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Chapter 1

General Introduction

It has been recognized for a long time that the dynamic behavior of economic

variables is difficult to understand. And this difficulty certainly increases with the

observation frequency of the data.

Traditional regression tools have shown their limitation in the modelling of

high-frequency (weekly, daily or intra-daily) data. Assuming that only the mean

response could be changing with covariates while the variance remains constant

over time often revealed to be an unrealistic assumption in practice. This fact is

particularly obvious in series of financial data where clusters of volatility can be

detected visually.

Understanding and predicting the temporal dependence in the second moment

is crucially important for many issues in macroeconomics and finance. We may

distinguish at least three main categories of applications. First, from a statistical

point of view, modelling the heteroscedastic feature of the data can provide more

efficient estimates of the conditional mean and more precise confidence bands for

the forecasts. Testing economic (or financial) theories is the second potential ap-

plication. For instance, one can mention the growing literature aiming at testing

the effectiveness of central bank interventions in reducing the volatility on the

foreign exchange market (see Dominguez and Frankel, 1993). Reading these first

two potential applications, one could imagine that the modelling of the conditional

variance has only an academic purpose and is certainly not used by practitioners.

This is far from being the truth. Although at the beginning of the 1990s, it was

still possible to consider it as a decision tool in an experimental phase, several

institutions have now developed the necessary skills to use the econometric theory
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CHAPTER 1. GENERAL INTRODUCTION

in portfolio management (Gourieroux, 1997).

The increased importance played by risk and uncertainty considerations in

modern economic theory has called for the development of new econometric time

series techniques that allow for the modelling of time varying means, variances and

covariances. Given the apparent lack of any structural dynamic economic theory

explaining the variation in the second moment, econometricians have thus extended

traditional time series tools such as Autoregressive Moving Average (ARMA) mod-

els (Box and Jenkins, 1970) for the mean to essentially equivalent models for the

variance. Indeed, the dynamics observed in the dispersion is clearly the dominat-

ing feature in the data. Autoregressive Conditional Heteroscedasticity (ARCH)

models (Engle, 1982) are now commonly used to describe and forecast changes in

volatility of financial time series.

Although ARCH-type models have met with substantial empirical success, us-

ing this class of models is not the only way to model the time-varying conditional

variance in a parametric framework. Indeed, Stochastic Volatility (SV) models

(Taylor, 1986) are also popular in finance (see Shephard, 1996 for a survey). As

mentioned by Palm (1996), a major difficulty arises with the estimation of SV

models which are non-linear and not conditionally Gaussian. However, with the

advances in simulation technology, estimation of SV models is now less cumber-

some.

Another response to the overwhelming variety of parametric univariate ARCH

models, is to consider and estimate nonparametric (NP) or semiparametric (SP)

models. For instance, Pagan and Hong (1990) explored a NP kernel estimate of the

expected value of the squared returns. Pagan and Schwert (1990) used a collection

of standard NP estimation methods, including kernels, Fourier series and least

squares regressions, to fit models for the relation between squared returns and

past squared returns. Effectively, the main difficulty of this approach relies in the

estimation of the function that links the squared returns to its past values.

Unlike nonparametric models, ARCH models are typically estimated by max-

imizing the associated log-likelihood function or a quasi-log-likelihood function

(see Gourieroux, 1997 for a review of alternative estimation procedures of ARCH

models). Consequently, one has to make an additional assumption about the in-

novation process. It is usual to rely on a conditional Gaussian log-likelihood since

the Gaussian Quasi Maximum Likelihood (QML) method can provide consistent

2



estimates in the general framework of a dynamic model under correct specification

of both the conditional mean and the conditional variance (see Weiss, 1986 and

Bollerslev and Wooldridge, 1992 among others).

However, another striking characteristic of high-frequency financial returns is

that they are often fat-tailed. For instance, Hong (1988) rejected the conditional

normality claiming abnormally high kurtosis in the daily New York Stock Exchange

stock returns. In fact, the kurtosis of most asset returns is higher than three,

which means that extreme values are observed more frequently that for the normal

distribution. While the high kurtosis of the returns is a well-established fact, the

situation is much more obscure with regard to the symmetry of the distribution.

Many authors do not observe anything special on this point, but other researchers

(for instance Simkowitz and Beedles, 1980; Kon, 1984 and So, 1987) have drawn the

attention to the asymmetry of the distribution in the sense that the unconditional

mean and the unconditional mode do not coincide. When the mean is at the

right (resp. left) of the mode, the series is said to be right (resp. left) skewed.

For instance, French, Schwert, and Stambaugh (1987) found conditional skewness

significantly different from 0 in the standardized residuals when an ARCH-type

model was fitted to the daily SP500 returns. More recently, Mittnik and Paolella

(2000) have shown that an asymmetric and fat-tailed distribution is required for

modelling several daily exchange rate returns of East Asian currencies against the

US dollar.

Basically, searching for a more realistic assumption for the innovation process

has two sources of motivation. The first raison d’être, is to have more efficient

estimates (which is of prime importance for statistical inference). Indeed although

consistent, the Gaussian QML estimator is inefficient for non-normally distributed

data, with the degree of inefficiency increasing with the degree of departure from

normality (Engle and González-Rivera, 1991). This leaves the door open for other

distribution functions and/or other estimation techniques. Second, accounting for

asymmetry and fat-tails is relevant for financial applications. For instance, the

Capital Asset Pricing Model (CAPM) assumes that only the means, variances and

covariances of returns matter in asset pricing, and, therefore, higher-order moments

are unimportant. Upside and downside risks are considered equally probable by

investors, but this assumption is not reasonable given that most investors have a

preference for positive skewness (Peiró, 1999). Moreover, as shown by Brennan
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(1979) and He and Leland (1993), if the market’s portfolio rate of return has con-

stant mean and volatility, the average investor is risk averse. This implies skewness

preference that is positively valued by investors, which means that modelling the

third moment is required in several financial applications. For instance, Kraus

and Litzenberger (1976) extend the CAPM to include the effect of skewness on

valuation, and present empirical evidence consistent with their extension.

While it might be agreed that it is desirable to allow the conditional density to

be non-normal, it is not clear how to achieve this goal.

In a SP context, Gallant and Tauchen (1989) and Gallant, Hsieh, and Tauchen

(1991) propose to model the joint density of the data using a series expansion

with a Gaussian Vector Autoregressive (VAR) leading term. This is an innovative

approach since it has the potential to reveal a lot of information concerning the

underlying distribution without imposing a great deal of a priori information or

structure. However, as mentioned by Hansen (1994), this method has several

drawbacks: it requires very large data sets in order to have a reasonable degree of

precision, the methods are computationally demanding (this method will probably

remain primarily in the hands of specialists) and the techniques may be sensitive

to the choice of the number of expansion terms.

Alternatively, Engle and González-Rivera (1991) propose to estimate the condi-

tional density nonparametrically using a three steps approach. First they estimate

the parameters of the model by QML using a Gaussian pseudo-likelihood function.

The density of the residuals standardized by their estimated conditional standard

deviations is then estimated in a second step using a linear spline with smoothness

priors. The third step consists in maximizing the likelihood function considering

the estimated density of the second step as the true density. In a Monte Carlo

study, this approach was found to improve the efficiency beyond the QML estima-

tor, particularly when the density was highly non-normal and skewed.

Instead of using SP or NP techniques, a third approach would be to search for

a flexible parametric error distribution (coupled with an ARCH-type model for in-

stance). In order to accommodate the excess of (unconditional-) kurtosis, GARCH

models have been first combined with Student distributed errors by Bollerslev

(1987). Indeed, although GARCH models generate fat-tails in the unconditional

distribution, when combined with a Gaussian conditional density, they do not fully

account for the excess kurtosis present in many return series. The Student density
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is now very popular in the literature due to its simplicity and because it often out-

performs the Gaussian density. However, the main drawback of this density is that

it is symmetrical while financial time series can be skewed. To create asymmetric

unconditional densities, GARCH models have been extended to include a lever-

age effect. For instance, the threshold ARCH (TARCH) model of Zakoian (1994),

the exponential GARCH (EGARCH) of Nelson (1991) or the asymmetric power

ARCH (APARCH) of Ding, Granger, and Engle (1993) allow past negative (resp.

positive) shocks to have a deeper impact on current conditional volatility than past

positive (resp. negative) shocks (see among others Black, 1976; French, Schwert,

and Stambaugh, 1987; Pagan and Schwert, 1990). Combined with a Student distri-

bution for the errors, this model is in general flexible enough to mimic the observed

kurtosis of many stock returns but often fails in replicating the asymmetry of these

series (even if it can explain a small part of it, see Section 2.5).

To account for both excess skewness and excess kurtosis, mixtures of normal or

Student densities can be used in combination with a GARCH model. In general, it

has been found that these densities cannot capture all the skewness and leptokur-

tosis (Ball and Roma, 1993; Beine and Laurent, 1999; Jorion, 1988; Neely, 1999;

Vlaar and Palm, 1993), although they seem adequate in some cases. McCulloch

(1985), Liu and Brorsen (1995), Mittnik, Paolella, and Rachev (1998) and Lam-

bert and Laurent (2000) consider the asymmetric stable density in combination

with a GARCH model. A major drawback of the stable density is that, except

when the tail parameter α = 2 (i.e. normality), the variance does not exist, a fact

usually not supported empirically (see Pagan, 1996). Lee and Tse (1991), Knight,

Satchell, and Tran (1995) and Harvey and Siddique (1999)1 propose alternative

skewed fat-tailed densities, with respectively the Gram-Charlier Expansion, the

Double-Gamma distribution and the non-central t. However, as pointed out by

Bond (2000) in a recent survey on asymmetric conditional density functions, esti-

mation of these densities in a GARCH framework often proved troublesome and

highly sensitive to initial values. McDonald (1984) and McDonald (1991) introduce

the exponential generalized beta distribution of the second kind (EGB2), a flexible

distribution that is able to accommodate not only thick tails but also asymmetry.

The usefulness of this density has been proved recently by Wang, Fawson, Barrett,

and McDonald (2001) in a GARCH framework. These authors show that a more

1This list is by no means exhaustive.
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flexible density than the normal and the Student is required in the modelling of six

daily nominal exchange rate returns vis-a-vis the US dollar. However, goodness-

of-fit tests clearly reject the EGB2 distribution for all the currencies that they

consider, even if it seems that it outperforms the normal and the Student.

Interestingly, Hansen (1994) proposes a skewed Student distribution that nests

the symmetric Student when the asymmetry coefficient (λ) equals 0, with −1 <
λ < 1. This density is quite easy to implement and its estimation does not face

serious problems of convergence. However, Hansen (1994) does not discuss the

relation between λ and higher moments. Recently, Jones and Faddy (2000) have

designed another skew-t distribution. This density has two parameters (assuming

zero location and unit scale parameters), say a and b. If a = b, the distribution

is the usual symmetrical Student one, with number of degrees of freedom υ = 2b

(assuming b > 1). If a−b > 0 (< 0), the density is skewed to the right (left): hence

a− b reflects the skewness feature of the density. A property of this skew-t density

is that its long tail is thicker than its short tail (if a > b, the left tail behaves like

z−(2a+1) at minus infinity, the long tail like z−(2b+1) at plus infinity). Jones and

Faddy (2000) also provide the moments and the cumulative density function of

their skew-t density.

Recently, (in a context different from the volatility literature) Fernández and

Steel (1998) developed a more general tool (based on the method of inverse scaling

of the probability density function on the left and the right of the mode) which has

the advantages of simplicity and that all the parameters have a clear interpreta-

tion. Moreover, contrary to Hansen (1994), Fernández and Steel (1998) discuss the

relation between the asymmetry coefficient and the first three moments. However,

the main drawback of this density is that it is not expressed in terms of the mean

and the variance but in terms of the mode and a measure of the dispersion.

The main purpose of this dissertation is to find an elegant way for modelling

jointly and the most faithfully the first four conditional moments of high-frequency

financial time series and to illustrate the potentiality of this specification in finan-

cial and economic applications. Priority is given to the simplicity of the approach.

For this reason, but also for those given above, this thesis is not in the tradition of

SP or NP techniques but is rather in line with fully parametric GARCH models.

For modelling the higher order features of the data, we propose to follow

Fernández and Steel (1998) in using a standardized version of their skewed Student
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density. Once again, this choice has been conducted by our concern of simplicity

but also by the fact that this density seems adequate in presence of financial time

series. Unlike most of its competitors, the main advantages of this family of skewed

densities are that all the parameters have a clear interpretation and that it is easy

to implement. For instance, the square of the asymmetry parameter of this den-

sity equals the ratio of probability masses above and below the mode and can

be directly interpreted as a skewness measure. Moreover, its probability density

function (pdf), cumulative density function (cdf) and quantile function are based

on the corresponding functions of its symmetric versions. From an empirical point

of view, this density seems to do a good job (when combined with an appropriate

specification of the first two conditional moments) in modelling daily stock returns.

Moreover, the results given in Chapters 5 and 6 suggest that it provides accurate

VaR forecasts for the data we have considered.

The basic specification used throughout this thesis for modelling the first two

conditional moments is an ARMA-APARCH. First, our choice is motivated by

the fact that an AR with a low order was found to be sufficient for controlling

the autocorrelation observed in the investigated series. Second, the extra flexibil-

ity of the APARCH specification (the leverage effect and the power coefficient) is

justified for most of the series we have investigated. In particular, the APARCH

specification models a Box-Cox transformation of the conditional standard devia-

tion instead of the conditional variance. It has been motivated by a stylized fact

detected by Taylor (1986) who first observed that the absolute returns (a proxy of

the conditional standard deviation) in financial time series are positively autocor-

related, even at long lags. Ding, Granger, and Engle (1993) found that the closer

the power coefficient is to 1, the larger the memory of the process is. Note that an

exception to this choice is made in Chapter 4 where a simple GARCH model will

be used to make easier the comparison with the multivariate analysis.

This allows us to introduce the second contribution of this thesis. Even is

the dissertation focuses chiefly on univariate models, our main concern was to

check whether the technique proposed by Fernández and Steel (1998) to introduce

skewness in any univariate unimodal density could be extended in a multivariate

context. Indeed, financial volatilities move together over time across assets and

markets. Recognizing this commonality through a multivariate modelling frame-

work can lead to obvious gains in efficiency and to improved financial decision
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making than working with separate univariate models. As far as financial applica-

tions are concerned, it is of primary importance to base modelling and inference

on a more suitable distribution than the multivariate normal. The challenge to

econometricians is to design multivariate distributions that are both easy to use

for inference and of course compatible with other properties of financial returns

(e.g. autocorrelation, skewness, kurtosis, ...). Otherwise it is very likely that the

parameter estimators will not be consistent (see Newey and Steigerwald, 1997).

The dissertation is split in two parts: a methodological part and a part pre-

senting financial applications.

The first part focuses on methodological issues of the models used to analyze

daily financial data and is made up of three chapters.

In the second chapter, entitled “Modelling financial time series using GARCH-

type models with a skewed Student distribution for the innovations” and based on

Lambert and Laurent (2001), we examine the issue of both skewness and fat-tails in

financial time series. We first retain our attention on three candidate distributions:

the normal, the Bernoulli-mixture of normals and the Student. Then, we propose

an extended version of the skewed Student density of Fernández and Steel (1998)

and show the usefulness of this density (coupled with an APARCH) when modelling

a stock index (the NASDAQ in our example) and forecasting not only the mean

and the variance but the whole density of this series. The results clearly suggest

that the skewed Student density better fits the NASDAQ and is more appropriate

to produce density forecasts of this series.

Chapter three, entitled “Analytical scores of the APARCH skewed Student

model and Gaussian QML relative efficiency” (based on Laurent, 2001), derives

analytical expressions for the score of the univariate skewed Student density as

well as the score of the APARCH model presented in Chapter 2. The use of

asymmetric and fat-tailed densities is growing in the literature. However, all the

existing applications rely on numerical techniques to calculate the gradients. This

chapter shows that the use of analytical gradients highly speeds up maximum-

likelihood estimation and improves the numerical accuracy. It illustrates also the

loss of efficiency of the Gaussian QML estimator when the innovations are skewed

and/or fat-tailed.

Chapter four, entitled “A New Class of Multivariate Skewed Densities, with

Application to GARCH Models” and based on Bauwens and Laurent (2002), pro-
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poses a multivariate generalization of the family of skewed densities presented in

Chapter 2. We describe a practical and flexible solution to introduce skewness in

multivariate symmetrical distributions. Applying this procedure to the multivari-

ate Student density leads to a “multivariate skewed Student” density, for which

each marginal has a different asymmetry coefficient. Combined with a multivariate

GARCH model, this new family of distributions is potentially useful for modelling

stock returns. In an application to the daily returns of the French CAC40, German

DAX, US NASDAQ, Japanese NIKKEI and Swiss SMI data, it is found that this

density suits well the data and clearly outperforms its symmetric competitors (the

multivariate normal and Student densities). This chapter ends the first part of this

thesis.

The second part is made up of three chapters and is devoted to showing the

usefulness of non-normal densities in two financial applications.

In recent years, the tremendous growth of trading activity and the well-publicized

trading loss of well known financial institutions (see Jorion, 2000) has led financial

regulators and supervisory committees of banks to favor quantitative techniques

which appraise the possible loss that these institutions can incur. Value-at-Risk

(VaR) has become one of the most sought-after techniques as it provides an easy-

to-understand method for quantifying risk. Indeed, the VaR measures the worst

expected loss over a given horizon under normal market conditions at a given con-

fidence level, in other words it is a quantile. For instance, a bank might say that

the daily VaR of its trading portfolio is $35 million at the 99% confidence level. In

other words, there is only 1 chance in a 100, under normal market conditions, for

a loss greater than $35 million to occur.

When using a full parametric approach, as the one used all along this thesis,

the VaR produced by the model depends on the whole conditional density. Conse-

quently, using a skewed density when the data are known to be skewed can be of

primary importance to obtain accurate VaR forecast. Chapter five, “Value-at-Risk

for long and Short Positions”, based on Giot and Laurent (2001c) and Giot and

Laurent (2001b), shows that the APARCH skewed Student model performs very

well in forecasting the VaR, compared with other parametric models, based on

symmetric densities. Indeed, we compare the performance of this model with that

of the RiskMetrics (which is a GARCH(1,1) model with fixed coefficients), nor-

mal and Student APARCH models and show that the APARCH model combined
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with a skewed Student density brings about considerable improvements in cor-

rectly forecasting one-day-ahead VaR for long and short trading positions on daily

stock indexes (French CAC40, German DAX, US NASDAQ, Japanese NIKKEI

and Swiss SMI data). The performance of the models is assessed by computing

Kupiec (1995)’s LR tests based on the empirical failure rates.

The recent availability of intraday data has led to new developments concerning

the estimation of the daily volatility. The notion of realized volatility has been

introduced recently in the literature by Taylor and Xu (1997) and Andersen and

Bollerslev (1998) and is computed as an aggregated measure of volatility defined on

intraday returns. According to these authors it offers an “error free” measure of the

daily volatility. Interestingly, when one uses this realized volatility instead of the

conditional variance produced by a parametric ARCH-type model, the normality

assumption on the innovation process is supported. Does the use of the realized

volatility invalidate the choice of a skewed Student density ? Can we use the

Gaussian assumption in a VaR application based on the realized volatility ? We

will answer these questions in Chapter six, “Modelling Daily Value-at-Risk using

Realized Volatility and ARCH Type Models” (based on Giot and Laurent, 2001a).

The second main application is presented in Chapter seven. In this chapter, en-

titled “Official Central Bank Interventions and Exchange Rate Volatility: Evidence

from a Regime Switching Analysis” and based on Beine, Laurent, and Lecourt

(2001), we extend the static mixture of normal distributions presented in Chapter

2. Indeed, we assume that the evolution of the DEM/USD and YEN/USD ex-

change rate returns (in a weekly basis) depends on a latent regime variable whose

dynamics is driven by a first-order Markov switching process. In contrast with

previous analyzes, we allow for regime-dependent specifications and investigate

whether official interventions may explain the observed volatility regime switches.

The estimation results shed an interesting light on the conclusions given in the

literature. It is found that depending on the prevailing volatility level, coordi-

nated central bank interventions can have either a stabilizing or a destabilizing

effect. Our results lead us to challenge the usual view that such interventions are

necessarily associated with increases in volatility.

Chapter eight proposes some concluding remarks.

Finally Appendix A, entitled “G@RCH 2.0: An Ox Package for Estimating

and Forecasting Various ARCH Models” (based on Laurent and Peters, 2001),
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does not constitute a regular chapter. Indeed, it documents G@RCH 2.0, an Ox

package with a friendly dialog-oriented interface dedicated to the estimation and

forecast of various univariate ARCH-type models. These models can be estimated

by approximate (Q)ML under four assumptions: normal, Student-t, Generalized

Error Distribution (GED) or skewed Student errors. This software should help

researchers in their future applications dealing with univariate ARCH models.
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Modelling financial data
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Chapter 2

Modelling financial time series
using GARCH-type models with
a skewed Student distribution for
the innovations

2.1 Introduction

During the past decade, the statistical analysis of financial time series has focused

on the conditional second moment as most financial asset returns exhibit temporal

bursts of volatility. ARCH models (Engle, 1982) and its various extensions (see

Appendix A) are commonly used to describe the conditional variance while an

ARMA structure is often considered for the conditional mean. For a survey on

ARMA-ARCH type models, see Bera and Higgins (1993), Palm (1996) or Pagan

(1996) among others.

Even if the choice of appropriate statistical models for the first two moments

is crucial, the specification of the conditional distribution is also of primary im-

portance. These sophisticated linear models for the conditional mean and for the

conditional variance often rely on simplistic assumptions on the stochastic struc-

ture (normality). Indeed, it is widely accepted that financial returns, on a weekly,

daily or intraday basis, are fat-tailed and even skewed.

ARCH-type models are usually estimated by ML with a Gaussian log-likelihood

Lnorm(y|Φ), where y and Φ denote respectively the vector of observations and the

vector of parameters. It is well known that under regularity conditions, the value

of Φ which maximizes Lnorm, i.e. Φ̂ML, is consistent, asymptotically normally
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distributed and efficient. Its asymptotic covariance matrix can be consistently es-

timated by minus one times the inverse of the Hessian matrix evaluated at Φ̂ML.

In this respect, Lumsdaine (1996) proved the consistency and the asymptotic nor-

mality of the ML estimator of the (Integrated-)GARCH(1,1) under the condition

that E[log(α1ε
2
t + β1)] < 0.1

As explained above, the normality assumption is unrealistic with high-frequency

financial data. However, if we are only interested in the first two conditional

moments, this assumption may be justified by the fact that the Gaussian Quasi

Maximum Likelihood (QML) can provide consistent (and asymptotically normally

distributed) estimators assuming that the conditional mean and the conditional

variance are specified correctly (Weiss, 1986; Bollerslev and Wooldridge, 1992).

The Gaussian QML estimator of Φ is obtained by maximizing Lnorm although the

true probability density function is non-Gaussian. Lee and Hansen (1994) extended

previous works and showed that if the conditional mean and conditional variance

of a GARCH (1, 1) process are specified correctly, and one uses the Gaussian like-

lihood as a vehicle to estimate the corresponding parameters, the parameter will

be consistently estimated even if the rescaled series (the residuals divided by the

conditional standard deviation, i.e. zt) is neither Gaussian nor independent. For

more complicated specifications, it is fairly difficult to prove (theoretically) the

consistency of the Gaussian QML estimator. For instance, Teyssière (1997) shows

using Monte Carlo simulations and kernel density estimation, that the Gaussian

QML of an ARFIMA-FIGARCH (Autoregressive Fractionally Integrated Moving

Average - Fractionally Integrated GARCH) process seems to have nice properties:

they are root-n consistent, asymptotically normal and the bias is negligible.

However, even if the QML estimator is consistent under certain conditions, it

is inefficient with the degree of inefficiency increasing with the degree of depar-

ture from normality (Engle and González-Rivera, 1991). The asymptotic standard

errors can be estimated consistently as was done by White (1982) and Gourier-

oux, Monfort, and Trognon (1984), although they will not attain the Cramer-Rao

bound, reflecting the penalty resulting from not knowing the true conditional den-

sity. Searching for a more suitable distribution may thus be motivated by the

search of more efficient estimates.

More importantly, from a practical point of view, the issue of skewness (asym-

1The notation will be clarified in the next sections.
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metry) and kurtosis (fat-tails) is useful in many respects for financial applications.

Peiró (1999) emphasizes the relevance of the modelling of higher-order features in

asset pricing models, portfolio selection and option pricing theories.2 Modelling

skewness and kurtosis has an impact on all conditional quantiles. Therefore, not

surprisingly, they are crucial in Value-at-Risk applications (see Chapters 5 and 6).

As pointed out by El Babsiri and Zakoian (1999), although asymmetric GARCH

models can generate skewed unconditional densities by allowing positive and neg-

ative changes to have a different impact on future volatilities, the two components

of the innovation have - up to a constant - the same volatilities, while it is desirable

to allow an asymmetric confidence interval around the prediction value. In this

respect, to model jointly the first four conditional moments in a fully parametric

framework, several densities have been proposed in the literature (see Chapter 1

for a brief survey). Interestingly, Fernández and Steel (1998) develop a general

tool (based on the method of inverse scaling of the probability density function

on the left and the right of the mode) to introduce skewness in any continuous

unimodal and symmetric density. However, the major drawback of this technique

is that the skewed density is not expressed in terms of the mean and the variance

but in terms of the mode and a measure of the dispersion. In order to keep in

the ARCH tradition, we first re-express Fernández and Steel’s (1998) density as

a function of the mean and variance and derive its cumulative density function

and quantile function. We also proceed to a Monte Carlo simulation to assess its

practical applicability in a ML estimation procedure in the GARCH framework.

Finally, we show the usefulness of this method by the analysis of the NASDAQ on

the period 1985-1996. Using both in- and out-of-sample density forecast tests, we

show that this density seems to be adequate in describing this database compared

to the normal and the Student distributions.

The chapter is organized as follows. Section 2.2 reviews three candidate distri-

butions before presenting the family of skewed densities proposed by Fernández and

Steel (1998) and its standardization. Section 2.3 gives the results of a small Monte

Carlo simulation while Section 2.4 summarizes the concept of density forecast.

Section 2.5 provides our empirical investigation. Finally, Section 2.6 investigates

the link between Additive Outliers and skewness and kurtosis, while Section 2.7

2In this respect, Hardle and Hafner (2000) compare several ARCH-type models in terms of
option pricing on the German stock index DAX.
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offers some concluding remarks.

2.2 Distribution choices

A univariate time series yt (t = 1, . . . , T ), known to be typically conditionally

heteroscedastic, may be modelled as follows:

yt = E[yt|Ωt−1] + εt, (2.1)

where εt is the disturbance term (or unpredictable part) and Ωt−1 is the information

set at time t − 1. Without loss of generality, we can define an Autoregressive

Conditional Heteroscedastic (ARCH) process, εt by:

εt = ztσt (2.2)

zt ∼ i.i.d. (0, 1) (2.3)

σt = h(εt−1, εt−2, . . . , ε1; η), (2.4)

where zt is an independently and identically distributed (i.i.d.) process with

E(zt) = 0, V ar(zt) = 1, η is a parameter vector and h(.) is a function giving

the conditional standard deviation. By definition, εt is serially uncorrelated with

mean zero, and its conditional variance equals σ2t . To estimate this kind of model

by maximum likelihood, one has to make an additional assumption on the innova-

tion process by choosing a density function for zt.

It is not our intention to review all the existing densities but only three of the

most widespread in the literature dealing with financial time series (the normal, the

Bernoulli-normal mixture and the Student) before presenting the skewed Student

distribution.

2.2.1 The normal distribution

A common choice for the distribution of zt is the normalN(0, 1). The log-likelihood

function of y1, y2, . . . , yT is:

Lnorm =
T∑

t=1

[
ln g(εtσ

−1
t )− lnσt

]

= −1

2

T∑

t=1

[
ln (2π) + ln

(
σ2t
)
+ z2t

]
, (2.5)
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where g(.) is in this case the Gaussian probability density function (pdf) and εt, σ
2
t

and zt are given in Eq. (2.2)-(2.4). This normality assumption is to a certain extent

justified by the fact that consistent estimates are found for parameters of the first

two conditional moments (provided that they are correctly specified), even when

normality does not hold. Note that εt and σ2t are functions of past observations

or in other terms are computed recursively. In a full ML framework, the values

used to start up the recursion are considered as unknown quantities and estimated

jointly with the other parameters. However, it is convenient to replace these values

by their expected value or their sample mean.3 In this case we call this estimation

procedure approximate ML. Note that both are equivalent asymptotically.

2.2.2 Mixture of normal distributions

Using four major daily exchange rates in dollar terms (GBP, DEM, FRF and

YEN) over the period 1980-1996, Beine and Laurent (2000) find that an important

number of outliers are responsible for the rejection of the normality assumption

(more than 300 for the DEM). Following among others Jorion (1988) and Vlaar and

Palm (1993), and in order to account for these outliers, they use a jump-diffusion

ARCH-type model that assumes that the returns are drawn from a mixture of

normal distributions, i.e. a diffusion process combined with an additive jump

process. They show that for the DEM, the FRF and the GBP, this distribution is

validated by the data and in all cases clearly outperforms the normal distribution.

The Bernoulli-normal mixture is defined as follows:

yt = µ̄t + σtzt, with probability (1− λB) (2.6)

yt = µ̄t + σtzt + µB +
√

σ2Bz
∗
t , with probability λB, (2.7)

where zt and z
∗
t are i.i.d. N (0, 1), E(zt z

∗
t ) = 0, λB stands for the probability of a

jump and is drawn from a Bernoulli distribution (0 < λB < 1), µB is the mean of

the jump distribution while σ2B captures the variance of the jump distribution. µ̄t

and σ2t are the conditional mean and conditional variance of the diffusion process.4

3For instance, if εt has a MA(1) component, ε0 is set to E(εt) = 0.
4This specification is similar to the one proposed by Neely (1999). However, this author

considers a Bernoulli-Student distribution.
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This model can be rewritten as:5

yt = E (yt|Ωt−1) + εt (2.8)

εt ∼ (1− λB)N(−λBµB, σ2t ) + λBN(µB − λBµB, σ
2
t + σ2B), (2.9)

where E (yt|Ωt−1) = µ̄t + λBµB, and λBµB is the conditional mean of the jump

process. Notice that in this specification, λB is assumed to be constant over time.

The log-likelihood associated with this new distribution takes the following

form (for a sample of size T):

LBern = −T
2
ln(2π)

+
T∑

t=1

ln

{

(1− λB)

σ2t
exp

[

−(yt − µ̄t)
2

2σ2t

]

+
λB

√

σ2t + σ2B
exp

[

−(yt − µ̄t − µB)
2

2(σ2t + σ2B)

]}

(2.10)

It can be seen that σ2B is the additional volatility related to the jump. It should

be stressed that while the normal mixture distribution can account for skewness, its

introduction will also affect the conditional fourth moment of the residuals. Indeed,

Vlaar and Palm (1993) show that for a Bernoulli-normal mixture as described in

Eq. (2.9), the skewness (or third moment of standardized variable) of ε is equal

to:
(λB − λ2B)µB {(1− 2λB)µ

2
B + 3σ2B}

{(λB − λ2B)µ
2
B + E(σ2t ) + λBσ2B}

3/2
, (2.11)

while its excess kurtosis (or fourth moment of standardized variable minus 3)

equals:

3V (σ2t ) + (λB − λ2B) {3σ4B + (6− 12λB)µ
2
Bσ

2
B + (1− 6λB + 6λ2B)µ

4
B}

{(λB − λ2B)µ
2
B + E(σ2t ) + λBσ2B}

2 , (2.12)

where E(σ2t ) and V (σ2t ) are respectively the unconditional expectation and uncon-

ditional variance of σ2t (which can be estimated by their sample analog).

Note that when λB is different from 0 and 1, a negative (resp. positive) value of

µB means that the innovations are negatively (resp. positively) skewed. However,

the jump probability, the mean size and the variance of the jump govern the

skewness and kurtosis of ε, which makes the interpretation of the parameters quite

challenging.

