
© 2007 The Authors. Journal compilation © 2007 VVS.
Published by Blackwell Publishing, 9600 Garsington Road, Oxford OX4 2DQ, UK and 350 Main Street, Malden, MA 02148, USA.

75

Statistica Neerlandica (2007) Vol. 61, nr. 1, pp. 75–91

Multiplicity and complexity issues in
contemporary production scheduling

N. Brauner*

Laboratoire Leibniz-IMAG, 46 avenue Félix Viallet, 38031 Grenoble
cedex, France

Y. Crama†

HEC Management School, University of Liège, Boulevard du Rectorat
7 (B31), 4000 Liège, Belgium

A. Grigoriev‡

Department of Quantitative Economics, Maastricht University, P.O. Box
616, 6200 MD Maastricht, The Netherlands

J. van de Klundert§

Department of Mathematics, Maastricht University, P.O. Box 616, 6200
MD Maastricht, The Netherlands

High multiplicity scheduling problems arise naturally in contemporary
production settings where manufacturers combine economies of scale
with high product variety.Despite their frequent occurrence in practice,
the complexity of high multiplicity problems – as opposed to classical,
single multiplicity problems – is in many cases not well understood.
In this paper, we discuss various concepts and results that enable a
better understanding of the nature and complexity of high multiplic-
ity scheduling problems. The paper extends the framework presented
in Brauner et al. [Journal of Combinatorial Optimization (2005) Vol.
9, pp. 313–323] for single machine, non-preemptive high multiplicity
scheduling problems, to more general classes of problems.

Keywords and Phrases: computational complexity, design of
algorithms, scheduling, high multiplicity.

*nadia.brauner@imag.fr
†y.crama@ulg.ac.be
‡a.grigoriev@ke.unimaas.nl
§j.vandeklundert@ke.unimaas.nl
We dedicate this paper to the memory of Antoon Kolen. Antoon founded and led the Oper-
ations Research Group at the Faculty of Economics and Business Administration of Maas-
tricht University from 1985 to 2004. Throughout this period, he stimulated the application
of fundamental combinatorial methods to new and challenging problems arising in innova-
tive settings. Since 1985, automated manufacturing has been one of the fields of interest of
the group. The ideas presented in this paper find their origins in the research activities of
this group.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6818516?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

76 N. Brauner et al.

1 Prelude

Manufacturing innovation, in particular the adoption of flexible manufacturing sys-
tems, has made it possible to produce small or medium quantities of various prod-
ucts on a same line or group of machines without incurring costly setups between
batches of different product types. In such settings, it is common to cyclically
repeat a production schedule in which the items are produced according to the ratios
defined in the tactical plan. Hence, the input of the associated scheduling problem
relies on the ratios in which jobs of the various types are to be produced, rather than
on a description of each individual job. As a consequence, for many such problems
the size of the traditional encoding of a solution, namely an explicit schedule or
sequence, may not be polynomial in the input size of the problem. We illustrate this
phenomenon on a couple of flowshop scheduling problems.

Consider a bufferless two-machine flowshop which processes jobs of s different
types. For each i =1, . . ., s, there are ni identical jobs of type i; each such job must
successively undergo two operations Oi1 and Oi2, to be executed on machines 1 and
2, respectively. The processing requirements of operation Oik are summarized by its
processing time pik, for i =1, . . ., s and k =1, 2; note that pik only depends on i and
k, as all jobs of type i are identical. As usual, we also assume that no two jobs
can simultaneously occupy a machine. The task is now to find a schedule, i.e. start-
ing times for all individual operations, in which jobs of each type i are produced
in quantity ni , i =1, 2, . . ., s, and such that the output rate of the flowshop (in jobs
per time unit) is maximized when the schedule is cyclically executed infinitely often.
Note that the total number of jobs n=n1 +n2 + · · ·+ns is not necessarily polynomial
in s, and indeed not necessarily polynomial in the input size.

The single multiplicity version of this problem, where n1 =n2 = · · ·=ns =1, can
be solved in O(s log s) time by a well-known algorithm for minimizing the make-
span in two-machine flowshops (see Gilmore and Gomory, 1964). A straightfor-
ward application of this algorithm to the high multiplicity case yields an algorithm
of complexity O(n log n), which is not polynomial in the input size. Therefore, the
question arises whether the high multiplicity version of the problem is polynomially
solvable.

In order to obtain a more precise formulation of this question, let us note that the
Gilmore–Gomory algorithm simply sorts the jobs in order to determine the optimal
processing sequence. Applying the same sorting procedure to the high multiplicity
version of the problem yields a sequence where jobs of a same type occur consec-
utively. Without going into the details yet, we mention that this property allows us
to compute a starting time for any individual job in polynomial time. On the other
hand, the length of the complete sequence of n jobs (which constitutes a standard
polynomial encoding of a solution for classical, single multiplicity scheduling prob-
lems) is superpolynomial in the input length. An intriguing question is therefore:
what do we exactly mean by the requirement to ‘solve a high multiplicity schedul-
ing problem’?

© 2007 The Authors. Journal compilation © 2007 VVS.

