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08193 Bellaterra (Barcelona), Spain (e-mail: bettina.klaus@uab.es)

Received: 1 January 2002 / Accepted: 5 February 2003

Abstract. We consider a probabilistic approach to the problem of assigning k indi-
visible identical objects to a set of agents with single-peaked preferences. Using the
ordinal extension of preferences we characterize the class of uniform probabilistic
rules by Pareto efficiency, strategy-proofness, and no-envy. We also show that in
this characterization no-envy cannot be replaced by anonymity. When agents are
strictly risk averse von Neumann-Morgenstern utility maximizer, then we reduce
the problem of assigning k identical objects to a problem of allocating the amount
k of an infinitely divisible commodity.
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1 Introduction

We consider economic environments where indivisible identical objects have to be
assigned to a set of individuals with single-peaked preferences. As an example, take
the assignment of the number of courses a professor in an economics department has
to teach. Each professor has a number of courses he finds optimal (probably some-
where between 0 and 4) and preferences are decreasing when moving away from
that optimal amount in either direction. If we are interested in “fair allocations”, for
instance allocations that respect equal treatment of equals (if two individuals have
the same preference relation, then they should be indifferent between each other’s
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allotments), then the indivisibility assumption may induce an impossibility. For
simplicity, assume that we have to assign a course and none of the professors in the
department wants to teach it. Obviously there is no deterministic way to do so that
respects equal treatment of equals. However, allowing the rule to be probabilistic
solves our problem at least in an ex-ante sense: if each professor has to teach the
course with equal probability, then equal treatment of equals is satisfied (ex-ante).

The probabilistic allocation or rationing of indivisible objects has received re-
cent attention. Two main models should be distinguished. In the first one there are
n objects and n agents and each agent receives exactly one object. Any two objects
are distinct and each agent has a strict preference relation over the set of objects.
For example, the agents are workers and each object is a full-time job at a differ-
ent company. The random assignment of the objects to the agents is the subject
of papers by Abdulkadiroğlu and Sönmez (1998, 2003), Bogomolnaia and Moulin
(2001), and Crès and Moulin (2001).

In the second model there are k identical indivisible objects and n agents. Each
agent receives a certain number of objects and each object is assigned to some
agent (free disposal is not allowed). For instance, the objects are identical (non
full-time) jobs that have to be allocated among workers. This model is studied
by Moulin (2002), Moulin and Stong (2002), Kureishi (2000), and Sasaki (1997).
In the first two papers each agent demands a certain number of objects and the
total demand is greater than the number of objects available. In the last two papers
each agent has a single-peaked preference relation over the number of objects
he may receive. That is, there is a most preferred number of objects, called the
agent’s peak, and preferences are strictly decreasing in either direction away from
the peak. A probabilistic rule chooses for each profile of preferences a probability
distribution over the set of allocations. The interpretation is that the final allocation
that we implement is drawn according to this distribution. An agent compares two
distributions over the set of allocations by evaluating the marginal distributions that
are induced over his allotments.

We consider the same model as Kureishi (2000) and Sasaki (1997), but we do not
only consider preferences that can be represented by von Neumann-Morgenstern
utility functions. First, we use the ordinal extension of preferences over allotments
to probability distributions over allotments. An agent prefers a distribution over his
allotments to another if the first distribution places on each weak upper contour
set at least the same probability that is placed on it by the second distribution.
The ordinal extension of preferences is incomplete over the set of distributions.
However, it is equivalent to the following. If an agent prefers one distribution to
another, then for each utility representation of his preference relation the expected
utility with respect to the distribution is greater than or equal to the expected utility
of the second one.1

Using this extension we formulate the requirements of Pareto efficiency,
strategy-proofness (no agent can gain by misrepresenting his preference relation),
and no-envy (each agent prefers his marginal distribution to each other agent’s

1 A considerable number of papers considers the ordinal extension of preferences, e.g., Abdulka-
diroğlu and Sönmez (2003), Bogomolnaia and Moulin (2001), Ehlers (2002), Ehlers and Klaus (2001),
Ehlers et al. (2002), and Gibbard (1977).
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marginal distribution). Contrary to the model with distinct objects (Bogomolnaia
and Moulin 2001) it turns out that in our model Pareto efficiency is equivalent to
ex-post efficiency. Using the uniform rule (Benassy 1982), where k units of an in-
finitely divisible commodity are rationed as equally as possible, we define uniform
probabilistic rules (Sasaki 1997) in terms of their “uniform marginal distributions”.

We call a probabilistic rule a uniform probabilistic rule if for each profile the
marginals of the chosen distribution are equal to the uniform marginal distributions
at this profile. Our main result is that the class of uniform probabilistic rules is
characterized by Pareto efficiency, strategy-proofness, and no-envy. This result is
the probabilistic analogue to one of Sprumont’s (1991) result. He shows that when
rationingk units of an infinitely divisible commodity among a set of individuals with
single-peaked preferences, the uniform rule is the only deterministic rule satisfying
the above combination of properties. Sprumont’s characterization remains valid if
we replace no-envy by anonymity (Sprumont 1991) or equal treatment of equals
(Ching 1994). However, in our probabilistic setting this conclusion is not true.
For example, any random dictatorship rule satisfies Pareto efficiency, strategy-
proofness, and anonymity. It is an open question what the class of probabilistic
rules satisfying these properties looks like.

In two related papers (Sasaki 1997, Kureishi 2000) agents are assumed to be
strictly risk averse von Neumann-Morgenstern utility maximizer, i.e., each agent
evaluates distributions on the basis of the expected utility relative to his utility
function. They show that for a given profile of utility functions, if a distribution is
Pareto efficient, then each agent’s marginal distribution places probability 1 on two
allotments that differ only by one unit. Using this observation we show that then,
the problem can be reduced to the problem of allocating k units of an infinitely
divisible commodity among n agents with single-peaked preferences over [0, k].
Then we apply the characterization of the (deterministic) uniform rule by Ching
(1994) and show that in the probabilistic model with strictly risk averse agents, the
class of uniform probabilistic rules is characterized by Pareto efficiency, strategy-
proofness, and equal treatment of equals. Therefore, the results of Sasaki (1997)
and Kureishi (2000) can be interpreted as corollaries of Ching (1994).

The organization of the paper is as follows. In Sect. 2 we introduce the model
and basic properties. In Sect. 3 we define the class of uniform probabilistic rules
and present our main result. In Sect. 4 we prove the characterization. Finally, in
Sect. 5 we focus on strictly risk averse agents with von Neumann-Morgenstern
utility functions.

2 The model and basic properties

We consider the problem of assigningk indivisible identical objects to a set of agents
N = {1, . . . , n}. Each agent i ∈ N is equipped with a “single-peaked” preference
relation Ri defined over the number of objects he receives; i.e., Ri is defined over
K ≡ {0, 1, . . . , k} and there exists a number of objects p(Ri) ∈ K, called the
peak of Ri, with the following property: for all xi, yi ∈ K, if xi < yi ≤ p(Ri) or
xi > yi ≥ p(Ri), then yi Pi xi. As usual, xi Ri yi means “xi is weakly preferred
to yi”, and xi Pi yi means “xi is strictly preferred to yi”. By R we denote the class
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of all single-peaked preference relations over K. By RN we denote the set of all
(preference) profiles R = (Ri)i∈N such that for all i ∈ N , Ri ∈ R.