5Vlaar and Palm (1993) show that under this mixture of normal distributions, E (εt) = 0.
This is done by shifting the density by λBµB . See these authors for more details.
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2.2. DISTRIBUTION CHOICES

2.2.3 The Student distribution

As reported by Palm (1996), Pagan (1996) and Bollerslev, Chou, and Kroner

(1992), the use of the Student-t distribution is widespread in the literature. In

particular, Bollerslev (1987), Hsieh (1989), Baillie and Bollerslev (1989) and Palm

and Vlaar (1997) among others show that this distribution better captures the

observed kurtosis.

As a reminder, provided that υ > 2, zt is distributed as a Student with mean

0, variance 1 and degree of freedom υ, and denoted z ∼ ST (0, 1, υ), if:

g(z|υ) = Γ
(
υ+1
2

)

√

π(υ − 2) Γ
(
υ
2

)

[

1 +
z2

υ − 2

]−(υ+1)/2
, (2.13)

and Γ(.) is the Gamma function.

In this case, the log-likelihood function (for a sample size of T ) becomes:

LStud = T

{

ln Γ

(
υ + 1

2

)

− ln Γ
(υ

2

)

− 1

2
ln [π(υ − 2)]

}

− 0.5
T∑

t=1

[

lnσ2t + (1 + υ) ln

(

1 +
z2t

υ − 2

)]

, (2.14)

where εt, σ
2
t and zt are given in Eq. (2.2)-(2.4). Compared to the normal distribu-

tion, the Student-t implies the estimation of the additional parameter υ standing

for the number of degrees of freedom. The thickness of the tails is decreasing

when υ is increasing. The constraints on the tail parameter can be relaxed (after

reparametrization) by allowing υ to take values in (0, 2]. In these cases, the vari-

ance is infinite and σ2t , which is not the variance anymore, remains a dispersion

parameter.

2.2.4 Skewed densities

More recently, Fernández and Steel (1998) proposed an extension of the Student

distribution by adding a skewness parameter. Their procedure allows the introduc-

tion of skewness in any continuous unimodal and symmetric (about 0) distribution

g(.) by changing the scale at each side of the mode. To understand how to build

this new family of densities, it is fruitful to express it in terms of a mixture of two

truncated densities.
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CHAPTER 2. SKEWED STUDENT DISTRIBUTION AND GARCH MODELS

Construction

Let u ∈ < be an i.i.d. continuous random variable with a symmetric unimodal

density function g(.) with mean 0 and variance 1,

u ∼ i.i.d. g(0, 1) (2.15)

and x, a Bernoulli process, with probability of success ξ2

1+ξ2
. Let us consider the

following mixture:

ε = xξ |u| − (1− x)
1

ξ
|u| . (2.16)

Using Eq. (2.15) and (2.16), the unconditional density f(ε|ξ) of ε is:

f(ε|ξ) = Prob (x = 1) f(ε|ξ, x = 1) + Prob (x = 0) f(ε|ξ, x = 0) (2.17)

where Prob (x = 1) = 1− Prob (x = 0) = ξ2

1+ξ2
.

Recalling that if u ∼ g(u), |u| ∼ 2g(u)I[0,∞) (u) and ξu ∼ 1
ξ
g(u), one obtains:

f(ε|ξ, x = 1) = f(ξ|u| |ξ) = 2
1

ξ
g(
ε

ξ
)I[0,∞) (ε)

f(ε|ξ, x = 0) = f(−1

ξ
|u| |ξ) = 2ξg(ξε)I(−∞,0) (ε) ;

Consequently, after straightforward simplifications, we have:

f(ε|ξ) = 2

ξ + 1
ξ

[

g

(
ε

ξ

)

I[0,∞) (ε) + g (εξ) I(−∞,0) (ε)

]

, (2.18)

Thus, f(ε|ξ) is a unimodal density with the same mode as g(ε) and a skewness

parameter ξ > 0 such that the ratio of probability masses above and below the

mode is:
Pr(ε ≥ 0|ξ)
Pr(ε < 0|ξ) = ξ2. (2.19)

Note that the density f(ε|1/ξ) is the “mirror” of f(ε|ξ) with respect to the mode.

Therefore, working with ln(ξ) might be preferable to indicate the sign of the skew-

ness. If we set yt = µt + εtσt, where εt has a skewed Student distribution (as

obtained by considering a Student distribution with mean 0 and variance 1 for u

in Eq. (2.15)), then we obtain a distribution for yt where all these parameters have

a clear interpretation:
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2.2. DISTRIBUTION CHOICES

Figure 2.1: Skewed Student densities with υ = 8 and ξ = 1 , 1.5 and 3.

• µt, as the conditional mode, models the location,

• σ2t > 0 (which is not the conditional variance anymore) models the dispersion,

• ξ > 0 models the skewness,

• υ > 0 models the tail thickness.

Note that the four important aspects of the distribution can thus be specified. This

density has been used successfully by Lambert and Laurent (2000) on the daily

exchange rate Deutsche mark US dollar and Von Rohr and Hoeschele (1999) in

a (static) Bayesian framework. The skewed normal distribution is a limiting case

(υ → ∞) of the skewed Student with the same tail properties as the traditional

normal.

Note also that contrary to the skew-t of Jones and Faddy (2000), the skewed

Student presented here above has the same thickness of tails at plus and minus

infinity, where it behaves like z−(υ+1).
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Moments

Fernández and Steel (1998) show that if the rth (r ∈ <) order moment of g (.) exists,

the associated skewed distribution in Eq. (2.18) also has a finite rth moment. In

particular,

E (εr|ξ) =Mr

ξr+1 + (−1)r
ξr+1

ξ + 1
ξ

(2.20)

where

Mr =

∫ ∞

0

2srg (s) ds, (2.21)

and Mr is the rth order moment of g (.) truncated to the positive real values.

Provided that these quantities are finite6, we can easily obtain:

E (ε|ξ) = M1

(

ξ − 1

ξ

)

(2.22)

V (ε|ξ) = E
(
ε2|ξ
)
− E (ε|ξ)2

=
(
M2 −M2

1

)
(

ξ2 +
1

ξ2

)

+ 2M2
1 −M2 (2.23)

Sk (ε|ξ) =
E (ε3|ξ)− 3E (ε|ξ)E (ε2|ξ) + 2E (ε|ξ)3

V ar (ε|ξ)
3
2

(2.24)

=

(

ξ − 1
ξ

)

(M3 + 2M3
1 − 3M1M2)

(

ξ2 + 1
ξ2

)

+ 3M1M2 − 4M3
1

V ar (ε|ξ)
3
2

Ku (ε|ξ) =
E (ε4|ξ)− 4E (ε|ξ)E (ε3|ξ) + 6E (ε2|ξ)E (ε|ξ)2 − 3E (ε|ξ)4

V ar (ε|ξ)2
,

(2.25)

where E (.|ξ), V (.|ξ), Sk (.|ξ) and Ku (.|ξ) are respectively the mean, variance,

skewness and kurtosis7, given ξ.

Let us now reconsider the skewed Student density of Fernández and Steel

(1998), where g(.) in Eq. (2.18) is the Student distribution. As shown in Eq.

(2.24) and (2.25), both ξ and υ determine the skewness and the kurtosis. Figures

2.2 and 2.3 investigate the relation between these two parameters and the skewness

(with υ > 3 to ensure the existence of the skewness). For simplicity, we do not

6For instance, if g(.) is the Student density given in Eq. (2.13), the rth order moment of ε
exists if υ > r.

7Even if a closed form of the kurtosis is theoretically available, it is not tractable.
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Figure 2.2: Skewness implied by the skewed Student density for several combina-
tions of 1 ≤ ξ ≤ 1.5 and 3.5 ≤ υ ≤ 15

tackle the case 0 < ξ ≤ 1 and only report the graphs when ξ ≥ 1. It is clear from

these two figures that the dominating feature of the skewness is the ξ parameter.8

From Figure 2.3 we can see that skewness may be very high when υ approaches 3.

Figures 2.4 and 2.5 traces the kurtosis surface for several combinations of ξ > 1

and υ > 4 (to insure the existence of the kurtosis). The dominating feature of the

kurtosis is obviously the υ parameter, even if the higher the asymmetry parameter,

the higher the kurtosis. Consequently, even if both ξ and υ determine skewness and

kurtosis, Figures 2.2-2.5 show that skewness (resp. kurtosis) is mainly governed

by ξ (resp. υ).

Standardized skewed Student density

One drawback of this parameterization of the skewed Student density is that µt and

σ2t are not the conditional mean and the conditional variance but the conditional

mode and some measure of conditional dispersion. In order to keep in the ARCH

tradition, it is important to express the density in terms of the mean and of the

variance, and, thus, to reparameterize Eq. (2.2). In such a way it will be possible

8This property applies also for Hansen’s skewed Student density. See Jondeau and Rockinger
(2000).
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Figure 2.3: Skewness implied by the skewed Student density for several combina-
tions of 1 ≤ ξ ≤ 1.5 and 3.05 ≤ υ ≤ 3.5
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Figure 2.4: Kurtosis implied by the skewed Student density for several combina-
tions of 1 ≤ ξ ≤ 1.5 and 4.5 ≤ υ ≤ 15
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Figure 2.5: Kurtosis implied by the skewed Student density for several combina-
tions of 1 ≤ ξ ≤ 1.5 and 4.05 ≤ υ ≤ 4.5

to take zt in Eq. (2.3) a skewed Student distribution with zero mean and unit

variance. More specifically, assume that ε has a Student distribution with density

g(.) and degree of freedom υ. Then, the rth moment of ε truncated to the positive

real values is:

Mr|υ =
Γ
(
υ−r
2

)
Γ
(
1+r
2

)
(υ − 2)

1+r
2

√

π (υ − 2)Γ
(
υ
2

) (2.26)

Using Eq. (2.22) and (2.23), and provided that υ > 2, it follows that:

E (ε|ξ, υ) = Γ
(
υ−1
2

)√
υ − 2

√
πΓ
(
υ
2

)

(

ξ − 1

ξ

)

≡ m, (2.27)

and

V (ε|ξ, υ) =
(

ξ2 +
1

ξ2
− 1

)

−m2 ≡ s2. (2.28)

Now consider the standardized random variable

zt =
εt −m

s
. (2.29)

Definition 1 If (i) zt is defined by Eq. (2.29) and (ii) εt has a density given by

Eq. (2.18), where g(.) is the Student density given by Eq. (2.13), then zt has

mean 0, variance 1 and is said to be distributed as standardized skewed Student
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Figure 2.6: Normal, Student and skewed Student densities.

with asymmetry parameter ξ, and number of degrees of freedom υ(> 2). This is

denoted zt ∼ SKST (0, 1, ξ, υ). The density of zt is given by:

f(zt|ξ, υ) =
2

ξ + 1
ξ

s
{
g [ξ (szt + m) |υ] I(−∞,0)(zt + m/s) + g [(szt + m) /ξ|υ] I[0,∞)(zt + m/s)

}
.

(2.30)

For a standardized skewed Student, the log-likelihood of y1, y2, . . . , yT is:

LSkSt = T

{

ln Γ

(
υ + 1

2

)

− ln Γ
(υ

2

)

− 0.5 ln [π (υ − 2)] + ln

(

2

ξ + 1
ξ

)

+ ln (s)

}

− 0.5
T∑

t=1

{

lnσ2t + (1 + υ) ln

[

1 +
(szt +m)2

υ − 2
ξ−2It

]}

(2.31)

where It =

{
1 if zt ≥ −m

s
−1 if zt < −m

s

. Figure 2.6 displays several standardized skewed

Student densities with υ = 5, 15, +∞ and ξ = 1, 1.3, 1.5 and 2.
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Distribution and quantile functions of a skewed distribution

Using the same notation and hypotheses as in the previous section, we can re-

late the cumulative distribution function (cdf) F and the quantile function F −1

corresponding to a standardized skewed density f(z|ξ) to the cdf G and quantile

function G−1 of the original symmetric density. We have

F (z|ξ) =
{ 2

1+ξ2
1
s
G(ξ(sz +m)) if z < −m

s

1− 2
1+ξ−2

1
s
G(−ξ−1(sz +m)) if z ≥ −m

s

(2.32)

for the cdf and

F−1(p|ξ) =







1
ξ
G−1( p2 (1+ξ2))−m

s
if p < 1

1+ξ2

−ξG−1( 1−p
2
(1+ξ−2))−m
s

if p ≥ 1
1+ξ2

(2.33)

for the quantile function. These two functions are particularly interesting in Monte

Carlo simulations to generate random numbers from our family of skewed densi-

ties, in Value-at-Risk applications and to check the adequacy of the conditional

distribution (in the density forecast evaluation method, see Section 2.4).

2.3 GARCH model with skewed distribution for

the innovations

Before analyzing real data, and in order to assess the practical applicability of the

QML procedure of the skewed Student distribution, we first present the results of

a simulation study. It is not our intention to provide a comprehensive Monte Carlo

study of the QML. The reliability of the inference concerning the model parameters

will not be examined. Our results, however, will provide some preliminary evidence

with respect to the finite sample properties of the QML estimator for a skewed

Student pseudo-likelihood (coupled with a GARCH model).

Note that, since any particular probability model is unlikely to be the “correct”

model, but should accurately be viewed as an approximation to the underlying prob-

ability structure, it is reasonable to report “robust” standard errors, as suggested

by White (1982)... These give asymptotically valid confidence intervals for the

“pseudo-true” parameter values which minimize the information distance between

the true probability measure and the quasi-likelihood. (Hansen, 1994, p. 713).
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The exact asymptotic standard errors for the QML estimator Φ̂ are the square

roots of the diagonal elements of the matrix:

Â−1T B̂T Â
−1
T , (2.34)

where

ÂT = −
T∑

t=1

(

∂2lt(Φ̂)

∂Φ∂Φ′

)

(2.35)

B̂T =
T∑

t=1

(

∂lt(Φ̂)

∂Φ

∂lt(Φ̂)

∂Φ′

)

, (2.36)

and lt(Φ̂) is the log-likelihood of observation t, evaluated at Φ̂. These standard

errors are robust for deviations from the distribution used in the objective function.

More specifically, consider (as DGP) the following GARCH(1,1) model:

yt = µ+ εt (2.37)

εt = σtzt (2.38)

σ2t = ω + α1ε
2
t−1 + β1σ

2
t−1. (2.39)

To illustrate the behavior of QML estimators, Table 2.1 reports average esti-

mated parameters (over the Monte Carlo replications) and average robust stan-

dard errors corresponding to the model defined in Eq. (2.37) to (2.39) and es-

timated under three different pseudo-likelihoods: the normal, i.e. zt ∼ N(0, 1),

Student, i.e. zt ∼ ST (0, 1, υ) and Skewed Student, i.e. zt ∼ SKST (0, 1, ξ, υ).

In this first experiment, the DGP is µ = 0, ω = 0.1, α1 = 0.1, β1 = 0.8 and

zt ∼ SKST (0, 1, exp (0.3) , 8.0). The sample size (T ) is 3000 observations9 and the

number of replications equals 500.

From Table 2.1, it is clear that the QML method for the GARCH model, under

the correct density (i.e. the skewed Student, see column 5), works reasonably

well for the considered sample size. This table also illustrates the well known

result of Weiss (1986) and Bollerslev and Wooldridge (1992) that (if the mean

and the variance are specified correctly) the QML estimator under “pseudo-true”

normal and Student distributions are respectively consistent (but inefficient) and

9To avoid start-up problem, the first 3000 realizations (out of 6000) were discarded for each
replication.

30



2.4. DENSITY FORECASTS

inconsistent when the innovations are skewed.10 Moreover, the Monte Carlo results

suggest that the QML estimator of the skewed Student (with a GARCH model

governing the conditional variance) are only slightly biased and are more efficient

than the Gaussian QML (when the true density is a skewed Student).

In Tables 2.2 and 2.3, the DGP is the same except that now, zt ∼ χ2(3) and

zt ∼ Γ(1, 2) (respectively), where χ2 and Γ(.) denote the Chi-square and Gamma

distributions.11 These two tables show that the skewed Student does a good job in

modelling the first and second moments when the errors are Chi-square or Gamma

distributed (that are both skewed and kurtosed) leading to very small biases in

the mean and variance parameters, compared to the usual Student density.

2.4 Density forecasts

As explained above, relying on the Gaussian assumption has several advantages if

we are only interested in the first two conditional moments. Furthermore, switching

from a normal density to a Student density may be hazardous if this last assump-

tion does not hold. And if it does not, it is very likely that the estimates will not be

consistent (Newey and Steigerwald, 1997). As a consequence, we have to be very

cautious with the choice of the density and check its appropriateness. To compare

the adequacy of the different distributions, we employ in- and out-of-sample density

forecasts proposed by Diebold, Gunther, and Tay (1998) (henceforward DGT).12

The idea of density forecasts is quite simple. Let fi(yi|Ωi)
m
i=1 be a sequence of m

one-step-ahead density forecasts produced by a given model, where Ωi is the con-

ditioning information set, and pi(yi|Ωi)
m
i=1 the sequence of densities defining the

data generating process yi (which is never observed). Testing whether this density

is a good approximation of the true density p(.) is equivalent to testing:

H0 : fi(yi|Ωi)
m
i=1 = pi(yi|Ωi)

m
i=1. (2.40)

DGT use the fact that under (2.40), the probability integral transform ζ̂i =
∫ yi
−∞ fi(t)dt is i.i.d. U(0, 1), i.e. independent and identically distributed uniform,

10The last two lines of Tables 2.1 to 2.3 report the skewness and kurtosis of zt implied by the
DGP and the estimated parameters of the three pseudo-likelihoods.

11The Chi-square and Gamma distributions have been standardized in order to have mean 0
and variance 1.

12For more details about density forecasts and applications in finance, see the special issue of
Journal of Forecasting Timmermann (2000).
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Table 2.1: Monte Carlo analysis: skewed Student errors.

DGP normal Student skewed Student

µ 0.0 -0.0008 -0.0531 0.0009

(0.0133) (0.0136) (0.0131)

ω 0.1 0.1067 0.1022 0.1031

(0.0237) (0.0192) (0.0181)

α1 0.1 0.1013 0.0974 0.1008

(0.0169) (0.0136) (0.0134)

β1 0.8 0.7914 0.7994 0.7963

(0.0347) (0.0280) (0.0264)

ln(ξ) 0.3 - - 0.3008

(0.0209)

υ 8.0 - 7.1649 8.2000

(0.7096) (0.8794)

Skewness 0.76 0 0 0.75

Kurtosis 5.13 3 5.44 5.03

Model: yt = µ + zt
(
ω + α1ε

2
t−1 + β1σ

2
t−1

)1/2
. DGP: µ = 0,

ω = 0.1, α1 = 0.1, β1 = 0.8 and zt ∼ SKST (0, 1, exp (0.3) , 8.0).
Robust standard errors of the estimated parameters are reported
in parentheses. The last two lines report the skewness and kurto-
sis of zt implied by the DGP and the estimated parameters of the
three pseudo-likelihoods.
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Table 2.2: Monte Carlo analysis: Chi-square errors.

DGP normal Student skewed Student

µ 0.0 0.0001 -0.1779 -0.0021

(0.0133) (0.0161) (0.0122)

ω 0.1 0.1049 0.1035 0.1023

(0.0250) (0.0182) (0.0067)

α1 0.1 0.1027 0.0968 0.1018

(0.0197) (0.0134) (0.0055)

β1 0.8 0.7919 0.8095 0.7990

(0.0376) (0.0247) (0.0079)

ln(ξ) - - - 1.8591

(0.1344)

υ - - 3.8108 7.1504

(0.2400) (0.6885)

Skewness 1.63 0 0 1.75

Kurtosis 7 3 11.40 9.02

Note: see Table 2.1, except that the DGP has zt ∼ χ2(3).
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Table 2.3: Monte Carlo analysis: Gamma errors.

DGP normal Student skewed Student

µ 0.0 -0.0009 -0.1407 -0.0056

(0.0133) (0.0160) (0.0128)

ω 0.1 0.1048 0.1006 0.1004

(0.0246) (0.0181) (0.0092)

α1 0.1 0.1011 0.0938 0.1003

(0.0186) (0.0130) (0.0072)

β1 0.8 0.7940 0.8080 0.7997

(0.0365) (0.0258) (0.0129)

ln(ξ) - - - 1.2207

(0.0589)

υ - - 4.7417 11.1242

(0.3487) (1.6085)

Skewness 1.41 0 0 1.33

Kurtosis 6 3 7.44 5.74

Note: see Table 2.1, except that the DGP has zt ∼ Γ(1, 2).
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where
∫ yi
−∞ fi(t)dt is the cumulative density function associated to fi(yi|Ωi). To

check H0, they propose to use goodness-of-fit and independence tests. The i.i.d.-

ness property of ζ̂i can be evaluated by plotting the correlograms of
(

ζ̂ − ζ̂
)j

,

for j = 1, 2, 3, 4, ..., to detect potential dependence in the conditional mean, vari-

ance, skewness, kurtosis, etc. Departure from uniformity can also be evaluated by

plotting an histogram of ζ̂i. According to Bauwens, Giot, Grammig, and Veredas

(2000) p. 4 (in the context of duration models), a humped shape of the ζ̂-histogram

would indicate that the issued forecasts are too narrow and that the tails of the true

density are not accounted for. On the other hand, a U-shape of the histogram

would suggest that the model issues forecasts that either under- or overestimate too

frequently.13 To illustrate the usefulness of this testing procedure, Figures 2.7 to

2.9 plot the ζ̂-histograms (with 40 cells) of 5000 in-sample one-step-ahead fore-

casts based on the same DGP as in the previous section. In Figure 2.7, ST (0, 1, 8)

errors are generated while a Gaussian QML estimation is performed. In Figures

2.8 and 2.9 skewed Student SKST (0, 1, exp(0.3), 8) errors are generated while

Student and skewed Student pseudo-likelihoods are used respectively in the QML

procedure. Figures 2.7 and 2.8 clearly suggest that the assumption made on the

error term is not appropriate. Moreover, Figure 2.8 shows that an inverted S shape

of the histogram would indicate that the errors are skewed, i.e. the true density

is probably not symmetric. However, from Figure 2.9, it is clear that the prob-

ability integral transform is uniformly distributed. To check the uniformity of ξ,

we could also rely on the Pearson goodness-of-fit test that compares the empirical

distribution with the theoretical one (see the application).

For a given number of cells denoted g, the Pearson goodness-of-fit statistics is:

P (g) =

g
∑

i=1

(ni − Eni)
2

Eni
, (2.41)

where ni is the number of observations in cell i and Eni is the expected number

of observations (based on the ML estimates). For i.i.d. observations, Palm and

Vlaar (1997) show that under the null of a correct distribution the asymptotic

distribution of P (g) is bounded between a χ2(g − 1) and a χ2(g − k − 1) where k

is the number of estimated parameters.

13Confidence intervals for the ζ̂-histogram can be obtained by using the properties of the
histogram under the null hypothesis of uniformity.
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Figure 2.7: ζ̂-histogram (40 cells) for 5000 one-step-ahead forecasts. DGP with
ST (0, 1, 8) errors. The MLEs were computed assuming normality for the innova-
tions.

Figure 2.8: ζ̂-histogram (40 cells) for 5000 one-step-ahead forecasts. DGP with
SKST (0, 1, exp(0.3), 8) errors. The MLEs were computed assuming the innova-
tions to be Student distributed.
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Figure 2.9: ζ̂-histogram (40 cells) for 5000 one-step-ahead forecasts. DGP with
SKST (0, 1, exp(0.3), 8) errors. The MLEs were computed assuming that the in-
novations are skewed Student distributed

2.5 Application

The analyzed database consists of 3000 observations of the NASDAQ from January

1985 until December 1996 (source: Datastream). The daily return is defined as

yt = 100 × (log pt − log pt−1) where pt is the stock index value of day t. Here, we

propose to analyze the NASDAQ by relying on four pseudo-likelihoods: a Gaussian,

a Bernoulli-normal mixture, a Student and a skewed Student. Dynamics will be

introduced in the conditional mean and the conditional variance with an AR(1)-

APARCH(1,1) specification:

yt = µ+ ψ1(yt−1 − µ) + εt (2.42)

εt = σtzt (2.43)

σδt = ω + α1 (|εt−1| − γεt−1)
δ + β1σ

δ
t−1, (2.44)

where µ, ψ1, ω, α1, β1, γ and δ are parameters to be estimated.14 The APARCH is

probably one of the most general ARCH-type model. Indeed, it nests at least seven

GARCH models, see Ding, Granger, and Engle (1993). δ (δ > 0) plays the role of a

14It is convenient to start the recursion of Eq. (2.44) by setting unobserved components to
their sample average. This point will be clarified in Section 3.6.
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Box-Cox transformation of σt, while γ (−1 < γ < 1), reflects the so-called leverage

effect15 (Black, 1976; French, Schwert, and Stambaugh, 1987; Pagan and Schwert,

1990). Following Ding, Granger, and Engle (1993), if it exists, a stationary solution

of (2.44) is given by:

E
(
σδt
)
=

ω

1− α1E (|z| − γz)δ − β1
(2.45)

which depends on the density of z. Such a solution exists if ω > 0 and α1E (|z| − γz)δ

+β1 < 1. Setting γ = 0 and δ = 2 and assuming that zt has zero mean and

unit variance, one recovers the stationarity condition of the GARCH(1,1) model

(α1+β1 < 1). Ding, Granger, and Engle (1993) derived the expression E (|z| − γz)δ

in the Gaussian case. Paolella (1997) gives expressions for various non standard-

ized densities. Lambert and Laurent (2001) show that for the standardized skewed

Student:16

E (|z| − γz)δ =
[

ξ−(1+δ) (1 + γ)δ + ξ1+δ (1− γ)δ
] Γ
(
δ+1
2

)
Γ
(
υ −δ
2

)
(υ−2)

1+δ
2

(

ξ + 1
ξ

)√

(υ−2) πΓ
(
υ
2

)

(2.46)

Note that a closed form solution of this expression is still not available in the

literature for the mixture of normal distributions case. Consequently, we replace

E (|z| − γz)δ by its sample counterpart, i.e. 1
T

T∑

i=1

(|zt| − γzt)
δ.

Table 2.4 hereafter presents the QML estimation results (for the first 2000

observations) of the AR(1)-APARCH(1,1) for the four pseudo-likelihoods.17 The

results have been obtain with G@RCH 2.0, an Ox package with a friendly dialog-

oriented interface dedicated to the estimation and forecast of various univariate

ARCH-type models (this software is documented in Appendix A). Table 2.5 reports

some statistics of interest.

Note that caution is necessary in interpreting conventional confidence intervals

for these estimates, since although the samples are large, the asymptotic properties

of the estimates are not yet well established for the APARCH model. Indeed,

15A positive (resp. negative) value of γ means that past negative (resp. positive) shocks have
a deeper impact on current conditional volatility than past positive shocks.

16Notice that setting ξ = 1 leads to the stationarity condition of the symmetric Student density
(with unit variance).

17The formula used to compute the robust standard errors is given in Eq. (2.34).
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as explained in Section 2, sufficient conditions for consistency and asymptotic

normality of estimators are only available for a limited class of processes, mainly

GARCH (1, 1) and ARCH (p) and for a Gaussian (pseudo-)likelihood. To the

best of our knowledge, nothing is known about the consistency of the APARCH

model of Ding, Granger, and Engle (1993) even if this specification offers several

advantages compared to the simple GARCH model. Subject to these caveats on

valid inference, let us comment the results:

1. First, the extra flexibility of the APARCH specification is required. Both

the asymmetry coefficient (γ) and the power (δ) estimates suggest that a

usual GARCH model is not appropriate to model the NASDAQ. This is also

confirmed by likelihood ratio tests (not reported here to save space).

2. Second, comparing the log-likelihood and the AIC criterion of the four dis-

tributions, one should certainly retain the skewed Student density. Indeed,

despite the fact that the LR test is presumably non-standard when comparing

the normal and the Student and the Bernoulli-mixture with the non-Gaussian

densities, the differences are so big that there is little doubt that the skewed

Student should be preferred.

3. The estimated parameters attest that the distribution of the NASDAQ is

highly kurtosed and skewed. Indeed, the number of degrees of freedom of

the Student is about 6, which means that the innovations are fat-tailed. On

the other hand, the estimated parameter µB of the mixture distribution is

negative and significant, which suggests that the innovations are negatively

skewed as shown in Eq. (2.11). However, the jump probability (λB) and

the size of the jump (σ2B) are not significant at the 5 % level, which ren-

ders the interpretation of the results difficult because under the assumption

that λB = 0 or λB = 1, µB and σ2B are not identified. The asymmetry of

the innovations is reinforced by the skewed Student density, whose ln(ξ) pa-

rameter is negative and significant. It seems moreover that the asymmetry

feature of the APARCH model (characterizing the conditional variance) and

the “skewness” coefficient of the skewed Student density are both necessary

to explain the overall asymmetry of the series. To illustrate the difference be-

tween the normal, the Student and the skewed Student, Figure 2.10 plots the
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fitted densities of the innovations, namely a SKST (0, 1, exp(−0.179), 6.039)
(solid line), a ST (0, 1, 5.57) (dashed line) and a N(0, 1) (short dashes). The

asymmetry coefficient equals −0.179 (and is significant), which means the

skewed Student density allocates nearly 59% of the mass to the left side of

the mode.

4. The stationary condition of the APARCH model is satisfied for all the dis-

tributions, as α1E (|z| − γz)δ + β1 < 1 (at the QML estimators).18

5. The AR(1)-APARCH(1,1) seems to be adequate in describing the dynamics

of the first two moments of the NASDAQ, for the period of interest. In-

deed, the Box-Pierce statistics19 Q20 and Q220 are all non significant at any

reasonable level.20

6. The relevance of the skewed Student distribution is also confirmed by the

Pearson goodness-of-fit statistic, P (50) and P (60). While the normal and the

Student distributions are rejected (the p-values equal about 0), the skewed

Student density seems to be supported by the data (both by the non ad-

justed and adjusted tests with 50 and 60 cells). The results concerning the

normal-mixture are more ambiguous since the acceptation of this density is

very sensitive to the significance level (5 of 10%) and the version of the test

(adjusted or not).

Finally, to assess the relevance of the skewed Student density, we perform some

out-of-sample forecasts. Table 2.6 gives the goodness-of-fit tests (density forecasts

test) on the one-day-ahead forecasts of the AR(1)-APARCH(1,1). This test has

18This is not a formal test because when computing α1E (|z| − γz)
δ
+ β1, we substitute QML

estimates for the true parameters while in fact these parameters are estimated and thus subject
to an uncertainty. However, accounting for this uncertainty to compute a confidence band is not
trivial due to the non-linearity of this formula (see Eq. (2.46) for the skewed Student case).

19The number of degrees of freedom of the asymptotic distribution of the Box-Pierce test has
to be adjusted by the number of ARMA parameters (to test the presence of serial correlation in
the standardized residuals) while the Box-Pierce statistics on the squared standardized residuals
has to be adjusted by the number of GARCH parameters (Bollerslev and Mikkelsen, 1996).

