
Abstract. The validity of the axiomatization of the Harsanyi solution for
NTU-games by Hart (1985) is shown to depend on the regularity conditions
imposed on games. Following this observation, we propose two related axi-
omatic characterizations, one of the symmetric egalitarian solution (Kalai and
Samet, 1985) and one of the consistent solution (Maschler and Owen, 1992).
The three axiomatic results are studied, evaluated and compared in detail.
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Introduction

Various solutions expressing some concern for fairness have been proposed
for cooperative games in coalitional form with nontransferable utility (NTU).
The main ones are the Harsanyi solution (cf. Harsanyi, 1963), the Shapley
NTU solution (cf. Shapley, 1969), the symmetric egalitarian solution (cf.
Kalai and Samet, 1985), and the consistent solution1 (cf. Maschler and Owen,
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1992). For brevity, we will call these solutions the H-solution, the S-solution,
the KS-solution, and the MO-solution, respectively. All four solutions coin-
cide with the Shapley (1953) value on the class of TU-games and all, except
the KS-solution, coincide with the Nash bargaining solution (cf. Nash, 1950)
on the class of pure bargaining problems. The KS-solution coincides with the
symmetric proportional solution (cf. Kalai, 1977), also called egalitarian
solution, on the class of pure bargaining problems. The S-solution has been
axiomatized by Aumann (1985); the H-solution by Hart (1985); and the
KS-solution by Kalai and Samet (1985).

The objective of the present paper is to provide new axiomatic charac-
terizations of both the consistent and the symmetric egalitarian solutions. Our
starting point is the axiomatization of the H-solution by Hart (1985). We
show that its validity depends crucially on the regularity conditions that
are imposed on feasible sets. In particular, we consider the following three
domains:

1. games for which the feasible set of each coalition is positively smooth,
2. games for which only the feasible set of the grand coalition is required to

be positively smooth,
3. games for which no smoothness assumption is made.

Here, ‘positively smooth’ means that there is a unique supporting hyperplane
at each boundary point, with a normal vector that has all coordinates posi-
tive.

Hart’s axioms characterize the H-solution on the second domain, but are
indeterminate on the first one and incompatible on the third one. This can be
seen as follows. First, the KS-solution is the only solution that satisfies all the
axioms proposed by Hart, except scale covariance, on the third domain (see
Proposition 2 hereafter). This provides an alternative axiomatization of the
KS-solution. Second, the MO-solution satisfies all of Hart’s axioms on the
first domain, and is characterized on this domain by a natural strengthening
of these axioms (see Proposition 3). The latter result is one of the first axio-
matizations of the MO-solution for general NTU-games (with convex feasible
sets). Hart (2003) presents another axiomatization (on a slightly different class
of games) by means of a marginality axiom. Earlier papers already suggested
alternative justifications. Maschler and Owen (1989) characterized the MO-
solution on the class of hyperplane games. Hart and Mas-Colell (1996) pro-
posed a non-cooperative procedure supporting the MO-solution.

In order to complete the picture, we refer the reader to Hart (1985) for a
comparison between the S-solution and the H-solution through their axio-
matizations. Our results are closer to Hart’s axiomatization of the H-solution
(working with payoff configurations) than to Aumann’s axiomatization of the
S-solution (working only with allocations for the grand coalition).

The paper is organized as follows. In the first three sections we introduce
notations and definitions. In particular, we recall the definitions of the rele-
vant solutions in Section 3. In Section 4 we review the main theorem of Hart
(1985) and discuss this result by focusing on the importance of the regularity
conditions imposed on games. The axiomatic characterizations of the KS-
solution and the MO-solution are presented in Section 5. In Section 6 we
reformulate the three axiomatic results in order to improve our understanding
of the specific role of each axiom and the close dependence on the domains of
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definition. In Section 7 we provide examples to show logical independence of
the axioms used in the characterizations. Proofs are given in Section 8.

1. Notations

Let n be a positive integer, let N :¼ f1; . . . ; ng be the set of players, and let
P ðNÞ be the set of coalitions, that is, the set of nonempty subsets of N . The
cardinality of a coalition S is denoted by s. Elements of the Cartesian productQ

S2P ðNÞ R
S are called payoff configurations, as they will represent profiles of

payoff allocations that are contingent on the coalition that forms. For each
coalition S and pair of vectors ðk; xÞ in RS � RS , kx 2 RS denotes the vector
ðkixiÞi2S . This expression should be distinguished from the inner product
k � x :¼

P
i2S kixi. By DS

þ (resp. DS
þþ) we denote the set of vectors in RS with

nonnegative (resp. positive) components that sum up to 1. Let A be a convex
subset of RS . Then the Pareto-frontier of A (denoted by @A) is defined as
follows:

@A :¼ fa 2 A j :½ð9a0 2 AÞ : 8i 2 S; a0i > ai�g:
The set A � RS is said to be positively smooth if it admits a unique supporting
hyperplane with a normal vector in DS

þþ at each point of its Pareto-frontier.