We call x ∈ KN a feasible allocation if
∑

i∈N xi = k. Let X denote the set of
all feasible allocations.2 A deterministic (allocation) ruleΦ is a function that selects
for every R ∈ RN a feasible allocation Φ(R) ∈ X . Each agent i ∈ N only cares
about his own allotment Φi(R) ∈ K.

We extend the original analysis of deterministic rules by considering “proba-
bilistic” rules. A probabilistic (allocation) rule ϕ is a function that selects for every
R ∈ RN a (probability) distribution over the set of feasible allocationsX , denoted
by ϕ(R). Given X ′ ⊆ X , we denote by ϕ(R)(X ′) the probability that the distri-
bution ϕ(R) places on the set X ′. Since the set of feasible allocations X is finite,
a distribution over X can be interpreted as a lottery, or a simple gamble, onX . For
X = {x1, . . . , x|X|} we denote such a distribution over the set of feasible alloca-
tionsX by [p1 ◦x1, . . . , p|X| ◦x|X|] where for all l ∈ {1, . . . , |X|}, pl ∈ [0, 1] and∑|X|

l=1 p
l = 1. For notational convenience, when formalizing distributions, we only

denote feasible allocations xl that occur with strictly positive probability pl > 0,
e.g., instead of [ 12 ◦ x1, 1

2 ◦ x2, 0 ◦ x3, . . . , 0 ◦ x|X|] we write [ 12 ◦ x1, 1
2 ◦ x2].

For each agent i ∈ N , let ϕi(R) denote the marginal distribution induced by
ϕ(R) over his allotments in K. Each agent i ∈ N only cares about his marginal
distribution ϕi(R) on K. A deterministic rule is a probabilistic rule that selects for
every R ∈ RN a distribution placing probability 1 on a single allocation in X .

The following example demonstrates that two distributions having the same
marginal distributions need not be equal.

Example 1. LetN = {1, 2, 3}, k = 9,Q = [ 13 ◦(3, 6, 0), 1
3 ◦(0, 3, 6), 1

3 ◦(6, 0, 3)],
and Q′ = [ 13 ◦ (3, 0, 6), 1

3 ◦ (6, 3, 0), 1
3 ◦ (0, 6, 3)]. Then for all i ∈ N , Qi = Q′

i,
but Q �= Q′. �	

We extend preferences on agents’ allotments in K to marginal distributions on
K. Our extension is based on the concept of weak upper contour sets.

Given xi ∈ K and Ri ∈ R, the weak upper contour set of xi at Ri is defined
as B(xi, Ri) ≡ {yi ∈ K | yi Ri xi}. Given a preference relation Ri ∈ R and two
marginal distributions Qi, Q

′
i on K, agent i weakly prefers Qi to Q′

i, if Qi assigns
to each weak upper contour set at least the probability that is assigned to this set
by Q′

i. For notational convenience we use the same symbols Ri and Pi to denote
preferences over both marginal distributions and allotments.

Ordinal extension of preferences. For all Ri ∈ R and all marginal distributions
Qi, Q

′
i on K, Qi Ri Q

′
i if and only if

for all xi ∈ K, Qi(B(xi, Ri)) ≥ Q′
i(B(xi, Ri)). (1)

Furthermore, Qi Pi Q
′
i if and only if Qi Ri Q

′
i and

for some yi ∈ K, Qi(B(yi, Ri)) > Q′
i(B(yi, Ri)). (2)

2 The number of feasible allocations equals the number of k-combinations with repetition of an
n-element set. Hence, |X| =

(k+n−1
k

)
.
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Inequality (1) is a first order stochastic dominance condition; in particular it
requires that the marginal distributions Qi and Q′

i are comparable in that respect.
Therefore, our extension is not complete on the set of all marginal distributions on
K.

Our extension of preferences is equivalent to the following. Assume that each
agent’s preference relation over lotteries can be represented by a utility function in
the sense that it can be used to compare two marginal distributions via the expected
utilities relative to this representation. Then (1) is equivalent to the fact that the
expected utility relative to any utility function representing Ri is at Q greater
or equal than at Q′. Thus, regardless which utility function represents an agent’s
preference relation, he weakly prefers Q to Q′. For a further discussion of utility
representation of preferences we refer to Sect. 5.

We are interested in Pareto efficiency. Following the definition of Pareto ef-
ficiency for deterministic rules, a probabilistic rule is Pareto efficient if it only
assigns “Pareto efficient distributions on X”; i.e., a distribution assigned by the
probabilistic rule cannot be changed in such a way that no agent is worse off and
some agent is better off.

LetQ,Q′ be distributions onX . If for all i ∈ N ,QiRiQ
′
i and for some j ∈ N ,

Qj Pj Q
′
j , then we call Q a Pareto improvement over Q′.

Pareto efficiency. For allR ∈ RN , there exists no Pareto improvement overϕ(R).

Remark 1 (Same-sidedness). A deterministic rule Φ satisfies Pareto efficiency if
and only if Φ satisfies same-sidedness; i.e., for all R ∈ RN ,

(i) if
∑

i∈N p(Ri) ≥ k, then for all i ∈ N , Φi(R) ≤ p(Ri) and
(ii) if

∑
i∈N p(Ri) ≤ k, then for all i ∈ N , Φi(R) ≥ p(Ri). �	

A similar result holds for probabilistic rules: ex-post efficiency is equivalent
to same-sidedness. Given xi, yi ∈ K such that xi ≤ yi, let [xi, yi] ≡ {xi, xi +
1, . . . , yi}.

Lemma 1 (Pareto efficiency). A probabilistic rule ϕ satisfies Pareto efficiency if
and only if it satisfies same-sidedness; i.e., for all R ∈ RN ,

(i) if
∑

i∈N p(Ri) ≥ k, then for all i ∈ N , ϕi(R)([0, p(Ri)]) = 1 and
(ii) if

∑
i∈N p(Ri) ≤ k, then for all i ∈ N , ϕi(R)([p(Ri), k]) = 1.