20This test is computed on standardized residuals (ẑt) except for the Bernoulli-normal mixture.
Indeed, for this modelQ20 andQ

2
20 are computed on the normalized residuals that are obtained by

re-expressing Eq. (2.9) to have N(0, 1) innovations (if the mixture of normal assumption holds),

i.e. znt = F−1
[

(1− λB)F
(
yt−µ̄t
σt

)

+ λBF
(
yt−µ̄t−µB
σt+σB

)]

, where F (.) and F−1[.] are respectively

the cumulative distribution function and the quantile function of the standard normal density.
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Table 2.4: AR(1) - APARCH (1, 1) model. Estimation results.

normal Bernoulli-normal Student skewed Student
µ 0.0554 0.1082 0.1010 0.0626

(0.0206) (0.0258) (0.0195) (0.0197)

ψ1 0.2946 0.2969 0.2861 0.2787
(0.0288) (0.0252) (0.0298) (0.0239)

ω 0.0533 0.0332 0.0374 0.0371
(0.0231) (0.0128) (0.0134) (0.0132)

α1 0.1641 0.1364 0.1451 0.1503
(0.0377) (0.0246) (0.0255) (0.0261)

γ 0.3768 0.3115 0.2787 0.2419
(0.1124) (0.1209) (0.1064) (0.0953)

β1 0.8024 0.8145 0.8258 0.8229
(0.0537) (0.0394) (0.0368) (0.0360)

δ 1.0544 1.3340 1.2914 1.3322
(0.3794) (0.3286) (0.2929) (0.2967)

ln(ξ) 0 - 0 -0.1789
(0.0319)

υ ∞ - 5.5706 6.0388
(0.7490) (0.8182)

λB - 0.0366 - -
(0.0264)

µB - -1.1363 - -
(0.5070)

σ2B - 1.6606 - -
(0.8141)

Log-Lik -2090.6 -2014.6 -2008.7 -1993.1
Robust standard errors are given in parentheses. Log-Lik refers to the log-
likelihood value at maximum.
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Table 2.5: Statistics of interest.

normal Bernoulli-normal Student skewed Student

α1E(|z| − γ)δ + β1 0.934 0.944 0.940 0.967

Q20 25.009 24.566 23.926 26.435

Q220 10.185 23.985 11.625 10.804

P (50) 122.120 63.356 78.176 50.648

(0.000) (0.081) (0.005) (0.408)

[0.000] [0.008] [0.000] [0.120]

P (60) 110.828 78.668 85.183 52.210

(0.000) (0.044) (0.014) (0.722)

[0.001] [0.004] [0.001] [0.388]

AIC 2.099 2.024 2.019 2.004

Q20 and Q2
20 are respectively the Box-Pierce statistics at lag 20 of the standardized and

squared standardized residuals except for the Bernoulli-normal mixture for which it is com-
puted on normalized and squared normalized residuals. P (50) and P (60) are the Pearson
goodness-of-fit statistics based on 50 and 60 cells respectively. P-values of the non-adjusted
and adjusted test are given respectively in parentheses and in brackets.

been conducted on the last 1000 observations (about 4 years), using the estimated

parameters reported in Table 2.4. From Table 2.6, it is obvious that the normal,

the Bernoulli-mixture and the Student pdf’s are not adequate for density fore-

cast purposes. On the other hand, the skewed Student passes this test (with less

evidence for the adjusted version with 50 cells).

2.6 Asymmetry, fat-tails and Additive Outliers

The preceding estimation results from the ARMA-APARCH model suggest that

the normal, mixture of normal and the Student distributions are not appropriate

for modelling the NASDAQ. Indeed, goodness-of-fit tests fail to validate these

distributions while the skewed Student seems to be appropriate for the period

under investigation. To a certain extent, these results are not surprising given the

very long sample period. This period includes many important events that are

thought to have disrupted the smooth dynamics of the NASDAQ and lead to an

important number of “Level and Volatility Outliers” (see Hotta and Tsay, 1998).

In addition to the previous study, it may also be interesting to attempt to
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Table 2.6: Density forecast tests for the out-of-sample forecasts.

normal Bernoulli-normal Student skewed Student

P (50) 122.120 76.425 78.100 57.600

(0.006) (0.007) (0.005) (0.187)

[0.000] [0.000] [0.001] [0.035]

P (60) 117.915 90.960 88.160 56.120

(0.027) (0.002) (0.008) (0.582)

[0.001] [0.001] [0.005] [0.256]

Density forecast test - Pearson goodness-of-fit test. P-values of the non-
adjusted and adjusted test are given respectively in parentheses and in brackets.
These tests have been conducted on the last 1000 observations (about 4 years).

Figure 2.10: st(0, 1, exp(−0.179), 6.039) (solid line), t(0, 1, 5.57) (dashed line) and
N(0, 1) (short dashes).
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identify these outliers in a more formal way in order to estimate their magnitude

and check whether these outliers are responsible for the asymmetry and the fat-tails

observed on this series.

An interesting approach to identifying “additive outliers” (AO) in the volatility

has been proposed by Franses and Ghijsels (1999). All the details concerning

this method of detection and correction of AO as well as its extension to the

APARCH model are given in Appendix B. Franses and Ghijsels (1999) extend

the work of Chang, Tiao, and Chen (1988) (originally in an ARMA framework)

to a GARCH(1,1) model. These authors show that the implementation of this

AO correction leads to a substantial improvement in the out-of-sample forecasting

properties of the GARCH model. The procedure is carried out in a sequential

way and requires five steps. The first step involves the estimation of the model

with the “raw data”. In the second step, a statistic ÂO(τ ∗) is computed for each

observation and compared to a predetermined value C. When ÂO(τ ∗) exceeds C,

the impact of the AO is said to be significant. We use a conservative value of

C = 5.5 for the test statistic (the authors use a value of C = 4). In the third step,

the outlier-adjusted residual is computed for the observation corresponding to the

most significant outlier. Using this residual, the fourth step computes the additive

outlier-corrected returns corresponding to this observation. Finally, the model is

re-estimated with the new data and the procedure is carried out again until no more

outliers are detected. Applying Franses and Ghijsels’ approach to our data allows

us to quantify the number of “aberrant observations”, to identify these outliers

and to yield AO corrected returns. The procedure leads to the identification of 76

outliers for the NASDAQ (for the first 2000 observations): 23 positive outliers and

53 negative outliers. Figure 2.11 plots the AO corrected returns (solid line) and the

AO (circles). It is then possible to re-estimate the ARMA-APARCH model using

the AO corrected returns. QML results are reported in Table 2.7 for three pseudo-

likelihood functions: normal, skewed Student and skewed normal (with υ = ∞).

Note that the QML results of the skewed Student pseudo-likelihood obtained on

the raw data (see Table 2.4) are reported in the column “skewed Student raw data”

to facilitate the comparison.

The results from Table 2.7 suggest that the presence of AO is primarily respon-

sible for the rejection of the normality assumption: adjusting for these outliers leads

to a dramatic decrease of excess kurtosis. Indeed, the estimated number of degrees
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Table 2.7: AR(1) - APARCH (1, 1) model. Estimation results for AO corrected
returns (C = 5.5).

skewed Student normal skewed Student skewed normal
raw data AO AO AO

µ 0.0626 0.0821 0.0792 0.0792
(0.0197) (0.0176) (0.0175) (0.0175)

ψ1 0.2787 0.2845 0.2756 0.2754
(0.0239) (0.0223) (0.0222) (0.0223)

ω 0.0371 0.0315 0.0281 0.0282
(0.0132) (0.0107) (0.0100) (0.0100)

α1 0.1503 0.0889 0.0911 0.0907
(0.0261) (0.0164) (0.0167) (0.0166)

γ 0.2419 0.3214 0.2755 0.2761
(0.0953) (0.0978) (0.0910) (0.0908)

β1 0.8229 0.8803 0.8818 0.8820
(0.0360) (0.0246) (0.0246) (0.0245)

δ 1.3322 0.9039 0.9778 0.9786
(0.2967) (0.2765) (0.2811) (0.2794)

ln(ξ) -0.1789 0 -0.1324 -0.1324
(0.0319) (0.0329) (0.0318)

υ 6.0388 ∞ 130.7839 ∞
(0.8182) (35.4572)

Log-Lik -1993.1 -1792.2 -1784.0 -1783.9
Robust standard errors are given in parentheses. Log-Lik refers to the log-
likelihood value at maximum.
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Figure 2.11: NASDAQ (solid line) corrected for 76 AO (circles).

of freedom is very high (130). Comparing the log-likelihoods, one clearly sees that

the skewed Student and the skewed normal densities are indistinguishable. How-

ever, even after controlling for 76 AO, the corrected returns are still skewed: ln(ξ)

is still significantly different from 0 (but slightly lower than for the raw data).

Moreover, performing a LR test between the normal and skewed normal densities

clearly rejects the former in favor of the latter. This suggests that the AO outliers

are responsible for the high degree of kurtosis but not the asymmetry.

2.7 Conclusion

In this chapter we have first parameterized the skewed Student density proposed

by Fernández and Steel (1998) in terms of the mean and of the variance param-

eters. This density is very promising for modelling financial series that exhibit

skewness and excess kurtosis. First, we have shown its practical applicability in a

QML estimation procedure in the GARCH framework using a Monte Carlo sim-

ulation. Moreover, this density, based on a mixture of two truncated symmetric
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densities, is easy to implement. Indeed, its pdf, cdf and inverse cdf are based

on the corresponding functions of its symmetric versions (which are available in

most statistical packages). We have shown the practical advantages of the skewed

Student distribution by analyzing the NASDAQ on a 12 year period (on a daily

basis). Pearson goodness-of-fit tests reject the normal and the Student densities,

but not the skewed Student distribution. On the other hand, the adequacy of the

mixture of normal distributions is questionable since the results of the goodness-

of-fit test are ambiguous. The performance of the skewed Student density has

been reinforced by out-of-sample one-step-ahead density forecast tests. Finally, we

have investigated the effect of AO on the skewness and kurtosis observed on the

NASDAQ and found that they are responsible for the fat-tails of this series but

not for the asymmetry.21

Several extensions of the methodology presented in this chapter could be in-

vestigated. First, the skewness and the tail properties were assumed to be time-

invariant (ξ and υ do not depend on t). This assumption might be unrealistic in

practice and might have to be generalized just as ARMA and GARCH-type models

were found to mimic the dynamics observed in the first two conditional moments

of high frequency financial time series. Why should we stop at the second moment

? This question has been raised by Hansen (1994), who proposes to generalize

the GARCH specification to higher moments. He introduces dynamics through

the 3rd and 4th order moments by conditioning the asymmetry and fat-tail pa-

rameters on past residuals and their square. This specifications has been used by

Jondeau and Rockinger (2000)22 and extended recently by Harvey and Siddique

(1999) who condition the skewness on past cubed residuals and past conditional

skewness.23 Recently, Lambert and Laurent (2000) have proposed a General Dy-

namic Model for Skewness (GDMS) to allow skewness to change over time in a

21Note that the asymmetry features of the NASDAQ are not only valid for daily data but also
for weekly data. Indeed results, not reported in the thesis, concerning mid-week data are very
similar in the sense that a leverage effect in combination with a skewed Student is found to be
relevant for modelling this series.

22Jondeau and Rockinger (2000) express skewness and kurtosis of Hansen’s GARCH model as
a function of the underlying parameters. The cost of such a flexibility is that for a dataset of
about 7,000 observations, they have to impose not less that 20,000 restrictions to ensure that
the corresponding conditional skewness and kurtosis exist. This difficult estimation problem is
solved using a recent sophisticated sequential quadratic optimization algorithm.

23Contrary to Jondeau and Rockinger (2000), Harvey and Siddique (1999) do not impose the
existing constraints of the skewness and kurtosis.
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totally different way than in previous works. The GDMS is based on the skewed

Student density presented in this chapter and uses the fact that ξ2 is the ratio of

probability masses above and below the mode. Similar to an ARMA specification,

the GDMS expresses ln(ξ2) as24 a function of its past values (the AR term), its

past empirical counterparts (the MA term) and a constant term.25 This extension

will not be pursued in this thesis but is currently being investigated in Lambert

and Laurent (2000).

A common feature of nearly all the empirical applications that rely on a non-

normal density for the innovations and/or a complex specification for the condi-

tional variance is that these models are estimated by maximum likelihood methods

and use numerical techniques to approximate the derivatives of the likelihood func-

tion with respect to the parameter vector. To avoid numerical inefficiencies and

highly speed-up maximum-likelihood estimation, the purpose of the next chapter is

to provide numerically reliable analytical expressions for the score vector when the

likelihood function is a (standardized) skewed Student density and the conditional

variance follows an APARCH(p, q) specification.

24As in the Exponential GARCH (EGARCH) model of Nelson (1991), the ln transformation
is used to avoid to care about the positivity constraints of ξ2.

25The empirical counterpart of ξ2 used by Lambert and Laurent (2000) is the number of times
an observation has been observed above and below the corresponding (predictive) conditional
mode up to and including time t− 1.

48



Chapter 3

Analytical scores and Gaussian
QML relative efficiency for the
APARCH skewed Student model

3.1 Introduction

It has been shown in the previous chapter that daily financial returns are het-

eroscedastic, fat-tailed and can also be skewed. To account for these three stylized

facts, we have shown that an APARCH specification combined with a skewed Stu-

dent density does a good job in modelling daily returns of the NASDAQ. This

choice will be confirmed in Chapters 5 and 6.

The estimation of this model was done using maximum likelihood methods,

relying on numerical techniques to approximate the derivatives of the likelihood

function with respect to the parameter vector (the score or gradient vector). This

is indeed the usual approach when one deals with non-linear models and especially

a non-normal likelihood function. However, as shown by Fiorentini, Calzolari, and

Panattoni (1996), and McCullough and Vinod (1999), using analytical scores in

the estimation procedure should improve the numerical accuracy of the resulting

estimates and speed-up maximum-likelihood estimation.

This chapter derives analytical expressions for the score of univariate APARCH

models when the innovation process has a skewed Student distribution and illus-

trates the loss of efficiency of the Gaussian QML estimator when the innovations

are skewed and/or fat-tailed.

The rest of the chapter is organized in the following way. In Section 3.2 and 3.3,
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we briefly review the (standardized) skewed Student density. Section 3.4 provides

analytical scores of this density. In section 3.5, QML results are summarized and a

Gaussian QML relative efficiency is investigated when the true density is a skewed

Student. Section 3.6 presents the APARCH model and the associated gradients.

Finally, Section 3.7 provides an empirical application and Section 3.8 concludes.

3.2 The model

High frequency financial returns (yt) are known to be heteroskedastic. yt (t =

1, . . . , T ) is typically modelled as follows:

yt = µ̄t + εt (3.1)

εt = σtzt (3.2)

µ̄t = c(µ|Ωt−1) (3.3)

σt = h(µ, η|Ωt−1), (3.4)

where µ̄t and σ2t are respectively the conditional mean and conditional variance

of yt and c(.|Ωt−1) and h(.|Ωt−1) are functions of Ωt−1 (the information set at

time t − 1) depending on unknown vectors of parameters µ and η. Note that

depending on the choice of h(.), constraints on η are often needed to insure that

Pr(σ2t > 0) = 1 for all t.

It is also widely accepted that high frequency financial returns are fat-tailed and

even skewed. To accommodate these stylized facts, and following the discussion of

Chapter 2, let us assume that conditional on Ωt−1, zt is i.i.d. SKST (0, 1, ξ, υ), i.e.

zt is independent and identically distributed as a standardized (with mean 0 and

unit variance) skewed Student (SKST), with asymmetry parameter ξ and number

of degree of freedom υ > 2. Recall that when ξ = 1, one recovers the symmetric

Student density.

3.3 The log-likelihood function

Let Φ = (µ′, η′, ξ, υ)′ denote the vector of parameters of interest. The approxi-

mate ML estimator of Φ, denoted Φ̂, can thus be obtained by maximizing (apart

from initial conditions) the corresponding likelihood (for a sample size of T ):
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LT (Φ) =
T∑

i=1

lt(Φ), where

lt(Φ) = ln

(

2

ξ + 1
ξ

)

+ lnΓ

(
υ + 1

2

)

− 0.5 ln [π(υ − 2)]− ln Γ
(υ

2

)

+ ln[s(ξ, υ)]

− 0.5 ln
[
σ2t
(
µ′, η′)]− 0.5 (1 + υ) ln [gt(Φ)] (3.5)

and

gt(Φ) = 1 +
z∗2t
υ − 2

z∗t = [s(ξ, υ)zt +m(ξ, υ)] ξ−It

It =

{
1 if z∗t ≥ 0
−1 if z∗t < 0

,

where parameters m = m(ξ, υ) and s = s(ξ, υ) are respectively the mean and the

standard deviation of the non-standardized skewed Student of Fernández and Steel

(1998), i.e. SKST (m, s2, ξ, υ), and are defined in Eq. (2.27) and (2.28).

For conditional heteroskedastic models and even more in non-Gaussian cases,

the derivatives of the likelihood function with respect to the parameter vector are

usually obtained using numerical techniques. However, as shown by Fiorentini,

Calzolari, and Panattoni (1996) and McCullough and Vinod (1999), the use of

analytical scores in the estimation procedure could:

• improve the numerical accuracy of the resulting estimates.1 In this respect,

Fiorentini, Sentana, and Calzolari (2000) show that it is very difficult to

numerically distinguish a Student t with 100 degrees of freedom from another

with 5,000 degrees of freedom, even when the sample size is large;

• and speed up maximum-likelihood estimation. As explained by Gable, Van Nor-

den, and Vigfusson (1997), the computation of numerical gradients typically

requires N + 1 evaluations of the likelihood function to calculate the N ele-

ments of the score, and N 2+1 to calculate the Hessian (the matrix of second

1A clarification is needed when we talk about the accuracy of the numerical and analytical
gradients. Indeed, when programming the analytical scores we also rely on numerical tools. Due
to the complexity of the calculus, the computation is usually done by a computer (and not by
hand), using a particular software (or programming language). For instance, the computation
of lnx is not perfectly exact but gives an approximation of the true solution, with a given
precision. Consequently, the computation of the analytical gradient is not “error free”. However,
for simplicity, we will consider the analytical gradient as the benchmark
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derivatives). By using analytical gradients, the number of calculations re-

quired to evaluate either of these objects can be greatly reduced. This in

turn considerably speeds up maximum-likelihood estimation of such models

with no loss in accuracy.

3.4 Analytical gradients of the skewed Student

density

This section proposes an analytical formula for the score of a skewed Student den-

sity, irrespective of the specification used in the conditional mean and conditional

variance.

To do that, let us look at the elements of the score vector separately:

∂lt(Φ)

∂µ
,
∂lt(Φ)

∂η
,
∂lt(Φ)

∂ξ
and

∂lt(Φ)

∂υ
,

where lt(Φ) is given in Eq. (3.5).

After standard algebraic manipulations, the partial derivatives of lt(Φ) with

respect to the conditional mean and conditional variance parameters µ and η are:

∂lt(Φ)

∂µ
= −0.5

σ2t

∂σ2t
∂µ

[

1− (υ + 1)

(υ − 2)
gt(Φ)

−1sξ−Itztz
∗
t

]

− ∂εt
∂µ

(υ + 1)

(υ − 2)
gt(Φ)

−1sξ−Itz∗t σ
−1
t (3.6)

∂lt(Φ)

∂η
= −0.5

σ2t

∂σ2t
∂η

[

1− (υ + 1)

(υ − 2)
gt(Φ)

−1sξ−Itztz
∗
t

]

, (3.7)

where ∂εt
∂µ

and
∂σ2

t

∂η
depend on the particular specification adopted in Eq. (3.3) and

(3.4). When set equal to zero, these partial derivatives have been solved by Engle

(1982) for the simple ARCH model, by Fiorentini, Calzolari, and Panattoni (1996)

for the GARCH model and by Chung (1999) for the ARFIMA-FIGARCH (autore-

gressive fractionally integrated moving average - fractionally integrated GARCH)

model.2 Note also that as pointed out by Fiorentini, Calzolari, and Panattoni

(1996), Eq. (3.3) and (3.4) are often recursively defined and thus require to choose

2Recently, Lombardi and Gallo (2001) have derived analytic expressions for the second-order
derivatives of the Gaussian log-likelihood function of FIGARCH processes.
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some initial values to start up the recursion. It is thus important to account

for these starting values when computing the analytical gradients (see Fiorentini,

Calzolari, and Panattoni, 1996, for more details).

Similarly, one can also show that differentiating with respect to the asymmetry

parameter ξ and the number of degrees of freedom υ gives:

∂lt(Φ)

∂ξ
=

1− ξ2

ξ3 + ξ
+

1

s

∂s

∂ξ
− (υ + 1)

(υ − 2)
g−1t (Φ)z∗t ξ

−It
[
∂s

∂ξ
zt +

∂m

∂ξ
− It
ξ
(szt +m)

]

,

(3.8)

where ∂s
∂ξ

= (ξ − ξ−3 −m∂m
∂ξ

)s−1, ∂m
∂ξ

=
Γ(υ−1

2 )
√
υ−2

√
πΓ(υ/2)

and

∂lt(Φ)

∂υ
= 0.5

[

z
(
υ + 1

2

)

−z
(υ

2

)

− 1

υ − 2

]

− m

s2
∂m

∂υ
− 0.5 ln [gt(Φ)]

− 0.5
(υ + 1)

(υ − 2)
g−1t (Φ)

(

2z∗t
∂z∗t
∂υ

− z∗2t
υ − 2

)

, (3.9)

where z(x) = ∂ ln Γ(x)
∂x

is the di-gamma function,
∂z∗t
∂υ

= ξ−It
(
∂s
∂υ
zt +

∂m
∂υ

)
, ∂s
∂υ

=

−m
s
∂m
∂υ

and ∂m
∂υ

= 0.5
(

ξ − 1
ξ

)
Γ(υ−1

2 )
√
υ−2

√
πΓ(υ2 )

[
1

υ−2 + z
(
υ+1
2

)
−z

(
υ
2

)]
.

Notice that, as suggested in Chapter 2, working with ln(ξ) might be preferable

to indicate the sign of the skewness. Consequently, the analytical gradient ∂lt(Φ)
∂ ln(ξ)

=

ξ ∂lt(Φ)
∂ξ

.

To judge the usefulness of using analytical scores, Fiorentini, Sentana, and

Calzolari (2000) have shown that numerical gradients of the number of degrees of

freedom (υ) of a Student t likelihood are very poor approximations for the score

function, especially when υ → ∞ (or 1
υ
→ 0). Figures 1 and 2 plot the difference

between numerical and analytical scores of the asymmetry parameter ln(ξ).3,4 In

Figure 3.1, ln(ξ) ranges from -2 to 2 when υ is set to 8. From this figure, one can see

3The gradients are evaluated for different values of ln(ξ) while µ̄t and σt are set respectively
to 0 and 1.

4Computations have been done with the software package GAUSS 3.5. The numerical scores
are obtained using the standard GRADP procedure. Very similar results (but not reported to
save space) are obtained using the GRADRE procedure. This procedure, provided with the op-
timization library OPTMUM (Aptech Systems, Inc.), implements the Richardson Extrapolation,
an iterative process which updates a derivative based on values calculated in a previous iteration.
This is slower than GRADP, but can in general, return values that are accurate to about 8 digits
of precision.

53



CHAPTER 3. ANALYTICAL SCORES AND GAUSSIAN QML RELATIVE EFFICIENCY

that the difference between the numerical and analytical scores of the asymmetry

parameter increases when ln(ξ) tends to 0. Similarly, Figure 3.2 plots the difference

between numerical and analytical scores of the asymmetry parameter evaluated at

ln(ξ) = 0, for various values of υ (from 2.01 to 300).5 From this figure it is clear

that the advantage of using analytical scores increases with the value of υ.
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Figure 3.1: Difference between numerical and analytical scores of the log-likelihood
with respect to ln(ξ) for υ = 8.

Basically, these two figures reinforce the need of using analytical scores at least

in two situations:

• in the estimation procedure, when the innovation process is nearly gaussian

but estimated using a (skewed) Student density (estimating the unrestricted

model to perform a Likelihood Ratio Test (LRT) for instance);

5Once again, µ̄t and σt are set respectively to 0 and 1.
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Figure 3.2: Difference between numerical and analytical scores of the log-likelihood
with respect to υ, evaluated at ln(ξ) = 0.

• or when one has to evaluate the gradient vector under the null hypothesis
1
υ
= 0 and/or ln(ξ) = 0 to perform a Lagrange Multiplier (LM) test. See

Fiorentini, Sentana, and Calzolari (2000) for an application of a LM test of

multivariate normality.

3.5 Relative efficiency of QML estimator

In their seminal papers, Bollerslev and Wooldridge (1992) and Weiss (1986) studied

the QML, of (multivariate) (G)ARCH models. They proved the consistency and

asymptotic normality of the QML estimator under some regularity conditions.

Even if the normality assumption does not hold, maximizing the Gaussian

log-likelihood function of a GARCH model provides consistent estimates of the
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parameters. However, the standard errors have to be adjusted. Let Φ̂ be the

estimate that maximizes the gaussian log-likelihood function and let Φ0 be the true

value that characterizes the GARCH model. Under certain regularity conditions:

√
T
(

Φ̂− Φ0

)
L−→ N

(
0, A0

−1B0A0
−1) , (3.10)

where
L−→ means “converges in distribution to”. In other words, the asymptotic

covariance matrix of
√
T
(

Φ̂− Φ0

)

is equal to A0
−1B0A0

−1, where A0 is the infor-

mation matrix evaluated at the true parameter vector Φ0, i.e.

A0 = −T−1
T∑

t=1

E

(
∂2lt(Φ0)

∂Φ∂Φ′

)

, (3.11)

and B0 is the expected value of the outer product of the score matrix,

B0 = T−1
T∑

t=1

E

(
∂lt(Φ0)

∂Φ

∂lt(Φ0)

∂Φ′

)

. (3.12)

Obviously, when the conditional density is truly normal, the matrices A0 and B0

are identical (except for the sign) and the asymptotic covariance matrix of the ML

estimator is given by A−10 .

The matrices A0 and B0 can be consistently estimated by:

ÂT (Φ̂) = −T−1
T∑

t=1

(

∂2lt(Φ̂)

∂Φ∂Φ′

)

(3.13)

B̂T (Φ̂) = T−1
T∑

t=1

(

∂lt(Φ̂)

∂Φ

∂lt(Φ̂)

∂Φ′

)

. (3.14)

An analytical solution of ÂT (Φ̂) and B̂T (Φ̂) is provided by Engle (1982) in the

case of an ARCH (q) model, Fiorentini, Calzolari, and Panattoni (1996) in the

case of a GARCH (p, q) model and Lombardi and Gallo (2001) for the FIGARCH

(p, d, q).

Even when the QML procedure provides a tractable solution to find a consis-

tent estimator, this estimator is inefficient, with the degree of inefficiency increas-

ing with the degree of departure from normality (see Engle and González-Rivera,

1991). To gain in efficiency one could thus search for a more appropriate distri-

bution. A possible candidate distribution is the skewed Student density presented
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in Chapter 2. To quantify the potential efficiency gain in using a skewed Student

density (if this assumption holds), one can compute for a parameter φ, its ratio of

Relative Efficiency (RE) of the QML estimator. Following Engle and González-

Rivera (1991), the RE is defined as follows:

REφ =
var

(

φ̂MLE

)

var
(

φ̂QML

) (3.15)

and is the ratio of the asymptotic variance of estimators of φ when the true density

is known (the skewed Student) to its asymptotic variance when normality has been

assumed (QML). var
(

φ̂QML

)

is obtained by using Eq. (3.10) (replacing A0 and

B0 by ÂT (Φ̂) and B̂T (Φ̂)) while var
(

φ̂MLE

)

is obtained using the standard MLE

techniques, i.e. it is the asymptotic variance of the MLE estimator based on the

true density. A consistent estimate of the variance covariance matrix of Φ̂T is given

by Â−1T (Φ̂) or B̂−1T (Φ̂) where lt in Eq. (3.13) and (3.14) is the skewed Student log-

likelihood function reported in Eq. (3.5).

The RE ratio is bounded: 0 < RE ≤ 1.6 Obviously, if the density is truly

normal, A0φ = −B0φ and thus REφ = A0φ
−1
A0φB

0
φ
−1
A0φ = 1 and consequently, as the

efficiency of the QML estimator decreases, RE tends towards 0.

In Table 3.1, we report the RE results for different values of the parameters of

a skewed Student GARCH model. This model is specified as follows:

yt = µ+ εt (3.16)

εt = σtzt (3.17)

σ2t = ω + α1ε
2
t−1 + β1σ

2
t−1, (3.18)

where zt is i.i.d. SKST (0, 1, ξ, υ).

The covariance matrix of the set of parameters Φ = (µ, ω, α, β)′ is first ob-

tained using the QML estimator (see Eq. (3.10)) and second using the MLE (with

the true density) as the inverse of expectation of the outer product of the score.

The computation of the score vector and the Hessian matrix in the QML proce-

6This result holds asymptotically. However, in small sample it is possible that this constraint
does not hold.

57



CHAPTER 3. ANALYTICAL SCORES AND GAUSSIAN QML RELATIVE EFFICIENCY

dure can be done using numerical approximations.7 Instead, and in order to have

more accurate estimations, we follow Fiorentini, Calzolari, and Panattoni (1996)

who provide the analytical scores and the analytical Hessian of the GARCH (p, q)

model when the innovations are normally distributed.8 To compute the variance

covariance matrix of the MLE (skewed Student), we use analytical scores presented

in section 3.4 and again follow Fiorentini, Calzolari, and Panattoni (1996) for the

computation of the partial derivatives with respect to the GARCH model. In this

experiment, we use two sets of parameter values for the GARCH model. In the

first one (columns 3 to 6), µ = 0.1, ω = 0.1, α1 = 0.1, β = 0.8 while in the second

one (columns 7 to 10) µ = 0.1, ω = 0.1, α1 = 0.4, β = 0.5. On the other hand, the

innovations zt are skewed Student distributed, i.e. zt ∼ i.i.d. SKST (0, 1, ξ, υ). To

illustrate the link between the skewness and fat-tails parameters, we use a set of

24 combinations of ln(ξ) and υ, i.e. ln(ξ) = 0, 0.1, . . . , 0.5 and υ = 30, 15, 8, 5. The

number of observations T = 106.

From Table 3.1, one clearly sees that the efficiency of the QML estimator in-

creases when υ increases and ln(ξ) decreases (with less evidence for the mean pa-

rameter µ), in other words, when the skewed Student density tends to the normal.

These results are in line with those of Engle (1982) who present similar results but

for Student and Gamma innovations (the latter is both skewed and fat-tailed). For

example, when ln(ξ) = 0.1 (which means that the skewed Student density allocates

55 % of the mass to right side of the mode) and υ = 5, the coefficient of skewness

of zt is 0.44 (0 for the Gaussian density), while its kurtosis equals 9.35 (3 for the

normal).9 The resulting RE ratio is about 0.44 for the GARCH parameters which

means that in that case the asymptotic variance of the QML estimator is around

2.5 times larger than the variance of the MLE estimator (minimum variance).10

These results hold also for left skewed innovations, i.e. ln(ξ) = 0,−0.1, . . . ,−0.5.
Note that this procedure requires the evaluation of the score function of the skewed

Student likelihood when this density is nearly Gaussian (υ = 30 and ln(ξ) = 0).

7The Hessian matrix can be obtained numerically in GAUSS using the standard procedure
HESSP.

8The computation of the Hessian matrix has been done using a slightly modified version of
the gauss procedures provided by Franses and van Dijk (2000). The programs can be downloaded
from < http : //www.few.eur.nl/few/people/franses >.

9The formulas used to compute the skewness and kurtosis of the innovation process, for a
given value of ξ and υ, are given in Chapter 2, Eq. (2.24) and (2.25).

10Different values of α and β do not seem to affect much the RE ratios.
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Recalling from the previous section that numerical techniques are known to give

very poor results in this situation justify our choice for the use of analytical gra-

dients.

QML can thus provide consistent estimators of the asymptotic covariance ma-

trix. However, the results presented in the above table suggest that using the

correct density in the maximization procedure may provide more accurate estima-

tors of the covariance matrix (at least asymptotically) and thus may increase the

behavior of the tests statistics based on this estimator.11

3.6 APARCH specification

We have shown in Chapter 2 that an APARCH model, combined with a skewed

Student density performs very well in modelling and forecasting daily financial

returns. The APARCH (Ding, Granger, and Engle, 1993) is an extension of the

GARCH model of Bollerslev (1986). It is probably one of the most promising

ARCH-type model. Indeed, it nests at least seven GARCH specifications. The

APARCH(p, q) can be defined as follows:

yt = x′1,tµ+ εt (3.19)

εt = σtzt (3.20)

σδt = x′2,tω +

q
∑

i=1

αik(εt−i)
δ +

p
∑

j=1

βjσ
δ
t−j (3.21)

k(εt−i) = |εt−i| − γiεt−i, (3.22)

where x1,t and x2,t are two vectors of respectively n1 and n2 weakly exogenous vari-

ables (including the intercept), µ, ω, αi’s,γi’s,βj’s and δ are parameters (or vectors

of parameters) to be estimated. δ (δ > 0) plays the role of a Box-Cox transforma-

tion of σt, while the γi’s allow a different effect of a positive and a negative shock

on volatility. The properties of the APARCH model have been studied recently

by He and Teräsvirta (1999a, 1999b). It is convenient to start the recursion of

Eq. (3.21) by setting unobserved components to their sample average, i.e. setting

k(εt−i)
δ = 1

T

T∑

s=1

(|εs| − γiεs)
δ for t ≤ i and σδt =

(

1
T

T∑

s=1

ε2s

) δ
2

for t ≤ 0.