Multiplicity in contemporary production scheduling 77

For another example, consider the three-machine flowshop problem. In compar-
ison with the two-machine case, the input of the three-machine flowshop problem
is obtained by adding the processing time of each operation on the third machine,
say pi3, i =1, . . ., s. The single multiplicity decision version of this problem is known
to be NP-complete (see, e.g. Garey, Johnson and Sethi, 1976), and as it is a spe-
cial case of the high multiplicity version, the latter cannot be polynomially solvable
unless P=NP. On the other hand, when s is fixed (say, when s =2), the single mul-
tiplicity version is trivially solved in constant time by enumeration. However, the
same approach does not yield a polynomial time algorithm for the high multiplicity
case with constant s. In fact, it is not trivial to establish that the problem is in NP, or
in PSPACE, because encoding a solution as a list which contains an item for each
job requires superpolynomial space. Generally speaking, it can be stated that the
development of efficient algorithms for high multiplicity scheduling problems always
depends on a deep understanding of the combinatorial nature of their solutions.

The goal of this paper is to address some of the issues raised by the above exam-
ples. In particular, it generalizes the framework proposed in Brauner et al. (2005)
for the analysis of the complexity of high multiplicity scheduling problems, and it
further advances the work on encoding schemes for their solution.

2 High multiplicity problems

Hochbaum and Shamir (1990, 1991) introduced the term ‘high multiplicity’ in com-
binatorial optimization, and stressed the need for discussing the complexity of high
multiplicity scheduling problems with special care. Clifford and Posner (2001) have
pursued the topic and have described a more general setting for its complexity anal-
ysis. A thorough discussion, as well as a proposal for complexity classification of
non-preemptive single-machine scheduling problems, can be found in Brauner et al.
(2005). The present paper generalizes and extends the work initiated by Brauner et
al. To do so, we restate part of their definitions and framework in a multi-machine,
preemptive context, and for multi-stage scheduling problems. We subsequently gen-
eralize most of the results found in Brauner et al. (2005) and apply the generalized
results to multi-machine applications.

The input of a classical scheduling problem SP consists of a list of n jobs,
together with a list of attributes of each job. The attributes of job j (j =1, 2, . . ., n)
typically include its processing time pjk on each machine k, k =1, . . ., m, its release
date rj , its due date dj , etc. The binary input size of an instance of SP is O(n×L),
where L is the largest input size of an attribute.

In contrast, the input of a high multiplicity scheduling problem SP consists of
the following data:

1. the number of job types, viz. s;
2. for each job type i =1, 2, . . ., s, the number of jobs of type i, viz. ni ;
3. for each job type i =1, 2, . . ., s, the attributes of a representative job of type i.

© 2007 The Authors. Journal compilation © 2007 VVS.

78 N. Brauner et al.

So, a generic instance of a high multiplicity scheduling problem SP takes the form
D= (s, n1, n2, . . ., ns, �), where � comprises all the relevant job attributes, such as the
processing times on the machines. We assume without loss of generality that all the
entries of D are integral, and that the jobs are numbered from 1 to n in such a way
that jobs 1 to n1 are of type 1, jobs n1 +1 to n1 +n2 are of type 2, etc.

If we denote by |D| the input size of an instance D of a high multiplicity
scheduling problem, then

|D|=O

(∑
1≤i≤s

log ni + sL

)
=O(s log n+ sL),

where L is again the largest input size of an attribute value and

n=
∑

1≤i≤s

ni .

Typically, this input size is much smaller than nL, as is e.g. the case when s is viewed
as a constant (as in the three-machine flowshop problem with two job types de-
scribed in the prelude). More precisely, we say that SP is a high multiplicity sched-
uling problem if n is not polynomially bounded in the input size of the problem,
i.e. if there is no constant k such that n=O

(
(sL)k

)
for all instances of SP . Thus,

an algorithm for SP whose complexity is polynomial in s, L and n is only pseudo-
polynomial, but not polynomial in the input size.

3 Schedules and problem formulations

To start the analysis, we first give a formal definition of a schedule.

Definition 1. For an instance involving n jobs and m machines, we define a schedule
to be a (finite) subset S of {1, 2, . . ., n}×{1, 2, . . ., m}× R × R. We use the generic
notation: q = |S|.

The interpretation of a schedule is that, if (j, k, t1, t2)∈S, then job j must be pro-
cessed on machine k without preemption from time t1 to time t2. Note that this
definition allows for (finitely many) preemptions. On the other hand, we assume as
usual that every machine can only process one job at a time, and that every job
requires only one type of operation on each machine (we do not consider reentrant
flows).

Let us now turn to the objective function of SP . Let FD denote the set of fea-
sible schedules associated with the instance D, and let fD: FD → R be the objective
function to be minimized over FD. For instance, fD(S) could measure the makespan
or the weighted tardiness of the schedule S. For the sake of simplicity, we assume
that FD is non-empty for every instance D, and that fD always attains its minimum
over FD.
© 2007 The Authors. Journal compilation © 2007 VVS.

Multiplicity in contemporary production scheduling 79

For all practical purposes, we henceforth assume that, given a description of S
in extension (i.e. given a list of the elements of S), fD(S) can be computed in time
polynomial in |D| and q (this is a rather weak assumption).

Now that the solution space and the objective function of scheduling problems
are properly defined, we introduce three distinct scheduling problems associated with
FD and fD, in the spirit of Brauner et al. (2005) and Papadimitriou and Steiglitz
(1982):

RECOGNITION PROBLEM SP1:
INSTANCE: D= (s, n1, n2, . . ., ns, �) and K ∈R.
OUTPUT: Yes if there is a schedule S ∈FD with fD(S)≤K . No otherwise.
EVALUATION PROBLEM SP2:
INSTANCE: D= (s, n1, n2, . . ., ns, �).
OUTPUT: The minimum value of fD over FD.
OPTIMIZATION PROBLEM SP3:
INSTANCE: D= (s, n1, n2, . . ., ns, �).
OUTPUT: A schedule S ∈FD which minimizes fD(S) over FD.

