . Any vector that

Table II. CAPM for CRRA preferences
and two-point distributions.

Rf 1.0633
Equity Premium 0.0185
MSE 0.0000530
Pricing R2 0.99999998
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Figure 2. (a) Uniform: MSE, (b)Uniform: 100· Pricing R2.

is highly correlated with π∗
A should lead to a similar price for asset j . In partic-

ular, when the Pricing R2 is close to one, CAPM is bound to give almost exact
equilibrium prices and the use of CAPM leads to a low MSE.

3.3. LOG-NORMAL RETURNS AND DIFFERENT RISK AVERSIONS

We now vary the factor structure further by assuming that all asset payoffs are the
product of iid factors with log-normal distribution. Furthermore, we vary agents’
degree of risk aversion.

Throughout this section we assume that all random variables are log-normally
distributed, so lh

s , fs , and ε
j
s are drawn independently from a log-normal distri-

bution. The log-normal distribution with mean μ and variance σ 2 is denoted by
LN(μ,σ 2). As before asset 1 is the riskless bond. For j�2, we define asset j ’s
dividend to be

d j
s =1/3 ·1/7 ·1.02 · f j

s · ε j
s

and we choose

lh
s ∼LN(2/3 ·1.02, (2/3)2 ·0.01),

f j
s ∼LN(1, φ j ·0.0161),

ε
j
s ∼LN(1,0.0161).

The actual ( f j
s )J

j=2 are all based on a single realization of a normal random
variable. For each asset j , we linearly transform the realization of this random
variable in such a way that after taking the exponent a log-normally distributed
random variable with mean 1 and variance c j ·0.0161 results. The construction of
the random variables implies that all dividends themselves are log-normally distrib-
uted. To get a similar variance of the entire stock market as before, the variance of
the factors and the idiosyncratic shock have to be chosen to be 0.0161 instead of
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0.0169. Notice that the factor realization does not enter linearly in the formula for
the asset’s dividends, an assumption that is made in most models describing factor
economies.

We now assume that all agents have CRRA and we draw γ h , h = 1,2,3,

from a uniform distribution on the interval [0.5,10]. As before we compute 100
examples - Figure 3a, b report the analogues of Figures 2a, b for the case of
log-normal returns.

As before CAPM is a very good prediction for actual equilibrium returns.

3.4. TWO COMMON FACTORS

In this subsection we generate a number of economies where risky assets depend
on two common factors, f and ̂f , and factor loads for each one of the assets are
randomly drawn. On top of this, also the importance of the idiosyncratic shock is
randomly determined.

We start each example by randomly generating, for each asset j = 2, . . . , J,

parameters φ j , ̂φ j , and i j . These parameters represent the load in factor 1, the
load in factor 2 and the importance of the idiosyncratic shock. More specifically
it holds that

φ j ∼U(0,2),

̂φ j ∼U(0,2),

i j ∼U(0,4).

Labor income, the two factors and assets’ idiosyncratic shocks are independently
log-normally distributed, so lh

s , fs , ̂fs , and ε
j
s are drawn from a log-normal

distribution,
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Figure 3. (a) CRRA: MSE, (b) CRRA: 100· Pricing R2.
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lh
s ∼LN(2/3 ·1.02, (2/3)2 ·0.01),

f j
s ∼LN(1, φ j ·0.0161),

̂f j
s ∼LN(1,̂φ j ·0.0161),

ε
j
s ∼LN(1, i j ·0.0161).

Finally, dividends are determined by

d j
s =1/3 ·1/7 ·1.02 · f j

s · ̂f j
s · ε j

s .

The way to generate f j
s , j = 2, . . . , J, from a single realization of a normally

distributed random variable is the same as in Section 4.2. The same applies to the
other factor.

Surprisingly, as evidenced by Figure 4, pricing is still a very good prediction for
equilibrium returns. Although the asset payoffs now differ substantially from a lin-
ear factor structure, pricing errors are very small.

3.5. OPTIONS

Since markets are incomplete and utilities are not quadratic, the introduction of
an option on one of the assets will generally change all equilibrium prices. There-
fore one might expect that the introduction of an option worsens CAPM-pricing
considerably. Furthermore, given the robustness of CAPM in the earlier examples,
it is interesting to see if it is possible to give an equilibrium pricing formula for
options in incomplete markets via CAPM.

Another reason to introduce an option is that this is an asset with the
capacity to seriously alter the higher order moments of an asset portfolio. One
possible explanation for our results obtained so far is that asset markets are very
incomplete, which makes it difficult for households to change the higher order
moments of the returns of their portfolios. Although households care for higher
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Figure 4. (a) Two-factor: MSE, (b) Two-factor: 100· Pricing R2.
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order moments, the mix of marketed assets makes it difficult to affect the higher
order moments. With the introduction of an option this clearly changes. Agents
have then a possibility to limit downward risk, which is exactly the kind of risk
agents with CRRA utility functions are concerned about, but mean-variance opti-
mizers are not.