11As mentioned by Engle (1982), the precision of the forecast can also be affected.
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3.6. APARCH SPECIFICATION

To the best of our knowledge, up to now, the analytical gradients of the

APARCH model have not been provided in the literature. This is probably due to

the high degree of nonlinearity of this specification which makes their computation

less trivial than in the ARCH case.

To achieve this goal, let us define γ = (γ1, . . . , γq, ) the vector of q “lever-

age effect” parameters, dt =
(
x2,t, k(εt−1)

δ, . . . , k(εt−q)
δ, σδt−1, . . . , σ

δ
t−p
)′

and η =

(ϑ′, γ′, δ)′ the vector of (n2 + 2q + p + 1) unknown parameters of the conditional

dispersion equation, where ϑ = (ω′, α1, . . . , αq, β1, . . . , βp)
′.12

From Eq. (3.6), one can see that differentiating the log-likelihood function with

respect to µ requires an analytical expression for ∂εt
∂µ

. In our case, the solution is

trivial and is: ∂εt
∂µ

= −x′1,t. As shown in Eq. (3.6) and (3.7), differentiating the

log-likelihood function with respect to µ and η also requires the computation of
∂σ2

t

∂µ

and
∂σ2

t

∂η
while in the APARCH specification, a power transform of the conditional

variance is modelled (σδt ). One can solve this problem by re-writing σ2t as
(
σδt
) 2
δ

which leads to:

∂σ2t
∂(µ′, ϑ′, γ′)

=
2σ2t
δσδt

∂σδt
∂(µ′, ϑ′, γ′)

(3.23)

and

∂σ2t
∂δ

=
2σ2t
δσδt

(
∂σδt
∂δ

− σδt ln(σ
δ
t )

δ

)

. (3.24)

Our goal is thus to find a tractable solution of
∂σδt
∂µ

and
∂σδt
∂η

which can be done

in four steps.

• First step. Given the choice we made for the initial values of the pre-sample

terms k(εt−i)
δ and σδt , differentiating with respect to the conditional mean

12Note that the APARCH model is compatible with the parameterization given in Eq. (3.3)
and (3.4). Indeed, in this case c(µ|Ωt−1) = x′1,tµ and

h(µ, η|Ωt−1) =
[

x′2,tω +
∑q

i=1 αik(εt−i)
δ +

∑p
j=1 βjσ

δ
t−j

] 1
δ

.

61



CHAPTER 3. ANALYTICAL SCORES AND GAUSSIAN QML RELATIVE EFFICIENCY

parameters (µ) gives:

∂σδt
∂µ

= δ

q
∑

i=1

αi
[
k(εt−i)

δ−1(I∗t−i + γi)x1,t−i
]=(t−i)

×
[

1

T

T∑

s=1

(|εs − γiεs|)δ−1 (I∗s + γi)x1,s

]1−=(t−i)

+

p
∑

j=1

βj

(

∂σδt−j
∂µ

)=(t−j)



− δ

T

(

1

T

T∑

s=1

ε2s

) δ−2
2 T∑

s=1

εsx1,s





1−=(t−j)

(3.25)

where

I∗t =

{
−1 if εt > 0
1 if εt < 0

and =t =

{
1 if t > 0
0 if t ≤ 0

.

Note that I∗t = ∂|εt|
∂µ

and is not defined for εt = 0. However, even is situation

is possible, it is almost unlikely in practice.

• Second step.

∂σδt
∂ϑ

= dt +

p
∑

j=1

βj
∂σδt−j
∂ϑ

, (3.26)

where
∂σδt
∂ϑ

= 0 for t ≤ 0.

• Third step. In a similar way, one can show that:

∂σδt
∂γ

= d∗t +

p
∑

j=1

βj
∂σδt−j
∂γ

, (3.27)

where d∗t is a (1× q) vector whose ith element is αi
∂k(εt−i)

δ

∂γi
with

∂k(εt−i)
δ

∂γi
=







−δk(εt−i)δ−1εt−i if t > 0

− δ
T

T∑

s=1

(|εs − γiεs|)δ−1 εs if t ≤ 0
(3.28)

and
∂σδt
∂γ

= 0 for t ≤ 0.
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• Last step. Finally, differentiating with respect to the δ gives:

∂σδt
∂δ

=

q
∑

i=1

αi
[
k(εt−i)

δ ln k(εt−i)
]=(t−i)

[

1

T

T∑

s=1

(|εs| − γiεs)
δ ln(|εs| − γiεs)

]1−=(t−i)

+

p
∑

j=1

βj

(

∂σδt−j
∂δ

)=(t−j)



0.5

(

1

T

T∑

s=1

ε2s

) δ
2

ln

(

1

T

T∑

s=1

ε2s

)



1−=(t−j)

. (3.29)

3.7 Empirical application

In this empirical application we consider daily data for a stock market indexes, i.e.

the NIKKEI stock index for the period 4/1/1984 - 21/12/2000 (4246 observations,

source: Datastream).

We consider an APARCH(1, 1) specification:

yt = µ+ εt

σδt = ω + α1 (|εt−1| − γεt−1)
δ + β1σ

δ
t−1

zt ∼ i.i.d. SKST (0, 1, ξ, υ).

As in Chapter 2, estimation has been first considered using numerical gradients.

In a second step (using the same starting values as in the first case), estimation has

been carried out using the analytical gradients presented in the previous sections.

Table 3.2 presents QML estimation results of the APARCH(1,1) with a skewed

Student pseudo-likelihood.

Several comments are in order.

1. First, the extra flexibility of the APARCH specification is required. Both

the asymmetry coefficient (γ) and the power (δ) estimates suggest that a

usual GARCH model is not appropriate to model the NIKKEI. This is also

confirmed by Likelihood Ratio (LR) tests for the null hypothesis H0 : δ = 1

and γ = 0 (not reported here to save space).

2. Likelihood ratio tests (not reported) and standard t-test clearly suggest that

the skewed Student density outperforms the normal and Student densities.

The distribution of the NIKKEI is highly kurtosed and left skewed. It seems

moreover that the asymmetry feature of the APARCH model (characterizing
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Table 3.2: Skewed Student APARCH

Numerical Score Analytical Score

µ 0.03425 (0.01434) 0.03401 (0.01496)

ω 0.02468 (0.00445) 0.02470 (0.00449)

α1 0.10664 (0.01097) 0.10664 (0.01098)

γ 0.48505 (0.06881) 0.48521 (0.06937)

β1 0.89495 (0.01028) 0.89495 (0.01030)

δ 1.21853 (0.14072) 1.21835 (0.14106)

ln(ξ) -0.05315 (0.02210) -0.05326 (0.02228)

υ 6.47140 (0.58282) 6.47150 (0.58389)

Time (in sec.) 19.28 7.69

the conditional variance) and the “skewness” coefficient of the unconditional

density are both necessary to explain the overall asymmetry of the series.

3. Comparing columns 2 and 3, one can see that numerical scores give very

similar results to the analytical ones. This result is not surprising due to the

fact that υ is quite low in this example (see section 3.4). However, one can see

that using the analytical scores highly speeds up the estimation procedure

(using the same starting values in both cases). Using the analytical scores is

about three times faster.

3.8 Conclusion

In the empirical literature, various densities have been proposed to account for the

asymmetry and the fat-tails that we generally observe for high-frequency financial

returns. These densities are in general combined with a complex specification for

the conditional variance because these series are known to be heteroscedastic.

A common feature of nearly all the empirical applications that rely on a non-

normal density for the innovations and/or a complex specification for the con-

ditional variance is that these models are estimated by (approximate) maximum

likelihood methods and use numerical techniques to approximate the derivatives
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of the likelihood function with respect to the parameter vector. To avoid numeri-

cal inefficiencies and highly speed-up maximum-likelihood estimations we provide

numerically reliable analytical expressions for the score vector when the likelihood

function is a (standardized) skewed Student density and the conditional variance

follows an APARCH(p, q) specification (which nests at least seven GARCH mod-

els). This choice has been motivated by the fact that this density is flexible enough

to be skewed and fat-tailed, two features shared with most high-frequency financial

time-series. We have also illustrated the loss of efficiency of the Gaussian QML

estimator when the innovations are skewed and/or fat-tailed.

Up to now, attention has been restricted to univariate ARCH-type models and

inevitably univariate densities. In this univariate framework, the skewed Student

density appears to be a promising specification to accommodate both the high

kurtosis and the skewness inherent to most asset returns. Given the interpretation

of shocks as news and the fact that at least certain items affect various assets

simultaneously, it might be suggested that the volatility of different assets moves

together over time. It could thus be interesting to consider multivariate ARCH-

type models to describe the volatility of these assets jointly. The estimation of

these multivariate models often relies on the normality assumption (for simplic-

ity). The next chapter will be devoted to show that the methodology we have

presented in the previous chapter can be extended to provide a tractable solution

to introduce skewness in any continuous unimodal and symmetric multivariate

distribution (provided that the first two conditional moments of the marginal dis-

tributions exist).
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Chapter 4

A New Class of Multivariate
Skewed Densities, with
Application to GARCH Models

4.1 Introduction

Many time series of asset returns can be characterized as serially dependent. This

is revealed by the presence of positive autocorrelation in the squared returns, and

sometimes to a much smaller extent by autocorrelation in the returns. We have

shown in the previous chapters that the most widespread modelling approach to

capture these properties is to specify a dynamic model for the conditional mean

and the conditional variance, such as an ARMA-GARCH model or one of its

various extensions (see the seminal paper of Engle, 1982). However, the first

two conditional moments are not the only game in town. Indeed, Peiró (1999)

emphasizes the relevance of modelling of higher-order moments for asset pricing

models, portfolio selection and option pricing theories. Moreover, for asset returns

that are skewed and fat-tailed, it is crucial to account for these features in order

to obtain accurate Value-at-Risk forecasts (see Chapters 5 and 6).

Although there is a huge literature on univariate ARCH models, much less

papers are concerned with their multivariate extensions. For this reason, Geweke

and Amisano (2001) argue that “while univariate models are a first step, there is an

urgent need to move on to multivariate modelling of the time-varying distribution

of asset returns”. Indeed, financial volatilities move together over time across assets

and markets. Recognizing this commonality through a multivariate modelling
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framework can lead to obvious gains in efficiency and to more relevant financial

decision making than working with separate univariate models.

Among the most widespread multivariate GARCH models, we find the Con-

stant Conditional Correlations model (CCC) of Bollerslev (1990), the Vech of Kraft

and Engle (1982) and Bollerslev, Engle, and Wooldridge (1988), the BEKK of En-

gle and Kroner (1995), the Factor GARCH of Ng, Engle, and Rothschild (1992),

the General Dynamic Covariance (GDC) model of Kroner and Ng (1998), the

Dynamic Conditional Correlations (DCC) model of Engle (2001) and the Time-

Varying Correlation (TVC) model of Tse and Tsui (1998).1

The estimation of multivariate GARCH models is commonly done by maxi-

mizing a Gaussian likelihood function. Even if it is unrealistic in practice, the

normality assumption may be justified by the fact that the Gaussian QML estima-

tor is consistent provided the conditional mean and the conditional variance are

specified correctly. In this respect, Jeantheau (1998) has proved the strong conver-

gence of the QML estimator of multivariate GARCH models, extending previous

results of Lee and Hansen (1994) and Lumsdaine (1996).

As far as financial applications are concerned, and in order to gain statistical

efficiency, it is of primary importance to base modelling and inference on a more

suitable distribution than the multivariate normal. The challenge to econometri-

cians is to design multivariate distributions that are both easy to use for inference

and compatible with the skewness and kurtosis properties of financial returns.

Otherwise it is very likely that the estimators will not be consistent (see Newey

and Steigerwald, 1997).

To the best of our knowledge, asymmetric and fat-tailed k-variate distribu-

tions with support on the full Euclidian space of dimension k are uncommon. The

main contribution of this chapter is to propose a practical and flexible method

to introduce skewness in multivariate symmetric distributions by generalizing the

technique presented in the previous chapter. Applying this procedure to the multi-

variate Student density leads to a “multivariate skewed Student” density, in which

each marginal has a specific asymmetry coefficient. Combined with a multivariate

GARCH model, this new family of distributions is potentially useful for modelling

1Alternatively, Harvey, Ruiz, and Shephard (1994) propose a multivariate stochastic variance
model, which has been extended in various ways. Even if this kind of model is also attractive,
we limit our attention to multivariate GARCH models.
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stock returns. In an application to the daily returns of the CAC40, NASDAQ,

NIKKEI and the SMI, it is found that this density suits well the data and clearly

outperforms its symmetric competitors.

The chapter is organized in the following way. In Section 4.2, we briefly review

the univariate skewed Student density proposed by Fernández and Steel (1998)

and extended in Chapter 2. In Section 4.3, we describe the new family of multi-

variate skewed densities, and in Section 4.4 we apply it in a multivariate GARCH

framework. Finally, we offer our conclusions and ideas for further developments in

Section 4.5.

4.2 Univariate case

A series of financial returns yt (t = 1, . . . , T ), known to be typically conditionally

heteroscedastic, may be modelled as follows:

yt = µt + εt (4.1)

εt = σtzt (4.2)

µt = c(µ|Ωt−1) (4.3)

σt = h(µ, η|Ωt−1), (4.4)

where c(.|Ωt−1) and h(.|Ωt−1) are functions of Ωt−1 (the information set at time

t − 1), depending on unknown vectors of parameters µ and η, and zt is an inde-

pendently and identically distributed (i.i.d.) process with E(zt) = 0, V ar(zt) = 1.

Assuming that their corresponding conditional moments exist, µt is the conditional

mean of yt and σ
2
t is its conditional variance.

4.2.1 Skewed Student densities

Another well established stylized fact of financial returns, at least when they are

sampled at high frequencies, is that they exhibit fat-tails, which corresponds to a

kurtosis coefficient larger than three. Furthermore, in general these series are not

symmetrically distributed (see Hansen, 1994, and Peiró, 1999 among others). To

accommodate the unconditional skewness and excess kurtosis, we have proposed

in Chapter 2 to replace the normal distribution used originally in GARCH models

by the skewed Student distributions (see Definition 1).
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The main advantages of this density are its ease of implementation, that its pa-

rameters have a clear interpretation, and that it performs well on financial datasets

(see Paolella, 1997; Lambert and Laurent, 2001; Giot and Laurent, 2001a and Giot

and Laurent, 2001b). Moreover, we have shown how to obtain the cumulative dis-

tribution function (cdf) and the quantile function of a standardized skewed density

from the cdf and quantile function of the corresponding symmetric density.

4.2.2 Empirical illustration

In this illustration, we consider four stock market indexes: the French CAC40,

US NASDAQ, Japanese NIKKEI and Swiss SMI from January 1991 to December

1998 (1816 daily observations; source: Datastream). The daily return is defined

as yt = 100× (ln pt − ln pt−1) where pt is the stock index value of day t.

We use the model defined by Eq. (4.1-4.4) with the following conditional mean

and variance equations:

µt = µ+ φ(yt−1 − µ) (4.5)

σ2t = ω + βσ2t−1 + αε2t−1, (4.6)

where µ, φ, ω, β, and α are parameters to be estimated. An autoregressive model

of order one is chosen for the conditional mean to allow for possible autocorrelation

in the daily returns, while a GARCH(1,1) specification -see Bollerslev (1986)- is

chosen for the conditional variance to account for volatility clustering in a simple

way. We have shown in the first chapter that an APARCH(1,1) model seems to be

indicated with daily returns of the NASDAQ. More sophisticated ARCH models

could also be used (see Appendix A for a review of the major specifications).

However, we rely on a simple GARCH specification to make easier the comparison

with the multivariate model.

To account for possible skewness and fat tails, we estimated the AR(1)-GARCH

(1,1) model assuming a skewed Student density for the innovations. In order to

assess the practical relevance of this density, we compare the estimation results with

two other assumptions regarding the innovations density: the normal (obtained

when υ tends to infinity and ξ = 1), and the symmetric Student (obtained by

setting ξ = 1). Results concerning the CAC40 and the NASDAQ are gathered in

Table 4.1 and those concerning the NIKKEI and the SMI are reported in Table

4.2. Several comments are in order:

70



4.2. UNIVARIATE CASE

Table 4.1: ML estimation results of AR-GARCH models for the CAC40 and the
NASDAQ

Normal Student skewed Student

CAC40; NASDAQ CAC40 ; NASDAQ CAC40 ; NASDAQ

µ 0.051 ; 0.111 0.057 ; 0.137 0.053 ; 0.099

(0.029) ; (0.027) (0.027) ; (0.023) (0.027) ; (0.023)

φ 0.052 ; 0.177 0.044 ; 0.171 0.044 ; 0.152

(0.026) ; (0.026) (0.023) ; (0.024) (0.023) ; (0.024)

ω 0.094 ; 0.092 0.043 ; 0.055 0.042 ; 0.053

(0.074) ; (0.036) (0.028) ; (0.026) (0.027) ; (0.025)

β 0.860 ; 0.766 0.915 ; 0.827 0.915 ; 0.826

(0.076) ; (0.063) (0.037) ; (0.052) (0.037) ; (0.052)

α 0.078 ; 0.153 0.056 ; 0.124 0.056 ; 0.128

(0.034) ; (0.043) (0.022) ; (0.035) (0.022) ; (0.035)

ln(ξ) 0 ; 0 0 ; 0 -0.014 ; -0.158

(0.031) ; (0.034)

υ ∞ ; ∞ 8.657 ; 5.685 8.714 ; 5.938

(1.918) ; (0.753) (1.933) ; (0.817)

Q20 27.511 ; 17.830 30.652 ; 17.925 27.289 ; 19.526

Q220 8.682 ; 7.815 11.302 ; 10.720 10.990 ; 10.983

P20 30.608 ; 62.344 10.531 ; 37.815 17.782 ; 12.338

(0.044) ; (0.000) (0.938) ; (0.006) (0.537) ; (0.870)

SIC 3.229 ; 2.802 3.197 ; 2.728 3.202 ; 2.720

Log-Lik -2911.6 ; -2524.6 -2879.9 ; -2453.7 -2879.8 ; -2442.9

Each column reports the ML estimates of the model defined by Eq. (4.1)-(4.2)-

(4.5)-(4.6), with robust standard errors underneath in parentheses. The column

headed “Normal” corresponds to zt ∼ N(0, 1), “Student” to zt ∼ ST (0, 1, υ) as

in Eq. (2.13), “Skewed Student” to zt ∼ SKST (0, 1, ξ, υ) as in Eq. (2.30), and

in all cases zt is an i.i.d. process. Q20 is the Box-Pierce statistic of order 20 on

the standardized residuals, Q2
20 is the same for their squares, P20 is the Pearson

goodness-of-fit statistic (using 20 cells) with the associated p-value underneath in

parentheses (see footnote 2). SIC is the Schwarz information criterion (divided

by the sample size), and Log-Lik is the log-likelihood value at the maximum. The

sample size is equal to 1816.

71



CHAPTER 4. A NEW CLASS OF MULTIVARIATE SKEWED DENSITIES

Table 4.2: ML estimation results of AR-GARCH models for the NIKKEI and the
SMI

Normal Student skewed Student

NIKKEI; SMI NIKKEI ; SMI NIKKEI ; SMI

µ -0.004 ; 0.110 -0.021 ; 0.123 -0.031 ; 0.102

(0.030) ; (0.023) (0.026) ; (0.020) (0.028) ; (0.021)

φ -0.014 ; 0.070 -0.026 ; 0.039 -0.028 ; 0.028

(0.025) ; (0.026) (0.023) ; (0.025) (0.023) ; (0.026)

ω 0.061 ; 0.147 0.040 ; 0.063 0.039 ; 0.058

(0.036) ; (0.066) (0.016) ; (0.024) (0.015) ; (0.022)

β 0.894 ; 0.731 0.902 ; 0.810 0.903 ; 0.817

(0.035) ; (0.058) (0.018) ; (0.049) (0.018) ; (0.047)

α 0.080 ; 0.141 0.082 ; 0.136 0.082 ; 0.134

(0.024) ; (0.028) (0.016) ; (0.035) (0.016) ; (0.033)

ln(ξ) 0 ; 0 0 ; 0 -0.035 ; -0.101

(0.034) ; (0.034)

υ ∞ ; ∞ 5.950 ; 6.273 5.895 ; 6.364

(0.845) ; (1.085) (0.825) ; (1.096)

Q20 14.198 ; 12.271 14.29 ; 11.212 14.372 ; 11.836

Q220 5.876 ; 1.377 6.617 ; 2.433 6.662 ; 2.454

P20 47.225 ; 51.567 13.837 ; 26.818 15.843 ; 16.570

(0.000) ; (0.000) (0.793) ; (0.108) (0.667) ; (0.618)

SIC 3.562 ; 2.894 3.494 ; 2.788 3.498 ; 2.787

Log-Lik -3214.1 ; -2607.9 -3148.9 ; -2507.6 -3148.4 ; -2503.2

Note: see Table 4.1.
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- The AR(1)-GARCH(1,1) specification seems to be adequate for capturing the

dynamics of the four series. Indeed, looking at the Box-Pierce statistics with

20 lags on the standardized residuals (Q20) and the squared standardized

residuals (Q220), one cannot reject the assumption of lack of autocorrelation

in the innovation process and its square (except perhaps for the CAC40 where

the standardized residuals are still slightly serially correlated);

- The estimated number of degrees of freedom υ is about 6 for the NASDAQ,

NIKKEI and SMI and about 9 for the CAC40, which indicates that the

returns are fat-tailed. Moreover, the differences between the likelihood of

the normal and the Student densities are so big that there is little doubt

that the latter should be preferred to the former (despite the fact that the

LR test is presumably non-standard);

- The estimated skewness parameter ln(ξ) is negative and different from 0 at con-

ventional levels of significance for the NASDAQ and the SMI, while it is not

different from 0 for the CAC40 and the NIKKEI. The distribution of returns

of the NASDAQ and the SMI is therefore characterized by negative skewness,

while the other series appear to be symmetrically distributed over the period

under consideration. Notice however that since the skewed Student density

has the symmetric Student density as a limiting case, it is also adequate for

the CAC40 and the NIKKEI (resulting perhaps in a small loss of efficiency);

- Using the Schwarz information criterion to discriminate between the three den-

sities, one should select the skewed Student for the NASDAQ and the SMI

and the Student for the others;

- Finally and more importantly, the relevance of the skewed Student distribution

is also confirmed by the Pearson goodness-of-fit statistics.2 This test is in

fact equivalent to an in-sample density forecast test, as proposed recently

by Diebold, Gunther, and Tay (1998). While the normal and the Student

distributions are clearly rejected for the NASDAQ (the p-values being very

small), the skewed Student density seems to be supported (p-value = 0.87).

2Recall that the asymptotic distribution of P (g) is bounded between a χ2(g−1) and a χ2(g−
k − 1) where g is the number of cells and k is the number of estimated parameters. Since our
conclusions hold for both critical values, we report the significance levels relative to the first one.
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Similarly, one can see that the skewed Student density is appropriate for

modelling the SMI. Unsurprisingly, the normal density is rejected for the

CAC40 and the NIKKEI while the Student and the skewed Student are not

rejected at conventional levels of significance.

This example illustrates the potential usefulness of the skewed Student distri-

bution in a univariate volatility model. The skewness parameters of the four series

are different, but the numbers of degrees of freedom are almost identical for the

NASDAQ, NIKKEI and SMI, while the innovations of the CAC40 seem to have

less kurtosis. For modelling jointly the four series, it could therefore be useful to

have a multivariate density that would allow for different skewness and perhaps

different tail properties on each series.

4.3 Multivariate case

Consider a time series vector yt, with k elements, yt = (y1t, y2t, . . . , ykt)
′. A multi-

variate dynamic regression model with time-varying means, variances and covari-

ances for the components of yt generally takes the form:

yt = µt + Σ
1/2
t zt (4.7)

µt = C(µ|Ωt−1) (4.8)

Σt = Σ(µ, η|Ωt−1) (4.9)

where zt ∈ <k is an i.i.d. random vector with zero mean and identity variance

matrix. It follows that E(yt|µ,Ωt−1) = µt and V ar(yt|µ, η,Ωt−1) = Σ
1/2
t (Σ

1/2
t )′ =

Σt, i.e. µt is the conditional mean vector (of dimension k×1) and Σt the conditional

variance matrix (of dimension k × k).

Under the assumption of a correct specification of the conditional mean and

variance matrix, the efficient estimation of the above model is obtained by the ML

method, assuming zt to be a i.i.d. with a correctly specified distribution that may

depend upon a few unknown parameters. When the distribution of zt is assumed

to be the standard normal, the ML estimator obtained from the corresponding

likelihood function is consistent even if the normality assumption is incorrect (see

Bollerslev and Wooldridge, 1992). This well-known Gaussian QML procedure has

the advantage of robustness with respect to the distributional assumption of the
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4.3. MULTIVARIATE CASE

model. The QML estimator relying on a normal distribution is, however, ineffi-

cient, with the degree of inefficiency increasing with the degree of departure from

normality (see Engle and González-Rivera, 1991).

4.3.1 Multivariate symmetrical densities

Like in the univariate case, a natural candidate, apart from the normal density, is

the multivariate Student density with at least two degrees of freedom υ (in order

to ensure the existence of second moments). It may be defined as

g(zt|υ) =
Γ
(
υ+k
2

)

Γ
(
υ
2

)
[π(υ − 2)]

k
2

[

1 +
z′tzt
υ − 2

]− k+υ
2

, (4.10)

where Γ(.) is the Gamma function. This density is denoted ST (0, Ik, υ).

The density function of yt, easily derived from the density of zt by using the

transformation in Eq. (4.7), is given by

f(yt | µ, η, υ,Ωt−1) =
Γ(υ+k

2
)

Γ(υ
2
)[π(υ − 2)]

k
2

| Σt |−
1
2

[

1 +
(yt − µt)

′Σ−1t (yt − µt)

υ − 2

]− k+υ
2

.

(4.11)

While non-Gaussian QML methods provide more efficient estimators than the

Gaussian QML when the assumption made on the innovation process holds, it has

the main disadvantage that unlike the Gaussian QML, it does not provide a con-

sistent estimator when this assumption does not hold (see Newey and Steigerwald,

1997).

To overcome this problem, there is a need for skewed densities in the multi-

variate case. Such densities can be defined by introducing skewness in symmetric

densities by means of new parameters, such that the symmetric density results as

a particular case. In Section 4.3.2, we propose a simple and intuitive method to

introduce skewness into a multivariate “symmetric” unimodal density (with zero

mean and unit variance). Before that, we define the notion of symmetry that we

rely on.

In the univariate case, the symmetry property corresponds to g(x) = g(−x)
assuming g(x) is a unimodal probability density function and E(x) = 0. In the

multivariate case, we use the following definition of symmetry of a standardized

density g(x):
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Definition 2 (M-symmetry): The unimodal density g(x) defined on <k, such

that E(x) = 0, and V ar(x) = Ik, is symmetrical if and only if for any x, g(x) =

g(Qx), for all diagonal matrices Q whose diagonal elements are equal to +1 or to

-1. If x is a random vector with a density satisfying this definition, we write

x ∼M-Sym(0, Ik, g). (4.12)

In the bivariate case, this definition means that

g(x1, x2) = g(−x1, x2) = g(x1,−x2) = g(−x1,−x2), (4.13)

and in the trivariate case

g(x1, x2, x3) = g(−x1, x2, x3) = g(−x1,−x2, x3) = g(−x1,−x2,−x3) (4.14)

= g(x1,−x2, x3) = g(x1,−x2,−x3) = g(x1, x2,−x3) = g(−x1, x2,−x3).

Spherically symmetric (SS) densities, defined by the property that the density

depends on x through x′x only, i.e.

g(x) ∝ k(x′x), (4.15)

for an appropriate integrable positive function k(.), are M-symmetric. The most

well known examples of SS-densities3 are the standard normal density and the

standard Student density ST (0, Ik, υ). However, there exist other distributions

that have the desired property while not being spherically symmetric. A large

class is defined by

g(x) =
k∏

i=1

gi(xi), (4.16)

where gi(.), ∀i, is a univariate symmetric density (unimodal, with mean 0 and

unit variance). If gi(.) (∀i) is standard normal, there is no difference between

(4.16) and (4.15) with g(.) = N(0, Ik). Nevertheless, if gi(.) = ST (0, 1, υ) (∀i)
and g(.) = ST (0, Ik, υ), there is a difference between (4.16) and (4.15) since the

elements of (4.15) are not mutually independent whereas those of (4.16) are. Notice

that both multivariate densities have the same univariate marginal densities.

3Johnson (1987), chapter 6, provides graphical illustrations of several bivariate SS-densities.
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4.3.2 Multivariate skewed densities

Literature review

Jones (2000) has generalized the univariate skew-t density of Jones and Faddy

(2000), briefly described at the end of Section 2.1, to the multivariate case. His

multivariate skew-t density is such that each marginal is a univariate skew-t as

defined by Jones and Faddy (2000). However, his multivariate density has neces-

sarily positive covariances, and is therefore useless for a model such as defined by

Eq. (4.7), where it is essential that Var(zt) = Ik.

Mauleón and Perote (1999) use the bivariate Edgeworth-Sargan density for zt in

a bivariate constant correlation GARCH model, where each conditional variance is

specified like in a univariate GARCH(1,1) model. The Edgeworth-Sargan density

has as leading term a bivariate standard normal density, to which are added terms

that create the non-normality (these terms involve Hermite polynomials in each of

the marginal densities of the leading term). However, they use only a symmetrical

version of their density, because they choose not to include odd-order terms in the

expansion (such terms would induce asymmetry). Actually they include four even-

order terms in the expansion on each element of zt, under the motivation that these

terms induce fatter tails than for the leading normal density. This appears to us to

be a costly way, in term of the number of parameters, to introduce the possibility of

having fat tails. A multivariate Student density requires just one extra parameter,

with the drawback of constraining the same thickness of tails on each element of zt,

but this is easily extended by taking a product of independent Student densities in

the spirit of Eq. (4.16) (the last solution would require 2 parameters instead of 8 in

the bivariate case). Moreover, Mauleón and Perote (1999) report some difficulties

in obtaining the convergence of the numerical maximization of the log-likelihood

function based on their Edgeworth-Sargan density. At least for the time being,

this does not seem to be a fruitful approach.

Another recent paper, by Branco and Dey (2000), introduces a general class

of multivariate skew-elliptical distributions, and is therefore related to our work.4

Their work generalizes to the full class of elliptically contoured (EC) densities

earlier results by Azzalini and Capitanio (1996), who have defined a multivariate

4Sahu, Dey, and Branco (2001) use the skew-elliptical density in Bayesian regression anal-
ysis, by assuming the error terms to have this kind of distribution, rather than a symmetrical
distribution.
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skew-normal distribution. Any EC-density is obtained by linear transformation of a

SS-density: if z (of dimension k×1) is SS-distributed with density g(z), µ is a vector

of location parameters, and Ω is a k × k positive-definite symmetric scale matrix,

then x = µ + Ω1/2z is elliptically contoured, which is denoted x ∼ EC(µ,Ω; g)

(where g denotes the density of x). To obtain a skewed version of an EC-density,

Branco and Dey (2000) start from x∗ ∼ EC(µ∗,Ω∗; g∗), where x∗ = (x0, x
′)′ is a

vector of k + 1 elements. They partition µ∗ and Ω∗ as x∗, i.e.