2. Games

A game (with nontransferable utility, NTU) is a function that assigns a non-
empty, closed, comprehensive, convex and proper subset of RS to each coa-
lition S. (A set A � RS is comprehensive if for all x 2 A and y 2 RS with y � x
we have y 2 A.) The class of all games is denoted by G. A game V is partially
positively smooth if the set V ðNÞ is positively smooth. The class of all partially
positively smooth games is denoted G0PSm. Both Aumann (1985) and Hart
(1985) essentially work with solutions defined on G0PSm. A game V is positively
smooth if the set V ðSÞ is positively smooth for each coalition S. The class of all
positively smooth games is denoted GPSm. Positive smoothness imposes the
same regularity condition on the feasible set of each coalition. A similar class
of games is considered in Hart and Mas-Colell (1996) who, additionally,
impose a monotonicity condition. Obviously, GPSm � G0PSm � G. Operations
on games are defined from operations on sets by applying these coalition-
wise. Thus, for V ;W 2 G, S 2 P ðNÞ, and k 2 RN

þþ, we have:
ðV þ W ÞðSÞ :¼ V ðSÞ þ W ðSÞ (:¼ fz 2 RS j 9x 2 V ðSÞ; y 2 W ðSÞ : z ¼ xþ yg);
ð@V ÞðSÞ :¼ @ðV ðSÞÞ; ðkV ÞðSÞ :¼ fy 2 RS j 9x 2 V ðSÞ8i 2 S : yi ¼ kixig. Simi-
larly, V � W means that V ðSÞ � W ðSÞ for each S 2 P ðNÞ.

A TU-game (transferable utility game) is a function v : P ðNÞ ! R. A game
V is equivalent to the TU-game v if V ðSÞ ¼ fx 2 RS j

P
i2S xi � vðSÞg for each

coalition S.
A hyperplane game V is a game for which there exists a pair

ðk; vÞ 2 ð
Q

S2PðNÞ D
S
þþÞ � RP ðNÞ, where k ¼ ðkSÞS2P ðNÞ, such that V ðSÞ ¼

fx 2 RS j kS � x � vðSÞg for each coalition S. In that case, the pair ðk; vÞ is
uniquely determined. Every game that is equivalent to a TU-game is a
hyperplane game. Every hyperplane game is positively smooth.
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3. Values and solutions

Let G be a class of games. A value on G is a function r that assigns a (unique)
payoff configuration ðrSðV ÞÞS2P ðNÞ to each game belonging to G. The vector
rSðV Þ 2 RS is called the value of V for S, for each game V in G and each
coalition S. A solution on G is a function R that assigns a (possibly empty) set
of payoff configurations to each game belonging to G.

We now define three solutions on G: the KS-solution (the symmetric
egalitarian solution of Kalai and Samet, 1985), the H-solution (the solution
proposed by Harsanyi, 1963), and the MO-solution (the consistent solution of
Maschler and Owen, 1992). To this end, we fix V 2 G.

The KS-value of V , denoted by rKSðV Þ, is the unique payoff configuration
r 2 @V for which there exists a vector n 2 RP ðNÞ such that the i-th component
of rS , denoted by rS;i, equals

P
T2P ðSÞ: i2T nT for each S 2 P ðNÞ and each

i 2 S.2 It can be verified that rKS is well defined. The KS-solution of V ,
denoted RKSðV Þ, is simply the singleton containing rKSðV Þ. The KS-value can
be understood as expressing a combination of efficiency (rKSðV Þ 2 @V ) and
equity (the real number nT being understood as a dividend distributed by
coalition T to each of its members).

The H-solution of V , denoted by RH ðV Þ, is the set of payoff configurations
r 2 @V for which there exists a pair ðk; nÞ 2 DN

þþ � RP ðNÞ such that
k � rN ¼ maxy2V ðNÞ k � y and kirS;i ¼

P
T2P ðSÞ: i2T nT for each i 2 S and each

S 2 P ðNÞ. Each element r of the H-solution of V combines an objective of
efficiency (r 2 @V ), of utilitarianism in weighted utilities (k � rN ¼
maxy2V ðNÞ k � y), and of equity in weighted utilities (the real number nT being
understood as a dividend in weighted utility distributed by coalition T to each
of its members), for some vector k of positive weights. The endogeneous
determination of the weights in order to obtain the combination of different
objectives is similar to the procedure proposed by Shapley (1969) in order to
extend TU-solution concepts to NTU-games.

Maschler and Owen (1989) defined a value on the class of hyperplane
games, inspired by the idea of marginal contributions underlying the Shapley
value (cf. Shapley, 1953). Assume first that V is a hyperplane game and let S
be a coalition. For each permutation p of S, we define a marginal worth vector
MW ðV ; pÞ 2 RS as follows:

MWpðiÞðV ; pÞ :¼
maxfxpðiÞ j x 2 V ðfpðiÞgÞg if i ¼ 1
maxfxpðiÞ j x 2 V ðfpð1Þ; . . . ; pðiÞgÞ
^ð8j 2 f1; . . . ; i� 1gÞ : xpðjÞ ¼ MWpðjÞðV ; pÞg if i � 2

8
<

:

for each i 2 f1; . . . ; sg. The real number MWpðiÞðV ; pÞ determines the maximal
payoff that player pðiÞ can get if he is the ith player to enter the cooperation
room, after players pð1Þ; . . . ; pði� 1Þ successively entered the room and were
paid according to MW ðV ; pÞ. Then, the value of V for S is the vector of expected
payoffs if all the permutations of the players in S are equally likely, that is:

2Observe that, in accordance with the usual vector notation, we use the symbol r for values as
well as for payoff configurations.
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r�SðV Þ :¼
P

p2PðSÞMW ðV ; pÞ
s!