Proof. It is straightforward to show that if ϕ satisfies Pareto efficiency, then (i) and
(ii) hold. To show the converse, supposeϕ satisfies same-sidedness. Suppose thatϕ
violates Pareto efficiency for someR ∈ RN . Thus, there exists a distributionQ over
X such that for all i ∈ N ,QiRiϕi(R) and for some j ∈ N ,Qj Pj ϕj(R). Without
loss of generality, let k ≤ ∑i∈N p(Ri) and for all i ∈ N , Qi(R)([0, p(Ri)]) = 1.
Given i ∈ N , the function f i : X → K denotes the projection of X onto i’s
coordinate, i.e., for all x ∈ X , f i(x) = xi. Since Q and ϕ(R) satisfy same-
sidedness and for all i ∈ N , Qi Ri ϕi(R), it follows for all i ∈ N ,∫

X

f idQ =
∫

[0,p(Ri)]
xidQi ≥

∫
[0,p(Ri)]

xidϕi(R) =
∫

X

f idϕ(R).
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Thus, for all i ∈ N ,
∫

X
f idQ ≥ ∫

X
f idϕ(R), and for some j ∈ N ,

∫
X
f jdQ >∫

X
f jdϕ(R). Hence,

∫
X

∑
i∈N

f idQ =
∑
i∈N

∫
X

f idQ >
∑
i∈N

∫
X

f idϕ(R) =
∫

X

∑
i∈N

f idϕ(R). (3)

Note that for all x ∈ X ,
∑

i∈N f i(x) = k. Hence,

∫
X

∑
i∈N

f idQ = k and
∫

X

∑
i∈N

f idϕ(R) = k.

Now, the previous two facts contradict (3). �	
Conditions (i) and (ii) in Lemma 1 imply that an allocation chosen by the

probabilistic ruleϕ satisfies same-sidedness and therefore Pareto efficiency. Hence,
Lemma 1 states that Pareto efficiency and ex-post Pareto efficiency are equivalent
in our model. Bogomolnaia and Moulin (2001) show that this equivalence is not
valid when assigning heterogenous indivisible objects to individuals.

Next we introduce strategy-proofness for probabilistic rules. Strategy-proofness
requires that no agent can ever benefit from misrepresenting his preference relation.3

Given R ∈ RN and M ⊆ N , the restriction (Ri)i∈M ∈ RM of R to M is
denoted by RM . We also use the notation R−i = RN\{i}. For example, (R̄i, R−i)
denotes the profile obtained from R by replacing Ri by R̄i.

Strategy-proofness. For all R ∈ RN , all i ∈ N , and all R̄i ∈ R, ϕi(R) Ri

ϕi(R̄i, R−i).

Note that our notion of strategy-proofness also requires that the marginal distri-
butions that are assigned by the probabilistic rule before and after any unilateral de-
viation are comparable. Thus, when agents report ordinal preferences only, no agent
can improve his expected utility for any representation of his ordinal preferences.
This strategy-proofness condition is especially appealing when the planner only
knows the ordinal preferences of the agents but not their von Neumann-Morgenstern
expected utility representations.

Anonymity requires that the names of the agents do not matter. More precisely,
an anonymous probabilistic rule is symmetric in its arguments.

Let ΠN be the class of all permutations on N . Then for all R ∈ RN and all
π ∈ ΠN , let Rπ ≡ (Rπ(i))i∈N .

Anonymity. For all R ∈ RN , all π ∈ ΠN , and all i ∈ N , ϕπ(i)(R) = ϕi(Rπ).
No-envy states that no agent strictly prefers the marginal distribution of another

agent to his own.

No-envy. For all R ∈ RN and all i, j ∈ N , ϕi(R)Ri ϕj(R).
No-envy also requires that the agents’ marginal distributions that are assigned

by the probabilistic rule are comparable.

3 In game theoretical terms, a rule satisfies strategy-proofness if in its associated direct revelation
game form, it is a weakly dominant strategy for each agent to announce his true preference relation.
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The following is a weakening of no-envy and anonymity. Equal treatment of
equals requires that if two agents have the same preference relations, then each of
them is indifferent between his marginal distribution and the other agent’s marginal
distribution.

Equal treatment of equals. For all R ∈ RN and all i, j ∈ N , if Ri = Rj , then
ϕi(R) Ii ϕj(R).

3 The uniform probabilistic correspondence

In identifying probabilistic rules that satisfy a certain combination of properties, we
are not able to determine the exact distribution for each profile.All requirements are
formulated with respect to marginal distributions and as demonstrated in Example
1 those do not uniquely determine the original distribution. We are only able to
show that a probabilistic rule satisfies a certain list of requirements if and only
if for each profile the marginal distributions are of a certain form. Therefore, we
introduce correspondences that assign to each profile a set of distributions.

The following “uniform correspondence” assigns to each profile exactly the
distributions that induce “uniform marginal distributions” on each agent’s allot-
ments: for each profile of peaks (p(Ri))i∈N calculate the so-called uniform allo-
cation for R. Denote this allocation by Ũ(R). Without loss of generality, suppose
that R is in excess demand, i.e.,

∑
i∈N p(Ri) > k (the definition for the excess

supply case is similar). Thus, for some λ ∈ [0, k], we have that for all i ∈ N ,
Ũi(R) = min(p(Ri), λ). For each agent we choose the following uniform marginal
distribution fi(R) over his allotments. If Ũi(R) = p(Ri), then fi(R) places prob-
ability 1 on p(Ri). Otherwise, calculate xλ ∈ {0, 1, . . . , k} such that λ belongs to
the interval with endpoints xλ and xλ + 1. Then calculate weights α and (1 − α)
on the endpoints such that λ equals the convex combination of the two endpoints
according to the weights, i.e., λ = αxλ + (1 −α)(xλ + 1) where α ∈ [0, 1]. Then,
the uniform marginal distribution fi(R) places probability α on xλ and probability
1 − α on xλ + 1.

Uniform probabilistic correspondence, U . Let R ∈ RN and Q be a distribution
over X . Then Q ∈ U(R) if and only if the following holds.

(i) Excess demand:
∑

i∈N p(Ri) > k.
Let Ũi(R) = min(p(Ri), λ) where λ ∈ R+ solves

∑
i∈N Ũi(R) = k.

Determine xλ ∈ K such that λ ∈ [xλ, xλ + 1[. Then for all i ∈ N ,
(a) if p(Ri) ≤ xλ, then Qi(p(Ri)) = 1 and
(b) if p(Ri) ≥ xλ + 1, then Qi(xλ + 1) = λ− xλ and Qi(xλ) = 1 − (λ− xλ).
(ii) Balanced demand:

∑
i∈N p(Ri) = k. Then for all i ∈ N , Qi(p(Ri)) = 1.

(iii) Excess supply:
∑

i∈N p(Ri) < k.
Let Ũi(R) = max(p(Ri), λ) where λ ∈ R+ solves

∑
i∈N Ũi(R) = k.

Determine xλ ∈ K such that λ ∈ ]xλ, xλ + 1]. Then for all i ∈ N ,
(a) if p(Ri) ≥ xλ + 1, then Qi(p(Ri)) = 1 and
(b) if p(Ri) ≤ xλ, then Qi(xλ + 1) = λ− xλ and Qi(xλ) = 1 − (λ− xλ).
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We say that a probabilistic rule ϕ is a uniform probabilistic rule if for allR ∈ RN ,
ϕ(R) ∈ U(R).The following example of a probabilistic rule proves that the uniform
correspondence is non-empty.

Example 2. We define the uniform probabilistic rule U as follows (Sasaki 1997; in
defining the uniform probabilistic rule U Moulin (2002) uses the same trick as we
do4 in defining the correspondence U). Let R ∈ RN .