Issues related to the complexity classification of SP1 or SP2 fall within the tradi-
tional scope of complexity analysis, as discussed, e.g. by Garey and Johnson (1979)
or Papadimitriou Steiglitz (1982). However, as already noted, since membership
in NP (or in co-NP) is often non-trivial to establish for high multiplicity scheduling
problems, their complexity analysis can be much more cumbersome for such prob-
lems than for their single multiplicity counterparts. In fact, for several high multi-
plicity scheduling problems, it is open whether they are in NP (or in co-NP). On the
other hand, many high multiplicity scheduling problems have been proved to be poly-
nomially solvable (Agnetis (1996), Brauner, Finke and Kubiak (2003), Clifford
and Posner (2000, 2001), Granot and Skorin-Kapov (1993), Hochbaum and Sha-
mir (1990, 1991)Hochbaum, Shamir and Shanthikumar (1992) Hurink and Knust
(2001), Mc-Cormick, Smallwood and Spieksma (2001) or to be in co-NP (Brauner
and Crama 2004), or to be NP-hard (Bar-Noyet al. 2002; Clifford and Posner, 2000,
2001; Posner, 1985). Such results and other similar results found in the literature can
be established by displaying optimality or feasibility certificates whose size is poly-
nomial in the input length O(s log n+ sL). Such certificates, clearly, cannot provide
a list of all the elements of S, but rather provide an implicit, concise encoding of S.
All these issues are explicitly addressed in Example 3 in section 5 which continues the
analysis of the flowshop scheduling problem introduced in section 1.

4 Solving the optimization version of high multiplicity scheduling problems

4.1 List-generating algorithms

This section considers the issue of solving the optimization version SP3 of a high
multiplicity scheduling problem, where the output consists of a schedule as
© 2007 The Authors. Journal compilation © 2007 VVS.

80 N. Brauner et al.

introduced in Definition 1. We first consider a framework to analyze the complex-
ity of high multiplicity scheduling problems, as it has been presented in Brauner et
al. (2005). This framework introduced several complexity classes, which appear to
capture some of the peculiarities of high multiplicity problems well. It assumes that
the set S is to be generated in extension:

Definition 2. An algorithm A is a list-generating algorithm for problem SP3 if, for
every instance of SP3, A successively outputs the elements (�1, �1, t1

1, t1
2), (�2, �2, t2

1, t2
2),

. . ., (�q, �q, tq
1, tq

2) of an optimal schedule S, where q = |S|.

For a list-generating algorithm A, we let �(0)=0 and for h=1, . . ., q, we denote
by �(h) the running time required by A in order to output the first h elements of
the schedule, i.e. (�1, �1, t1

1, t1
2), (�2, �2, t2

1, t2
2), . . ., (�h, �h, th

1, th
2). So, �(q) is the total

running time of A, and �(h)− �(h−1) is the time elapsed between the (h−1)st and
the hth outputs.

The classification of list-generating algorithms to be described below in Definition
3 is based on a proposal due to Johnson, Yannakakis and Papadimitriou (1988),
for problems in which the size of the output may be exponentially larger than the
size of the input such as, for instance, the problem of listing all maximal indepen-
dent sets of a graph, or all vertices of a polyhedron (see also Dyer 1983 or Law-
ler, Lenstra and Rinnooy Kan 1980, for related concepts. A similar approach is
encountered in the study of the complexity of counting and enumerating solutions
of multicriteria problems (see T’kindt Bouibede-Hocine and Esswein (2005) for a
thorough treatment.

Definition 3. A list-generating algorithm A for SP3 runs:

• in pseudo-polynomial time if �(q) is polynomially bounded in |D| and M , where
M is the largest number appearing in D;

• in polynomial total time if �(q) is polynomially bounded in q and |D|;
• in polynomial incremental time if �(h)− �(h−1) is polynomially bounded in h

and |D|, for h=1, . . ., q;
• with polynomial delay if �(h) − �(h − 1) is polynomially bounded in |D|, for

h=1, . . ., q;
• in polynomial time if �(q) is polynomially bounded in |D|.
Pseudo-polynomial time and polynomial time are the usual concepts from com-

plexity theory and are only mentioned here for the sake of completeness. In partic-
ular, if there exists a polynomial time list-generating algorithm for SP3, then q and
hence n are bounded by a polynomial in |D| for all instances of this problem, and
the problem does not qualify as a high multiplicity problem. On the other hand, if
SP3 can be solved in pseudo-polynomial time, then the same complexity holds for
© 2007 The Authors. Journal compilation © 2007 VVS.

Multiplicity in contemporary production scheduling 81

SP1 and SP2 (as we assumed that fD(S) can be computed in time polynomial in
|D| and q).

Polynomial total time is, in a sense, the weakest notion of polynomiality which
can be applied to SP3, as the running time of any algorithm which lists all elements
of q must grow at least linearly with q.

Polynomial incremental time captures the idea that the algorithm outputs the ele-
ments of S sequentially and does not spend ‘too much time’ between two successive
outputs. In computing the elements, however, the algorithm may need to look at
the previous elements (for instance, to check feasibility of the partial schedule) and
therefore we allow �(h)− �(h−1) to depend on h as well as on |D|.

Finally, an algorithm runs with polynomial delay when the time elapsed between
two successive outputs is polynomial in the input size of the problem. This is a rather
strong requirement, the strongest, in fact, among those discussed in Johnson et al.
(1988). We also feel that it is one of the most meaningful requirements that may
apply to algorithms for high multiplicity scheduling problems.