;

where PðSÞ denotes the set of all permutations of the players in S.3

Maschler and Owen (1992) extended this value to a solution that is well-
defined on G. Consider an arbitrary game V in G. The consistent solution or
MO-solution of V (denoted by RMOðV Þ) is the set of payoff configurations
r 2 @V for which there exists a k 2

Q
S2P ðNÞ D

S
þþ such that kS is orthogonal to

V ðSÞ at rS for each S 2 P ðNÞ, and r ¼ r�ðV kÞ, where V k is the hyperplane
game that is characterized by the pair ðk; ðmaxy2V ðSÞ kS � yÞS2PðNÞÞ. Each ele-
ment r of RMOðV Þ (if any) thus specifies a vector of optimal allocations (one
for each coalition) that coincides with the value (as defined above) of some
hyperplane game that supports V at r.

4. Hart’s axiomatization of the Harsanyi solution

Hart (1985) uses the following axioms in his characterization of the Harsanyi
solution. We formulate these axioms for a solution R defined on a class G of
games.

Axiom 1 (Efficiency, EFF) RðV Þ � @V for each game V 2 G.
Axiom 2 (Scale Covariance, SC) RðkV Þ ¼ kRðV Þ for each game V 2 G and

each k 2 RN
þþ such that kV 2 G.

Axiom 3 (Independence of Irrelevant Alternatives, IIA) RðW Þ \ V � RðV Þ for
all games V ;W 2 G such that V � W .

Axiom 4 (Conditional Super-Additivity, CSA) ½RðV Þ þ RðW Þ� \ @U � RðUÞ
for all games U ; V ;W 2 G such that U ¼ V þ W .

Axiom 5 (Unanimity Games, UG) Let S be a coalition and let c be a real
number. The unanimity game U S

c is defined as follows:
US

c ðT Þ :¼ fx 2 RT j
P

i2T xi � cg for each coalition T such that
S � T , and U S

c ðT Þ :¼ fx 2 RT j
P

i2T xi � 0g for each other coali-
tion T . If U S

c 2 G, then RðU S
c Þ ¼ frg, where rT :¼ c

s 1S for each
coalition T such that S � T , and rT :¼ 0 for each other coalition T .4

Axiom 6 (Zero-Inessential Games, ZIG) 0 2 RðV Þ for each game V 2 G such
that 0 2 @V .

The interpretation of these axioms is standard, see also Hart (1985).

Proposition 1(Hart, 1985) The H-solution (restricted to G0PSm) is the only
solution on G0PSm that satisfies Axioms 1–6.

The validity of Proposition 1 depends crucially on the set of games over
which solutions are assumed to be defined. Indeed, RMO as a solution defined
on the smaller class GPSm satisfies Axioms 1–6 as well: Proposition 3 below
implies that RMO satisfies Axioms 1, 3, and 4; Axioms 2, 5, and 6 can be
verified directly. On the other hand, Axioms 1–6 (even 2–5) are incompatible
on the larger class G, as the following example shows.

3If V is equivalent to a TU-game v, then r�SðV Þ is the Shapley value of v restricted to S.
41S 2 RT is the vector with coordinates 1 for each i 2 S and 0 for each i 2 T n S.
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Example 1. Assume that there exists a solution R defined on G that satisfies
Axioms 2–5. Let k :¼ ð2; 1; . . . ; 1Þ 2 RN and let V :¼ kU N

n . By Axioms 2 (SC)
and 5 (UG), RðV Þ ¼ frg where rN :¼ k and rS :¼ 0, for each S 2 P ðNÞ n fNg.
Let W be the game defined as follows:

W ðSÞ :¼ fx 2 RS j x � rSg
for each S 2 PðNÞ. Observe that the game W is nonsmooth. By Axiom 3
(IIA), r 2 RðW Þ. By Axioms 4 (CSA) and 5 (UG), r 2 RðW þ U N

0 Þ ¼
RðU N

nþ1Þ. On the other hand, Axiom 5 (UG) implies that RðU N
nþ1Þ ¼ fr0g,

where r0N :¼ nþ1
n ð1; . . . ; 1Þ and r0S :¼ 0, for each S 2 PðNÞ n fNg. This is a

contradiction.
In view of the apparent impact of the regularity conditions imposed

on games, onemay ask if it is natural to consider a domain such asG0PSm inwhich
the grand coalition and the smaller coalitions are treated asymmetrically.

5. Axiomatization of the KS-solution and the MO-solution

Following the observations made in the previous section we propose two
axiomatic characterizations, one of the KS-solution and one of the
MO-solution, that are technically very close to Hart’s axiomatization of the
H-solution. The domains in these characterizations treat all coalitions
symmetrically.

In the preceding section we observed that Axioms 1–6 are incompatible
for solutions defined on G. If, however, Axiom 2 (SC) is dropped we obtain a
characterization of the KS-solution on G.

Proposition 2. The KS-solution is the only solution on G that satisfies Axioms 1
(EFF), 3 (IIA), 4 (CSA), 5 (UG) and 6 (ZIG).