(i) Excess demand:
∑

i∈N p(Ri) > k.
Without loss of generality, let N̄ = {i ∈ N | p(Ri) ≥ xλ + 1} = {1, . . . , n̄}
and Ñ = {i ∈ N | p(Ri) ≤ xλ} = {n̄ + 1, . . . , n}. Then we obtain U(R)
as follows: in each allocation that occurs at U(R) with positive probability,
each agent in Ñ receives his peak amount and each agent in N̄ receives either
xλ or xλ + 1. Note that for each i ∈ N̄ , (xλ + 1) Pi xλ and that exactly
n̄(λ − xλ) agents in N̄ can receive xλ + 1. We obtain U(R) by placing
equal probability on all allocations where all agents in Ñ receive their peak
amounts, n̄(λ − xλ) agents in N̄ receive xλ + 1, and the remaining agents
in N̄ receive xλ. Hence, U(R) is obtained by placing equal probabilities on
exactly

(
n̄

n̄(λ−xλ)

)
allocations. Note that

(a) if p(Ri) ≤ xλ, then Ui(R)(p(Ri)) = 1 and
(b) if p(Ri) ≥ xλ +1, then Ui(R)(xλ +1) = λ−xλ and Ui(R)(xλ) = 1− (λ−

xλ).
(ii) Balanced demand:

∑
i∈N p(Ri)=k. Then,U(R)=[1◦(p(R1), . . . , p(Rn))].

(iii) Excess supply:
∑

i∈N p(Ri) < k.
Without loss of generality, let N̄ = {i ∈ N | p(Ri) ≤ xλ} = {1, . . . , n̄} and
Ñ = {i ∈ N | p(Ri) ≥ xλ +1} = {n̄+1, . . . , n}. Then we obtain U(R) as
follows: in each allocation that occurs at U(R) with positive probability, each
agent in Ñ receives his peak amount and each agent in N̄ receives either xλ

or xλ +1. Note that for i ∈ N̄ , xλ Pi (xλ +1) and that exactly n̄− n̄(λ−xλ)
agents in N̄ can receive xλ. In other words, n̄(λ − xλ) agents in N̄ receive
xλ +1. We obtain U(R) by placing equal probability on all allocations where
all agents in Ñ receive their peak amounts, n̄(λ − xλ) agents in N̄ receive
xλ + 1, and the remaining agents in N̄ receive xλ. Hence, U(R) is obtained
by placing equal probabilities on exactly

(
n̄

n̄(λ−xλ)

)
allocations. Note that

(a) if p(Ri) ≥ xλ + 1, then Ui(R)(p(Ri)) = 1 and
(b) if p(Ri) ≤ xλ, then Ui(R)(xλ + 1) = λ − xλ and Ui(R)(xλ) = 1 − (λ −

xλ). �	

Example 3. Let N = {1, 2, 3, 4} and k = 2. Let R ∈ RN be such that for all
i ∈ N , p(Ri) = 1. Then, N̄ = N and

U(R) = [
1
6

◦ (1, 1, 0, 0),
1
6

◦ (1, 0, 1, 0),
1
6

◦ (1, 0, 0, 1),

1
6

◦ (0, 1, 1, 0),
1
6

◦ (0, 1, 0, 1),
1
6

◦ (0, 0, 1, 1)].

4 Moulin (2002) and we found this trick independently.
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Let Q = [ 12 ◦ (1, 1, 0, 0), 1
2 ◦ (0, 0, 1, 1)] and Q′ = [ 12 ◦ (1, 0, 0, 1), 1

2 ◦ (0, 1, 1, 0)].
Then for all i ∈ N , Qi = Ui(R) = Q′

i (Q,Q′, U(R) ∈ U(R)), but U(R) �= Q �=
Q′ �= U(R). �	

Our main result is that, similarly as in the deterministic setting (Sprumont,
1991; Ching, 1992; Ehlers, 2000), Pareto efficiency, strategy-proofness, and no-
envy determine “uniform allocations”.

Theorem 1. Uniform probabilistic rules are the only probabilistic rules satisfying
Pareto efficiency, strategy-proofness, and no-envy.

Remark 2. Theorem 1 is a tight characterization since we already know from the
deterministic framework that all properties are logically independent (see Sprumont
1991 and Ching 1992). However, in contrast to the deterministic framework, we
cannot replace no-envy with anonymity or weaken it to equal treatment of equals
(see Example 4). �	

Example 4. Let N = {1, 2} and R ∈ RN .

– If p(R1) + p(R2) �= k, then

ψ(R) = [
1
2

◦ (p(R1), k − p(R1)),
1
2

◦ (k − p(R2), p(R2))].

– If p(R1) + p(R2) = k, then

ψ(R) = [1 ◦ (p(R1), p(R2))].

The probabilistic rule ψ satisfies Pareto efficiency, strategy-proofness, and
anonymity. However, as we demonstrate next, ψ violates no-envy.

Let k = 4, p(R1) = 4, p(R2) = 2 and 4 P2 0. Then,

ψ(R) = [
1
2

◦ (4, 0),
1
2

◦ (2, 2)],

and

ψ2(R)(B(4, R2)) =
1
2
< 1 = ψ1(R)(B(4, R2)).

Thus, by ψ1(R)(2) = 1
2 = ψ2(R)(2) and ψ1(R)(4) = 1

2 = ψ2(R)(0), ψ1(R) P2
ψ2(R), which contradicts no-envy. �	

Example 4 can be easily extended to an arbitrary number of agents. More
precisely, the rule ψ is the random dictatorship rule for two agents. For an arbitrary
number of agents, the random dictatorship rule is Pareto efficient, strategy-proof,
and anonymous. Note that all convex combinations of uniform probabilistic rules
and the random dictatorship rule satisfy Pareto efficiency, strategy-proofness, and
anonymity. It is an open question whether there are other probabilistic rules that
satisfy this list of properties.
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4 Proof of the characterization

It is straightforward to check that each uniform probabilistic rule satisfies Pareto
efficiency, strategy-proofness, and no-envy. Conversely, let ϕ be a probabilistic
rule satisfying Pareto efficiency, strategy-proofness, and no-envy. We have to show
that for all R ∈ RN , ϕ(R) ∈ U(R).

Pareto efficiency and Lemma 1 imply that if demand is balanced, then (ii) in
the definition of U holds. In the remainder of this section we prove that if R is in
excess demand, then (i) in the definition of U holds. The proof of (iii), i.e., excess
supply, is similar.

Recall that for all xi, yi ∈ K such that xi ≤ yi, we have [xi, yi] ≡ {xi, xi +
1, . . . , yi}.

Lemma 2. Let R ∈ RN be such that
∑

i∈N p(Ri) > k. Then for all i ∈ N ,

ϕi(R)([min(p(Ri), xλ), p(Ri)]) = 1.

Proof. Let i ∈ N . We consider two cases.