For preemptive problems, the number of elements of an optimal schedule S is not
easily determined as a function of the input parameters. However, for many classi-
cal preemptive scheduling problems there exists an optimal schedule S involving a
number of preemptions per machine, which is polynomially bounded in the number
of jobs n. For high multiplicity, this translates to a number of preemptions that is
polynomial in n×m. When this is the case, we require that A outputs a schedule S
whose number of elements is polynomial in n×m.

Proposition 1. If A is a list-generating algorithm for the optimization version SP3 of
a general scheduling problem, then:

A runs in polynomial time =⇒ A runs with polynomial delay
=⇒ A runs in polynomial incremental time
=⇒ A runs in polynomial total time.

Proof. All the implications are easy. For instance, if A runs in polynomial incre-
mental time, then the whole schedule can be generated in time

�(q)=
q∑

h=1

[�(h)− �(h−1)],

which is polynomial in q and |D|. Hence, A runs in polynomial total time.
As the size of the optimal schedule q is not necessarily bounded by a polynomial

in M , viz. the largest number occurring in the instance, the existence of a polyno-
mial total time list-generating algorithm does not automatically imply the existence
of a pseudo-polynomial list-generating algorithm. However, when q is polynomially
bounded in n × m (cf. the discussion on preemption above), then polynomial total
© 2007 The Authors. Journal compilation © 2007 VVS.

82 N. Brauner et al.

time can be seen to imply pseudo-polynomial time. Example 3 contains an applica-
tion of this framework to the flowshop scheduling problem given in section 1.

4.2 Pointwise algorithms

We now turn our attention to a different conceptual framework, where we assume
that the aim of the solution procedure is no longer to generate explicitly all
elements of the optimal schedule S, but only to be able to compute one of the
mappings derived from S as explained below. The underlying idea here is that an
implicit encoding of the schedule S (or an implicit encoding of the job sequence �)
should suffice, if it can be decoded to produce useful information like the starting
time of an arbitrary job or the state of a machine at any given time. To clarify this
point, we first present several possible mappings associated to a schedule (see also
Brauner et al., 2005, for the one-machine case).

Definition 4.

• The machine-oriented description of schedule S is the mapping

SM : k �→SM(k)={(j, t1, t2)|(j, k, t1, t2)∈S}.

• The job-oriented description of schedule S is the mapping

SJ : j �→SJ(j)={(k, t1, t2)|(j, k, t1, t2)∈S}.

• The (machine, time)-oriented description of schedule S is the mapping

SMT :{1, 2, . . ., m}×R→{0, 1, . . ., n}×R×R :

(k, t) �→SMT(k, t)=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(j, t1, t2) if (j, k, t1, t2)∈S and either
t1 ≤ t ≤ t2 or t1 > t and t1 is the first
instance when a job is processed on
machine k after time t,

(0, 0, 0) if there are no more jobs to be processed
on machine k after time t.

• For a non-preemptive problem, the (machine, sequence)-oriented description of
schedule S is the mapping

SMS :{1, 2, . . ., m}×{1,…, n}→{0, 1, . . ., n} :

(k, j) �→SMS(k, j)=

⎧⎪⎪⎨
⎪⎪⎩

�k(j) if job j is processed on machine k and job
�k(j) is its successor on machine k

0 if there are no more jobs to be processed on
machine k after job j

Let us try to clarify these definitions and to explain the nature of the different
descriptions. A machine-oriented description of the schedule gives the Gantt chart
associated with each particular machine. A job-oriented description of the schedule
describes the complete routing of a job through the shop. The mapping SMT (k, t)
© 2007 The Authors. Journal compilation © 2007 VVS.

Multiplicity in contemporary production scheduling 83

describes the state of machine k at time t. This (machine, time)-oriented description
corresponds to the viewpoint of a human machine-operator, who must know, at ev-
ery instant, which job is being processed or which job will be processed next on his
machine. Such a human operator does not need to know the full explicit schedule,
as long as the current or next element of it is ‘explicitly’ accessible. In some applica-
tions, the human operator does not even need to know when the jobs are processed:
the only important information is the order in which the jobs must be processed.
In this case, the (machine, sequence)-oriented mapping describes the successor of a
job on a machine, where the successor of job j on machine k is defined as the job
with minimum starting time on machine k among all jobs whose starting time on
machine k exceeds the starting time of job j on machine k (this mapping is useful
for non-preemptive schedules).

A pointwise (machine, time)-oriented algorithm for SP3 is an algorithm which
computes the mapping SMT derived from an optimal schedule S, that is an
algorithm which, on the input (D, k, t), outputs the value of SMT (k, t). Similar to
Proposition 2 in Brauner et al. (2005), we can prove:

Proposition 2. For an arbitrary scheduling problem SP3

(a) if SP3 has a polynomial list-generating algorithm, then SP3 has a polynomial
pointwise (machine, time)-oriented algorithm;

(b) if SP3 has a polynomial pointwise (machine, time)-oriented algorithm, then
SP3 has a polynomial-delay list-generating algorithm.

Proof. Assertion (a) holds trivially, because all the elements of an optimal schedule
can be generated in polynomial time when a polynomial list-generating algorithm is
available.

Conversely, if A is a polynomial pointwise (machine, time)-oriented algorithm,
then, for each machine k, A can for instance be used to generate the jobs in order
of their starting times as follows. Let A generate SMT (k, 0) in polynomial time. If
it differs from (0, 0, 0), this value SMT (k, 0)= (j, t1, t2) provides the index of the first
job to be processed on machine k and its processing interval [t1, t2]. Subsequently
compute SMT (k, t2) in polynomial time, and so on, until A returns (0, 0, 0). This
sequence of steps solves SP3 with polynomial delay as required. �

Hence, we conclude that polynomial pointwise (machine,time)-oriented algorithms
fall somewhere between polynomial delay and polynomial time in the hierarchy pre-
sented in Proposition 1.