Of course, the KS-solution violates Axiom 2. It does satisfy a weaker
version requiring covariance only with respect to common positive rescaling
of the utilities. The KS-solution has been axiomatized in a different way by
Kalai and Samet (1985).

We also observed that Axioms 1–6 do not determine a unique solution on
GPSm. Indeed, both the H-solution and the MO-solution satisfy these axioms
on this domain.

The following axiom can be seen as strengthening both Axioms 5 (UG)
and 6 (ZIG). It allows us to exactly characterize the MO-solution, even
without appealing explicitly to Axiom 2 (SC). For a game V , a coalition S
with s � 2, a player i 2 S, and a vector y 2 RSni, define xiðV ðSÞ; yÞ 2 RS by

xi
kðV ðSÞ; yÞ :¼ yk if k 6¼ i

maxfxi j x 2 V ðSÞ ^ ð8j 2 SniÞ : xj ¼ yjg if k ¼ i

�

provided the maximum exists.5 Next, define the payoff configuration
rD 	 rDðV Þ (the superscript stands for ‘dictator’) recursively by

5This is the case if fx 2 V ðSÞ j ð8j 2 SniÞ : xj ¼ yjg is nonempty and bounded. Note that we write
Sni instead of Snfig.
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a) for all i 2 N , rD
fig :¼ maxfxjx 2 V ðfigÞg,

b) for all S 2 P ðNÞ with s � 2, rD
S :¼ 1

s

P
i2S xiðV ðSÞ; rSniÞ.

The payoff configuration rD is well-defined (and unique) whenever all the
xið�; �Þ in b) exist; this is easily seen to be the case, in particular, for hyperplane
games and zero-inessential games.

Axiom 7 (Recursive Conditional Random Dictatorship, RCRD) For all V 2 G,
if rDðV Þ 2 @V then RðV Þ ¼ frDðV Þg.

We adopt the view that the fairness of a potential agreement for the grand
coalition depends on what is feasible for that coalition and on what is thought
to happen if a smaller coalition S would form instead of N . Let us call the
allocation achieved by S the threat from S. If we focus on credible threats,
somewhat similar to the idea of subgame perfection in extensive form games,
then it is natural to view a solution payoff configuration as a collection of such
threats that would actually be carried out if smaller coalitions would form.
This interpretation is consistent with the (first) interpretation proposed by
Hart (1985, p. 1299). It is also consistent with the principle of ‘subcoalitional
perfectness’ suggested by Hart and Mas-Colell (1996, p. 366). Axiom 7 is then
justified as follows by induction on the size of the coalitions. Let V be a game
for which the vector rD as specified above is well-defined. It is clear that rD

fig is
the credible threat from player i, for each i 2 N . Next, let S be a coalition with
at least two members. Suppose that we already proved that rD

T is the threat that
would actually be carried out should some coalition T 6� S form. The payoff
allocation xiðV ðSÞ; rD

SniÞ specifies the choice of player i 2 S, assuming that he
has the dictatorial power to choose for S, under the participation constraint of
the other players in S, who have the outside option to form a coalition without
him in which case they obtain rD

Sni (by the induction hypothesis). The vector rD
S

then represents the expected payoff allocation for the players in S if each
member has an equal chance of obtaining this dictatorial power. If it is Pareto
optimal in V ðSÞ, then it is the threat that S would carry out should S form. We
may summarize our reasoning as follows. The random dictatorship procedure
determines for each coalition the only possible fair payoff allocation when its
outcome is efficient.6 Axiom 7 is justified by applying this principle recursively,
hence its name ‘Recursive Conditional Random Dictatorship’.

Proposition 3. The MO-solution (restricted to GPSm) is the only solution on
GPSm that satisfies Axioms 1 (EFF), 3 (IIA), 4 (CSA) and 7 (RCRD).

Both the H-solution and the KS-solution satisfy Axioms 1, 3 and 4 on
GPSm. Hence they cannot satisfy Axiom 7. Here is an explicit example.

Example 2. Let V be the three-player hyperplane game characterized by the
pair ðk; vÞ, where kf1g ¼ kf2g ¼ kf3g ¼ 1, kf1;2g ¼ ð15 ; 45Þ, kf1;3g ¼ ð12 ; 12Þ, kf2;3g ¼
ð12 ; 12Þ, kf1;2;3g ¼ ð13 ; 13 ; 13Þ, vðSÞ ¼ 0, if S equals f1g, f2g, f3g, f1; 3g, or f2; 3g,

6It is easy to check that the consistent solution satisfies this principle beyond the specific content
of Axiom 7: For each V 2 G, each r 2 RMOðV Þ and each S 2 PðNÞ with s � 2, ifP

i2S
xiðV ðSÞ;rSniÞ

s 2 @V ðSÞ, then rS ¼
P

i2S
xiðV ðSÞ;rSniÞ

s :
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vðf1; 2gÞ ¼ 20, and vðf1; 2; 3gÞ ¼ 100=3. The game V is a slight variation on
Owen’s (1972) banker game. The interpretation is as follows. Player 1 can
obtain $100 with the help of player 2. Players 1 and 2 can transfer money to
each other without the help of player 3 (the banker), but in that case only
according to the exchange rate 4 : 1. When the three players cooperate, any
split of the $100 created through the cooperation of players 1 and 2 is feasible,
thanks to the banker. If a solution R satisfies Axiom 7, then RðV Þ ¼ frg
where rS ¼ 0 if S equals f1g, f2g, f3g, rS ¼ ð0; 0Þ if S equals f1; 3g or f2; 3g,
rf1;2g ¼ ð50; 12:5Þ, and rf1;2;3g ¼ ð50; 37:5; 12:5Þ. On the other hand,

RH ðV Þ ¼ RKSðV Þ ¼ fr0g, where r0S ¼ 0 if S equals f1g, f2g, f3g, r0S ¼ ð0; 0Þ if
S equals f1; 3g or f2; 3g, r0f1;2g ¼ ð20; 20Þ, and r0f1;2;3g ¼ ð40; 40; 20Þ.