Case 1. p(Ri) ≥ xλ + 1. We have to show that ϕi(R)([xλ, p(Ri)]) = 1. Assume,
by contradiction, that

ϕi(R)([xλ, p(Ri)]) < 1. (4)

Let R′
i ∈ R be such that p(R′

i) = p(Ri) and for all xi ∈ [p(Ri), k], B(xi, R
′
i) =

[p(Ri), xi]. Define R′ ≡ (R′
i, R−i). By (4), Pareto efficiency (PE), and strategy-

proofness (SP),

1
(4)
> ϕi(R)([xλ, p(Ri)])
PE= ϕi(R)(B(xλ, Ri))
SP≥ ϕi(R′)(B(xλ, Ri))
PE= ϕi(R′)([xλ, p(Ri)]).

Thus,

ϕi(R′)([xλ, p(Ri)]) < 1. (5)

Hence, by Pareto efficiency (PE), no-envy (NE), and the construction of R′
i, for all

j �= i,

1
(5)
> ϕi(R′)([xλ, p(Ri)])
PE= ϕi(R′)([xλ, k]) = ϕi(R′)(B(xλ, R

′
i))

NE≥ ϕj(R′)(B(xλ, R
′
i)) = ϕj(R′)([xλ, k]).

Thus, for all j ∈ N ,

ϕj(R′)([xλ, k]) < 1. (6)

Let Sλ ≡ {j ∈ N | p(Rj) ≥ xλ + 1}. By the definition of λ and
∑

j∈N p(R′
j) =∑

j∈N p(Rj) > k, Sλ �= ∅.
For all T ⊆ Sλ, define RT = ((RT

j )j∈T , R
′
N\T ) as follows. For all j ∈ T ,
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– p(RT
j ) = xλ and

– for all xj ∈ [xλ, k], B(xj , R
T
j ) = [xλ, xj ].

Let j ∈ Sλ. If
∑

l∈N p(R{j}
l ) > k, then by (6) and strategy-proofness (SP),

1
(6)
> ϕj(R′)([xλ, k]) ≥ ϕj(R′)(B(xλ, R

′
j))

SP≥ ϕj(R{j})(B(xλ, R
′
j)) ≥ ϕj(R{j})(xλ)

= ϕj(R{j})(p(R{j}
j )) = ϕj(R{j})([xλ, k]).

(7)

By (7) and no-envy (NE), for all l �= j,

1
(7)
> ϕj(R{j})([xλ, k]) = ϕj(R{j})(B(k,R{j}

j ))
NE≥ ϕl(R{j})(B(k,R{j}

j )) = ϕl(R{j})([xλ, k]).

Thus, for all l ∈ N , ϕl(R{j})([xλ, k]) < 1. Hence, by repeated application of the
above arguments, if for T ⊆ Sλ,

∑
l∈N p(RT

l ) > k, then for all l ∈ N ,

ϕl(RT )([xλ, k]) < 1. (8)

Now fix T0 ⊆ Sλ such that for some j ∈ Sλ\T0,
∑

l∈N p(RT0∪{j}
l ) ≤ k <∑

l∈N p(RT0
l ).

By the definition of λ, T0 �= ∅. Let R̄j ∈ R be such that p(R̄j) = k −∑
l �=j p(R

T0
l ). Define R̄ ≡ (R̄j , R

T0
−j). Note that

xλ ≤ p(R̄j) < p(RT0
j ) and

∑
l∈N

p(R̄l) = k.

By Pareto efficiency, ϕj(R̄)(p(R̄j)) = 1. Since p(R̄j) ∈ B(xλ, R
T0
j ), it follows

thatϕj(R̄)(B(xλ, R
T0
j )) = 1. But this implies a contradiction because by strategy-

proofness (SP),

1
(8)
> ϕj(RT0)([xλ, k]) ≥ ϕj(RT0)(B(xλ, R

T0
j ))

SP≥ ϕj(R̄)(B(xλ, R
T0
j )) = 1.

Therefore, (4) was wrong and the statement for Case 1 is proven.

Case 2. p(Ri) ≤ xλ. We have to show that ϕi(R)(p(Ri)) = 1. Assume, by
contradiction, that

ϕi(R)(p(Ri)) < 1. (9)

Let R′
i ∈ R be such that p(R′

i) = p(Ri) and for all xi ∈ [p(Ri), k],
B(xi, R

′
i) = [p(Ri), xi]. Define R′ ≡ (R′

i, R−i). By strategy-proofness and (9),
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ϕi(R′)(p(Ri)) < 1. By Pareto efficiency (PE), no-envy (NE), and the construction
of R′

i, for all j ∈ N ,

1 > ϕi(R′)(p(Ri))
PE= ϕi(R′)([p(Ri), k]) = ϕi(R′)(B(k,R′

i))
NE≥ ϕj(R′)(B(k,R′

i)) = ϕj(R′)([p(Ri), k]).

Particularly, because p(Ri) ≤ xλ, for all j ∈ N ,

ϕj(R′)([xλ, k]) < 1. (10)

However, for some j ∈ N , p(R′
j) ≥ xλ + 1. Hence, in contradiction to (10), by

Case 1 and Pareto efficiency (PE), 1 = ϕj(R′)([xλ, p(R′
j)])

PE= ϕj(R′)([xλ, k]).
�	

To complete the proof of Theorem 1, we prove that for all R ∈ RN , if∑
i∈N p(Ri) > k, then for all i ∈ N , ϕi(R) = Ui(R); i.e.,

(a) if p(Ri) ≤ xλ, then ϕi(R)(p(Ri)) = 1 = Ui(R)(p(Ri)) and
(b) if p(Ri) ≥ xλ + 1, then ϕi(R)(xλ + 1) = λ − xλ = Ui(R)(xλ + 1) and

ϕi(R)(xλ) = 1 − (λ− xλ) = Ui(R)(xλ).

Let R ∈ RN be such that
∑

i∈N p(Ri) > k. By Lemma 2, for all i ∈ N ,
ϕi(R)([min(p(Ri), xλ), p(Ri)]) = 1. Thus, for all i ∈ N , if p(Ri) ≤ xλ, then

ϕi(R)(p(Ri)) = 1. (11)

Hence, (11) implies (a); i.e., if p(Ri) ≤ xλ, then ϕi(R) = Ui(R).
Next, we prove (b); i.e., if p(Ri) ≥ xλ + 1, then ϕi(R) = Ui(R). We consider

two cases.

Case 1. For some j ∈ N , Rj ∈ R is such that p(Rj) = xλ + 1, and for all
xj ∈ [p(Rj), k], B(xj , Rj) = [p(Rj), xj ].

By Pareto efficiency (PE), no-envy (NE), and the structure of Rj , for all i ∈ N
such that p(Ri) ≥ xλ + 1,

ϕj(R)(p(Rj))
PE= ϕj(R)(B(k,Rj))
NE≥ ϕi(R)(B(k,Rj))
PE= ϕi(R)([xλ + 1, p(Ri)]).

Similarly, for all i ∈ N such that p(Ri) ≥ xλ + 1,

ϕi(R)([xλ + 1, p(Ri)])
PE= ϕi(R)(B(xλ + 1, Ri))
NE≥ ϕj(R)(B(xλ + 1, Ri))
PE= ϕj(R)(p(Rj)).