µ∗ =

(
0
µ

)

, Ω∗ =

(
1 δ′

δ Ω

)

, (4.17)

where µ and δ are k × 1 vectors, and Ω is a k × k matrix. Then they define the

distribution of x conditional on x0 > 0 to be the skew-elliptical distribution based

on the density g∗(.), with parameters µ (location, or mean if it exists), Ω (scale

matrix, or variance matrix if it exists), and δ (a vector of skewness parameters),

i.e. x ∼ SKE(µ,Ω, δ; g). They show that the density of this random vector (call

it z) is given by

f(z) = 2g(z)G∗[λ
′(z − µ)], (4.18)

where g(.) is the marginal density of x derived from the density of x∗ (by prop-

erties of EC-distributions, it has the same functional form as g∗), G∗(.) is the

(univariate) cdf of an EC(0, 1; g∗), with g∗ appropriately defined (essentially from

the conditional density of x0 given x), and

λ =
δ′Ω−1

(1− δ′Ω−1δ)1/2
. (4.19)

It is therefore clear that the parameters δ (a set of covariances) create the skewness.

If they are all equal to 0, G∗[λ
′(z−µ)] = G∗(0) = 1/2, by symmetry of EC(0, 1; g∗),

and the density (4.18) becomes symmetrical. However, there is a constraint linking

these skewness parameters, namely that δ′Ω−1δ must be smaller than unity, see Eq.

(4.19). This is a constraint that is likely to complicate inference. In the context

of GARCH models with standardized innovations, Ω is an identity matrix (and

µ = 0), hence δ is a vector of correlation coefficients, and the constraint is that the

sum of squared correlations is less than one. To what extent this constraint limits

the degree of skewness is not known.5 Another drawback of this approach is that if

5If k = 1, the constraint is not limitative.

78



4.3. MULTIVARIATE CASE

one wants to introduce some dynamics in the skewness parameters, the constraint

would be different for each observation, which would complicate the estimation

dramatically. We conclude on this class of skewed densities by saying that it seems

an interesting, though seemingly more difficult to implement, alternative to the

class of skewed densities that we propose below, and that more work is needed to

compare the different classes of skewed densities

To accommodate both the skewness and kurtosis of six weekly rates of the

European Monetary System (EMS) expressed in terms of the Deutsche mark, Vlaar

and Palm (1993) propose to use a (Bernoulli) mixture of two multivariate normal

densities (coupled with an MA(1)-GARCH(1,1) model with constant correlations,

see Bollerslev, 1990).6 The size and the variance of the jumps are allowed to differ

across currencies. However, to render the estimation feasible, they assume (and

test) identical jump probability for all the series arguing that a stochastic shock

leading to a jump is likely to simultaneously affect all of the currencies in the

system. Even if this assumption is realistic for currencies that belong to the EMS,

it is unrealistic for stock indexes, for instance. Moreover, even if this density is

expressed in such a way that E(zt) = 0, the covariance matrix of zt is not an

identity matrix in their specification. Another drawback of this density is that the

parameters that govern the skewness and kurtosis have not a clear interpretation

because for each margin the jump probability, the size and the variance of the

jumps explain at the same time the variance, skewness and kurtosis in an highly

non-linear way (see Vlaar and Palm, 1993 for more details). To conclude about

this density, it suffers from a problem of non-identification of several parameters

when the mixture is not relevant (for instance when the jump probability equals 0

or 1), which makes the testing procedures non-standard.

Finally, we cannot refrain from mentioning a class of multivariate densities that

could be of interest: the so-called poly-t densities that contain the multivariate

Student density as a particular case. Poly-t densities arise as posterior densities in

Bayesian inference, see Drèze (1978), and can be heavily skewed, have fat tails and

even be multimodal. However, more work is required to discover how the skewness

of these densities depends on their parameters (see Richard and Tompa, 1980 for

results on moments of poly-t densities).

6This density is a generalization of the Bernoulli-normal mixture presented in Section 2.2.2.
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New skewed densities

We generalize to the multivariate case the method proposed by Fernández and Steel

(1998) to construct a skewed density from a symmetrical one. Let us consider the

k-dimensional random vector z∗ defined by:

z∗ = λ(τ) |x|, (4.20)

where

|x| = (|x1|, . . . , |xk|)′ , (4.21)

and

x ∼M -Sym(0, Ik, g). (4.22)

Moreover, λ(τ) is a k × k diagonal matrix defined by:

λ(τ) = τΞ− (Ik − τ) Ξ−1, (4.23)

where

τ = diag(τ1, . . . , τk), with τi ∈ {0, 1},

τi ∼ Ber

(
ξ2i

1 + ξ2i

)

, with ξi > 0,

ξ = (ξ1, . . . , ξk).

Ξ = diag(ξ).

Ber
(

ξ2i
1+ξ2i

)

denotes a Bernoulli distribution with probability of success
ξ2i
1+ξ2i

. It is

also assumed that the elements of τ are mutually independent.

For ease of exposition, we give the details of the derivation of the density of z∗

in the bivariate case, before giving the general formula.

Bivariate case

We can write the density of z∗ as a discrete mixture with respect to the distri-

bution of τ :

f(z∗|ξ) = Pr(τ1 = 1, τ2 = 1)f(z∗|ξ, τ1 = 1, τ2 = 1)

+ Pr(τ1 = 1, τ2 = 0)f(z∗|ξ, τ1 = 1, τ2 = 0)

+ Pr(τ1 = 0, τ2 = 1)f(z∗|ξ, τ1 = 0, τ2 = 1)

+ Pr(τ1 = 0, τ2 = 0)f(z∗|ξ, τ1 = 0, τ2 = 1). (4.24)
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By dividing the range of all possible values of z∗ ∈ <2 into the four quadrants, we

can write the right hand side of Eq. (4.24) in terms of the original M-symmetric

density g(.):

f(z∗|ξ) = 22Pr(τ1 = 1, τ2 = 1) |λ(1, 1)|−1 g[λ(1, 1)−1z∗] I(z∗1≥0;z∗2≥0)
+ 22Pr(τ1 = 1, τ2 = 0) |λ(1, 0)|−1g[λ(1, 0)−1z∗] I(z∗1≥0;z∗2<0)
+ 22Pr(τ1 = 0, τ2 = 1) |λ(0, 1)|−1g[λ(0, 1)−1z∗) I(z∗1<0;z∗2≥0)
+ 22Pr(τ1 = 0, τ2 = 0) |λ(0, 0)|−1g[λ(0, 0)−1z∗) I(z∗1<0;z∗2<0), (4.25)

where e.g. λ(1, 1) stands for λ(τ1 = 1, τ2 = 1) and for instance I(z∗1≥0;z∗2≥0) = 1

when z∗1 ≥ 0 and z∗2 ≥ 0, 0 otherwise. After some algebraic manipulations of (4.25)

using (4.23) and the assumption of independence of τ1 and τ2, we obtain:

f(z∗|ξ) = 22
ξ1

1 + ξ21

ξ2
1 + ξ22

{

g[λ(1, 1)−1z∗] I(z∗1≥0;z∗2≥0)

+ g[λ(1, 0)−1z∗] I(z∗1≥0;z∗2<0) + g[λ(0, 1)−1z∗] I(z∗1<0;z∗2≥0)

+ g[λ(0, 0)−1z∗] I(z∗1<0;z∗2<0)

}

, (4.26)

and finally,

f(z∗|ξ) = 22
ξ1

1 + ξ21

ξ2
1 + ξ22

g(κ∗), (4.27)

where

κ∗ = (κ∗1, κ
∗
2)
′ (4.28)

κi = z∗i ξ
−Ii
i (i = 1, 2) (4.29)

Ii =

{
1 if z∗i ≥ 0
−1 if z∗i < 0.

Applying this procedure to the bivariate Student distribution given by Eq.

(4.10) with k = 2 and x instead of zt, i.e. x ∼ ST (0, I2, υ), yields a “bivari-

ate skewed Student” density, in which both marginals have different asymmetry

parameters, ξ1 and ξ2.
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Multivariate case

It is straightforward to show that for any dimension k,

f(z∗|ξ) = 2k

(
k∏

i=1

ξi
1 + ξ2i

)

g(κ∗), (4.30)

where κ∗ is given in Eq. (4.28)-(4.29) for the bivariate case and is easily extended

to the multivariate case. Recall that for each margin z∗i , ξi has a clear interpreta-

tion since ξ2i is equal to the ratio of probability masses above and below the mode.

Remark also that when k = 1, one recovers the family of skewed densities proposed

by Fernández and Steel (1998).

Moments

A convenient property of this new family of skewed densities is that the marginal

moments are obtained by the same method and actually correspond to the same

formulas as in the univariate case. The r-th order moment of f(z∗|ξ) exists if the
r-th order moment of g(.) exists. In particular,

E (z∗i
r|ξ) =Mi,r

ξr+1i + (−1)r
ξr+1
i

ξi +
1
ξi

(4.31)

where

Mi,r =

∫ ∞

0

2urgi(u)du, (4.32)

and gi(.) is the marginal of xi extracted from g(x), while Mi,r is the r-th order

moment of gi(.) truncated to the positive real values. Provided that these quantities

are finite, we can obtain E(z∗i |ξi), V ar(z∗i |ξi), Sk(z∗i |ξi) and Ku(z∗i |ξi) using the

formulas given in Eq. (2.22-2.25), where Sk(.) and Ku(.) denote the skewness and

kurtosis coefficients, respectively.

Finally, it is obvious that the elements of z∗ are uncorrelated (since those of x

are uncorrelated by assumption), so that it is easy to transform z∗ so as to have

any specified correlation matrix.

Standardized skewed densities

The main drawback of the skewed density defined by Eq. (4.30) is that it is

not centered on 0 and the covariance matrix is a function of ξ (and of υ if g(.)
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is a multivariate Student density). As in the univariate case, one can solve this

problem by standardizing z∗.

Let us consider the following random vector:

z = (z∗ −m)./s (4.33)

where m = (m1, . . . ,mk) and s = (s1, . . . , sk) are the vectors of unconditional

means and standard deviations of z∗, and ./ means element by element division.

The above transformation amounts to standardize each component of z∗.

Following Lambert and Laurent (2001), if gi(.|υ) is a standardized Student

density (with υ > 2),

mi =
Γ
(
υ−1
2

)√
υ − 2

√
πΓ
(
υ
2

)

(

ξi −
1

ξi

)

(4.34)

and

s2i =

(

ξ2i +
1

ξ2i
− 1

)

−m2i . (4.35)

Definition 3 If (i) z is defined by Eq. (4.33-4.35), and (ii) z∗ has a density given

by Eq. (4.30), where g(x) is the Student density given by Eq. (4.10), then z is said

to be distributed as (multivariate) standardized skewed Student with asymmetry

parameters ξ = (ξ1, . . . , ξk), and degrees of freedom υ(> 2). This is denoted z ∼
SKST (0, Ik, ξ, υ). The density of z is given by

f(z|ξ, υ) =
(

2√
π

)k
(

k∏

i=1

ξisi
1 + ξ2i

)

Γ(υ+k
2
)

Γ(υ
2
)(υ − 2)

k
2

(

1 +
κ′κ

υ − 2

)− k+υ
2

. (4.36)

where

κ = (κ1, . . . , κk)
′ (4.37)

κi = (sizi +mi) ξ
−Ii
i (4.38)

Ii =

{
1 if zi ≥ −mi

si
−1 if zi < −mi

si
.

By construction, E(z) = 0 and Var(z) = Ik. If ξ = Ik, the SKST (0, Ik, ξ, υ)

density becomes the ST (0, Ik, υ) one, i.e. the symmetric Student density.

Assuming that yt is specified as in Eq. (4.7) and zt ∼ SKST (0, Ik, ξ, υ), the

density of yt is straightforwardly obtained (see how Eq. (4.11) is obtained from

Eq. (4.10)).
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Figure 4.1: Graph of the SKST (0, I2, (1, 1.3), 6) density

To illustrate, Figure 4.1 shows a graph of the SKST (0, I2, ξ, 6) density with

ξ1 = 1, ξ2 = 1.3, and the Panel A of Figure 4.2 shows its contours.

The first graph is oriented to show the asymmetry to the right along the

z2−axis, while the density is symmetric in the direction of the first coordinate

(z1). The contours show more clearly the skewness properties of the density in the

direction of z2, and its symmetry in the direction of z1. One also clearly sees that

the mode is not centered in zero (unlike in the non-standardized version).

4.3.3 Simulation

In order to assess the practical applicability of the ML method to the estimation of

the skewed Student distribution, we present the results of a small simulation study.

It is not our intention to provide a comprehensive Monte Carlo study. Our results,

however, provide some evidence on the properties of the MLE when a multivariate

standardized skewed Student distribution is assumed for the innovations. Consider

the bivariate case with yt = (y1,t, y2,t). The data generating process is given by
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Figure 4.2: Panel A refers to the contours of the bivariate SKST (0, I2, (1, 1.3), 6)
density illustrated in Figure 4.1. Panel B refers to the contours of a
SKST -IC(0, Ik, (1, 1.3), (6, 6)) (see Section 4.3.4)
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Eq. (4.7), with µt = µ = (0, 0)′, Σt = Σ a correlation matrix with off-diagonal

element equal to -0.2, zt ∼ SKST (0, I2, ξ, υ), where (ln(ξ1), ln(ξ2)) = (0.2,−0.2)
and υ = 8. This configuration implies that the innovations are skewed (with

skewness amounting to 0.53 and -0.53 respectively for z1 and z2) and have fat-tails

(the kurtosis equals 4.80 for both). The sample size is set to 20,000. Table 4.3

reports the DGP as well as the estimation results under three assumptions for the

innovations: normal, Student and (standardized) skewed Student densities.

From Table 4.3, it is clear that the ML method, under the correct density

(i.e. the skewed Student, see column 5), works reasonably well in the sense that

the estimates are very close to the “true” values. Table 4.3 also illustrates the

well known result of Weiss (1986) and Bollerslev and Wooldridge (1992) that (if

the mean and the variance are specified correctly) the Gaussian QML estimator

is consistent (but inefficient). Moreover, this table also confirms the result of

Newey and Steigerwald (1997) that the QML estimator with a Student pseudo-

likelihood is inconsistent when innovations are skewed. One can see that µ is rather

strongly biased under the Student density, whereas the other parameters seem

less affected in this experiment. To check the model adequacy, we use the same

diagnostic tools (on each innovation separately)7 as in the empirical illustration of

Section 2.2. These statistics suggest that the normal and Student densities are not

appropriate, while the skewed Student is. Notice that rejecting that the margins

are not correctly specified is sufficient to reject the assumption that the whole

density is not appropriate. However, the converse is obviously not true. Indeed,

accepting that the margins are well specified is necessary to accept that the whole

density is appropriate, but it is not sufficient.

4.3.4 Multivariate skewed densities with independent com-
ponents

An obvious variation with respect to the previous class of multivariate skewed

densities is obtained by starting from the product of k independent ST (0, 1, υi)

and applying to it the transformation defined by Eq. (4.20)-(4.21)-(4.23).

Definition 4 If (i) z is defined by Eq. (4.33-4.35), and (ii) where υ is simply

7Multivariate tests of adequacy of a distribution are more appropriate tools but are usually
difficult to implement. This is the reason why we use simple diagnostic tools, which should at
least help to detect a major misspecification.
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Table 4.3: QML estimation results of simple skewed Student DGP

DGP Normal Student Skewed Student

µ1 0.0 -0.001 -0.037 -0.000

(0.007) (0.007) (0.007)

µ2 0.0 0.004 0.046 0.003

(0.007) (0.007) (0.007)

σ21 1.0 0.985 0.982 0.992

(0.014) (0.012) (0.012)

σ22 1.0 0.994 0.989 0.998

(0.013) (0.012) (0.012)

ρ 0.2 -0.226 -0.219 -0.213

(0.008) (0.007) (0.007)

ln(ξ1) 0.2 - - 0.184

(0.010)

ln(ξ2) -0.2 - - -0.194

(0.010)

υ 8.0 - 7.903 8.316

(0.284) (0.306)

Q20 and Q
2
20(ẑ1) - 14.791 ; 18.893 14.763 ; 17.884 14.743; 17.275

Q20 and Q
2
20(ẑ2) - 21.942 ; 14.492 21.852 ; 13.826 21.773; 9.936

P40(ẑ1) - 475.768 (0.000) 316.240 (0.000) 34.504 (0.675)

P40(ẑ2) - 585.384 (0.000) 355.068 (0.000) 30.496 (0.833)

DGP: yt = µ+Σ1/2zt, t = 1, . . . , 20, 000, with µ = (µ1, µ2)
′, zt i.i.d. ∼ SKST (0, I2, ξ, υ) as

in Eq. (4.36), with ξ = (ξ1, ξ2); σ
2
i is the variance of yi (i = 1, 2), and ρ is the correlation co-

efficient between y1 and y2. The last four columns report the ML estimates (with the robust

standard errors underneath in parentheses) of the parameters of the model corresponding

to the DGP with different assumptions on the distribution of zt. The column headed “Nor-

mal” corresponds to zt ∼ N(0, I2), “Student” to zt ∼ ST (0, I2, υ) as in Eq. (4.10), “Skewed

Student” to zt ∼ SKST (0, I2, [ξ1, ξ2], υ). Q20(ẑi) and Q20(ẑ
2
i ) are the Box-Pierce statistics

of order 20 on the innovations ẑi and their squares. P40(ẑi) is the Pearson goodness-of-fit

statistic (using 40 cells) with the associated p-value beside (see footnote 2). ẑ is given by

Σ̂−1/2(yt − µ̂), where Σ̂ and µ̂ are obtained by replacing the parameters by their estimates

in the corresponding formulas and Σ̂−1/2 is obtained from the spectral decomposition of Σ̂.
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replaced by υi, z
∗ has a density given by Eq. (4.16), where gi(x) is the Student

density given by Eq. (2.13), then z is said to be distributed as a (multivariate)

skewed density with independent Student components, with asymmetry parameters

ξ = (ξ1, . . . , ξk), and degrees of freedom υ = (υ1, . . . , υk) (with υi > 2). This is

denoted z ∼ SKST -IC(0, Ik, ξ, υ). The density of z is given by:

f(z|ξ, υ) =
(

2√
π

)k
[

k∏

i=1

ξisi
1 + ξ2i

Γ(υi+1
2

)

Γ(υi
2
)
√
υi − 2

(

1 +
κ2i

υi − 2

)− 1+υi
2

]

, (4.39)

where κi is defined in Eq. (4.38).

Note that Eq. (4.39) is obtained equivalently by taking the product of k indepen-

dent SKST (0, 1, ξi, υi). The main advantage of (4.39) with respect to (4.36) is that

it enables a different tail behavior for each marginal, at the cost of introducing k−1

additional parameters. However, nothing prevents to constrain several degrees of

freedom parameters to be equal. If all the degrees of freedom parameters υi are

equal to the degrees of freedom υ of (4.36), the densities (4.39) and (4.36) have

exactly the same marginal moments. The fact that the components of (4.36) are

not independent implies that its cross-moments of order 4 or higher are functions

of a common single parameter υ and are thus less flexible than those of (4.39).

To illustrate, Panel B of Figure 4.2 shows the contours of the bivariate skewed

density with independent Student components whose parameters are ξ1 = 1, ξ2 =

1.3, υ1 = υ2 = 6. One can notice the difference with respect to the contours of

the Panel A of the same figure, which corresponds to the skewed Student with

non-independent margins. In Panel B, the contours look like less “elliptic” than in

Figure Panel A (see also the graphs in Johnson, 1987, Chapter 6, for the symmetric

versions of these densities).

4.4 Empirical application

In this section, we jointly model the four series already used in the univariate

application. The specification used to model the first two conditional moments is

the time-varying correlation GARCH model (TVC-GARCH) proposed by Tse and

Tsui (1998), with first-order ARMA dynamics in the conditional variances and the
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conditional correlation, and an AR(1) equation for each conditional mean.8 This

AR(1)-TVC(1,1)-GARCH(1,1) model is defined as follows:

yt = µt + Σ
1/2
t zt (4.40)

µt = (µ1,t, . . . , µ4,t)
′, zt = (z1,t, . . . , z4,t)

′ (4.41)

µi,t = µi + φi(yi,t−1 − µi) (i = 1, . . . , 4) (4.42)

Σt = DtΓtDt (4.43)

Dt = diag(σ1,t, . . . , σ4,t) (4.44)

σ2i,t = ωi + βiσ
2
i,t−1 + αiε

2
i,t−1 (i = 1, . . . , 4) (4.45)

εt = (ε1,t, . . . , ε4,t)
′ = yt − µt (4.46)

Γt = (1− θ1 − θ2)Γ + θ1Γt−1 + θ2Ψt−1 (4.47)

Γ =






1 ρ12 ρ13 ρ14
ρ12 1 ρ23 ρ23
ρ13 ρ23 1 ρ34
ρ14 ρ23 ρ34 1




 (4.48)

Ψt−1 = B−1t−1Et−1E
′
t−1B

−1
t−1 (4.49)

Bt−1 = diag

(
m∑

h=1

ε21,t−h, . . . ,

m∑

h=1

ε24,t−h

)1/2

(4.50)

Et−1 = (εt−1, . . . , εt−m) (4.51)

εt = (ε1,t, . . . , ε4,t)
′ = D−1t εt, (4.52)

where µi, φi, ωi, βi, αi (i = 1, . . . , 4), ρij (1 ≤ i < j ≤ 4), and θ1, θ2 are parameters

to be estimated.9 Ψt−1 is thus the sample correlation matrix of {εt−1, . . . , εt−m}.
Since Ψt−1 = 1 if m = 1, we must take m ≥ 4 to have a non-trivial correlation.

In this application, we set m = 4. Note that the TVC-MGARCH model nests the

constant correlation GARCH model of Bollerslev (1990). Therefore, we can test

θ1 = θ2 = 0 to check wether the constant correlation assumption is appropriate.

The estimation results of this model are gathered in Tables 4.4 and 4.5. A

QML estimation procedure has been done with four different likelihoods: normal

and Student in Table 4.4, skewed Student and skewed density with independent

Student components in Table 4.5.

8We implicitly assume that there is no Granger causality between the four series. A natural
extension would be to estimate a VAR model for the mean equation and test these restrictions.

9The parameters θ1 and θ2 are assumed to be nonnegative with the additional constraint that
θ1 + θ2 < 1.
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Table 4.4: ML estimation results of AR-TVC-GARCH model: normal and Student
distributions

Normal Student

CAC40 NASDAQ NIKKEI SMI CAC40 NASDAQ NIKKEI SMI

µi 0.089 0.130 0.014 0.128 0.087 0.139 0.003 0.136

(0.028) (0.025) (0.031) (0.025) (0.026) (0.022) (0.028) (0.021)

φi 0.014 0.092 0.024 0.085 0.017 0.103 0.012 0.064

(0.022) (0.026) (0.025) (0.023) (0.020) (0.024) (0.023) (0.021)

ωi 0.053 0.087 0.052 0.103 0.049 0.045 0.037 0.043

(0.030) (0.033) (0.027) (0.069) (0.024) (0.029) (0.014) (0.022)

βi 0.922 0.782 0.906 0.822 0.928 0.866 0.909 0.885

(0.032) (0.058) (0.025) (0.089) (0.025) (0.062) (0.015) (0.044)

αi 0.042 0.142 0.073 0.083 0.039 0.090 0.077 0.070

(0.013) (0.040) (0.017) (0.035) (0.011) (0.036) (0.013) (0.023)

ρij
CAC40 1 0.383 0.374 0.749 1 0.286 0.234 0.663

NASDAQ (0.103) 1 0.219 0.397 (0.038) 1 0.122 0.287

NIKKEI (0.111) (0.088) 1 0.383 (0.038) (0.037) 1 0.247

SMI (0.069) (0.087) (0.117) 1 (0.027) (0.038) (0.039) 1

θ1 0.992 0.964

(0.005) (0.033)

θ2 0.004 0.013

(0.002) (0.007)

ln(ξi) 0 0

υ ∞ 7.664

(0.680)

Q20(ẑi) 24.999 18.392 15.014 9.190 24.742 16.953 13.601 7.585

Q20(ẑ
2
i ) 23.753 6.698 7.998 4.302 24.244 11.814 8.133 4.197

P20(ẑi) 26.708 79.909 45.661 52.074 10.663 43.809 17.319 16.548

(0.111) (0.000) (0.000) (0.000) (0.934) (0.001) (0.568) (0.620)

SIC 11.726 11.478

Log-Lik -10544.3 -10315.2

Each column reports the ML estimates of the model defined by Eq. (4.40)-(4.52), with robust
standard errors underneath in parentheses. The column headed “Normal” corresponds to zt ∼
N(0, I4) and “Student” to zt ∼ ST (0, I4, υ) as in Eq. (4.10). In both cases zt is an i.i.d. process.
Q20(ẑi) is the Box-Pierce statistic of order 20 on the standardized residuals ẑi, Q20(ẑ

2
i ) is the same

for their squares, P20(ẑi) is the Pearson goodness-of-fit statistic (using 20 cells) with the associated
unadjusted p-value beside. SIC is the Schwarz information criterion (divided by the sample size
T = 1816), and Log-Lik is the log-likelihood value at the maximum.

90



4.4. EMPIRICAL APPLICATION

Table 4.5: ML estimation results of AR-TVC-GARCH model: skewed Student and
skewed Student with IC distributions

Skewed Student IC Skewed Student

CAC40 NASDAQ NIKKEI SMI CAC40 NASDAQ NIKKEI SMI

µi 0.085 0.103 -0.002 0.119 0.079 0.111 -0.014 0.116

(0.027) (0.023) (0.029) (0.022) (0.028) (0.023) (0.029) (0.023)

φi 0.015 0.081 0.011 0.058 0.011 0.075 0.005 0.060

(0.020) (0.024) (0.023) (0.022) (0.021) (0.024) (0.023) (0.022)

ωi 0.049 0.043 0.036 0.043 0.050 0.050 0.036 0.053

(0.024) (0.027) (0.014) (0.022) (0.029) (0.024) (0.014) (0.028)

βi 0.928 0.863 0.908 0.884 0.923 0.841 0.908 0.860

(0.025) (0.057) (0.014) (0.043) (0.032) (0.050) (0.016) (0.054)

αi 0.039 0.095 0.077 0.071 0.043 0.114 0.080 0.087

(0.011) (0.034) (0.013) (0.023) (0.014) (0.032) (0.014) (0.030)

ρij
CAC40 1 0.288 0.234 0.661 1 0.311 0.272 0.679

NASDAQ (0.037) 1 0.118 0.286 (0.049) 1 0.145 0.314

NIKKEI (0.038) (0.037) 1 0.245 (0.050) (0.044) 1 0.280

SMI (0.027) (0.037) (0.039) 1 (0.038) (0.047) (0.051) 1

θ1 0.961 0.973

(0.037) (0.032)

θ2 0.013 0.010

(0.007) (0.007)

ln(ξi) 0.035 -0.186 -0.013 -0.085 0.025 -0.172 -0.016 -0.076

(0.034) (0.037) (0.036) (0.036) (0.034) (0.037) (0.036) (0.037)

υ/υi 7.757 10.339 6.159 6.266 6.479

(0.696) (2.172) (0.834) (0.906) (1.095)

Q20(ẑi) 24.825 20.409 13.552 7.657 25.182 21.561 12.874 7.437

Q20(ẑ
2
i ) 24.415 11.005 8.138 4.170 23.810 9.820 8.432 4.211

P20(ẑi) 11.435 18.730 16.989 18.906 10.708 17.121 22.741 14.829

(0.908) (0.474) (0.590) (0.462) (0.934) (0.581) (0.248) (0.733)

SIC 11.473 11.515

Log-Lik -10296.1 -10322.4

Each column reports the ML estimates of the model defined by Eq. (4.40)-(4.52). The column
headed “Skewed Student” corresponds to zt ∼ SKST (0, I4, ξ, υ) as in Eq. (4.36), and “IC Skewed
Student” to zt ∼ Eq. (4.39) (with k = 4). In both cases zt is an i.i.d. process. Q20(ẑi) is the Box-
Pierce statistic of order 20 on the standardized residuals ẑi, Q20(ẑ

2
i ) is the same for their squares,

P20(ẑi) is the Pearson goodness-of-fit statistic (using 20 cells) with the associated unadjusted p-
value beside. SIC is the Schwarz information criterion (divided by the sample size T = 1816), and
Log-Lik is the log-likelihood value at the maximum.
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The results are in line with those obtained in the univariate case. The AR(1)-

TVC(1,1)-MGARCH(1,1) specification seems adequate in describing the dynamics

of the series, witness the small values of the Box-Pierce statistics of order 20 on the

residuals and their squares, Q20(ẑi) and Q20(ẑ
2
i ) respectively. The residual vector

ẑt = (ẑi,t, . . . , ẑ4,t) is defined as:

ẑt = Σ̂
−1/2
t (yt − µ̂t), (4.53)

where Σ̂t and µ̂t are obtained by replacing the parameters by their estimates in

the model formulas. Σ̂
−1/2
t has been obtained from the spectral decomposition of

Σ̂t (alternatively, a Cholesky factorization can be used).

A time-varying and very persistent correlation between the series is strongly

supported if one looks at the estimates of θ1 and θ2 and the corresponding standard

errors. On the first hand this justifies the use of a time-varying correlation specifi-

cation and on the other hand the use of a multivariate model (comparing the sum

of the univariate log-likelihoods with the corresponding multivariate likelihood,

one can see that the multivariate approach increases the likelihood by more than

600 in all cases). Note that to facilitate the reading of the results concerning the

unconditional correlation parameters (the matrix Γ), they are reported as in a 4

by 4 matrix. The upper triangle part of the matrix gives the estimated parameters

while the lower triangle matrix (below the diagonal of ones) gives the associated

standard errors. For instance, the estimated unconditional correlation between the

CAC40 and the NIKKEI (ρ̂13) obtained with a Gaussian QML equals 0.374, with

standard error 0.111.

It is clear from the estimation results reported in Table 4.4 that, apart from

the dynamics in the first two conditional moments, the dominating feature of the

four series is their fat-tail property. Indeed, the Student density increases the log-

likelihood value by about 230 for only one additional parameter. Note that when

comparing the standard errors related to the unconditional correlation parameters

one can see that they are slightly reduced when switching from a Gaussian to a

Student density. The normality assumption is also clearly rejected by the Pearson

goodness-of-fit statistics (with very small p-values).10 As in the univariate case,

the Student density is clearly rejected for the NASDAQ (the p-value of the Pearson

10The normality assumption is less questioned for the CAC40. This is in line with the result
obtained in the univariate analysis.
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goodness-of-fit statistics being equal to 0.001).

This is confirmed by the results concerning the skewed Student density (see

Table 4.5). First, comparing the log-likelihood values and the information criterion

values suggests that this density outperforms the symmetric Student (the log-

likelihood is increased by about 19 for 4 additional parameters). Second, the

Pearson goodness-of-fit statistics suggest that the skewed Student is adequate in

capturing the skewness of the NASDAQ and in general that all the marginals are

well described by our model specification.

The last part of Table 4.5 gives the results for the skewed density with inde-

pendent Student components (see Section 4.3.4). Recall that unlike the skewed

Student, this density has different degrees of freedom. The results suggest that

the υi are about 6 for the last three series (the NASDAQ, NIKKEI and SMI) and

are not statistically different. Even if the number of degrees of freedom of the

CAC40 is higher (about 10) the precision of this estimator is even worse and one

can hardly distinguish it from the other. Note that one cannot use a LR test to

discriminate between the skewed Student and the skewed Student with indepen-

dent components since the models are not nested. Finally, looking at the Pearson

goodness-of-fit statistics one cannot reject the assumption that this last density is

also adequate for modelling the excess skewness and kurtosis observed on the four

marginals.

To assess the irrelevance of the normal density and the adequacy of the skewed

Student density, Figures 4.3 and 4.4 plot the histogram of the probability integral

transform ζ̂i =
∫ ẑi
−∞ fi(t)dt with the 95% confidence bands.

Under weak conditions (see Diebold, Gunther, and Tay, 1998), the adequacy of

a density implies that the sequence of ζi is independent and identically uniformly

distributed on the unit interval. Departure from uniformity is directly observable

in the Gaussian case for the NASDAQ, NIKKEI and SMI. On the other hand,

one cannot reject the assumption that the probability integral transforms of the

skewed Student density are uniformly distributed.11

11Confidence intervals for the ζi-histogram can be obtained by using the properties of the
histogram under the null hypothesis of uniformity.
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Figure 4.3: Histogram of the Probability Integral Transform of the CAC40, NAS-
DAQ, NIKKEI and SMI innovations with a normal likelihood (with 20 cells).
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Figure 4.4: Histogram of the Probability Integral Transform of the CAC40, NAS-
DAQ, NIKKEI and SMI innovations with a skewed Student likelihood (with 20
cells).
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4.5 Conclusion

It is broadly accepted that high-frequency financial time series are heteroscedastic,

fat-tailed and volatilities are related over time across assets and markets. To

accommodate these stylized facts in a parametric framework a natural approach

would be to rely on a multivariate GARCH or SV specification coupled with a

Student density.