6. A reformulation of the three axiomatic results

In this section we reformulate Propositions 1–3 in order to further clarify the
role of each axiom and the impact of the different domain restrictions.

We introduce new axioms, stated for a solution R defined on a class G of
games.

Axiom 40 (Independence of Non-dominating Alternatives, INA) RðV Þ \ @W
� RðW Þ for all games V ;W 2 G such that V � W .

Consider a payoff configuration r that belongs to the solution of a game
V . If W is larger than V (which means that each coalition has at least as many
cooperative opportunities in W than in V ), and if, at the same time, rS is not
Pareto-dominated in the game W (for each coalition S), then r should belong
to the solution of W as well. This axiom is a dual version of Axiom 3 (IIA). It
is directly inspired by axioms appearing in Thomson and Myerson (1980) and
in Thomson (1981). See also Chang and Hwang (2003) for a similar axiom
in the context of NTU-games. Axiom 40 is implied by the conjunction of
Axioms 3 (IIA), 4 (CSA) and 6 (ZIG) (see Lemma 8 in Section 8 for a proof).

Axiom 70 RðV Þ ¼ fr�ðV Þg for each hyperplane game V 2 G.
Axiom 700 RðkV Þ ¼ fr�ðkV Þg, for each k 2 DN

þþ and each game V 2 G that is
equivalent to a TU-game.

Axiom 7000 RðV Þ ¼ fr�ðV Þg, for each game V 2 G that is equivalent to a TU-
game.

Recall from Section 3 that r�SðV Þ 2 RS is the mean of the marginal worth
vectors, for coalition S. It coincides with the Shapley value of v restricted to S
when V is equivalent to a TU-game v. It coincides by definition with the
S-component of the unique payoff configuration in the MO-solution when V
is a hyperplane game. Axioms 70, 700 and 7000 are increasingly weaker. Note
also that 700 is implied by 7000 together with Scale Covariance (Axiom 2), see
also part 4 of Lemma 1.

Proposition 10. The H-solution (restricted to G0PSm) is the only solution on G0PSm
that satisfies Axioms 1 (EFF), 3 (IIA), 40 (INA) and 700.

Proposition 20. The KS-solution is the only solution on G that satisfies Axioms
1 (EFF), 3 (IIA), 40 (INA) and 7000.
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Proposition 30. The MO-solution (restricted to GPSm) is the only solution on
GPSm that satisfies Axioms 1 (EFF), 3 (IIA), 40 (INA) and 70.

Summarizing, the axioms EFF, IIA and INA, are used in all three
propositions. The Axioms 70, 700, and 7000 are increasingly weaker but this is
counterbalanced by the increasing domains GPsm � G0Psm � G in Propositions
30, 10 and 20, respectively.

Finally, we note that Proposition 30 can be decomposed into two parts:
RMO is the minimal (resp. maximal) solution that satisfies Axioms 3 and 70

(resp. 1, 40, and 70). See the Remark at the end of Section 8 for the details.

7. Independence of the axioms

In this section we provide examples to show that the axioms used in Prop-
ositions 4–5 are logically independent. Below we define a number of solutions
over an arbitrary set N of players. In the following table, the rows correspond
with the axioms and the columns with the three propositions. The solutions in
the cells of this table satisfy all axioms in the proposition of the associated
column with the exception of the axiom in the associated row. Proofs are left
to the reader.

(i) Let G be a subset of games and R a solution on G. The solution Rþ0 on
G is defined as follows. If V is not a hyperplane game and 0 2 V , then
Rþ0ðV Þ :¼ RðV Þ [ f0g. Otherwise, Rþ0ðV Þ :¼ RðV Þ.

(ii) Let G be a subset of games and R a solution on G. The solution R0h on
G is defined as follows. If 0 2 @V , then R0hðV Þ :¼ f0g. If V is a
hyperplane game, then R0hðV Þ :¼ RðV Þ. Otherwise, R0hðV Þ :¼ ;.

(iii) Let G be a subset of games and R a solution on G. The solution R@h on
G is defined as follows. If V is a hyperplane game, then
R@hðV Þ :¼ RðV Þ. Otherwise, R@hðV Þ :¼

Q
S2P ðNÞ @V ðSÞ.