Hence, for all i ∈ N such that p(Ri) ≥ xλ + 1,

ϕi(R)([xλ + 1, p(Ri)]) = ϕj(R)(p(Rj)). (12)
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Thus, by Lemma 2, for all i ∈ N such that p(Ri) ≥ xλ + 1,

ϕi(R)(xλ) = ϕj(R)(xλ) = 1 − ϕj(R)(p(Rj)). (13)

We consider two subcases.

Case 1.1. For all i ∈ N , p(Ri) ≤ xλ + 1.
Thus, by Pareto efficiency, for all i ∈ N , ϕi(R)([xλ + 2, k]) = 0. Then by

Lemma 2 and (13), for all i, l ∈ N such that p(Ri) = p(Rl) = xλ + 1,

ϕi(R)(xλ) = ϕl(R)(xλ) and ϕi(R)(xλ + 1) = ϕl(R)(xλ + 1). (14)

By (a) and
∑

i∈N

∑k
xi=0 ϕi(R)(xi)xi = k,∑

i∈N such that
p(Ri)=xλ+1

ϕi(R)(xλ)xλ +
∑

i∈N such that
p(Ri)=xλ+1

ϕi(R)(xλ + 1)(xλ + 1)

= k −
∑

i∈N such that
p(Ri)≤xλ

p(Ri). (15)

Recall that by the definition of λ and xλ,

k =
∑
i∈N

min(p(Ri), λ) =
∑

i∈N such that
p(Ri)≤xλ

p(Ri) +
∑

i∈N such that
p(Ri)=xλ+1

λ. (16)

Furthermore, note that for all i ∈ N such that p(Ri) = xλ + 1,

ϕi(R)(xλ) + ϕi(R)(xλ + 1) = 1. (17)

Using (15), (16), and (17), it follows that∑
i∈N such that
p(Ri)=xλ+1

xλ +
∑

i∈N such that
p(Ri)=xλ+1

ϕi(R)(xλ + 1) =
∑

i∈N such that
p(Ri)=xλ+1

λ.

This and (14) imply that for all i ∈ N such that p(Ri) = xλ +1, ϕi(R)(xλ +1) =
λ−xλ. Thus, for all i ∈ N such that p(Ri) = xλ +1, ϕi(R)(xλ) = 1− (λ−xλ).
This proves (b); i.e., if p(Ri) ≥ xλ + 1, then ϕi(R) = Ui(R). This completes the
proof for Case 1.1.

Case 1.2. For some l ∈ N , p(Rl) ≥ xλ + 2.
If for all l ∈ N such that p(Rl) ≥ xλ + 2, ϕl(R)([xλ + 2, k]) = 0, then

similarly as in Case 1.1 it follows that p(Rl) ≥ xλ + 1 implies ϕl(R) = Ul(R).
Assume, by contradiction, that for some l ∈ N such that p(Rl) ≥ xλ + 2,

ϕl(R)([xλ + 2, k]) > 0. (18)

Let R′
l ∈ R be such that R′

l = Rj and R′ ≡ (R′
l, R−l). By Pareto efficiency (PE)

and strategy-proofness (SP),

ϕl(R′)(xλ + 1) PE= ϕl(R′)([xλ + 1, k]) = ϕl(R′)(B(k,R′
l))

SP≥ ϕl(R)(B(k,R′
l)) = ϕl(R)([xλ + 1, k])
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and

ϕl(R)([xλ + 1, k]) PE= ϕl(R)(B(xλ + 1, Rl))
SP≥ ϕl(R′)(B(xλ + 1, Rl))
PE= ϕl(R′)(xλ + 1).

Hence,

ϕl(R′)(xλ + 1) = ϕl(R)([xλ + 1, k]) and (19)

ϕl(R′)(xλ) = ϕl(R)(xλ). (20)

Suppose that for all i ∈ N such that p(R′
i) ≥ xλ +2, ϕi(R′)([xλ +2, k]) = 0. Let

N ′ ≡ {i ∈ N | p(Ri) ≥ xλ + 1} = {i ∈ N | p(R′
i) ≥ xλ + 1}.

Consider profile R and recall from Case 1 that for all i ∈ N ′, ϕi(R)([xλ +
1, p(Ri)]) = ϕj(R)(p(Rj)) and ϕi(R)(xλ) = ϕj(R)(xλ). In particular, for all
i ∈ N ′,

ϕi(R)([xλ + 1, p(Ri)]) = ϕj(R)(p(Rj)) = ϕl(R)([xλ + 1, p(Rl)]) and (21)

ϕi(R)(xλ) = ϕj(R)(xλ) = ϕl(R)(xλ). (22)

Consider profile R′ and recall from Case 1 that for all i ∈ N ′, ϕi(R′)([xλ +
1, p(R′

i)]) = ϕj(R′)(p(Rj)) and ϕi(R′)(xλ) = ϕj(R′)(xλ). In particular, for all
i ∈ N ′,

ϕi(R′)(xλ + 1) = ϕj(R′)(p(R′
j)) = ϕl(R′)(xλ + 1) and (23)

ϕi(R′)(xλ) = ϕj(R′)(xλ) = ϕl(R′)(xλ). (24)

Hence, for all i ∈ N ′,

ϕi(R′)(xλ + 1)
(23)
= ϕl(R′)(xλ + 1)

(19)
= ϕl(R)([xλ + 1, k])

(21)
= ϕi(R)([xλ + 1, p(Ri)]).

(25)

Furthermore, for all i ∈ N ′,

ϕi(R′)(xλ)
(24)
= ϕl(R′)(xλ)

(20)
= ϕl(R)(xλ)

(22)
= ϕi(R)(xλ).

(26)

Since for all i ∈ N such that p(R′
i) ≥ xλ + 2, ϕi(R′)([xλ + 2, k]) = 0, (25)

implies that for all i ∈ N ′,

k∑
xi=xλ+1

ϕi(R′)(xi)xi = ϕi(R′)(xλ + 1)(xλ + 1) ≤
k∑

xi=xλ+1

ϕi(R)(xi)xi.

(27)
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In particular, by (18) and (19),

ϕl(R′)(xλ + 1)(xλ + 1) <
k∑

xl=xλ+1

ϕl(R)(xl)xl. (28)

Hence, (26), (27), and (28) imply

∑
i∈N ′

(ϕi(R′)(xλ)xλ + ϕi(R′)(xλ + 1)(xλ + 1)) <
∑
i∈N ′

(
k∑

xi=xλ

ϕi(R)(xi)xi

)
.

(29)

Since
∑

i∈N

∑k
xi=0 ϕi(R′)(xi)xi = k,

∑
i∈N ′

(ϕi(R′)(xλ)xλ + ϕi(R′)(xλ + 1)(xλ + 1)) = k −
∑

i∈N such that
p(R′

i)=p(Ri)≤xλ

p(Ri)

and

∑
i∈N ′

(
k∑

xi=xλ

ϕi(R)(xi)xi

)
= k −

∑
i∈N such that
p(Ri)≤xλ

p(Ri).