In contrast with Proposition 2 and with the results in Brauner et al. (2005), ana-
lyzing the complexity of the derived mappings SJ, SM, or SMS poses new difficul-
ties, since mappings SJ and SM are set-valued, rather than single-valued, and the
© 2007 The Authors. Journal compilation © 2007 VVS.

84 N. Brauner et al.

mapping SMS does not map to the time sets. The analysis can be carried out, how-
ever, by combining the notions of list-generating and pointwise algorithms. For
instance, we could say that A runs (pointwise) with polynomial delay for SJ if, given
any job j, A outputs the elements of the set SJ(j) with polynomial delay. Such defi-
nitions may or may not prove useful or meaningful, depending on the context, and
we will not delve deeper into their discussion.

5 Some high multiplicity problems revisited

Let us illustrate the concepts introduced in the previous sections on some exam-
ples of high multiplicity problems. Clifford and Posner (2001) investigate the com-
plexity of several parallel machine scheduling problems with high multiplicity. They
establish that several of these problems are polynomially solvable both in their rec-
ognition and in their optimization versions (e.g. P| |∑j Cj or Q| |∑j Cj), but they
also argue that there is no polynomial description of the optimal schedule in terms
of job groups for some other problems (e.g. P|pmtn|Cmax and Q2|pmtn|∑j Cj). We
now show, however, that this does not preclude other efficient descriptions of the
optimal schedule. We only handle two simple cases, as these suffice to illustrate our
claim.

5.1 Example 1 (P|pmtn|Cmax)

Consider first the makespan minimization problem on identical parallel machines
with preemptions. An instance of the problem is a vector

D= (s, n1, n2, . . ., ns, p1, p2, . . ., ps, m),

where m is the number of machines and pi is the processing time of a job of type i
(i =1, 2, . . ., s).

Clifford and Posner (2001) observe that the evaluation version of P|pmtn|Cmax

can be solved in polynomial time. Indeed, in view of a well-known result of Mc
Naughton (1959), the optimal value of this problem is equal to

C∗
max =max

{
s∑

i =1

nipi/m, p1, p2, . . ., ps

}
,

which can be efficiently computed.
McNaughton’s algorithm determines a schedule with makespan equal to C∗

max. It
first lists all jobs in the natural order 1, 2, . . ., n. Then, it cuts this sequence, viewed as
a single-machine schedule, into at most m subsequences of length C∗

max. Finally, the
k-th subsequence is assigned to machine k, for k =1, 2, . . ., m; (see McNaughton,
1959; Pinedo, 1995).

Even with a single job type, the optimal schedule may require �(m) preemptions,
where m is exponential in the input size. From this, Clifford and Posner (2001)
© 2007 The Authors. Journal compilation © 2007 VVS.

Multiplicity in contemporary production scheduling 85

conclude that ‘it is not possible to create an optimal schedule (. . .) in polynomial
time’ and hence, that the optimization version of P|pmtn|Cmax EXP\P. This is rather
surprising, in view of the simplicity of the evaluation problem SP2 and of McNaugh-
ton’s algorithm. As a matter of fact, we note that the optimal schedule can actually
be computed with polynomial delay. More precisely, the job-oriented application
SJ can be computed (pointwise) with polynomial delay, as follows easily from the
description of McNaughton’s algorithm. This implies (as in Proposition 2) that an
optimal schedule can be generated with polynomial delay. Similarly, the (machine,
time)-oriented description SMT can be computed pointwise in polynomial time.

5.2 Example 2 (Q2|pmtn|∑j Cj)

An instance is a vector

D= (s, n1, n2, . . ., ns, p1, p2, . . ., ps, v1, v2),

where p1 < p2 < · · ·< ps, v1 (resp. v2) denotes the speed of machine 1 (resp. machine
2) and v1 ≥v2. In an optimal schedule, the first job of type 1 starts on machine 1 at
time 0. All other jobs start processing on machine 2 in SPT order, and are moved
to machine 1 whenever this machine becomes available.

Clifford and Posner (2001) define the quantity �i(j), representing the amount of
time that the jth job of type i spends on machine 1. They prove that, for j =1, 2, . . ., ni

and i =1, 2, . . ., s,

�i(j)= pi

v1 + v2
−
(

pi

v1 + v2
−�i(0)

)(
−v2

v1

)j

, (1)

where �1(0)=0 and �i(0)=�i−1(ni−1) for 2≤ i ≤ s. From these difference equations,
they derive an expression of the optimal value which can be computed in O(s2) time,
thus proving that the evaluation version of the problem is solvable in polynomial
time. However, even when s =1, each job may have a different processing time on
machine 1. So, here again, Clifford and Posner (2001) conclude that the optimi-
zation version of Q2|pmtn|∑j Cj is in EXP\P.

Note that, in view of the above description, every job j is preempted at most once
in the optimal schedule, so that the job-oriented description SJ(j) contains at most
two elements for j =1, 2, . . ., n. We claim that SJ(j) can be computed in polynomial
time for all j, and hence, an optimal schedule can be generated with polynomial
delay.

To establish our claim, consider a job j∗. Assume that j∗ is the rth replication
of job type i∗. Job j∗ starts on machine 1 as soon as all previous jobs have been
completed on this machine, meaning at time

t1 =
∑

1≤i < i∗

∑
1≤j≤ni

�i(j)+
∑

1≤j < r

�i∗ (j).