However, most asset returns are also skewed, which invalidates the choice of

this density (it would lead to inconsistent estimates). To overcome this problem,

we propose a practical and flexible method to introduce skewness in a wide class of

multivariate symmetric distributions. By introducing a vector of skewness param-

eters, the new distributions bring additional flexibility for modelling time series of

asset returns with multivariate volatility models. Applying the procedure to the

multivariate Student density leads to a “multivariate skewed Student” density, in

which each marginal has a different asymmetry coefficient. An easy variant pro-

vides a multivariate skewed density that can have different tail properties on each

coordinate. These densities are found to outperform their symmetric competitors

(the multivariate normal and Student) for modelling four daily stock market in-

dexes, and therefore are of great potential interest for the empirical modelling of

several asset returns together.

In the application, we have used a very simple specification for the first two

conditional moments. First, the conditional means are assumed to follow an AR(1)

and thus we implicitly assume that there is no Granger causality between the four

series. To test the relevance of this restriction, one should estimate a Vector AR

(VAR) model. Second, the conditional variances are estimated independently, in

the sense that variances depend only on own past squared errors and on own

past variances while correlations depend uniquely on the own cross-products of

errors and on own past correlations. This model is thus not suited for testing

causality or co-persistence in variance. Alternative specifications of the conditional

covariance matrix may be more appropriate (see Bauwens, Laurent, and Rombouts,

2002 for a recent survey of multivariate GARCH models and their application in

finance). Note also that we have shown in Chapter 2 that part of the unconditional

asymmetry observed on daily stock returns is probably due to the so called leverage

effect. Then, a natural extension of this chapter could be to use an APARCH
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specification for the conditional variances.

Additional empirical studies based on these flexible distributions should be

carried out to explore deeply the skewness and kurtosis properties of asset returns,

including the co-skewness and co-kurtosis aspects in a multivariate framework (see

Hafner, 2001).

Another potential area of application of the new densities is in Bayesian in-

ference, for the design of simulators for Monte-Carlo integration of posterior den-

sities that are characterized by different skewness and tail properties in different

directions of the parameter space. In this respect, some of the densities we have

proposed are related to the split-Student importance function proposed by Geweke

(1989). This is obviously a different research topic, that we leave for further work.

Finally, a natural extension of this paper would be to generalize the GARCH

specification to higher moments. Indeed, in a univariate framework Hansen (1994),

introduces dynamics through the 3rd and 4th order moments by conditioning the

asymmetry and fat-tail parameters on past errors and their square. In the same

spirit, Harvey and Siddique (1999) and Lambert and Laurent (2000) provide al-

ternative specifications to introduce dynamics in higher order moments. Such an

extension seems feasible for the new family of skewed densities proposed in this

chapter, which is less obvious for instance for the EC-density of Branco and Dey

(2000).

To conclude this chapter and in the same time the first part of the thesis,

this new family of multivariate skewed densities and in particular the multivariate

skewed Student density seems to be a promising specification to accommodate

both the high kurtosis and the skewness inherent in most asset returns.

In the second part of the thesis, we would like to investigate some economic

implications of the use of non-normal distributions. On the first hand, our attention

will be devoted to show that using a skewed Student density can highly improve

the precision of the Value-at-Risk forecasts (Chapters 5 and 6). On the other

hand, we will show that using a non-normal density can shed some light on the

effectiveness of central bank interventions.
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Chapter 5

Value-at-Risk for Long and Short
Positions

5.1 Introduction

In recent years, the tremendous growth of trading activity and the well-publicized

trading loss of well known financial institutions (see Jorion, 2000, for a brief history

of these events) has led financial regulators and supervisory committees of banks

to favor quantitative techniques which appraise the possible loss that these insti-

tutions can incur. Value-at-Risk (VaR) has become one of the most sought-after

techniques as it provides a simple answer to the following question: with a given

probability (say α), what is my predicted financial loss over a given time horizon?

It turns out that the VaR has a simple statistical definition: the VaR at level

α for a sample of returns is defined as the corresponding empirical quantile at α%.

Because of the definition of the quantile, we have that, with probability 1−α, the
returns will be larger than the VaR. In other words, with probability 1 − α, the

losses will be smaller than the dollar amount given by the VaR.1 From an empirical

point of view, the computation of the VaR for a collection of returns thus requires

the computation of the empirical quantile at level α of the distribution of the

returns of the portfolio.

Most models in the literature focus on the computation of the VaR for negative

returns (see van den Goorbergh and Vlaar, 1999 or Jorion, 2000). Indeed, it is

assumed that traders or portfolio managers have long trading positions, i.e. they

1Contrary to some wide-spread beliefs, the VaR does not specify the maximum amount that
can be lost.
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bought the traded asset and are concerned when the price of the asset falls. In

this chapter we focus on modelling VaR for portfolios defined on long and short

trading positions. Thus we model VaR for traders having either bought the asset

(long position) or short-sold it (short position).2 In the first case, the risk comes

from a drop in the price of the asset, while the trader loses money when the price

increases in the second case (because he would have to buy back the asset at a

higher price than the one he got when he sold it). Correspondingly, one focuses in

the first case on the left side of the distribution of returns, and on the right side

of the distribution in the second case.

Because the distribution of returns is often not symmetric (see Section 5.3),

we show that “usual” parametric VaR models of the RiskMetrics and ARCH class

have a tough job in modelling correctly the left and right tails of the distribution

of returns. This is also true for the so-called asymmetric GARCH models where

the asymmetry refers to the relationship between the conditional variance and the

lagged squared error term. Indeed, as pointed out by El Babsiri and Zakoian

(1999), although such asymmetric GARCH models allow positive and negative

changes to have different impacts on future volatilities, the two components of the

innovation have - up to a constant - the same volatilities, while it is desirable to

allow an asymmetric confidence interval around the predicted volatility in the VaR

application.

To alleviate these problems, we use the skewed Student Asymmetric Power

ARCH (APARCH) model presented in Chapter 2 to model the VaR for portfolios

defined on long (long VaR) and short (short VaR) trading positions. We com-

pare the performance of this new model with that of the RiskMetrics, normal and

Student APARCH models and show that the new model brings about consider-

able improvements in correctly forecasting one-day-ahead VaR for long and short

trading positions on daily stock indexes (French CAC40, German DAX, US NAS-

DAQ, Japanese NIKKEI and Swiss SMI data). For the skewed Student APARCH

model, we also compute the expected short-fall and the average multiple of tail

event to risk measure as these two measures supplement the information given by

the empirical failure rates.

2An asset is short-sold by a trader when it is first borrowed and subsequently sold on the
market. By doing this, the trader hopes that the price will fall, so that he can then buy the asset
at a lower price and give it back to the lender. See Sharpe, Alexander, and Bailey (1999) for
general information on trading procedures.
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While we focus exclusively on parametric models, other approaches are possible,

such as Danielsson and de Vries (2000) who combine a historical simulation method

(i.e. non parametric technique) for the interior of the distribution of returns with

a fitted distribution based on extreme value theory for the most extreme returns.

In this setting, normal and extreme events are thus modelled using two different

methods. With the skewed Student APARCH model we aim to model left and

right tail VaRs with a single parametric method for a wide range of values for α.

Recently, Mittnik and Paolella (2000) have introduced an APARCH model

coupled with an asymmetric generalized Student distribution to model VaR for

negative returns. While the analysis in their paper is sometimes similar to ours,

there are some significant differences. First, we focus on the joint behavior of

VaR models for long and short trading positions, i.e. we look at both how large

negative and positive returns are taken into account by the model (Mittnik and

Paolella, 2000, focus on long VaR only). Secondly, our empirical analysis deals

with daily data for stock indexes, in contrast to exchange rate data for the other

paper. That usual datasets such as the daily returns for European and US indexes

indicate the need for these types of models is an important issue, as most studies

usually focus on “exotic” series for justifying the use of these models. Thirdly,

we assess the performances of the models by computing Kupiec (1995)’s LR tests

on the empirical failure rates. For the new model, we also compute the expected

short-fall and the average multiple of tail event to risk measure. Last, from a

methodological point of view, following the methodology presented in Chapter 2,

we re-express the estimated parameters in terms of the mean and variance of the

skewed Student distribution (instead of the mode and the dispersion).

As indicated in Christoffersen and Diebold (2000), volatility forecastability

(such as featured by ARCH class models) decays quickly with the time horizon

of the forecasts. An immediate consequence is that volatility forecastability is rel-

evant for short time horizons (such as daily trading), but not for long time horizons

on which portfolio managers usually focus. In this chapter, we are consistent with

these characteristics of volatility forecastability as we focus on daily returns and

analyze VaR performance for daily trading portfolios made up of long and short

positions.

The rest of the chapter is organized in the following way. In Section 5.2, we

describe the symmetric and asymmetric VaR models. These models are applied
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to daily stock indexes data in Section 5.3 where we assess their performances and

characterize the long and short VaR.

5.2 VaR models

In this section we present parametric VaR models of the ARCH class. ARCH

class models were first introduced by Engle (1982) with the ARCH model. Since

then, numerous extensions have been put forward, see Engle (1995), Bera and

Higgins (1993) or Palm (1996), but they all share the same goal, i.e. modelling

the conditional variance as a function of past (squared) returns and associated

characteristics. Because quantiles are direct functions of the variance in parametric

models, ARCH class models immediately translate into conditional VaR models.

As mentioned in the introduction, these conditional VaR models are important for

characterizing short term risk for intradaily or daily trading positions.

In the first sub-section we characterize the symmetric (RiskMetrics, normal and

Student APARCH) and asymmetric (skewed Student APARCH) volatility models,

while we detail corresponding VaR results for negative and positive returns in the

second sub-section. We stress that, by symmetric and asymmetric models, we

mean a possible asymmetry in the distribution of the error term (i.e. whether it is

skewed or not), and not the asymmetry in the relationship between the conditional

variance and the lagged squared innovations (the APARCH model features this

kind of “conditional” asymmetry whatever the chosen error term).

5.2.1 Symmetric and asymmetric volatility models

To characterize the models, we consider a collection of daily returns, yt, with

t = 1 . . . T . Because daily returns are known to exhibit some serial autocorrelation,

we fit an AR(n) structure on the yt series for all specifications:

Ψ (L) (yt − µ) = εt, (5.1)

where Ψ(L) = 1− ψ1L− ...− ψnL
n.

We now consider several specifications for the the conditional variance of εt.
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RiskMetrics

In its most simple form, it can be shown that the basic RiskMetrics model is

equivalent to a normal IGARCH (1, 1) model where the autoregressive parameter

is set at a prespecified value 0.94 and the coefficient of ε2t−1 is equal to 0.06. In the

RiskMetrics specification, we have:

εt = ztσt, (5.2)

where zt is i.i.d. N(0, 1) and σ2t is defined as:

σ2t = 0.06ε2t−1 + 0.94σ2t−1. (5.3)

Normal, Student and skewed Student APARCH

The APARCH (Ding, Granger, and Engle, 1993) is an extension of the GARCH

model of Bollerslev (1986). This model, already presented in Eq. (2.44), is proba-

bly one of the most promising ARCH-type model. Indeed, it nests at least seven

GARCH specifications. Recall that the APARCH(1,1) is:

σδt = ω + α1 (|εt−1| − γεt−1)
δ + β1σ

δ
t−1, (5.4)

where ω, α1, γ, β1 and δ are parameters to be estimated. δ (δ > 0) plays the role of a

Box-Cox transformation of σt, while γ (−1 < γ < 1), reflects the so-called leverage

effect. A positive (resp. negative) value of γ means that past negative (resp.

positive) shocks have a deeper impact on current conditional volatility than past

positive shocks (see Black, 1976; French, Schwert, and Stambaugh, 1987; Pagan

and Schwert, 1990). The properties of the APARCH model have been studied

recently by He and Teräsvirta (1999a, 1999b).

The Normal APARCH (N APARCH), Student APARCH (ST APARCH) and

skewed Student APARCH (SKST APARCH) assume respectively that zt is i.i.d.

N(0, 1), ST (0, 1, υ) and SKST (0, 1, ξ, υ).

5.2.2 VaR for long and short positions

Because the goal of the current chapter is to check the performance of the models

on both the long and short sides of daily trading, we are particularly interested
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in comparing the Student APARCH model with the skewed Student APARCH

model regarding their performance in forecasting one step ahead long and short

VaR. As indicated in the introduction, the long side of the daily VaR is defined as

the VaR level for traders having long positions in the relevant equity index: this

is the “usual” VaR where traders incur losses when negative returns are observed.

Correspondingly, the short side of the daily VaR is the VaR level for traders having

short positions, i.e. traders who incur losses when stock prices increase. How good

a model is at predicting long VaR is thus related to its ability to model large

negative returns, while its performance regarding the short side of the VaR is

based on its ability to take into account large positive returns.

For the RiskMetrics and normal APARCH models, the one-step-ahead VaR as

computed in t − 1 for long trading positions is given by nασt, for short trading

positions it is equal to n1−ασt, with nα being the left quantile at α% for the normal

distribution and n1−α is the right quantile at α%.3 For the Student APARCH

model, the VaR for long and short positions is given by stα,υσt and st1−α,υσt, with

stα,υ being the left quantile at α% for the Student distribution with υ degrees of

freedom and st1−α,υ is the right quantile at α% for this same distribution. Because

nα = −n1−α for the normal distribution and stα,υ = −st1−α,υ for the Student

distribution, the forecasted long and short VaR will be equal in both cases.

For the skewed Student APARCH model, the VaR for long and short positions

is given by skstα,υ,ξσt and skst1−α,υ,ξσt, with skstα,υ,ξ being the left quantile at

α% for the skewed Student distribution with υ degrees of freedom and asymmetry

coefficient ξ; skst1−α,υ,ξ is the corresponding right quantile.

Using Eq. (2.33) we can easily relate the quantile function of the (stadardized)

skewed Student density (skstα,υ,ξ) with the one of the symmeric Student density

(stα,υ), i.e.

skstα,υ,ξ =







1
ξ
stα,υ[α2 (1+ξ2)]−m

s
if α < 1

1+ξ2

−ξstα,υ[ 1−α2 (1+ξ−2)]−m
s

if α ≥ 1
1+ξ2

, (5.5)

where m and s depend on ξ and υ and are given in Eq. (2.27) and (2.28). If ln(ξ)

is smaller than zero (or ξ < 1), |skstα,υ,ξ| > |skst1−α,υ,ξ| and the VaR for long

trading positions will be larger (for the same conditional variance) than the VaR

3All VaR expressions are reported for the residuals εt, which is equivalent to reporting the
VaR centered around the expected return based on Eq. (5.1).
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for short trading positions. When ln(ξ) is positive, we have the opposite result.

5.3 Empirical application

5.3.1 Data

In this empirical application we consider daily data for a collection of 5 stock mar-

ket indexes (source: Datastream): the French CAC 40 stock index (CAC, 1/1/1990

- 21/12/2000), the German DAX stock index (DAX, 26/11/1990 - 21/12/2000), the

U.S. NASDAQ stock index (NASDAQ, 11/10/1984 - 21/12/2000), the Japanese

NIKKEI stock index (NIKKEI, 4/1/1984 - 21/12/2000) and the Swiss SMI stock

index (SMI, 9/11/1990 - 21/12/2000), where the numbers in parentheses are the

start and end dates for the sample at hand and the first symbol inside the paren-

theses designates the short notation for the index that will be used in the tables

and comments below. The VaR models introduced in Section 5.2 are tested on

these five datasets.

For all price series pt, daily returns are defined as yt = 100× [ln(pt)− ln(pt−1)].

Descriptive statistics for the return series are given in Table 5.1. While the time

spans for the five stock indexes are different, the five return series share similar

statistical properties as far as third and fourth moments are concerned. More

specifically, the returns series are negatively skewed and the large returns (either

positive or negative) lead to a large degree of kurtosis. The Ljung-Box Q-statistic

of order 10 on the squared series indicates that the conditional variances vary over

time.

Descriptive graphs (level of index, daily returns, density of the daily returns and

QQ-plot against the normal distribution) for each index are given in Figures 5.1-

5.5. Volatility clustering is immediately apparent from the graphs of daily returns.

The density graphs and the QQ-plot against the normal distribution show that all

returns distributions exhibit fat tails. Moreover, the QQ-plots indicate that fat

tails are not symmetric.

5.3.2 Estimating the models

In order to perform the VaR analysis in Section 5.3.3, the normal APARCH, Risk-

Metrics, Student APARCH and skewed Student APARCH models are estimated
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Figure 5.1: CAC 40 stock index in level, daily returns, daily returns density
and QQ-plot against the normal distribution. The time period is 1/1/1990 -
21/12/2000.
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Figure 5.2: DAX stock index in level, daily returns, daily returns density and QQ-
plot against the normal distribution. The time period is 26/11/1990 - 21/12/2000.
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Figure 5.3: NASDAQ stock index in level, daily returns, daily returns density
and QQ-plot against the normal distribution. The time period is 11/10/1984 -
21/12/2000.
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Figure 5.4: NIKKEI stock index in level, daily returns, daily returns density
and QQ-plot against the normal distribution. The time period is 4/1/1984 -
21/12/2000.
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Figure 5.5: SMI stock index in level, daily returns, daily returns density and QQ-
plot against the normal distribution. The time period is 9/11/1990 - 21/12/2000.
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Table 5.1: Descriptive statistics

CAC DAX NASDAQ NIKKEI SMI

Annual mean 10.66 14.53 13.90 1.79 17.44

Annual s.d. 19.87 19.67 20.03 21.38 16.87

Skewness -0.16 -0.39 -0.74 -0.14 -0.41

Excess Kurtosis 2.09 4.15 11.25 10.15 5.13

Minimum -7.57 -9.87 -12.04 -16.14 -8.38

Maximum 6.83 7.29 9.96 12.43 7.46

Q2(10) 444.8 428.7 3269.8 635.1 849.7

Descriptive statistics for the daily returns of the corresponding stock
index expressed in %. All values are computed using PcGive. Q2(10) is
the Ljung-Box Q-statistic of order 10 on the squared series.

in this section. We do not report full estimation results of the normal and Stu-

dent APARCH models as they are quite similar to what has been documented

in the literature (see for instance Ding, Granger, and Engle, 1993 and Paolella,

1997). Furthermore, these specifications are encompassed by the skewed Student

APARCH model for which we give full details below. The RiskMetrics model

does not require any estimation for the conditional volatility specification as it is

tantamount to an IGARCH model with some predefined values.

Table 5.2 presents the results for the (approximate QML) estimation of the

APARCH model with a skewed Student pseudo-likelihood on the CAC, DAX,

NASDAQ, NIKKEI and SMI data. An AR(3) was found to be sufficient to correct

the serial correlation in the conditional mean. Note that to save some space, the

estimated mean parameters are not reported.

The model is particularly successful in taking into account the heteroskedastic-

ity exhibited by the data as the Ljung-Box Q-statistic computed on the squared

standardized residuals is never significant.4 The five stock market indexes feature

relatively similar volatility specifications:

- the autoregressive effect in the volatility specification is strong as β1 is around

4For NASDAQ data, the decrease in the Q2
10 is impressive as it goes down from more than

3,000 to about 12.
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0.9, suggesting a strong memory effects. Indeed, α1E (|z| − γz)δ + β1 is just

below 1 for four indexes and equals 1 for the NASDAQ (indicating that σδt

may be integrated on this period).

- γ is positive and significant for all datasets, indicating a leverage effect for neg-

ative returns in the conditional variance specification;

- ln(ξ) is negative and significant for all datasets, which implies that the asymme-

try in the Student distribution is needed to fully model the distribution of

returns. Likelihood ratio tests (not reported) also clearly favor the skewed

Student density;

- δ is between 1.002 and 1.378 and always significantly different from 2. The

results suggest that instead of modelling the conditional variance (GARCH)

it is more relevant to model the conditional standard deviation (indeed, δ is

not significantly different from 1). This result is in line with those of Taylor

(1986), Schwert (1990) and Ding, Granger, and Engle (1993) who indicate

that there is substantially more correlation between absolute returns than

squared returns, a stylized fact of high frequency financial returns (often

called “long memory”).

These results indicate the need for a model featuring a negative leverage effect

(conditional asymmetry) for the conditional variance combined with an asymmetric

distribution for the underlying error term (unconditional asymmetry). The skewed

Student APARCH model delivers such specifications and we study in Section 5.3.3

whether this model improves on symmetric GARCH models when the VaR for long

and short returns is needed.

5.3.3 In-sample VaR computation

In this section, we use the estimation results of Section 5.3.2 and the expressions

of Section 5.2.2 to compute the one-step-ahead VaR for all models. As financial

returns are known to exhibit fat tails (this was confirmed in the descriptive prop-

erties of the data given in Table 5.1), we expect poor performance by the models

based on the normal distribution.

All models are tested with a VaR level α which ranges from 5% to 0.25% and

their performance is then assessed by computing the failure rate for the returns yt.
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By definition, the failure rate is the number of times returns exceed (in absolute

value) the forecasted VaR. If the VaR model is correctly specified, the failure

rate should be equal to the prespecified VaR level. In our empirical application,

we define a failure rate fl for the long trading positions, which is equal to the

percentage of negative returns smaller than one-step-ahead VaR for long positions.

Correspondingly, we define fs as the failure rate for short trading positions as

the percentage of positive returns larger than the one-step-ahead VaR for short

positions.

Because the computation of the empirical failure rate defines a sequence of

yes/no observations, it is possible to test H0 : f = α against H1 : f 6= α, where

f is the failure rate (estimated by f̂ , the empirical failure rate).5 At the 5% level

and if T yes/no observations are available, a confidence interval for f̂ is given by
[

f̂ − 1.96

√

f̂(1− f̂)/T , f̂ + 1.96

√

f̂(1− f̂)/T
]

. In this chapter these tests are

successively applied to the failure rate fl for long trading positions and then to fs,

the failure rate for short trading positions.

In Table 5.3 we present complete VaR results (i.e. p-values for the Kupiec LR

test) for the NASDAQ and NIKKEI stock indexes. In Table 5.4 we give summary

results for the five stock indexes. These results indicate that:

- VaRmodels based on the normal distribution (RiskMetrics and normal APARCH

model) have a difficult job in modelling large returns, with large positive

returns being somewhat better handled than large negative returns.

- the symmetric Student APARCH model improves considerably on the perfor-

mance of normal based models but its performance is still not satisfactory

for large positive returns. For the NASDAQ index, its performance in gen-

eral is even worse than normal based models. The reason is that the critical

values of the Student distribution stα,υ and st1−α,υ are very large in this case,

which leads to a high level of long and short VaR: the model is often rejected

because it is too conservative.6

5In the literature on VaR models, this test is also called the Kupiec LR test, if the hypothesis
is tested using a likelihood ratio test. See Kupiec (1995).

6For example, the empirical failure rates for the short VaR are equal to 3.59%, 1.39%, 0.37%,
0.10% and 0.05% when α is equal successively to 5%, 2.5%, 1%, 0.5% and 0.25%: in all cases the
model is rejected because it is too conservative.
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Table 5.3: VaR results for NASDAQ and NIKKEI (in-sample)

α 5% 2.5% 1% 0.5% 0.25%

VaR for long positions (NASDAQ)

N APARCH 0.084 0 0 0 0

RiskMetrics 0.002 0 0 0 0

ST APARCH 0 0 0.069 0.075 0.028

SKST APARCH 0.498 0.743 0.533 0.920 0.409

VaR for long positions (NIKKEI)

N APARCH 0.563 0.336 0 0.046 0

RiskMetrics 0 0.006 0 0 0

ST APARCH 0.063 0.563 0.592 0.789 0.477

SKST APARCH 0.563 0.838 0.043 0.472 0.675

VaR for short positions (NASDAQ)

N APARCH 0 0 0.032 0.305 0.811

RiskMetrics 0.001 0.011 0.863 0.166 0.162

ST APARCH 0 0 0 0 0.002

SKST APARCH 0.593 0.743 0.533 0.205 0.151

VaR for short positions (NIKKEI)

N APARCH 0 0.018 0.399 0.006 0

RiskMetrics 0.004 0.094 0.023 0 0

ST APARCH 0.004 0.024 0.486 0.423 0.904

SKST APARCH 0.071 0.189 0.809 0.214 0.204

P-values for the null hypothesis fl = α (i.e. failure rate for the
long trading positions is equal to α, top of the table) and fs =
α (i.e. failure rate for the short trading positions is equal to
α, bottom of the table). α is equal successively to 5%, 2.5%,
1%, 0.5% and 0.25%. The models are successively the normal
APARCH, RiskMetrics, Student APARCH and skewed Student
APARCH models.
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Table 5.4: VaR results for all indexes (in-sample)

VaR for long positions

CAC DAX NASDAQ NIKKEI SMI

N APARCH 40 0 20 40 20

RiskMetrics 0 0 0 0 0

ST APARCH 100 100 40 100 80

SKST APARCH 100 100 100 80 100

VaR for short positions

CAC DAX NASDAQ NIKKEI SMI

N APARCH 20 0 40 20 80

RiskMetrics 20 40 60 20 80

ST APARCH 60 60 0 60 20

SKST APARCH 100 80 100 100 100

Number of times (out of 100) that the null hypothesis fl = α (i.e. failure
rate for the long trading positions is equal to α, top of the table) is not
rejected and the null hypothesis fs = α (i.e. failure rate for the short
trading positions is equal to α, bottom of the table) is not rejected for
the five possible values of α (the level of significance is 5%). The models
are successively the normal APARCH, RiskMetrics, Student APARCH
and skewed Student APARCH models.
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- the skewed Student APARCH model improves on all other specifications for

both negative and positive returns. For the NASDAQ the improvement is

substantial as the switch to a skewed Student distribution alleviates almost

all problems due to the “conservativeness” of the symmetric Student distri-

bution. The model performs correctly in 100% of all cases for the negative

returns (long VaR) and for the positive returns (short VaR). As indicated in

Table 5.4, the skewed Student APARCH model correctly models nearly all

VaR levels for long and short positions (the success rate is 100% for four stock

indexes and 80% for one index). In all cases, this is a significant improvement

on the VaR performances of symmetric models.

5.3.4 Out-of-sample VaR computation

The testing methodology in the previous subsection is equivalent to back-testing

the model on the estimation sample. In a “real life situation”, VaR models are

used to deliver out-of-sample forecasts, where the model is estimated on the known

returns (up to time t for example) and the VaR forecast is made for period [t+1, t+

h], where h is the time horizon of the forecasts. In this subsection we implement

this testing procedure for the long and short VaR with h = 1 day.

We use an iterative procedure where the skewed Student APARCH model is

estimated to predict the one-day-ahead VaR. The first estimation sample is the

complete sample for which the data is available less the last five years. The pre-

dicted one-day-ahead VaR (both for long and short positions) is then compared

with the observed return and both results are recorded for later assessment using

the statistical tests. At the second iteration, the estimation sample is augmented

to include one more day, the model is re-estimated and the VaRs are forecasted

and recorded. We iterate the procedure until all days (less the last one) have been

included in the estimation sample. Corresponding failure rates are then computed

by comparing the long and short forecasted V aRt+1 with the observed return εt+1

for all days in the five years period. We use the same statistical tests as in the

subsection dealing with the in-sample VaR.

Empirical results for the five stock indexes are given in Table 5.5. Broadly

speaking, these results are quite similar (although not as good) to those obtained

for the in-sample testing procedure as the skewed Student APARCH model per-

forms rather well for out-of-sample VaR prediction. Its combined (i.e. for long
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Table 5.5: VaR results
(skewed Student APARCH, out-of-sample)

α 5% 2.5% 1% 0.5% 0.25%

VaR for long positions

CAC 0.103 0.014 0.016 0.590 0.486

DAX 0.207 0.427 0.864 0.783 0.645

NASDAQ 0.005 0.101 0.355 0.311 0.646

NIKKEI 0.035 0.427 0.643 0.590 0.156

SMI 0.132 0.022 0.910 0.325 0.645

VaR for short positions

CAC 0.007 0.334 0.697 0.311 0.645

DAX 0.026 0.520 0.163 0.784 0.932

NASDAQ 0 0.001 0.151 0.515 0.337

NIKKEI 0.797 0.786 0.355 0.515 0.932

SMI 0.045 0.101 0.697 0.784 0.337

P-values for the null hypotheses fl = α (i.e. failure rate for
the long trading positions is equal to α, top of the table)
and fs = α (i.e. failure rate for the short trading positions
is equal to α, bottom of the table). α is equal successively
to 5%, 2.5%, 1%, 0.5% and 0.25%. The failure rates are
computed for the skewed Student APARCH model (out-of-
sample estimation).

and short VaR) success rate (at the 5% level) is equal to 70% (CAC), 90% (DAX),

70% (NASDAQ), 90% (NIKKEI) and 80% (SMI, almost 90% as one p-value is very

close to the 0.05 level).

5.3.5 Expected short-fall and related measures

Our analysis in sub-sections 5.3.3 and 5.3.4 focused on the computation of empirical

failure rates. In the last part of the empirical application, we now characterize the

skewed Student APARCH model with respect to two other VaR related measures:

the expected short-fall and the average multiple of tail event to risk measure.
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The expected short-fall (see Scaillet, 2000) is defined as the expected value of

the losses conditioned on the loss being larger than the VaR. The average multiple

of tail event to risk measure “measures the degree to which events in the tail of the

distribution typically exceed the VaR measure by calculating the average multiple

of these outcomes to their corresponding VaR measures” (Hendricks, 1996). Both

measures are computed for the in-sample estimation of the long and short VaR7

performed in sub-section 5.3.3.

For the expected short-fall, we report full estimation results for the NASDAQ

and NIKKEI stock indexes8 in Table 5.6. These results indicate that the expected

short-fall is in most cases larger (in absolute value) for the models based on the

Student distribution than for the models based on the normal distribution. This

is easily understood if one remembers that these models “fail” less than the ones

based on the normal distribution, but, when they fail, it happens for large (in

absolute value) returns: the average of these returns is correspondingly large. It

should be stressed that the expected short-fall is not a tool to rank VaR models

or assess models’ performances. Nevertheless it is useful for risk managers as it

answers the following question: “when my model fails, how much do I lose on

average?”.

A related measure is the average multiple of tail event to risk measure, which

is reported in Table 5.7 for the NASDAQ and NIKKEI stock indexes. The figures

in this table indicate what is the average loss/predicted loss when the VaR model

fails. For example, the 1.38 for the long VaR with NASDAQ data and the skewed

Student APARCH models indicates that, at the 1% level, one expects to lose 1.38

the amount given by the VaR when returns are smaller than the VaR. As for the

expected short-fall, this measure does not allow a ranking of the VaR models.

5.4 Conclusion

Over short-term time horizons, conditional VaR models are usually found to be

good candidates for quantifying possible trading losses. In this chapter, we ex-

7The expected short-fall for the long VaR is computed as the average of the observed returns
smaller than the long VaR. The expected short-fall for the short VaR is computed as the average
of the observed returns larger than the short VaR. Computations are similar for the average
multiple of tail event to risk measure.