Hence,

∑
i∈N ′

(ϕi(R′)(xλ)xλ + ϕi(R′)(xλ + 1)(xλ + 1)) =
∑
i∈N ′

(
k∑

xi=xλ

ϕi(R)(xi)xi

)
,

which contradicts (29). Thus, our assumption that for all i ∈ N such that p(R′
i) ≥

xλ + 2 we have ϕi(R′)([xλ + 2, k]) = 0 was wrong. Hence, for some h ∈ N ,
p(R′

h) ≥ xλ + 2 and ϕh(R)([xλ + 2, k]) > 0. Similarly as before, we replace R′
h

byRj and show that for somem ∈ N , p(R′
m) ≥ xλ + 2 and ϕm(R′

−h, Rj)([xλ +
2, k]) > 0. Since N is finite and at each step the number of agents having a peak
greater than or equal to xλ + 2 is smaller, we obtain a contradiction. Therefore, (b)
holds for Case 1; i.e., if p(Ri) ≥ xλ + 1, then ϕi(R) = Ui(R).

Case 2. There exists no j ∈ N such thatp(Rj) = xλ+1or forRj such thatp(Rj) =
xλ + 1 there exists some xj ∈ [p(Rj), k] such that B(xj , Rj) �= [p(Rj), xj ].

We have to show (b); i.e., if p(Ri) ≥ xλ + 1, then ϕi(R) = Ui(R). First we
show that for all i ∈ N such that p(Ri) ≥ xλ + 1,

ϕi(R)(xλ) = Ui(R)(xλ). (30)

Assume, by contradiction, that for some j ∈ N such that p(Rj) ≥ xλ + 1,
ϕj(R)(xλ) �= Uj(R)(xλ).
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Consider R′
j ∈ R such that p(R′

j) = xλ + 1, and for all xj ∈ [p(R′
j), k],

B(xj , R
′
j) = [p(R′

j), xj ]. Define R′ ≡ (R′
j , R−j). By strategy-proofness,

ϕj(R)([xλ + 1, k]) = ϕj(R)(B(xλ + 1, Rj))
SP≥ ϕj(R′)(B(xλ + 1, Rj)) = ϕj(R′)([xλ + 1, k])

and

ϕj(R′)([xλ + 1, k]) = ϕj(R′)(B(k,R′
j))

SP≥ ϕj(R)(B(k,R′
j))

= ϕj(R)([xλ + 1, k]).

Hence, ϕj(R′)([xλ + 1, k]) = ϕj(R)([xλ + 1, k]). By Lemma 2,

ϕj(R′)(xλ) = 1 − ϕj(R′)([xλ + 1, k]) = 1 − ϕj(R)([xλ + 1, k]) = ϕj(R)(xλ)
�= Uj(R)(xλ) = Uj(R′)(xλ),

which contradicts Case 1. Thus, (30) is proven. Hence, by Lemma 2, for all i ∈ N
such that p(Ri) ≥ xλ + 1,

ϕi(R)([xλ + 1, k]) = 1 − ϕi(R)(xλ)
= 1 − Ui(R)(xλ)
= Ui(R)(xλ + 1).

If for all i ∈ N such that p(Ri) ≥ xλ + 1, ϕi(R)([xλ + 2, k]) = 0, then for all
i ∈ N such that p(Ri) ≥ xλ + 1, ϕi(R) = Ui(R), which proves (b). Suppose, by
contradiction, that for some j ∈ N such that p(Rj) ≥ xλ+1,ϕj(R)([xλ+2, k]) >
0. So,

Uj(R)(xλ + 1)(xλ + 1) <
k∑

xj=xλ+1

ϕj(R)(xj)xj . (31)

LetN ′ ≡ {i ∈ N | p(Ri) ≥ xλ+1}. Since for all i ∈ N ′,Ui(R)([xλ+2, k]) = 0,

Ui(R)(xλ + 1)(xλ + 1) ≤
k∑

xi=xλ+1

ϕi(R)(xi)xi. (32)

Hence, by (30), (31), and (32),

∑
i∈N′

(Ui(R)(xλ)xλ + Ui(R)(xλ + 1)(xλ + 1)) <
∑
i∈N ′

(
k∑

xi=xλ

ϕi(R)(xi)xi

)
.

(33)

Since
∑

i∈N

∑k
xi=0 ϕi(R)(xi)xi = k,

∑
i∈N′

(
k∑

xi=xλ

ϕi(R)(xi)xi

)
= k −

∑
i∈N such that
p(Ri)≤xλ

p(Ri)
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and∑
i∈N′

(Ui(R)(xλ)xλ + Ui(R)(xλ + 1)(xλ + 1)) = k −
∑

i∈N such that
p(Ri)≤xλ

p(Ri).

Hence,

∑
i∈N′

(Ui(R)(xλ)xλ + Ui(R)(xλ + 1)(xλ + 1)) =
∑
i∈N′

(
k∑

xi=xλ

ϕi(R)(xi)xi

)
,

which contradicts (33) and finishes the proof of (b); i.e., if p(Ri) ≥ xλ + 1, then
ϕi(R) = Ui(R). �	

5 Von Neumann-Morgenstern utility functions

In this section we assume that agents have single-peaked preferences that satisfy
the von Neumann-Morgenstern (vNM) expected utility property; i.e., for any pref-
erence relation Ri

(i) there exists a utility function ui that represents Ri and5

(ii) each agent i evaluates marginal distributions via the expected utility relative to
ui. Thus, givenQi ≡ [p0

i ◦0, p1
i ◦1, . . . , pk

i ◦k] where pl
i denotes the probability

that agent i receives l ∈ K objects,

ui(Qi) = ui([p0
i ◦ 0, p1

i ◦ 1, . . . , pk
i ◦ k]) =

k∑
l=0

pl
iui(l).

Furthermore, we assume that all agents are strictly risk averse;i.e., for all l ∈
{1, . . . , k − 1},

ui(l) − ui(l − 1) > ui(l + 1) − ui(l).

Let V denote the class of all vNM-utility functions that exhibit strict risk aver-
sion. Let VN denote the set of all (vNM-utility) profiles u = (ui)i∈N such that for
all i ∈ N , ui ∈ V . Note that if a utility function exhibits strict risk aversion, then it
is single-peaked. Given ui ∈ V , there existsRi ∈ R such that ui representsRi. We
define the peak p(ui) of ui by p(ui) ≡ p(Ri). Let R̄ denote the set of single-peaked
preference relations such that there exists some ui ∈ V that represents Ri. Strict
risk aversion implies that R̄ � R.

5 A utility function ui represents a preference relation Ri if and only if for all x, y ∈ K

x Ri y ⇔ ui(x) ≥ ui(y).
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Let D(X) denote the set of all distributions over X . Throughout this section a
probabilistic rule is a function ϕ : VN → D(X). Next, we reformulate our central
properties by replacing preference relations by utility functions.

Let Q, Q′ be distributions over X . If for all i ∈ N , ui(Qi) ≥ ui(Q′
i) and for

some j ∈ N , uj(Qj) > uj(Q′
j), then we call Q a Pareto improvement of Q′.

Pareto efficiency. For all u ∈ VN , there exists no Pareto improvement of ϕ(R).