Standard summation formulas for power series allow computation of t1 in poly-
nomial time. We can also easily compute how much time j∗ spends on machine 2
© 2007 The Authors. Journal compilation © 2007 VVS.

86 N. Brauner et al.

[namely, (pi∗ − v1�i∗ (r))/v2 units of time] and, subtracting this quantity from t1,
deduce the starting time of j∗ on machine 2. This yields a complete description of
SJ(j∗) in polynomial time.

5.3 Example 3 (F2|no-wait|CycleTime)

This example deals with the problem of minimizing the cycle time of a set of jobs
that is repeatedly produced in a no-wait two-machine flowshop: in three-field sched-
uling notation, F2|no-wait|CycleTime. This problem is identical to the problem dis-
cussed in section 1 with the additional requirement that, for each individual job,
the operation on the second machine must start immediately after the completion
of the operation on the first machine. It is one of the problems considered by Agne-
tis (1997), from which we borrow most of the analysis. The input takes the form
D= (s, n1, n2, . . ., ns, p11, p12, . . ., ps1, ps2). The single multiplicity version (in which
ni =1, i =1, . . ., s) is solved by the well-known algorithm for F2|no-wait|Cmax in Gil-
more and Gomory (1964). We first briefly recall the polynomial algorithm for the
single multiplicity version and subsequently deal with the high multiplicity problem.

Without loss of generality, assume that the job types are in increasing order of
pi2, i =1, . . ., s, the processing times on the second machine. Let � be a permutation
of the job types in which the job types are in increasing order of pi1, i =1, . . ., s, their
processing times on the first machine. In the no-wait flowshop, a job j can only start
on the first machine if its predecessor j ′ has left the first machine and has moved
(without waiting) to the second machine. Then, job j can start processing on the
first machine immediately if pj1 ≥pj ′2; otherwise it must wait for pj ′2 −pj1 time units,
so that machine 2 is not occupied when job j terminates on machine 1. This no-
wait problem is slightly different from, but equivalent to, the problem considered in
Gilmore and Gomory (1964).

Now recall the cyclical context, where the last job in any cycle is followed by
the first job of the next cycle. Obviously, the cycle time of a solution must equal
the sum of the processing times on the first machine and of the total idle time of
the first machine, as it results from jobs waiting before they start in order to respect
the no-wait requirement. The bipartite graph B in Figure 1 models the problem
using this property. The nodes on the left-hand side correspond to the jobs in order
of the processing times on the first machine. The right-hand-side nodes correspond
to the jobs in order of their index, i.e. in increasing order of processing times on the
second machine. The cost of the arc, c(�j , j ′), between the left node �j and the right
node j ′ is set equal to the waiting time of the job corresponding to the left node,
should it immediately succeed the job corresponding to the right node.

We now show that the value of a minimum-cost linear assignment in B forms a
lower bound for the minimal cycle time. First notice that, given a feasible sched-
ule, assigning jobs to their successors yields a feasible assignment. However, not
every feasible assignment implies a feasible set of successor relationships, and thus
the value of the optimal linear assignment is indeed a lower bound. The cost of an
© 2007 The Authors. Journal compilation © 2007 VVS.

Multiplicity in contemporary production scheduling 87

Fig. 1. Bipartite graph B.

assignment can be strictly lower than the value of the minimum cycle time, only
if the arcs in the assignment induce more than one cycle in B. A simple exam-
ple is the problem with two job types, each of single multiplicity, with p11 =p12 =1,
and p21 =p22 =2. Here the optimal assignment has value zero, but the assignment
corresponding to the single feasible schedule has value 1.

Gilmore and Gomory (1964) show that the linear assignment {(�1, 1), (�2, 2), . . .,
(�s, s)} forms a minimum cost linear assignment (see also Park, 1991). Hence, the
optimal linear assignment can be found by computing �, which is a sorting problem
requiring O(s log s) time.

If the successor relationships defined by the optimal linear assignment do not
form a single cycle in B, but partition the node set of B in components, the assign-
ment can be modified to form a solution for the scheduling problem following Gil-
more and Gomory (1964). Repeatedly find k such that nodes k and k +1 are in
different components and c(�k, k +1)+ c(�k +1, k) − c(�k, k) − c(�k +1, k +1) is min-
imum. Interchange nodes �k and �k +1. As B contains at most s components, this
step takes at most s times. Hence the complexity of the algorithm is O(s log s).

Now let us turn to the high multiplicity version of the problem. In this problem,
the supply and demand of each of the nodes in B is set equal to the number of jobs
of the corresponding type i, i =1, . . ., s. A general result of Hoffman (1963) implies
that the classical Hitchcock transportation problem can be solved in the same greedy
fashion, by an algorithm which has become known as the North-West Corner rule.
The idea is simply to put an amount of flow on arc (1, �1) equal to the minimum of
the supply of node �1 and the demand of node 1. Subsequently, delete nodes whose
supply or demand is exhausted, and repeat. This procedure takes O(s) time. The
components of B can be merged together using the same simple greedy approach as
© 2007 The Authors. Journal compilation © 2007 VVS.

88 N. Brauner et al.

in the single multiplicity version; after all, the transportation problem is the straight-
forward high multiplicity version of the linear assignment problem. As again, there
cannot be more than s components, this takes O(s) time. Hence until here, the com-
plexity is dominated by the O(s log s) sorting step.