(iv) RKS
w is some weighted proportional solution on G (see Kalai and Samet,

1985). Similarly, RH
w is some weighted version of the Harsanyi solution

on G0Psm (details can be filled in by the reader).
(v) Let RS denote the Shapley (1969) NTU solution as formulated by Hart

(1985, Section 5) in terms of payoff configurations: for each V 2 G,
r 2 RSðV Þ if and only if there exists k 2 DN

þþ such that
P

i2S kivi �P
i2S kirS;i for each S 2 P ðNÞ and rN is the Shapley (1953) value of the

TU-game vk defined by vkðSÞ :¼
P

i2S kirS;i for each S 2 P ðNÞ. Hart
(1985, Theorem B) proved that the Harsanyi-Shapley solution RH \ RS

#: Axiom Prop. 1 G0Psm Prop. 2 G Prop. 3 GPsm

1: EFF RH
þ0 RKS

þ0 R1

2: SC RKS

3: IIA RH
0h RKS

0h R2

4: CSA RH
@h RKS

@h R3

5: UG RH
w RKS

w

6: ZIG RH \ RS bR
7: RCRD RKS
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is the minimal solution on G0PSm to satisfy Axioms 1–5. The minimal
solution on G to satisfy Axioms 1, 3, 4, and 5 is the solution bR defined
by bRðV Þ :¼ fr 2 RKSðV Þ j 8S 2 P ðNÞ :

P
i2S rS;i ¼ maxx2V ðSÞ Ri2Sxig for

every V 2 G.
(vi) Let V̂ be a positively smooth game satisfying the following conditions:

1) V̂ ðf1; 2gÞ is symmetric with fð4; 0Þ; ð0; 4Þ; ð3; 3Þg 
 @V̂ ðf1; 2gÞ; 2)
maxfx j x 2 V̂ ðfigÞg ¼ 1 for each i 2 f1; 2g; 3) fðx1; x2Þ 2 Rf1;2g j
ðx1; x2; 0; . . . ; 0Þ 2 V̂ ðSÞg ¼ V̂ ðf1; 2gÞ for each coalition S such that
f1; 2g � S; 4) 0 2 @V̂ ðSÞ for each coalition S that does not contain
f1; 2g and that is different from f1g and f2g. V̂ is essentially a sym-
metric bargaining problem between players 1 and 2, the other players
(if any) being dummies. Let r be the payoff configuration defined as
follows: rS :¼ ð3; 3; 0; . . . ; 0Þ 2 RS for each coalition S such that
f1; 2g � S and rS :¼ 0 2 RS for each other coalition. Notice that
r 2 RMOðV̂ 0Þ where V̂ 0ðSÞ ¼ V̂ ðSÞ for each coalition S with at least two
members and V̂ 0ðfigÞ :¼ fx 2 R j x � 0g for each i 2 N . The solution
R1 on GPSm is defined as follows. If V � V̂ such that r 2 V , then
R1ðV Þ :¼ RMOðV Þ [ frg. Otherwise, R1ðV Þ :¼ RMOðV Þ.

(vii) Let G be the class of games V 2 GPSm for which the payoff configura-
tion rD as specified before Axiom 7 is well-defined and rD 2 @V . Then
R2 is defined as follows: R2ðV Þ :¼ frDg if V 2 G and R2ðV Þ :¼ ; if
V 2 GPSm n G.

(viii) Let V 2 GPSm. Then R3ðV Þ is the set of payoff configurations r 2 @V
such that xiðV ðSÞ; rSniÞ exists for each i 2 S and
rS �

P
i2S xiðV ðSÞ;rSniÞ=s for each coalition S with at least two mem-

bers.

8. Proofs

We first state some logical relations between the axioms.

Lemma 1. Let G be any of the sets G, G0PSm, or GPSm, and let R be a solution on
G. Then:

1) 7) 70 ) 700 ) 7000 ) 5;
2) 3 & 4 & 6) 40;
3) 1 & 4 & 5) 7000;
4) 2 & 7000 ) 700.

Proof. The implication 7) 70 is a direct consequence of Lemma 4 in Sub-
section 8.3. The rest of part 1) as well as part 4) are easy to prove. Also part 3)
is not difficult to prove: basically, it corresponds to a standard character-
ization of the Shapley value for TU-games. For part 2), let V and W be two
games such that V � W , let r 2 RðV Þ \ @W , and let k 2

Q
S2P ðNÞ D

S
þ be a (not

necessarily unique) profile of normalized vectors such that kS is orthogonal to
W ðSÞ at rS . Let W 0 be the game defined by:

W 0ðSÞ :¼ fx 2 RS j kS � x � 0g
for each S 2 P ðNÞ. By Axiom 6 (ZIG), 0 2 RðW 0Þ. By Axiom 4 (CSA),
r 2 RðW kÞ, where W k :¼ V þ W 0. By Axiom 3 (IIA), r 2 RðW Þ since
W � W k. This proves 40 (INA). j
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8.1 Proof of Propositions 1 and 10

The proofs of Propositions 1 and 10 are similar to the proof of the main
theorem of Hart (1985). We nevertheless include the proofs, not only for
completeness, but also because the slightly different exposition of the argu-
ments will allow the reader to make comparisons with the proofs of Propo-
sitions 2, 20, 3 and 30.

We refer the reader to Proposition 4.11 of Hart (1985) for the proof of the
fact that the H-solution satisfies axioms 1, 2, 3, 4, 5 and 6 on G0PSm.

Lemma 2. Let the solution R on G0PSm satisfy Axioms 1 (EFF), 3 (IIA),
40 (INA) and 700. Then R ¼ RH .