In order to investigate this issue more closely, we introduce a call option on the
most risky asset. Specifically we have a 9th security which pays max(d j

s − X,0) in
state s, with X the strike price of the call option.

Suppose we consider the uniquely determined equilibrium pricing vector π∗
A of the

economy without the option, and we use this pricing vector to price the option. Given
the reasoning of the previous paragraph, at those prices one would expect the call option
(in combination with the bond) to be more attractive to the agents than the stock, exactly
because of the higher order moments. So the equilibrium price of the call option should
be higher than the one computed by CAPM-pricing, in order to make that asset less
appealing. As a consequence, the expected equilibrium return of the call option should
be less than the one predicted by CAPM.

To examine different options, we draw X out of the uniform distribution for
each example. To avoid options that are either too far in or too far out of the
money we determine in each example the minimal dividend paid out by asset 8,
d8 = mins=1,...,S d8

s , and the maximal dividend paid out, d
8 = maxs=1,...,S d8

s . We
then draw X out of a uniform distribution on [0.5 · (1.02 + d8),0.5 · (1.02 + d

8
)].

Note that 1.02 is the expected dividend of asset 8. The strike price is always
between the average of the minimal dividend and the expected dividend, and the
average of the expected dividend and the maximal dividend. The results are given
in Figure 5a, b.

The MSE in Figure 5 refers to the MSE of the pricing of the stocks only. The option
is analyzed in detail in Figure 6. It turns out that the MSE are comparable to the ones
given before. The Pricing R2 is somewhat less good than before, but is still excellent.
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Figure 5. (a) Option: MSE, (b) Option: 100· Pricing R2.
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Figure 6. Option: over-prediction of return against option’s β.

Surprisingly, we have found no systematic effect of the introduction of the option on
the price of asset 8. In some examples the introduction of an option raised the price
above the CAPM-prediction, in others it has been lower.

Figure 6 analyses the pricing of the option by CAPM. According to CAPM,
a call option is a very risky asset. It has zero pay-offs in bad states of nature,
and very high in good states of nature. The covariance of a call option with the
market portfolio is very high, which is also clear from Figure 6, where it is shown
that the option’s β varied from 5 to 35 in the economies generated. Notice that, as
we expected, there is indeed an over-prediction of the expected return of an option
by CAPM. In all economies generated, CAPM under-priced the call option. The
mis-prediction was relatively small when the option’s β is low, say below 10, but
may get quite severe for call options with a very high strike price, which are the
ones with a high β. Notice, however, that a higher β of an option also corresponds
to a higher excess return, which makes the relative mis-prediction less bad. Still,
the over-prediction of call option returns is more than linearly increasing in an
option’s β, whereas the excess return itself is still roughly linear.

It is surprising that the Pricing R2 and the MSEs of stocks remained so good
in all economies, even when the option was sometimes seriously under-priced by
CAPM. In fact, it may even be perceived as an inconsistency that the Pricing R2

is virtually exactly correct, and the option is seriously mis-priced. Indeed, when
CAPM-pricing is highly correlated with π∗

A, almost all assets are priced very well.
The only exceptions are those like options with a very high strike price. Such an
asset pays off in a few (< 10) states of the 32,768 only. A high correlation with
π∗

A is not inconsistent with a fairly different state price in a negligible fraction of
states only.
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4. Conclusions

In order to show that the CAPM-pricing formula holds exactly in a general equi-
librium model with heterogeneous agents, one needs strong assumptions either on
preferences or on dividends and endowments (see Berk, 1996). It is possible to
construct simple examples with agents who have CRRA utility in which an asset’s
β implies little about its equilibrium excess return.

However, examining the robustness of CAPM by computing equilibria, we find
that CAPM provides an excellent approximation to equilibrium excess returns and
portfolio-holdings for a wide variety of dividends and endowments. One possible
explanation is that the dividend structures we consider are ‘close’ to a linear factor
structure which guarantees that CAPM holds exactly if there is a single agent in
the economy and that labor incomes are chosen to be independent of all asset pay-
offs. Nevertheless, the computational results are very surprising: Both the intro-
duction of heterogeneous agents and substantial deviations from the linear factor
structure seem to have very small quantitative effects on the cross section of equi-
librium excess returns.

It has already been noted (see e.g. Heaton and Lucas, 1996) that agents’ hetero-
geneity and independent labor background risk has only small quantitative effects
on the equity premium. One contribution of this paper is to show that the effects
on cross sectional returns are very small as well. The main contribution of this
paper, however, is to show that CAPM provides a good approximation of returns
for a wide variety of dividend specifications.

Notes
1 Herings and Kubler (2000) also consider the CARA-case and find like Levy and

Markowitz (1979) that the mean-variance approximation is even more valid there.
2 When there are redundant assets, a simple arbitrage argument can be used to price

them using the prices of the other assets.
3 For a vector x ∈IRm we use the notation x�0 if x ∈IRm+, x >0 if x ∈IRm+ \{0}, and x �0

if x ∈ IRm++.
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