This algorithm solves the decision version SP1 and the evaluation version SP2

of the high multiplicity F2|no-wait|CycleTime problem in O(s log s) time. However,
the required certificate is encoded implicitly, i.e. by specifying arc flows in the graph
B rather than by giving starting and ending times of jobs. In other words, the opti-
mization version SP3 is as yet not satisfactorily addressed. We now turn to this
version.

A natural order to list the jobs in a solution for the high multiplicity version of
F2|no-wait|CycleTime is the processing order of the jobs, which is identical on both
machines. Agnetis (1997) shows how the solution to the transportation problem, a
set of flow values, can be turned into an implicit list of jobs. An optimal solution
to the transportation problem can be assumed to have a positive flow on at most 2s
arcs. Moreover, the greedy approach to turn this solution into a connected graph
creates a positive flow on at most s additional arcs. Hence there are at most 3s arcs
with positive flow. Together these arcs form a Eulerian multigraph, with contains
a Eulerian cycle. As the nodes correspond to jobs, any Eulerian cycle can be eas-
ily transformed into a sequence, a list, of jobs. Writing out this sequence explicitly
requires exponential time and space, but Agnetis shows how to find a Eulerian cycle
which is composed of at most s cycles, each of which naturally contains at most s
nodes. A more formal and general treatment of this topic can be found in Grigo-
riev and Van De Klundert (2006). We conclude that it is possible to encode the
optimal sequence compactly, i.e. polynomially, in space and time O(s2). It is left to
the reader to verify that this compactly encoded sequence can be used to construct
a list-generating algorithm that runs with polynomial delay.

5.4 Example 4 (1|rik|Cmax)

In this example, we explore the (machine, sequence)-oriented representation of a
schedule for the high multiplicity version of 1|rj |Cmax, which we denote by 1|rik|Cmax

(see also Grigoriev, 2003). In this high multiplicity version, we let

Ni =
i∑

j =1

nj , and N0 =0;

so, jobs of type i are indexed as Ni−1 +1, . . ., Ni . We assume that the release date rik

of job k (of type i) is defined as Tik =ai +kTi , where ai , Ti are input parameters,
for i =1,…, s, k =Ni−1 +1, . . ., Ni .

It is well known that processing the jobs by nondecreasing release dates (Ear-
liest Release Date, or ERD rule) yields an optimal sequence. Hence the optimal
sequence, and therefore a (machine, sequence)-oriented description of an optimal
© 2007 The Authors. Journal compilation © 2007 VVS.

Multiplicity in contemporary production scheduling 89

Table 1. Complexity of various problems.

SP1 SP2 SP3

List-generating Pointwise

1|pj =1|∑j wj Uj P P Polynomial delay SJ,ST polynomial
Total deviation JIT ? ? Total polynomial ?
Max. deviation JIT co-NP ? Total polynomial ?
Max. deviation JIT, fixeds P P Polynomial delay ?
P|pmtn|Cmax P P Polynomial delay SJ polynomial delay,

SMT polynomial
Q2|pmtn|∑j Cj P P Polynomial delay SJ polynomial
F2|no-wait|CycleTime P P Polynomial delay SMS polynomial
1|riki |Cmax ? ? Polynomial delay SMS polynomial

schedule for 1|rj |Cmax can be found in O(s log s) time. Moreover SP1, SP2 and SP3

can be solved in polynomial time for the single multiplicity version. Of course, the
same ERD sequence is also optimal for the high multiplicity version and a (machine,
sequence)-oriented representation of the ERD schedule can be constructed in poly-
nomial time as follows. (In the remainder we require that jobs sharing a same release
date are sequenced in increasing order of their index.)

Consider an individual job k of type i. For each job type j, j =1, . . ., s, let kj be
the smallest integer such that Nj−1 +1 ≤ kj ≤ Nj and ai +kTi ≤ aj +kjTj . Redefine
kj : =kj +1 if ai +kTi =aj +kjTj and i ≥ j. Then, by definition, kj is the first indi-
vidual job of type j following job k (of type i) in the ERD schedule. Let kj∗ be
the job with minimum index whose release date equals minj =1, ..., s aj +kjTj . Setting
S(1, k)=kj∗ if k∗

j exists and 0 otherwise yields a (machine, sequence)-oriented rep-
resentation of the ERD schedule. Clearly, S can be evaluated in polynomial time.
Thus, a (machine, sequence)-oriented representation of the ERD schedule for SP3

can be computed in polynomial time. Likewise, a polynomial delay list generating
algorithm is easily constructed. On the other hand, we do not know the complexity
of SP1 and SP2 for this problem.

The results concerning the different models discussed in this section, and in Brau-
ner et al. (2005), are summarized in Table 1. Note that all these problems can be
solved in pseudo-polynomial time. A question mark in the table means that we do
not know anything beyond this fact (which is often nontrivial in itself).

6 Summary and conclusions

High multiplicity scheduling problems are commonly encountered in innovative real-
life settings, be it in automated manufacturing or in telecommunication applica-
tions. They have been widely investigated and classified using traditional methods
and complexity classes. Many of the results and problems have not been appropri-
ately addressed in this context, and hence we proposed in Brauner et al. (2005) a
first classification scheme for high multiplicity problems, restricted to single machine
non-preemptive problems. This paper considers multiple machine preemptive
© 2007 The Authors. Journal compilation © 2007 VVS.

90 N. Brauner et al.

settings, and the analysis and the applications demonstrate that the framework fits
this more general context equally well.

The framework provides a refined notion of what it means to ‘solve a high mul-
tiplicity scheduling problem’, and allows to classify various problems and results.
Nevertheless a number of problems remain open, for instance the three-machine
flowshop problem with two job types mentioned in the Prelude. Grigoriev (2003)
provides more results on high multiplicity scheduling and a list of several open prob-
lems.