8Estimation results for the other 3 indexes are very similar to those given in Table 5.6 and
are not reported.
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Table 5.6: Expected short-fall for NASDAQ and NIKKEI
(in-sample)

α 5% 2.5% 1% 0.5% 0.25%

Expected short-fall for long positions (NASDAQ)

N APARCH -2.42 -2.60 -3.00 -3.40 -3.58

RiskMetrics -2.28 -2.40 -2.75 -2.84 -3.03

ST APARCH -2.32 -2.54 -3.25 -3.76 -4.31

SKST APARCH -2.42 -2.75 -3.62 -4.07 -4.42

Expected short-fall for long positions (NIKKEI)

N APARCH -2.66 -3.09 -3.58 -4.03 -4.28

RiskMetrics -2.56 -2.86 -3.23 -3.52 -3.59

ST APARCH -2.61 -3.13 -3.88 -4.48 -5.27

SKST APARCH -2.68 -3.23 -4.06 -4.62 -5.49

Expected short-fall for short positions (NASDAQ)

N APARCH 2.41 2.58 3.02 3.26 3.24

RiskMetrics 2.22 2.76 2.99 2.98 3.55

ST APARCH 2.33 2.66 3.38 2.95 3.66

SKST APARCH 2.08 2.52 2.82 3.42 2.48

Expected short-fall for short positions (NIKKEI)

N APARCH 2.80 3.37 3.85 4.08 4.26

RiskMetrics 2.67 3.04 3.92 4.17 4.24

ST APARCH 2.73 3.43 4.34 4.37 5.03

SKST APARCH 2.65 3.28 4.20 4.44 4.63

Expected short-fall (in-sample evaluation) for the long and
short VaR (at level α) given by the normal APARCH, Student
APARCH, RiskMetrics and skewed Student APARCH models. α
is equal successively to 5%, 2.5%, 1%, 0.5% and 0.25%.

120



5.4. CONCLUSION

Table 5.7: Average multiple of tail event to risk measure
for NASDAQ and NIKKEI (in-sample)

α 5% 2.5% 1% 0.5% 0.25%

AMTERM for long positions (NASDAQ)

N APARCH 1.42 1.36 1.37 1.35 1.35

RiskMetrics 1.51 1.46 1.41 1.39 1.35

ST APARCH 1.45 1.36 1.39 1.40 1.38

SKST APARCH 1.42 1.36 1.38 1.39 1.35

AMTERM for long positions (NIKKEI)

N APARCH 1.38 1.36 1.32 1.46 1.49

RiskMetrics 1.44 1.40 1.36 1.41 1.40

ST APARCH 1.33 1.36 1.41 1.49 1.49

SKST APARCH 1.39 1.35 1.47 1.49 1.48

AMTERM for short positions (NASDAQ)

N APARCH 1.27 1.23 1.20 1.20 1.16

RiskMetrics 1.29 1.28 1.22 1.16 1.20

ST APARCH 1.27 1.22 1.15 1.27 1.26

SKST APARCH 1.29 1.24 1.20 1.20 1.22

AMTERM for short positions (NIKKEI)

N APARCH 1.37 1.37 1.32 1.28 1.24

RiskMetrics 1.40 1.35 1.32 1.30 1.31

ST APARCH 1.39 1.35 1.28 1.19 1.17

SKST APARCH 1.39 1.36 1.29 1.23 1.17

Average multiple of tail event to risk measure (AMTERM, in-
sample evaluation) for the long and short VaR (at level α) given by
the normal APARCH, Student APARCH, RiskMetrics and skewed
Student APARCH models. α is equal successively to 5%, 2.5%,
1%, 0.5% and 0.25%.

121



CHAPTER 5. VALUE-AT-RISK FOR LONG AND SHORT POSITIONS

tended this analysis by introducing a VaR model that could take into account

losses arising from long and short trading positions. Because of the nature of long

and short trading, this translates into bringing forward a statistical model that

correctly models the left and right tails of the distribution of returns. The pro-

posed model is the skewed Student APARCH model. Because density distribution

of returns are usually not symmetric, it is shown that models9 that rely on sym-

metric normal or Student distributions underperform compared to the new model

when the one-day-ahead VaR is to be forecasted. All models were applied to daily

data for five stock indexes (CAC40, DAX, NASDAQ, NIKKEI and SMI), with an

out-of-sample testing procedure confirming the results of the in-sample backtesting

method: in all cases the skewed Student APARCH model performed rather well.

In the last part of the chapter, we also computed the expected short-fall and the

average multiple of tail event to risk measure for the models.

At this stage, several extensions can be considered. First, the performance of

the new VaR model could also be assessed on multi-days period forecasts. While

VaR models based on ARCH class specifications perform rather well for one-day

time horizons, it is known that their performance is not as good for long time pe-

riods. Some recent work in this field has been done by Christoffersen and Diebold

(2000). Secondly, the VaR for long and short trading positions could be computed

using non-parametric VaR models. Computation times and quality of VaR fore-

casts could be compared with the results given by the skewed Student APARCH.

Finally, as argued recently by Engle and Patton (1999), time varying higher con-

ditional moments are clearly of interest. In this respect, Hansen (1994), Harvey

and Siddique (1999) and Lambert and Laurent (2000) have had some success in

introducing dynamics in the third and fourth moments.

To conclude, the recent availability of intraday data has led to new develop-

ments concerning the estimation of the daily volatility. The notion of realized

volatility has been introduced recently in the literature by Taylor and Xu (1997)

and Andersen and Bollerslev (1998) and is computed as an aggregated measure of

volatility defined on intraday returns. According to these authors it offers an “er-

ror free” measure of the daily volatility. Interestingly, when one uses this realized

volatility instead of the conditional variance produced by a parametric ARCH-type

9We considered three symmetric volatility models: the RiskMetrics, normal and Student
APARCH models.
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model, the normality assumption on the innovation process is supported, which

questions the relevance of the skewed Student density. Consequently, in the next

chapter we will try to answer the following question: Does the use of the realized

volatility invalidate the choice of a skewed Student density ?
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Chapter 6

Modelling Daily Value-at-Risk
using Realized Volatility and
ARCH Type Models

6.1 Introduction

The recent widespread availability of databases recording the intraday price move-

ments of financial assets (stocks, indexes, currencies, derivatives) has led to new

developments in applied econometrics and quantitative finance as far as the mod-

elling of daily and intradaily volatility is concerned. Focusing solely on the mod-

elling of daily volatility using intraday data, the recent literature suggests at least

three possible methods for characterizing volatility and risk at an aggregated level,

which we take to be equal to one day in this chapter.

In the spirit of what has been done in the previous chapters, the first possibility

is to sample the intraday data on a daily basis so that closing prices are recorded

from which daily returns are computed. In this setting, the notion of intraday price

movements is not an issue, as the method is tantamount to estimating a volatility

model on daily data. One of the most famous example is the ARCH model of

Engle (1982) and subsequent ARCH type models such as the GARCH model of

Bollerslev (1986) (see Palm, 1996, for a recent survey).

The second method is based on the notion of realized volatility which was re-

cently introduced in the literature by Taylor and Xu (1997) and Andersen and

Bollerslev (1998) and which is grounded in the framework of continuous time fi-

nance with the notion of quadratic variation of a martingale. In this case, a daily
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measure of volatility is computed as an aggregated measure of volatility defined

on intraday returns. More specifically, the daily realized volatility is computed as

the sum of the squared intraday returns for the given trading day. We thus make

explicit use of the intraday returns to compute the realized volatility, from which

the daily volatility is modelled. A third possibility is to estimate a high frequency

duration model on price durations for the given asset, and then use this irregularly

time-spaced volatility at the aggregated level. Examples are Engle and Russell

(1997) or Giot (2000). In this chapter we focus on the first two methods as our

aggregation level is equal to one day, and it is not clear how duration models could

be of any help in this situation.

The recent literature on realized volatility and the huge literature on daily

volatility models seem to indicate that a researcher or market practitioner faces

two distinct possibilities when daily volatility is to be modelled. Going one way or

the other is however not a trivial question. If one decides to model daily volatility

using daily realized volatility, then intraday data are needed so that corresponding

intraday returns can be computed. Even today, intraday data remain relatively

costly and are not readily available for all assets. Furthermore, a large amount

of data handling and computer programming is usually needed to retrieve the

needed intraday returns from the raw data files supplied by the exchanges or data

vendors. On the contrary, working with daily data is relatively simple and the

data are broadly available. However, one has the feeling that all the relevant data

are not taken into account, i.e. that by going at the intraday level one could get a

much better model.

In this chapter we aim to address this issue by comparing the performance of

a daily ARCH type model with the performance of a model based on the daily

realized volatility when the one-step ahead Value-at-Risk (VaR) measure is to be

computed for a stock or market index. This exercise is done for two stock indexes

(French CAC40 and US SP500 indexes) for which intraday data are available over

a long time period (i.e. at least 5 years). VaR modelling is a natural application

of volatility models as in a parametric framework the VaR measure (which by

definition is a quantile of the conditional distribution) is a deterministic function

of the volatility. See Jorion (2000) for a recent review of VaR models. Because

we have intraday data over a long time period, we can retrieve the daily closing

prices for the indexes and then compute daily VaR measure using ARCH type
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models. When we make use of all the available data and compute intraday returns

and realized volatility, we then have the competing model which uses the intraday

information.

Our main results can be summarized in one sentence: yes, an (adequate) ARCH

type model can deliver accurate VaR forecasts and this model performs as well as

a competing VaR model based on the realized volatility. The key issue is to use a

daily ARCH type model that clearly recognizes the full features of the empirical

data such as a high kurtosis and skewness in the observed returns. In this chapter

we use the asymmetric skewed Student APARCH model presented in Chapter 2,

which has been extensively used all along this thesis and was found to be satisfac-

tory when applied to daily data (especially in VaR applications, see Chapter 5). It

is also true that the model based on the realized volatility delivers equally adequate

VaR forecasts but this comes at the expense of using intraday information. Thus,

for the two indexes under review, the results clearly indicate that modelling the

realized volatility may be useful, but it is far from being the only game in town.

The rest of the chapter is organized in the following way. In Section 6.2, we

describe the available intraday data for the two stock indexes and characterize the

stylized facts of the corresponding realized volatility. In Section 6.3, we introduce

the two competing models (i.e. the skewed Student APARCH model for the daily

returns and the model based on the realized volatility) for computing the one-step-

ahead VaR. These two models are applied to the daily stock index data in Section

6.4 where we assess their performances. Section 6.5 concludes.

6.2 Data and stylized facts

6.2.1 Data

The data are available for two stock indexes on an intraday basis and for a relatively

long period of time which allows VaR modelling and testing. For both assets we

consider daily returns (which are used by the skewed Student APARCH model)

and intraday returns defined on a 5-minute and 15-minute time grid (these intraday

returns are used to compute the daily realized volatility).

Our first asset is the French CAC40 stock index for the 1995-1999 years (1249

daily observations). It is computed by the exchange as a weighted measure of the

prices of its components and is available in the database on an intraday basis with
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the price index being computed every 30 seconds (approximately). For the time

period under review, the opening hours of the French stock market were 10h am

to 5h pm, thus 7 hours of trading per day. With the 5- (15-) minute time grid,

this translates into 84 (28) intraday returns used to compute the daily realized

volatility. Intraday prices at the 5- and 15-minute level are the outcomes of a

linear interpolation between the closest recorded prices below and above the time

set in the grid.1 Correspondingly, all returns are computed as the first difference

in the regularly time-spaced log prices of the index. Because the exchange is closed

from 5h pm to 10h am the next day, the first intraday return (computed at 10h05

when working with a 5-minute time grid for example) is the first difference between

the log price at 10h05 and the log price at 5h pm the day before. Daily returns

in percentage are defined as 100 times the first difference of the log of the closing

prices.2

Our second dataset contains 12 years (from January 1989 to December 2000,

3241 daily observations) of tick-by-tick prices for SP500 futures contracts traded

on the Chicago Mercantile Exchange. Such SP500 futures contracts can be traded

from 8h30 am to 15h10 pm Chicago time, i.e. from 9h30 am to 16h10 pm New

York time. To conveniently define 5- and 15-minute returns, we remove all prices

recorded after 16h New York time.3 As for the CAC40 dataset, intraday prices

at the 5- and 15-minute level are the outcomes of a linear interpolation between

the closest recorded prices (for the nearest contract to maturity) below and above

the time set in the regularly time-spaced sampling grid.4 Returns are computed

as the first difference in the regularly time-spaced log prices of the index, with the

overnight return included in the first intraday return. Daily returns in percentage

are defined as 100 times the first difference of the log of the closing prices.

1In practice, the discreteness of actual securities prices can render continuous-time models
poor approximations at very high sampling frequencies. Furthermore, tick-by-tick prices are
generally only available at unevenly-spaced time points, so the calculation of evenly-spaced high-
frequency returns necessarily relies on some form of interpolation among prices recorded around
the endpoints of the given sampling intervals. It is well known that this non-synchronous trading
or quotation effect may induce negative autocorrelation in the interpolated return series.

2By definition and using the properties of the log distribution, the sum of the intraday returns
is equal to the observed daily return based on the closing prices.

3Thus the last recorded price for the futures at 16h corresponds more or less to the closing price
of the “cash” SP500 index computed from its constituents traded on the NYSE or NASDAQ.

4The choice of the nearest contract to maturity means that we always select very liquid futures
contracts.
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6.2.2 Realized volatility: stylized facts

Estimating and forecasting volatility is a key issue in empirical finance. After

the introduction of the ARCH model by Engle (1982) or the Stochastic Volatility

(SV) model (see Taylor, 1994) and their various extensions, a new generation

of conditional volatility models has been advocated recently by Taylor and Xu

(1997) and Andersen and Bollerslev (1998), i.e. models making used of the realized

volatility. The origin of this concept is not so recent as it would seem at first

sight. Merton (1980) already mentioned that, provided data sampled at a high

frequency are available, the sum of squared realizations can be used to estimate

the variance of an i.i.d. random variable. Taylor and Xu (1997) and Andersen

and Bollerslev (1998) (among others) show that daily realized volatility may be

constructed simply by summing up intraday squared returns. Assuming that a day

can be divided in N equidistant periods and if yi,t denotes the intradaily return of

the ith interval of day t, it follows that the daily volatility for day t can be written

as:

[
N∑

i=1

yi,t

]2

=
N∑

i=1

y2i,t + 2
N∑

i=1

N∑

j=i+1

yj,tyj−i,t. (6.1)

If the returns have mean zero and are uncorrelated,
N∑

i=1

y2i,t is a consistent (see

Andersen, Bollerslev, Diebold, and Labys, 2001) and unbiased estimator5 of the

daily variance σ2t . Because all squared returns on the right side of this equation

are observed when intraday data (at equidistant periods) are available,

[
N∑

i=1

yi,t

]2

is called the daily realized volatility.

By summing high-frequency squared returns we may then obtain an “error

free”6 measure of the daily volatility. However, choosing a very high sampling

5Areal and Taylor (2000) show that even if this estimator is consistent and unbiased, it has
not the least variance when N is finite. These authors propose to weight the intraday squared
returns by a factor proportional to the intraday activity. This deflator may be obtained easily by
applying Taylor and Xu’s (1997) variance multiplier or the Flexible Fourier Function (FFF) of
Andersen and Bollerslev (1997). Due to the strong similarity of the results with the “non weighted
squared returns”, we will not report the results using Areal and Taylor’s (2000) approach.

6The theory of quadratic variation reveals that, under suitable conditions, realized volatility
is not only an unbiased ex-post estimator of daily return volatility, but also asymptotically free
of measurement error (Andersen, Bollerslev, Diebold, and Labys, 2001).
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frequency (30-seconds, 1-minute, etc.) may introduce a bias in the variance es-

timate due to market microstructure effects (bid-ask bounces, price discreteness

or non-synchronous trading). As a trade off between these two biases, Ander-

sen, Bollerslev, Diebold, and Labys (2001) propose the use of 5-minute returns

to compute daily realized volatility. Using the FTSE-100 stock market index (on

the period 1990-2000), Oomen (2001) shows that the realized volatility measure

increases when the sampling interval decreases while the summation of the cross

terms in Eq. (6.1) decreases. Comparing the average daily realized volatility and

the autocovariance bias factor, Oomen (2001) argues that the optimal sampling

frequency for his dataset suggests using 25-minute returns. For our two datasets,

a sampling frequency of about 15-minute was found to be optimal.7 By way of

illustration, we also present results for 5-minute returns.

Although the empirical work on realized volatility is still in its infancy, some

stylized facts have already been ascertained and we highlight these with our datasets.

• First, the unconditional distribution of the realized volatility is highly skewed

and kurtosed. On the other hand, the unconditional distribution of the

logarithmic realized volatility is nearly gaussian, while standard tests reject

the normality assumption. Figures 6.1 and 6.2 display the level and the

unconditional distribution of the logarithmic realized volatility of the CAC40

and SP500 stock indexes based on 15-minute returns. From Figure 6.2, both

series appear slightly skewed (the unconditional skewness are respectively

0.62 and 0.38) and kurtosed (the unconditional kurtosis are respectively equal

to 4.25 and 3.37).

• Secondly, the (logarithmic) realized volatility appears to be fractionally in-

tegrated. Indeed, Figure 6.3 displays the first 200 autocorrelations of the

logarithmic realized volatility of the CAC40 and SP500 stock indexes based

on 15-minute returns. This figure shows that a shock on volatility dies out

very slowly, which is neither in accordance with an ARMA structure (which

implies an exponential decay) nor with a unit root process (ADF tests, not

reported to save space, all clearly reject the unit root assumption). This is

7To find the optimal sampling frequency, Oomen (2001) proposes to plot both the sum of
squared intra-daily returns and the autocovariance bias factor versus the sampling frequency.
The “optimal” sampling frequency is chosen as the highest available frequency for which the
autocovariance bias term has disappeared.
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Figure 6.1: Logarithmic realized volatility of the CAC40 (top panel)
and SP500 (bottom panel) stock indexes based on 15-minute re-
turns.
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Figure 6.2: Density estimates (dashed line) and corresponding nor-
mal density (solid line) for the logarithmic realized volatility of the
CAC40 (top panel) and SP500 (bottom panel) stock indexes based
on 15-minute returns.
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in line with the previous findings of Ding, Granger, and Engle (1993) and

Baillie, Bollerslev, and Mikkelsen (1996) (among others) who suggest the

modelling of conditional variance of high frequency financial data by the use

of an (Asymmetric) Power GARCH (APARCH) or Fractionally Integrated

GARCH (FIGARCH) models.
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Figure 6.3: First 200 autocorrelations for the logarithmic realized volatility of the
CAC40 (top panel) and SP500 (bottom panel) stock indexes based on 15-minute
returns. The horizontal lines show the upper limit 95% Bartlett confidence bands.

To gain a first insight in the degree of persistence of a shock on the (logarith-

mic) realized volatility, we computed the Geweke and Porter-Hudak (1983)

(GPH) log-periodogram8 estimate for the fractional integration parameter

da. If da ∈ (0, 1/2), the process is stationary, has a long memory and is said

to be persistent. If da ∈ (−1/2, 0), the process has a short memory and is

said to be antipersistent.9 The estimated d are equal to 0.437 (0.038) and

0.430 (0.026) respectively for the CAC40 and SP500 stock indexes based on

8The number of low frequency periodogram points used in the estimation is set to T
4
5 , see

Hurvich, Deo, and Brodsky (1998).
9Furthermore, if da ≤ −1/2, the process is non invertible and if da ≥ 1/2, the process is not

stationary but mean reverting if da < 1.
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15-minute10 returns (standard errors are given in parentheses). Thus da is

fairly close to the “typical value” of 0.4 (see Andersen, Bollerslev, Diebold,

and Labys, 2001, Ebens, 1999 among others) and just significantly lower that

0.5 at the 5% critical level, suggesting that these series might be covariance-

stationary.

• Finally, according to Ebens (1999) who analyzes the Dow Jones Industrial

portfolio over the January 1993 to May 1998 period, the (logarithmic) re-

alized volatility of stock indexes are non-linear in returns. To show this,

consider the following Least-Squares (LS) regression: lnRVt = c0 + c1yt−1 +

c2y
−
t−1 + ut, where lnRVt is the logarithm of the realized volatility, yt is the

daily return on day t, y−t is equal to 0 when yt > 0 and is equal to yt when

yt < 0 and ut is a white noise. Figure 6.4 displays the fitted values of these

LS regressions (solid lines) for the CAC40 (top panel) and SP500 (bottom

panel) stock indexes based on 15-minute returns as well as a nonparametric

estimation (dashed lines).11 These graphs suggest that a negative shock on

the returns is more likely to be associated with a high volatility (the next

day) than for a positive shock.12 This feature is also well known for ARCH

type models and is known as the leverage effect 13 (see Black, 1976; French,

Schwert, and Stambaugh, 1987; Pagan and Schwert, 1990 and Zakoian, 1994).

6.3 Two competing models

Realized volatility was reviewed in the preceding section and we can now introduce

a model for the daily VaR based on this measure. Subsection 6.3.2 is devoted to

this topic. As the goal of the chapter is to compare the performance of an ARCH

type model directly applied to the daily data with the performance of a model

10Results for the 5-minute returns are very similar and are thus not reported.
11Quite similar to Ebens (1999), the nonparametric regression estimates are obtained using

the Nadaraya-Watson estimator with the Epanechnikov kernel while the bandwidth parameters
are determined using cross-validation scores. The plot regions are restricted to returns in the -5
to 5 interval, even if all the sample size was used when estimating this nonparametric regression.

12The R2 of these LS regressions are respectively 11.5 and 17.5%, which is very similar to the
ones reported by Ebens (1999).

13Past negative (resp. positive) shocks have a different impact on current realized volatility
than past positive shocks.
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Figure 6.4: Regression lines for the logarithmic realized volatility (y-axis) of the
CAC40 (top panel) and SP500 (bottom panel) stock indexes based on 15-minute
returns against the previous (i.e. one day before) returns (x-axis).

based on the realized volatility, we also need to characterize the skewed Student

APARCH model for the daily data. This is done in Subsection 6.3.1.

In both cases the link between the forecasted one-day-ahead volatility and the

one-day-ahead VaR is immediate. Indeed, both models are parametric conditional

models for volatility and the corresponding VaR measures are easily computed as

the product of the square root of the conditional volatility and the quantile at

α% of the underlying distribution for the standardized error term.14 Thus, for

example, if the forecasted volatility at time t− 1 is σ̂2t and one assumes a normal

distribution for the error term, then the forecasted one-day-ahead VaR in t− 1 is

equal to nασ̂t, with nα being the left quantile at α% for the normal distribution.

6.3.1 The skewed Student APARCH model

To model daily returns yt, with t = 1, . . . , T , we use the AR(3)-APARCH(1,1)

model given in Eq. (5.1)-(5.4). Based on information criteria and standard serial

14In this chapter we consider a forecast for the demeaned VaR which only depends on the level
of the volatility.
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correlation tests, the AR(3)-APARCH(1,1) specification was found to be adequate

in describing our two series. In order to save space, we only report the results

concerning the more parsimonious specification.

In VaR applications, the choice of an appropriate distribution is an important

issue. As in Chapters 2, 3 and 5, we use the (standardized) skewed Student

distribution.

Because of the direct relationship between the VaR and the quantile in para-

metric VaR models, the one-day-ahead VaRs for long and short positions are given

by skstα,υ,ξσ̂t and skst1−α,υ,ξσ̂t, with skstα,υ,ξ being the left quantile at α for the

skewed Student distribution with υ degrees of freedom and asymmetry coefficient

ξ; skst1−α,υ,ξ is the corresponding right quantile (see Eq. (5.5)). The quantile func-

tion of the skewed Student has been derived in Eq. (5.5). As formally defined in

the previous chapter, the long side of the daily VaR is defined as the VaR level for

traders having long positions in the relevant equity index: this is the “usual” VaR

where traders incur losses when negative returns are observed. Correspondingly,

the short side of the daily VaR is the VaR level for traders having short positions,

i.e. traders who incur losses when stock prices increase.

6.3.2 Forecasting realized volatility

Regarding the realized volatility, the main findings of Section 6.2 are that the loga-

rithmic realized volatility is approximately normal, appears fractionally integrated

and correlated with past negative shocks. To take these properties into account, let

us consider the following ARFIMAX(0,d,1) model (initially developed by Granger,

1980 and Granger and Joyeux, 1980 among others):

(1− L)da(lnRVt − µ0 − µ1yt−1 − µ2y
−
t−1) = (1 + θ1L)ut (6.2)

(1− L)da =
∑∞

k=0
Γ(da+1)

Γ(k+1) Γ(da−k+1)L
k ,

where L is the lag operator, µ0, µ1, µ2, θ1 and da are parameters to be estimated,

ut is an i.i.d. random process with mean 0 and variance σu, lnRVt is the logarithm

of the realized volatility computed from the intraday returns observed for day t,

yt is the daily return on day t, y−t takes the value 0 when yt > 0 and the value yt

when yt < 0. Note that to determine the orders of this ARFIMA model we rely

on the AIC criterion.
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Estimation of Eq. (6.2) is carried out by exact maximum likelihood (Sowel,

1992) under the normality assumption using ARFIMA 1.0 (see Ooms and Doornik,

1998 and Doornik and Ooms, 1999) and conditional sum-of-squares maximum

likelihood (Hosking, 1981) using G@RCH 2.0 (see Appendix A).15 Due to the

strong similarity between the outcomes of the two estimation procedures, we only

report the results obtained with the first method.

When ut ∼ N(0, σ2u), we have by definition that exp(ut) ∼ logN(0, σ2u) (where

logN denotes the log-normal distribution). Thus, the conditional realized volatility

(or in-sample one-step-ahead forecast of the volatility) is computed according to:

R̂V t|t−1 = exp

(

lnRVt − ût|t−1 +
1

2
σ̂2u

)

, (6.3)

where ût|t−1 denotes the estimated value of ut by Eq. (6.2) and σ̂2u is the estimated

variance of ut in the same equation.

To compute a one-day-ahead forecast for the VaR of the daily returns yt using

the conditional realized volatility, we specify the following AR(3) model:

y∗t = yt/σ
∗
t (6.4)

y∗t = µ∗(1−
3∑

i=1

ψ∗i ) +
3∑

j=1

ψ∗j y
∗
t−j + ε∗t (6.5)

ε∗t ∼ D(0, σ2,∗, κ∗), (6.6)

where now σ∗t =
√

R̂V t|t−1 and µ∗, ψ∗1, ψ
∗
1, ψ

∗
1, σ

2,∗ and κ∗ are parameters to

be estimated. κ∗ stands for a vector of parameters determining the shape of the

density D(.), while σ2,∗ is the variance of ε∗t . This specification is almost identical

to the one introduced in Subsection 6.3.1, but now the conditional volatility for

the daily returns is equal to the conditional realized volatility R̂V t|t−1. As in

Subsection 6.3.1, an adequate distribution for D(.) should be selected. The recent

empirical literature has stressed that the normal distribution is a good candidate

for D(.) when σ∗t =
√
RVt, i.e. when one uses realized volatility computed at

the end of day t (or ex-post realized volatility). Because we wish to forecast

the one-day-ahead VaR, σ∗t =
√

R̂V t|t−1 is substituted to σ∗t =
√
RVt in our

15The finite sample properties of the conditional sum-of-squares maximum likelihood have been
investigated by Chung and Baillie (1993).
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framework. In Section 6.4, we show that this invalidates the choice of the normal

distribution as an adequate distribution for D(.). Therefore, we suggest the use of

the skewed Student distribution. For reason of comparison we also present results

for the normal distribution.16 In both cases, the one-day-ahead (demeaned) VaR

for long and short positions are given as the product of the quantile at α% for each

distribution with
√

R̂V t|t−1.

6.3.3 Assessing the VaR performance of the models

Using a procedure that is now standard in the VaR literature, we assess the models’

performance by first computing their empirical failure rate (both for the left and

right tails of the distribution of returns) and then performing the Kupiec LR test

presented in Section 5.3.3.

6.4 Empirical application

In this section, we report estimation results for the two models presented in Section

6.3. We first focus on the skewed Student APARCH model which is applied to the

daily returns; the second model uses the intraday returns via the computation of

the realized volatility. Both models are used to forecast the one-day-ahead VaR

for the two stock indexes and their performance is assessed by comparing their

empirical failure rate with the theoretical threshold.

6.4.1 VaR, daily returns and the skewed Student APARCH

Our first setting uses daily data only and computes the one-day-ahead daily VaR

using these daily observations. The skewed Student APARCH and corresponding

one-day-ahead VaR were defined in Subsection 6.3.1. Tables 6.1 (estimated pa-

rameters) and 6.2 (assessment of the one-day-ahead VaR) report estimation results

when this model is applied to the CAC40 and SP500 daily returns. To simplify the

reading of the tables we only report the results concerning the conditional variance

equation and the skewed Student density.17

16Note that if D(.) is the normal density, then κ∗ is a null vector, while the choice of the skewed
Student distribution for D(.) implies that κ∗ = (ln(ξ∗), υ∗).

17Table 6.1 reports robust standard errors in the sense that the estimates are obtained by
approximate QML for a skewed Student pseudo-likelihood.
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Table 6.1: Skewed Student APARCH

CAC40 (daily returns) SP500 (daily returns)

ω 0.023 (0.013) 0.006 (0.002)

α1 0.042 (0.015) 0.053 (0.009)

αn 0.452 (0.193) 0.539 (0.105)

β1 0.940 (0.018) 0.954 (0.009)

ln(ξ) -0.075 (0.042) -0.029 (0.024)

υ 12.849 (4.391) 5.462 (0.504)

δ 1.775 (0.568) 0.955 (0.157)

Q220 14.75 17.36

α1E(|z| − γz)δ + β1 0.975 0.991

Estimation results for the volatility specification of the skewed Student
APARCH model. Robust standard errors are reported in parentheses. Q2

20

is the Ljung-Box Q-statistic of order 20 computed on the squared standardized
residuals.

According to the estimated coefficients for the skewed Student APARCH,

- β1 is close to 1 but significantly different from 1 for both indexes, which indicates

a high degree of volatility persistence.18 Furthermore both APARCH models

are stationary in the sense that α1E(|z| − γz)δ + β1 is lower than 1.

- δ is close to 2 for the CAC40 and close to 1 for the SP500: the APARCH

models the conditional variance for the CAC40 and the conditional standard

deviation for the SP500;

- γ is significantly positive: negative returns lead to higher subsequent volatility

than positive returns (asymmetry in the conditional variance);

- υ is much larger for the CAC40 than for the SP500: daily returns defined on the

U.S. data display a much larger kurtosis and exhibit fatter tails than returns

for the French data;

18Tse (1998) extended the APARCH by including a pure long memory feature (FIAPARCH).
LR tests between the APARCH and the FIAPARCH clearly reject the FIAPARCH specification.
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Table 6.2: VaR results for the CAC40 and SP500
(models using daily data)

α 5% 2.5% 1% 0.5% 0.25%

VaR for long positions (CAC40)

RiskMetrics 0.065 0.005 0 0 0

Skewed Student APARCH 0.764 0.170 0.483 0.609 0.498

VaR for long positions (SP500)

RiskMetrics 0.335 0.001 0 0.003 0

Skewed Student APARCH 0.682 0.995 0.543 0.962 0.332

VaR for short positions (CAC40)

RiskMetrics 0.665 0.336 0.671 0.297 0.021

Skewed Student APARCH 0.928 0.336 0.879 0.762 0.948

VaR for short positions (SP500)

RiskMetrics 0.297 0.152 0.035 0.008 0.060

Skewed Student APARCH 0.625 0.906 0.010 0.024 0.010

P-values for the null hypotheses fl = α (i.e. failure rate for the long trading
positions is equal to α, top of the table) and fs = α (i.e. failure rate for
the short trading positions is equal to α, bottom of the table). α is equal
successively to 5%, 2.5%, 1%, 0.5% and 0.25%. The RiskMetrics and skewed
Student APARCH models are estimated on the daily returns (i.e. no use is
made of the intraday returns).
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- ln(ξ) is negative in both specifications, albeit not significant from zero for the

SP500 and barely significant for the CAC40.19

- the APARCH dynamical structure succeeds in taking into account all the dy-

namical structure exhibited by the volatility as the Ljung-Box Q20 on the

squared standardized residuals is not significant at the 5% level for both

models.

For the skewed Student APARCH model, the p-values for the null hypothesis

fl = α (VaR for the left tail of the distribution of returns) and fs = α (VaR

for the right tail of the distribution of returns) given in Table 6.2 confirm that

this volatility model succeeds in correctly forecasting the one-day-ahead VaR for

most of the probability levels α. Indeed, the p-values are larger than 0.05 for all

configurations except the VaR for short positions on the SP500 (with α ranging

from 0.25% to 1%). Broadly speaking these results are similar to those of the

previous chapter reported for five stock market indexes.