Proof: Let V 2 G0PSm, let r 2 @V , let k 2 DN
þþ be the normalized vector that is

orthogonal to V ðNÞ at rN , let V k
r be the game defined by:

V k
r ðSÞ :¼ fx 2 RS j

X

i2S

kixi �
X

i2S

kirS;ig

for each S 2 P ðNÞ, and let W be the game defined by W ðNÞ :¼ V ðNÞ and
W ðSÞ :¼ fx 2 RS j x � rSg

for each S 2 P ðNÞ n fNg. We note that W � V k
r , that W � V , that

r 2 @V k
r \ @W , and that both V k

r and W are partially positively smooth. Then:

r 2 RH ðV Þ()r 2 RH ðV k
r Þ ðby definition of RH Þ

()r 2 RðV k
r Þ ðbothR and RH satisfy Axiom 700Þ

()r 2 RðW Þ ðAxioms 3 and 40Þ
()r 2 RðV Þ ðAxioms 3 and 40Þ:

This completes the proof since both R and RH satisfy Axiom 1 (EFF). j
Propositions 1 and 10 follow from Lemmas 1 and 2.

8.2 Proof of Propositions 2 and 20

It is easy to check that the symmetric KS-solution satisfies Axioms 1, 3, 4, 5, 6
and 7000 on G.

Lemma 3. Let the solution R on G satisfy Axioms 1 (EFF), 3 (IIA), 40 (INA)
and 7000. Then R ¼ RKS .

Proof: Let V 2 G, let r 2 @V , let Vr be the game defined by:

VrðSÞ :¼ fx 2 RS j
X

i2S

xi �
X

i2S

rS;ig

for each S 2 P ðNÞ, and let bW be the game defined by:

bW ðSÞ :¼ fx 2 RS j x � rSg

for each S 2 PðNÞ. We note that bW � Vr, that bW � V , and that
r 2 @Vr \ @ bW . We have:
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r 2 RKSðV Þ()r 2 RKSðVrÞ ðby definition of RKSÞ

()r 2 RðVrÞðboth R and RKS satisfy Axiom 7000Þ

()r 2 Rð bW Þ (Axioms 3 and4’)

()r 2 RðV Þ (Axioms 3 and 4’).

This completes the proof since both R and RKS satisfy Axiom 1 (EFF). j
Propositions 2 and 20 now follow from Lemmas 1 and 3.

8.3 Proof of Propositions 3 and 30

The next lemma directly follows from Maschler and Owen (1989, Lemma 1).
Recall the definition of rDðV Þ before Axiom 7.

Lemma 4. Let V be a hyperplane game. Then r�ðV Þ ¼ rDðV Þ.

The following additional notations are useful in what follows. Let
V 2 GPSm and let r 2 @V . Then kðr; V Þ 2

Q
S2PðNÞ D

S
þþ denotes the profile of

normalized vectors whose S-component is orthogonal to V ðSÞ at rS , for each
S 2 P ðNÞ. Also, V kðr;V Þ denotes the hyperplane game that is characterized by
the pair ðkðr; V Þ; ðmaxy2V ðSÞ kSðr; V Þ � yÞS2P ðNÞÞ.
Lemma 5. RMO, as a solution defined on GPSm, satisfies Axiom 7 (RCRD).

Proof: Let V 2 GPSm. Suppose that the payoff configuration rD 	 rDðV Þ as
defined before Axiom 7 is well-defined and that rD 2 @V . Write r instead of
rD. Let r0 2 RMOðV Þ. We prove by induction on the size of S that r0S ¼ rS for
each S 2 P ðNÞ. The property is clearly true for singletons. So, let s � 2, let S
be a coalition of size s and assume that r0Sni ¼ rSni for each i 2 S. Then,
r0S ¼ 1

s

P
i2S xiðV kðr0;V Þ ðSÞ; r0SniÞ � 1

s

P
i2S xiðV ðSÞ; r0SniÞ ¼ 1

s

P
i2S xiðV ðSÞ;

rSniÞ ¼ rS . The first equality follows from Lemma 4. The last equality follows
from the definition of r (¼ rD). As r0S 2 V ðSÞ and rS 2 @V ðSÞ, we have
r0S ¼ rS . Hence, by induction it follows that r0 ¼ r. So we have proved that if
RMOðV Þ 6¼ ;, then RMOðV Þ ¼ frg. We now prove that r 2 RMOðV Þ. This
amounts to proving that rS ¼ r�SðV kðr;V ÞÞ for each coalition S. Once again we
proceed by induction on the size of S. The property is clearly true for sin-
gletons. So, let s � 2, let S be a coalition of size s and assume that
rSni ¼ r�SniðV kðr;V ÞÞ for each i 2 S. As rS ¼