The results displayed in Table 1 suggest that the relationship between different
complexity classes may go deeper than the simple implications mentioned in Prop-
ositions 1 or 2. It would be useful to investigate some of these relations in future
work, for instance by identifying problems which are complete for their respective
classes.

References

Agnetis, A. (1997), No-wait flowshop scheduling with large lot size, Annals of Operations Re-
search 70, 415–438.

Bar-Noy, A., R. Bhatia, J. S. Naor and B. Schiber (2002), Minimizing service and operation
costs of periodic scheduling, Mathematics of Operations Research 27, 518–544.

Brauner, N. and Y. Crama (2004), The maximum deviation just-in-time scheduling problem,
Discrete Applied Mathematics 134, 25–50.

Brauner, N., G. Finke and W. Kubiak (2003), Complexity of one-cycle robotic flow-shops,
Journal of Scheduling 6, 355–371.

Brauner, N., Y. Crama, A. Grigoriev and J. Van De Klundert (2005), A framework for the
complexity of high-multiplicity scheduling problems, Journal of Combinatorial Optimization
9, 313–323.

Clifford, J. J. and M. E. Posner (2000), High multiplicity in earliness-tardiness scheduling,
Operations Research 48, 788–800.

Clifford, J. J. and M. E. Posner (2001), Parallel machine scheduling with high multiplicity,
Mathematical Programming 89, 359–383.

Dyer, M. E. (1983), The complexity of vertex enumeration methods, Mathematics of Opera-
tions Research 8, 381–402.

Garey, M. R. and D. S. Johnson (1979), Computers and intractability: A guide to the theory
of NP-completeness, Freeman, San Francisco, CA.

Garey, M. R., D. S. Johnson and R. Sethi (1976), The complexity of flowshop and jobshop
scheduling, Mathematics of Operations Research 1, 117–129.

Gilmore, P. C. and R. E. Gomory (1964), Sequencing a one-state variable machine: a solvable
case of the traveling salesman problem, Journal of Operations Research Society of America
12, 655–679.

Granot, F. and J. Skorin-Kapov (1993), On polynomial solvability of the high multiplicity
total weighted tardiness problem, Discrete Applied Mathematics 41, 139–146.

Grigoriev, A. (2003), High multiplicity scheduling problems, Doctoral thesis, Maastricht Uni-
versity, Maastricht.

Grigoriev, A. and J. Van De Klundert (2006), On the high multiplicity traveling salesman
problem, Discrete Optimization 3, 50–62.

Hochbaum, D. S. and R. Shamir (1990), Minimizing the number of tardy job units under
release time constraints, Discrete Applied Mathematics 28, 45–57.

Hochbaum, D. S. and R. Shamir (1991), Strongly polynomial algorithms for the high multi-
plicity scheduling problem, Operations Research 39, 648–653.

© 2007 The Authors. Journal compilation © 2007 VVS.

Multiplicity in contemporary production scheduling 91

Hochbaum, D. S., R. Shamir and J. G. Shanthikumar (1992), A polynomial algorithm for
an integer quadratic nonseparable transportation problem, Mathematical Programming 55,
359–376.

Hoffman, A. J. (1963), On simple linear programming problems, in Proceedings of the Sym-
posium on Pure Mathematics 7, AMS, Providence, 317–327.

Hurink, J. and S. Knust (2001), Makespan minimization for flow-shop problems with trans-
portation times and a single robot, Discrete Applied Mathematics 112, 199–216.

Johnson, D. S., M. Yannakakis and C. H. Papadimitriou (1988), On generating all maximal
independent sets, Information Processing Letters 27, 119–123.

Kubiak, W. and S. P. Sethi (1994), Optimal just-in-time schedules for flexible transfer lines,
International Journal of Flexible Manufacturing Systems 6, 137–154.

Lawler, E. L., J. K. Lenstra and A. H. G. Rinnooy Kan (1980), Generating all maximal
independent sets: NP-hardness and polynomial-time algorithms, SIAM Journal on Comput-
ing 9, 558–565.

McCormick, S. T., S. R. Smallwood and F. C. R. Spieksma (2001), A polynomial algorithm
for multiprocessor scheduling with two job lengths, Mathematics of Operations Research 26,
31–49.

McNaughton, R. (1959), Scheduling with deadlines and loss functions, Management Science
6, 1–12.

Papadimitriou, C. H. and K. Steiglitz (1982), Combinatorial optimization: algorithms and
complexity, Prentice Hall: Englewood Cliffs, New Jersey.

Park, J. K. (1991), A special case of the n-vertex traveling salesman problem that can be solved
in O(n) time, Information Processing Letters 40, 247–254.

Pinedo, M. (1995), Scheduling: Theory, algorithms and systems, Prentice Hall, Englewood
Cliffs, New Jersey.

Posner, M. E. (1985), The complexity of earliness and tardiness scheduling problems under
id-encoding, Working Paper 85-70, New York University, New York.

Rothkopf, M. (1966), The travelling salesman problem: on the reduction of certain large
problems to smaller ones, Operations Research 14, 532–533.

Steiner, G. and J. S. Yeomans (1993), Level schedules for mixed-model, just-in-time processes,
Management Science 39, 728–735.

T’kindt, V., K. Bouibede-Hocine and C. Esswein (2005), Counting and enumeration
complexity with application to multicriteria scheduling. 4OR 3, 1–21.

Received: September 2005. Revised: September 2006.

© 2007 The Authors. Journal compilation © 2007 VVS.