Given u ∈ VN and M ⊆ N , the restriction (ui)i∈M ∈ VM of u to M is
denoted by uM . Similarly as before, (ūi, u−i) denotes the profile obtained from u
by replacing ui by ūi.

Strategy-proofness. For all u ∈ VN , all i ∈ N , and all ūi ∈ V , ui(ϕi(u)) ≥
ui(ϕi(ūi, u−i)).

For all u ∈ VN and all π ∈ ΠN , let uπ ≡ (uπ(i))i∈N .

Anonymity. For all u ∈ VN , all π ∈ ΠN , and all i ∈ N , ϕπ(i)(u) = ϕi(uπ).

No-envy. For all u ∈ VN and all i, j ∈ N , ui(ϕi(R)) ≥ ui(ϕj(R)).

Equal treatment of equals. For all u ∈ VN and all i, j ∈ N , if ui = uj , then
ui(ϕi(u)) = ui(ϕj(u)).

Using strictly risk averse vNM-utility functions induces a stronger Pareto ef-
ficiency condition than using the ordinal preference extension. Same-sidedness is
still implied, but no longer sufficient. In order to characterize Pareto efficiency we
introduce the following notation.

Let Q be a distribution and for all i ∈ N , Qi = [p0
i ◦ 0, p1

i ◦ 1, . . . , pk
i ◦ k]

denotes the induced marginal distribution. For all i ∈ N , let

Gi(Qi) = {l ∈ K | pl
i �= 0}.

Hence, Gi(Qi) denotes all amounts that agent i can possibly receive at Q (or
equivalently, Gi(Qi) is the support of Qi).

The following Lemma is due to Sasaki (1997), Lemma 6.3.

Lemma 3 (Sasaki, 1997). If a probabilistic rule ϕ : VN → D(X) satisfies Pareto
efficiency on VN , then for all u ∈ VN and all i ∈ N there exists a number of
objects ai ∈ K such that Gi(ϕi(u)) ⊆ {ai, ai + 1}.

Using Lemma 3, we can derive a characterization of Pareto efficiency on VN .

Lemma 4. A probabilistic rule ϕ : VN → D(X) satisfies Pareto efficiency on VN

if and only if

(i) ϕ satisfies ex-post Pareto efficiency on VN and
(ii) for all u ∈ VN and all i ∈ N there exists a number of objects ai ∈ K such

that Gi(ϕi(u)) ⊆ {ai, ai + 1}.
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The only-if part of Lemma 4 follows from Lemma 3. We omit the proof of the
if-part of Lemma 4.6

Lemma 4 implies that any Pareto efficient allocation can be represented as a
vector of nonnegative real numbers. Let Q be a distribution that is Pareto efficient
for someu ∈ VN . ThenQ can be represented as follows.According to Lemma 4, for
all i ∈ N there exists a number of objects ai ∈ K such thatGi(Qi) ⊆ {ai, ai +1}.
By µi we denote the probability at Qi for agent i to receive ai. Thus, agent i
receives ai + 1 at Qi with probability 1 − µi. Using these unique probabilities, we
can represent the distribution Qi by a unique number qi ∈ [0, k]. Simply define

qi ≡ µiai + (1 − µi)(ai + 1) = (ai + 1) − µi.

Note that we have
∑

i∈N qi = k. Thus, each distribution Q is identified with
a unique allocation (q1, . . . , qn) ∈ [0, k]N of k units of an infinitely divisible
commodity. Let D̃(X) denote the set of all distributionsQ ∈ D(X) such that for all
i ∈ N there exists some ai ∈ K for whichGi(Qi) ⊆ {ai, ai +1}. Hence, a Pareto
efficient probabilistic rule is a function ϕ : VN → D̃(X). Let X (N, k) denote the
set of all allocations that are obtained via some distribution belonging to D̃(X), i.e.,
X (N, k) ≡ {(q1, . . . , qn) | Q ∈ D̃(X)}. Obviously, X � X (N, k). Therefore, a
Pareto efficient rule ϕ essentially splits the amount k of a perfectly divisible good
among the agents inN . Conversely, each vector (q1, . . . , qn) ∈ X (N, k) uniquely
identifies marginal distributions Qi and a (non-unique) distribution Q ∈ D̃(X).
Note that single-peakedness on K implies single-peakedness on [0, k] if agents
consider assignments qi ∈ [0, k] that correspond to marginal distributions Qi.
Therefore, the problem of assigning k identical objects to a set of agents with
single-peaked preferences by using a Pareto efficient probabilistic rule reduces
to the problem of dividing the amount k of a perfectly divisible homogeneous
commodity among a group of agents with single-peaked preferences.

Hence, any Pareto efficient probabilistic rule ϕ : VN → D̃(X) induces a
Pareto efficient deterministic allocation rule Φ : R̄N → X (N, k) for the problem
of dividing the amount k of a perfectly divisible homogeneous commodity among
a group of agents with single-peaked preferences. Furthermore, if the probabilistic
rule also satisfies strategy-proofness and no-envy, then the induced allocation rule
satisfies these properties as well. Any probabilistic rule with uniform marginal
distributions induces the uniform allocation rule and vice versa.7

The domain R̄ satisfies the following “richness condition”: givenxi, yi ∈ [0, k],
if ]xi, yi[ ∩K �= ∅, then for all zi ∈ ]xi, yi[ ∩K there exist preference relations
Ri, R̄i ∈ R̄ such that p(Ri) = p(R̄i) = zi, xiPi yi, and yi P̄i xi. It can be checked
that for example for the proofs of Ching (1994) this condition suffices to show

6 The somewhat tedious proof of the if-part of Lemma 4 is available from the authors upon request.
7 Uniform Allocation Rule Ũ: For all R ∈ R̄N , and all j ∈ N ,

Ũj(R) ≡
{

min(p(Rj), λ) if
∑

N p(Ri) ≥ k,
max(p(Rj), λ) if

∑
N p(Ri) ≤ k,

where λ solves
∑

N Ũi(R) = k.
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that if a deterministic rule Φ : R̄N → X (N, k) satisfies same-sidedness, strategy-
proofness, and equal treatment of equals, then it is the uniform rule restricted on
this domain.

All characterization results obtained for Pareto efficient deterministic rules Φ :
R̄N → X (N, k) that divide a perfectly divisible homogeneous commodity among a
group of agents with single-peaked preferences also hold for probabilistic rules that
assign indivisible identical objects to a set of strictly risk-averse agents with single-
peaked preferences. Since the marginal distributions of the uniform probabilistic
rules in Sect. 4 only depend on the peak profile, we define these rules in the same
way in the current context for profiles of utility functions.

Corollary 1 (Kureishi, 2000). When each agent is a strictly risk averse vNM-
expected utility maximizer, the uniform probabilistic rules are the only probabilistic
rules satisfying Pareto efficiency, strategy-proofness, and equal treatment of equals.

Since equal treatment of equals is implied by either anonymity or no-envy, in
Corollary 1 we can replace equal treatment of equals either by anonymity (Sasaki,
1997) or by no-envy.
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