P
i2S xiðV ðSÞ; rSniÞ=s by definition

of r and r�SðV kðr;V ÞÞ ¼
P

i2S xiðV kðr;V ÞðSÞ; r�Sni ðV kðr;V ÞÞÞ=s by Lemma 4, it is
sufficient to prove that xiðV ðSÞ; rSniÞ ¼ xiðV kðr;V ÞðSÞ; rSniÞ for each i 2 S or,
equivalently, that maxfxi j x 2 V ðSÞ ^ ð8j 2 SniÞ : xj ¼ ðrSniÞjg ¼ maxfxi j
x 2 V kðr;V ÞðSÞ ^ ð8j 2 SniÞ : xj ¼ ðrSniÞjg. First, notice that maxfxi j x
2 V ðSÞ ^ ð8j 2 SniÞ : xj ¼ ðrSniÞjg � maxfxi j x 2 V kðr;V ÞðSÞ ^ ð8j 2 S n iÞ :
xj ¼ ðrSniÞjg for each i 2 S, since V ðSÞ � V kðr;V ÞðSÞ. Second, if there exists
some player i 2 S for which this inequality is strict, then

kSðr; V Þ � ð1s
P

i2S xiðV ðSÞ; rSniÞÞ < kSðr; V Þ � rS , which contradicts the fact

that rS ¼ 1
s

P
i2S xiðV ðSÞ; rSniÞ. j

156 G. de Clippel et al.



Lemma 6. (Conditional additivity of the MO-solution on the class of hyper-
plane games). Let k 2

Q
S2PðNÞ D

S
þþ be a profile of normalized vectors, let

v : P ðNÞ ! R and w : PðNÞ ! R be two functions, and let V and W be the two
hyperplane games that are characterized by the pairs ðk; vÞ and ðk;wÞ, respec-
tively. Then r�ðV þ W Þ ¼ r�ðV Þ þ r�ðW Þ.

Proof: We prove that r�SðV þ W Þ ¼ r�SðV Þ þ r�SðW Þ for each S 2 P ðNÞ, by
induction on the cardinality of S. If S is a singleton, then the result is obvious
by definition of r�. Assume s � 2 and the statement holds for all coalitions of
cardinality s� 1. Notice that V þ W is the hyperplane game characterized by
the pair ðk; vþ wÞ. Let i 2 S. We have:

max
x2ðVþW ÞðSÞ: ðxjÞj2Sni¼r�

SniðVþW Þ
xi ¼

ðvþ wÞðSÞ �
P

j2Sni kS;jðr�SniÞjðV þ W Þ
kS;i

:

By the induction assumption, the right-hand side expression equals

vðSÞ �
P

j2Sni kS;jðr�SniÞjðV Þ
kS;i

þ
wðSÞ �

P
j2Sni kS;jðr�SniÞjðW Þ

kS;i
;

which, in turn, equals

max
x2V ðSÞ: ðxjÞj2Sni¼r�

SniðV Þ
xi þ max

x2W ðSÞ: ðxjÞj2Sni¼r�
SniðW Þ

xi:

So, xiððV þ W ÞðSÞ; r�SniðV þ W ÞÞ ¼ xiðV ðSÞ; r�SniðV ÞÞ þ xiðW ðSÞ; r�SniðW ÞÞ for
each i 2 S. The proof is completed by using Lemma 4. j

Lemma 7. RMO, as a solution defined on GPSm, satisfies Axiom 4 (CSA).

Proof: Let V 2 GPSm and W 2 GPSm be such that U :¼ V þ W 2 GPSm. Let
r 2 RMOðV Þ and r0 2 RMOðW Þ be such that rþ r0 2 @U . Then
kðr; V Þ ¼ kðr0;W Þ ¼ kðrþ r0;UÞ. For simplicity we denote this profile of
vectors by k. Then Uk ¼ V k þ W k. So, by Lemma 6, we have: r�ðUkÞ ¼
r�ðV kÞ þ r�ðW kÞ ¼ rþ r0. This concludes the proof. j

Lemma 8. Let the solution R on GPSm satisfy Axioms 1, 3, 40 and 70. Then
R ¼ RMO.

Proof: Let V 2 GPSm and let r 2 @V . We may thus consider the profile of
normalized vectors kðr; V Þ. Then:

r 2 RMOðV Þ()r 2 RMOðV kðr;V ÞÞðby definition of RMOÞ
()r 2 RðV kðr;V ÞÞ ðboth R and RMO satisfy Axiom 70Þ
()r 2 RðV Þ ðAxioms 3 and 40Þ:

The proof is complete by using the fact that both R and RMO satisfy Axiom 1
(EFF). j

It is easy to verify that the MO-solution satisfies Axioms 1 (EFF), 3 (IIA),
and 6 (ZIG) on GPSm. (Observe that ZIG is also implied by RCRD.) By
Lemmas 5 and 7 it also satisfies Axioms 7 (RCRD) and 4 (CSA) on GPSm.
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Hence, by Lemma 1 it satisfies Axioms 40 (INA) and 70 on this class. Together
with Lemma 8 this implies both Propositions 3 and 30.

Remark. Looking at the proof of Lemma 8, we observe that Proposition 30

can be decomposed into two parts: RMO is the minimal (resp. maximal)
solution that satisfies Axioms 3 and 70 (resp. 1, 40 and 70). In fact, if the
MO-solution were single-valued (which is not true in general), either of the
two parts would be sufficient in order to obtain the exact characterization.
This point is well illustrated by the papers of Nash (1950), who adopts
the approach with Axiom 3 (IIA), and of Thomson (1981), who adopts
the approach with Axiom 40 (INA), for their axiomatizations of the (single-
valued) Nash bargaining solution on the class of pure bargaining
games. The same kind of decomposition does not necessarily apply to
Propositions 10 and 20, as both Axioms 3 and 40 are used in order to prove
the two inclusions that are required to obtain the equalities in Lemmas 2
and 3.
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