6.4.2 VaR, intraday returns and daily realized volatility

In our second framework we explicitly use the intradaily (5- and 15-minute) returns

to compute the daily realized volatility. We first estimate an ARFIMAX(0,d,1)

model on the logarithmic realized volatility lnRVt as in Eq. (6.2). In a second

step, we standardize the daily returns yt by the one-day-ahead forecast of the

realized volatility R̂V t|t−1 as in Eq. (6.4) and compute the one-day-ahead VaR

using an AR(3) model on the y∗t = yt/σ
∗
t . As explained below, the choice of the

distribution for D(.) is of paramount importance. Table 6.3 presents estimation

results for the ARFIMA specification.

- First, the ARFIMA specification seems to be adequate in modelling the dynamics

of lnRVt. Indeed, the Ljung-Box statistics indicate that all serial correlation

in the error term has been removed (at the conventional levels of significance).

Parameter d is well above 0 but is not significantly lower that 0.5, indicating

19This indicates that, at least for the U.S. data, there is no real need for a skewed Student
APARCH; nevertheless, as this specification encompasses the simpler Student APARCH, we stick
with the more general model (owing to the large number of observations, the loss of degrees of
freedom is minimal).
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Table 6.3: Asymmetric ARFIMA

CAC40 SP500

5-minute 15-minute 5-minute 15-minute

µ0 -0.019 (0.913) -0.016 (0.729) -0.457 (1.758) -0.565 (1.120)

µ1 0.027 (0.023) 0.029 (0.026) -0.007 (0.017) -0.016 (0.020)

µ2 -0.188 (0.040) -0.187 (0.035) -0.190 (0.028) -0.215 (0.034)

θ1 -0.345 (0.045) -0.341 (0.053) -0.237 (0.022) -0.287 (0.030)

da 0.478 (0.025) 0.463 (0.034) 0.492 (0.010) 0.480 (0.019)

σ2 0.357 0.444 0.289 0.399

Q20 20.0 15.6 22.8 15.9

Estimation results for the logarithm of the realized volatility (defined on 5- and 15-
minute returns) using an ARFIMAX(0,d,1) specification: (1 − L)da(lnRVt − µ0 −
µ1yt−1 − µ2y

−
t−1) = (1 + θ1L)ut. Standard errors are reported in parentheses. Q20 is

the Ljung-Box Q-statistic of order 20 computed on the residuals.

that, in contrast to the GPH test of Subsection 6.2.2, the logarithm of the

realized volatility is not covariance-stationary;20

- µ1 and µ2 are respectively non significant and significantly positive: negative

returns lead to higher subsequent volatility than positive returns (asymmetry

in the conditional variance similar to the APARCH model).

Estimation results for the skewed Student AR(3) model are presented in Table

6.4. As in Table 6.1 we do not report the results of the conditional mean in order

to save space. As indicated by the Ljung-Box Q220 on the standardized residuals

of this model, the y∗t = yt/
√

R̂V t|t−1 do not display time dependence in volatility.

This justifies the use of a skewed Student AR(3) model without ARCH effects.

Of course, this is expected as the time dependence in volatility has been captured

by the previous ARFIMA model on the dynamics of lnRVt. In the usual ARCH

framework, the y∗t = yt/
√

R̂V t|t−1 would play the role of standardized residuals.

20However as argued by Andersson (2000), one has to be careful with the notion of long memory
because “(surprisingly) negative moving average parameters (θ1 is significantly below 0 for both
indexes), which alone make no memory contribution, absorb a substantial amount of memory
induced by fractional integration.”
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This is somewhat true as we do standardize the returns by the square root of

forecasted realized volatility.

While the recent literature has stressed that ex-post standardized returns have

an almost normal distribution (see Andersen, Bollerslev, Diebold, and Labys,

2000), this is certainly not true for ex-ante standardized returns. The estimated

parameters ln(ξ∗) and υ∗ reported in Table 6.4 suggest that the ex-post standard-

ized returns of the CAC40 are slightly skewed and kurtosed while the SP500 is

kurtosed but symmetric. These results are in line with those reported in Table 6.1

(skewed Student APARCH on daily returns).21 Furthermore, assessing the VaR

performance of a normal model (i.e. choosing the normal distribution for D(.)

instead of the skewed Student distribution) for the ex-ante standardized returns

gives the results shown in the first line of each cell of Table 6.5:

- for the left tail of the distribution of returns (long VaR), the p-values for the null

hypothesis fl = α are smaller than 0.05 when α is below 1%: the empirical

failure rate is significantly higher than α for low VaR levels;

- for the right tail of the distribution of returns (short VaR), the performance of

the model is satisfactory;

- there are no real differences between the results for the 5- and 15-minute returns.

However, using the skewed Student distribution instead gives much better re-

sults (second line of each cell of Table 6.5). For the CAC40 data, all p-values are

larger than 0.05, both for the long and short VaR. For the SP500 data, all p-values

are larger than 0.05 except for the short VaR at level α = 1% and α = 0.25%.

21Note that one has to be careful when computing the empirical skewness and the kurtosis on
the raw data. Indeed, Table 6.4 also reports theses statistics (lines 1 and 2 for both series). For
instance, the empirical skewness of the 5-minute (ex-post) standardized returns of the CAC40
and SP500 equal respectively -0.198 and -1.093. To test the departure from normality, it is
common to use the t-test sk/

√

6/T where sk is the empirical skewness and T the number of
observations. Based on the result of this test one could be tempted to conclude that the SP500
is highly skewed while the CAC40 is hardly skewed (which contradicts the results obtained with
the skewed-Student density, see lines 4 and 5 of Table 6.4). However, as shown by De Ceuster
and Trappers (1992) and Peiró (1999), this test is not appropriate when the series is fat-tailed.
For a sample size of 2000 observations, De Ceuster and Trappers (1992) tabulate that the 95%
confidence intervals of the skewness of Student-t distributed observations with a kurtosis of 3.5
and 18 are respectively (−0.131; 0.127) and (−0.814; 0.787), i.e. the higher the kurtosis, the larger
the confidence bands of the skewness.
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Table 6.4: Ex-ante standardized returns
(w.r.t. forecasted realized volatility)

5-minute returns

CAC40 SP500

Skewness -0.198 -1.093

Kurtosis 3.537 17.861

σ2,∗ 1.073 1.067

ln(ξ∗) -0.078 (0.042) -0.020 (0.024)

υ∗ 14.516 (5.384) 6.055 (0.618)

Q220 15.87 3.17

15-minute returns

CAC40 SP500

Skewness -0.167 -1.107

Kurtosis 3.441 18.247

σ2,∗ 1.024 1.106

ln(ξ∗) -0.073 (0.041) -0.022 (0.024)

υ∗ 15.708 (6.414) 5.987 (0.606)

Q220 15.86 3.01

Descriptive statistics (skewness and kurtosis) and estimation results
(σ2,∗, ln(ξ∗) and υ∗) for the skewed Student AR(3) model on the ex-
ante standardized returns with respect to the daily realized volatility
computed on 5- and 15- minute intraday returns. Q2

20 is the Ljung-
Box Q-statistic of order 20 computed on the squared standardized
residuals.
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Figure 6.5: The graphs display the density distributions, i.e. empirical (dashed
lines) vs normal (solid lines), for the daily returns standardized with respect to the
square root of the ex-post (left panel) and the ex-ante (right panel) daily realized
volatility computed for the CAC40 (top panel) and SP500 (bottom panel) stock
indexes based on 15-minute returns.

Thus the switch from the normal distribution to the skewed Student distribution

yields a significant improvement in the VaR performance of the model.

Finally we also give density plots (empirical vs the normal distribution) for the

ex-ante and ex-post standardized returns in Figure 6.5. While the tails of the ex-

post standardized returns closely track those of the normal distribution, ex-ante

standardized returns feature fat tails, especially for the U.S. data. Estimation

results and descriptive statistics given in Table 6.4 tell the same story.

6.4.3 Which model is best?

The evidence presented in the two preceding subsections indicates that using an

APARCH model with daily data or a two step approach relying on the new con-

cept of realized volatility leads very similar results in terms of VaR. It should be

emphasized that to have accurate VaR forecasts, one needs to specify correctly the
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full conditional density with both methods.

This implies that previous results given in the empirical literature must be

qualified. For example, Ebens (1999) concludes his paper by stating that the

GARCH model underperforms (when volatility must be forecasted) with respect

to the model based on the daily realized volatility. However, the author uses

a “simple” GARCH model which neither really accounts for the long memory

property observed in the realized volatility nor the fat-tails or asymmetry of the

returns (even after standardization). Indeed, when estimating the more simple

RiskMetrics VaR model on daily returns (the RiskMetrics model is tantamount to

an IGARCH model with pre-specified coefficients, under the additional assumption

of normality), we have the VaR results given in Table 6.2: its one-day-ahead

forecasting performance is rather poor, especially when α is small.22 With a more

“sophisticated” model on the other hand (the skewed Student APARCH model in

this chapter), VaR results are much better.

Interestingly and as pointed out in the previous subsection by comparing the

results obtained with the normal and skewed Student distributions for the ex-ante

standardized returns, the same conclusion is true for the more complex model

based on the combination of intraday returns and realized volatility.

6.5 Conclusion

In this chapter we show how to compute a daily VaR measure for two stock indexes

(CAC40 and SP500) using the one-day-ahead forecast of the daily realized volatil-

ity. The daily realized volatility is equal to the sum of the squared intraday returns

over a given day and thus uses intraday information to define an aggregated daily

volatility measure. While the VaR forecasts which use this method perform ade-

quately over our sample, we also show that a more simple model based solely on

daily returns delivers good results too. Indeed, while the VaR specification based

on an ARFIMAX(0,da,1)-skewed Student model for the daily realized volatility

provides adequate one-day-ahead VaR forecasts, it does not really improve on the

performance of a VaR model based on the skewed Student APARCH model and

estimated using daily data. Thus, for the two financial assets considered in an

22Although the results are not reported in the chapter, we also estimated a normal GARCH(1,1)
model and its performance was not much better than the RiskMetrics specification.
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univariate framework, the two methods seem to be rather equivalent. Another im-

portant conclusion of this chapter is that daily returns standardized by the square

root of the one-day-ahead forecast of the daily realized volatility are not normally

distributed.

At this stage, one of the most immediate and promising extension of these

techniques is to consider corresponding multivariate volatility models to forecast

the VaR of a portfolio of financial assets. Multivariate models of the ARCH type

are not easy to implement as they often require the estimation of a large number

of parameters. Furthermore, these parameters are present in the latent volatil-

ity specification and this is one of the main difficulty of the problem. Therefore,

multivariate realized volatility models should provide a much easier way to cor-

rectly model variances and correlations across financial assets as they assume that

volatility is observed. This paves the way for the use of “usual” multivariate models

(VAR, ECM) directly applied to realized volatility and correlations.
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Chapter 7

Central Bank Intervention and
Exchange Rate Volatility:
Evidence from a Switching
Regime Analysis

7.1 Introduction

Since the beginning of the 90’s, the release of high frequency data by several major

central banks has led to a renewed interest in the empirical assessment of the

effect of direct interventions on the short run evolution of foreign exchange rates.

In particular, the empirical literature investigated whether direct purchases and

sales made by the central bank on the foreign exchange market could be effective

in moving the nominal exchange rate in one direction or another. These sought-

after dynamics have been implicitly defined in two well known major international

agreements: the 1985 Plaza Agreement that favored central bank cooperation in

order to induce a sharp depreciation of the US dollar (USD hereafter) and the

1987 Louvre Agreement that emphasized the need to decrease excess exchange

rate volatility. More recently, the interest for direct interventions on the foreign

exchange market has been fostered at the European level by the sharp depreciation

of the Euro against the major currencies, i.e. the USD and the Japanese Yen

(YEN hereafter) and, to a lesser extent, its relatively high volatility. In September

2000, the European Central Bank directly intervened in support of the Euro in

coordination with the major other central banks (the Federal Reserve, the Bank of

Japan, the Bank of Canada and the Bank of England). This was followed by three
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official unilateral interventions carried out in November 2000. Recently, central

bank interventions have also been used extensively as an instrument by the Bank

of Japan to depreciate the YEN, in order to support its expansive monetary policy.

In the 80’s, the inference of the empirical literature was mainly based on the

use of quarterly variations of official reserves as proxies to the direct interventions

of central banks on the foreign exchange markets. The public release of daily data

regarding these direct interventions by the Federal Reserve, the Bundesbank and

the Swiss bank (among others) has nevertheless allowed the study of the short-

run impact on exchange rates or interest rates. More recently, the Bank of Japan

also decided to publish (ex-post) the official interventions made since April 1991.

Accordingly, the econometric techniques using these data have been adjusted to

account for some of the key features associated with such high frequency financial

data (conditional heteroskedasticity for instance).

The results of the empirical literature on foreign exchange rate interventions

seem quite surprising. General speaking, there is only some weak evidence that in-

terventions can affect the level of the exchange rate (Baillie and Osterberg, 1997a).1

When some effects are however detected, net purchases of a particular currency ap-

pear to be associated with a subsequent depreciation of this currency (Almekinders

and Eijffinger, 1993; Dominguez and Frankel, 1993; Baillie and Osterberg, 1997a

and Beine, Bénassy-Quéré, and Lecourt, 2002), suggesting leaning-against-the-

wind phenomena.2 Regarding the second moment of the distribution of returns,

the main findings of the literature emphasize a significant increase of volatility sub-

sequent to the foreign exchange rate interventions. This last effect is extensively

documented in the previously quoted papers and also by Connoly and Taylor

(1994), Dominguez (1998) and Baillie and Humpage (1992) that use an ex-post

characterization of volatility (ARCH and subsequent developments). Focusing on

some ex-ante measure of volatility leads to the same conclusion (Bonser-Neal and

Tanner, 1996 for instance). All in all, these reported effects raise some doubts on

the efficiency of such an instrument, at least in the very short run.

As far as the methodological part of the study is concerned, most of the em-

pirical analyzes use an ARCH-type specification to model the heteroskedasticity

1Although Baillie and Osterberg(1997b) find some effects on the risk premium in the forward
market.

2Leaning-against-the-wind refers to an intervention aiming at reverting the evolution of a
particular currency.
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observed on these series at a high-frequency basis. For instance, Baillie and Os-

terberg (1997a,b) as well as Dominguez (1998) use GARCH models while Beine,

Bénassy-Quéré, and Lecourt (2002) allow for long memory in the conditional vari-

ance through a FIGARCH specification. To study the impact of central bank

interventions, explanatory variables are usually added in the conditional mean

and/or the conditional variance equations.

In this chapter, we propose an alternative approach to the GARCH specification

(Bollerslev, 1986) and the single-regime framework that are commonly used in the

empirical literature on the effectiveness of central bank interventions in the foreign

exchange markets. In contrast with earlier analysis, we allow for regime-dependent

frameworks to assess the impact of direct interventions. More specially, and fol-

lowing the approach proposed by Hamilton (1994), we assume that the evolution

of the spot exchange rates depends on a latent regime variable whose dynamics is

driven by a first-order Markov switching process (this generalizes the static mix-

ture of normal distributions presented in Chapter 2). Then, in the spirit of Filardo

(1994) or Diebold, Lee, and Weinbach (1994), the probabilities of switching from

one regime to another depend on strongly exogenous variables, in our case central

bank interventions.

Compared to single-regime GARCH type models, one important advantage of

such an approach is that it explicitly allows for different outcomes of central bank

interventions with respect to the initial state of the economy. For instance, central

bank purchases can lead to an increase in volatility when the markets are calm, but

not if the market is in a state of high volatility. Similarly, the effect on the level of

exchange rate could be different depending on whether the dollar is depreciating or

appreciating. The economic rationale is as follows. The literature tends to favor

the signalling channel as the prevailing channel of transmission of central bank

interventions on foreign exchange rates. As pointed out by Dominguez (1998),

according to the intervention signalling hypothesis, the expected effect of an inter-

vention depends on whether its associated signal is unambiguous and consistent

with the official goals of these operations. As indicated in Dominguez (1999), the

motivations of the FED include influencing trend movements in exchange rates and

calming disorderly markets. Therefore, depending on the prevailing state of the

market, the signal of an intervention will be ambiguous or not and the effect on the

two first moments of exchange rate changes will be different. Our results dealing
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with the effects of the central bank interventions on exchange rate volatility turn

out to be consistent with this idea.

In this chapter, different Markov switching models are estimated and a selected

specification is then used for the study of the DEM/USD exchange rate over the

1985-1995 period. Some evidence is also provided for the YEN/USD in order

to assess to which extent our results are only valid for the DEM. Due to data

availability, the analysis of the YEN is performed over a shorter period, 1991-1995.

It is found that this regime-switching framework fits the data rather well on the one

hand, and compares very well with usual GARCH specifications when investigating

the respective out-of-sample forecasting properties on the other hand. One of our

main conclusions is that official central bank interventions explain a significant

part of the observed switches between volatility regimes. Our results lead us to

challenge the previous conclusions according to which central bank interventions

cannot have any stabilizing influence on the short run dynamics of exchange rates.

The chapter is organized as follows. Section 7.2 investigates the relevance of

several statistical models and presents some evidence in favor of a regime-switching

model. Section 7.3 is devoted to the analysis of the effects of central bank inter-

ventions. Section 7.4 concludes.

7.2 Regime-dependent frameworks

This section introduces the Markov Switching model on which our analysis is based.

A comparison with the traditional GARCH model is carried out in order to justify

such a regime dependent model. Some statistical model selection search within

this class of models is also conducted so that a preferred model can be chosen and

extended to time-varying transition probabilities.

7.2.1 Regime-dependent models versus single regime (G)ARCH
models

Most of the statistical models used in the literature to study the impact of for-

eign exchange rate interventions are single-regime models in the sense that the

parameters are assumed to be constant over the whole sample. In this chapter, we

introduce a more flexible framework by allowing the value of parameters to depend

on the prevailing regime. Our data set consists of weekly returns of spot exchange
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rates yt = 100 × ln(pt/pt−1), where pt denotes the number of units of the foreign

currency (the DEM or the YEN) per unit of USD. The data has been provided

by the Bank of International Settlements. These are mid-day spot exchange rates

quoted at Frankfurt at 2:00 pm (DEM) and at Tokyo at 10 am (YEN) in local time.

In contrast with the previous literature, we use weekly data rather than daily data.

Indeed, it is unclear (and controversial) what is the exact horizon of the central

bank interventions. As reported by Neely (2000), an important proportion of cen-

tral banks believe that the full effect of the intervention is seen over a few days or

more. This suggests that the weekly frequency is relevant, at least from the point

of view of the central banks. Furthermore, it was implicit that the Plaza and the

Louvre agreements focused on lower frequencies than the daily one which is usually

considered in the literature. For the DEM, the data ranges from the first week of

1985 to the last one of 1995, yielding 573 observations. This period turns out to

include most central bank operations undertaken on the foreign exchange market

during the 80’s and the 90’s. It also corresponds to the period subsequent to the

two major agreements in this field, namely the Plaza (September 1985) and the

Louvre (February 1987) agreements. or the YEN, given the availability of official

central bank interventions of the Bank of Japan, the investigation period ranges

from April 1991 to December 1995; this amounts to 272 observations.

To a certain extent, some substitutions are possible between ARCH and regime-

switching modelling.3 Although the variance is constant within each regime in the

latter model, the estimated conditional variance of this model is allowed to vary

over time due to the evolution of the probabilistic assessment of being in the first or

the second regime. In turn, this suggests that a two-regime model with a constant

variance may be an alternative candidate to single-regime (G)ARCH-type models

traditionally used in the empirical assessment of central bank interventions. As

a starting point, we estimate a two-regime model with shifts allowed both in the

conditional mean and variance. Such a framework is proposed by Hamilton (1994).

Bollen, Gray, and Whaley (2000) have recently shown that such a model fits the

exchange rate data rather well on the one hand and tends to outperform the usual

GARCH model on the other hand. In the two-regime case, one has:

3Kim and Kon (1999), Granger and Hyung (1999) or Beine and Laurent (2001) have recently
provided some specific evidence on the strong interaction between structural change (captured
for instance through regime switching models) and volatility persistence.
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yt | Ωt ∼ ∆(µ1, σ
2
1) if st = 1 (7.1)

yt | Ωt ∼ ∆(µ2, σ
2
2) if st = 2, (7.2)

where Ωt denotes the information set at time t and ∆ the Gaussian distribution

function. In this framework, the dynamics of yt is assumed to depend on an

unobserved random variable st that can take on the values 1 or 2. This unobserved

variable is then supposed to follow a first-order Markov process of the type:

p1 = Prob(st = 1 | st−1 = 1) (7.3)

p2 = Prob(st = 2 | st−1 = 2). (7.4)

In turn, these transition probabilities can be collected in the following P matrix:

P =

[
p1 1− p2

1− p2 p2

]

. (7.5)

Because of the persistence of each regime (a stylized fact of Markov switching

models applied to empirical finance, see for instance Kim and Nelson, 1999) cap-

tured by p1 and p2, the model accounts for the volatility clustering observed in

the data. Persistence and thus the relevance of the Markov-Switching approach

require p1 and p2 to be significantly higher than 0.5. This contrasts with single-

regime (G)ARCH approaches in which the evolution of the conditional variance is

driven by volatility innovations and past values of variances.

Nevertheless, as reported by Bollen, Gray, and Whaley (2000), this two-regime

framework imposes some restrictions that can be too strong to capture the dy-

namics of exchange rates. In particular, since the switching process involves both

the mean and the variance, a particular combination of the level of returns and

variance of exchange rates is enforced within each regime. For instance, if µ1 > µ2

and σ21 < σ22, the first regime necessarily associates patterns of low volatility with

patterns of high returns (appreciation of the USD), while the second regime cap-

tures high volatility episodes associated with phases of USD depreciation. Such a

restriction can be rejected by the data and thus needs to be tested statistically.

As analyzed by Bollen, Gray, and Whaley (2000), the model may be generalized

to include independent shifts in the mean and in the variance. In this case, one
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has to define two latent variables, sµ,t and sσ,t, relative respectively to the mean

and to the variance process. As before, each of these two variables is governed by

a first-order Markov process. The transition probabilities are denoted by p1,µ and

p2,µ for the mean process and p1,σ and p2,σ for the variance one, respectively. This

corresponds to a four-regime model with a new latent variable st (st = 1, 2, 3, 4)

taking values depending on the mean and variance regimes:

yt | Ωt ∼ ∆(µ1, σ
2
1) if st = 1 (7.6)

yt | Ωt ∼ ∆(µ2, σ
2
1) if st = 2 (7.7)

yt | Ωt ∼ ∆(µ1, σ
2
2) if st = 3 (7.8)

yt | Ωt ∼ ∆(µ2, σ
2
2) if st = 4. (7.9)

In this case, one ends up with a (4× 4) matrix of transition probabilities (see

for details Bollen, Gray, and Whaley, 2000 or Ravn and Sola, 1995).

The markov-switching regimes are estimated by the Expected Maximum Like-

lihood (EML) procedure (see Appendix C). In short, the EML estimation relies

on the maximisation of the log-likelihood function
∑T

t=1 [Ln(∆(yt | Ωt)] which is

computed from the sum of the log-likelihood values conditional upon each regime:4

Ln(∆(yt | Ωt)) = Ln

[
S∑

i=1

(∆(yt | Ωt, st = i)Pr(st = i | Ωt)

]

, (7.10)

where S denotes the total number of regimes (1, 2 or 4 in our analysis) and T is the

sample size. One has to be cautious in assessing the relevance of the two-regime

model against either the one-regime model or the four-regime model since the

standard conditions are not fulfilled to carry out usual likelihood ratio tests (LRT).

Several solutions have been proposed (see for instance Hansen, 1992), including

the adjustment of critical values proposed by Garcia (1998) for a set of specific

two-regime models. When these adjusted critical values are not available, several

features, like results from the usual diagnostic tests (Ljung-Box or information

criteria for instance) or the forecasting performances, should be computed.

4For the estimation of the smoothed probabilities Pr(st = i | Ωt), we rely on the algorithm
developed by Kim (1994). Similar results have also been obtained with the alternative procedure
developed by Gray (1996).
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7.2.2 Results and comparison with GARCH model

Before using the Markov switching model to tackle the issue of central bank inter-

ventions, the different competing specifications should be compared and assessed

and a preferred model should be selected. Tables 7.1 and 7.2 present the results

obtained from the various Markov-Switching specifications.

Table 7.1 indicates that the model with two dependent regimes is validated

by the data. The one-regime model [model (1)] is clearly rejected in favor of

the two-regime model with a switching mean [model (3)] using the χ2 adjusted

critical values provided by Garcia (1998) for this specific model. Indeed, the LRT

amounts to 32.672, well above the critical value at the 99% confidence level (17.52).

Comparing the four-regime model [model (4)] with model (3), a LRT clearly rejects

the hypothesis of independence between mean and variance regime, but once again,

because of the identification issue of some parameters under the null hypothesis,

one cannot discriminate between these models on these grounds.5 Nevertheless,

information criteria and other standard diagnostics tend to favor the two-regime

model. Basically, the same result holds for the YEN: model (2) with a switching

variance and a constant mean turns out to be the preferred model. Another way

to discriminate between these regime-switching models but also to compare them

with the standard single-regime GARCH model is to investigate their relative out-

of-sample forecasting properties. This is done in the next sub-section and will

confirm that the four-regime model is clearly dominated.

From the results of model (3), it is also obvious that the estimated models

capture volatility regimes rather than mean regimes, which is quite consistent with

the literature on Markov-Switching models applied to exchange rates. The first

regime is basically the high volatility regime with a variance σ21 roughly three times

larger than the one in the second regime (σ22).
6 By contrast, the two unconditional

means do not significantly differ across regimes, neither for the DEM nor the YEN.

Restricting the mean to be constant leads to model (2) that can be compared to

5It should also be noticed that as emphasized by Garcia (1998), unadjusted critical values
tend in general to be too low. Therefore, it should be expected that using adjusted critical values
would also lead to the rejection of the four-regime model in favor of the two-regime model.

6Notice that Tables 7.1 and 7.2 report the estimated standard errors. In turn, this suggests
that the variables introduced to explain the transition probabilities in model (3) should be mainly
variables thought to influence exchange rate volatility and not the returns. In particular, one
should use absolute values of central bank interventions.
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Table 7.1: Markov switching models: DEM (1985-1995)

(1) (2) (3) (4)

µ1 -0.1381 -0.1513 -0.0241 0.3858

(0.0685) (0.0642) (0.2366) (0.4141)

µ2 - - -0.1758 -0.3646

(0.0790) (0.1410)

σ1 1.6417 2.3853 2.3872 2.3624

(0.1033) (0.3025) (0.3106) (0.2962)

σ2 - 1.2997 1.2997 1.2427

(0.1020) (0.1020) (0.1014)

p1/p1,µ - 0.8395 0.8394 0.8576

(0.0752) (0.0678) (0.1714)

p2/p2,µ - 0.9466 0.9473 0.9420

(0.0325) (0.0339) (0.0331)

p1,σ - - - 0.8381

(0.0760)

p2,σ - - - 0.9446

(0.0333)

Q20 25.8038 25.4923 25.5471 26.8022

Q220 31.9849 17.9924 18.1727 18.2120

SIC 3.849 3.826 3.837 3.855

Log-Lik -1096.594 -1080.408 -1080.264 -1079.185

Robust standard errors of maximum likelihood estimates are in
parentheses. SIC is the Schwarz information criterion (divided
by the sample size) and Log-Lik refers to the log-likelihood value
at maximum. Model (1) has constant mean and variance. In
Model (2), only the variance switches. In Model (3), the mean
and variance switch simultaneously while in Model (4) they can
switch independently.
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Table 7.2: Markov switching models: YEN (1991-1995)

(1) (2) (3) (4)

µ1 -0.1467 -0.1415 -0.1822 0.3736

(0.0992) (0.0899) (0.3884) (0.6928)

µ2 - - -0.1358 -0.2037

(0.1108) (0.2133)

σ1 1.6364 2.3943 2.3896 2.3846

(0.2276) (0.3180) (0.3307) (0.3062)

σ2 - 1.3135 1.3126 1.2991

(0.0822) (0.0861) (0.0944)

p1/p1,µ - 0.9481 0.9481 0.8011

(0.0455) (0.0455) (0.1508)

p2/p2,µ - 0.9818 0.9816 0.9751

(0.0156) (0.0167) (0.0762)

p1,σ - - - 0.9469

(0.0473)

p2,σ - - - 0.9813

(0.0159)

Q20 21.0343 17.1436 17.1834 17.1239

Q220 29.3048 10.6958 10.6951 11.8250

SIC 3.860 3.845 3.865 3.906

Log-Lik -519.422 -508.881 -508.872 -508.835

Note: see Table 7.1.
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model (3); this restriction is supported by a LRT, which implies that model (2) is

finally our preferred model for assessing the impact of interventions on both the

mean and variability of exchange rate returns.

Interestingly, the Ljung-Box statistics at lag 20 for the residuals (Q20) and the

squared residuals (Q220) suggest that the Markov-Switching models are supported

by the data. In particular, allowing for a switching variance accounts for the

heteroskedasticity present in the data without using the GARCH specification.

By contrast, the model does not require a switch in the mean to account for

the autocorrelation in the data, as suggested by the Q20 statistics for model (2).

To illustrate this point and to compare these non-nested specifications, one may

investigate the out-of-sample forecasting properties of each model.

7.2.3 Forecasting Performance

We compare the out-of-sample variance forecasts of five volatility models: the

GARCH (1, 1), the random walk (RW) and three regime switching models (two-

regime with constant mean, two-regime with varying mean and four-regime mod-

els). The models are estimated for the DEM/USD7 using the first 521 observations

(up to 1994) with the rest of the data (52 points) left for post-sample forecast eval-

uation. Variance forecasts at 1, 4 and 8 weeks horizons are constructed for each

model.

The volatility forecasts should be compared with the realized variance over the

forecast period. The usual measure for the observed volatility in the literature is the

square of the returns or the absolute returns (Pagan and Schwert, 1990). However,

in a recent paper dealing with daily volatility, Andersen and Bollerslev (1998) have

shown that this measure is not fully relevant and have proposed an alternative

measure. This new measure uses cumulated squared intradaily returns, also called

“realized volatility”, which is a more precise measure of the daily volatility. In our

analysis, the realized volatility is defined as:

σ2t =
5∑

i=1

y2i,t, (7.11)

where y2i,t is the squared return on day i of week t. For the two-regime and four-

regime MS models, the volatility forecast is of course a function of the regime

7This experience is not conducted for the YEN/USD due to the small sample size.
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probabilities.8

To compare the forecasting performances of the different models, we use the

following criteria:

• the Root Mean Squared forecast Error (RMSE) generally used in the volatil-

ity forecast literature;

• the Heteroskedastic Mean Average Error (HMAE) of Andersen, Bollerslev,

and Lange (1999) which is adjusted for ARCH effects;

• the Logarithmic Loss Function (LL) of Pagan and Schwert (1990) as well

as Bollerslev, Engle, and Nelson (1994), which stresses the influence of low

volatility periods.

The forecast horizon has been set to 1, 4 and 8 weeks. Summary statistics are

given in Table 7.3, respectively in panels A, B and C.

Results in Table 7.3 show that the two-regime model with constant mean often

leads to a reduction of the variance forecasts errors relative to others models. Such

a result is obtained for each forecast length, at least using one criterion. Exceptions

are the HMAE and the LL criteria at the one-week horizon and the RMSE crite-

rion at the eight-week horizon. As a whole, it comes out that our preferred model

compares very well with the GARCH(1,1) model. More importantly, in almost

all cases, the two-regime model clearly outperforms the four-regime model.9 This

may be due to the fact that the uncertainty regarding the estimates of the mean

parameters is quite important in the four regime model. Thus, this makes legiti-

mate the use of the two-regime with constant mean model compared to a GARCH

(1,1) specification or to the four-regime model and tends to support the findings

drawn from the estimations reported in Tables 7.1 and 7.2. Figure 7.1 plots the

conditional variances implied by model (2) and by a GARCH specification. It is

seen that, both models give rise to similar episodes of high and low volatility.

8See Appendix C for further details.
9Except for the HMAE criteria at four-week horizon.
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Table 7.3: Variance forecasts for the models

A. One week horizon

Two-regime constant mean Two-regime Four-regime GARCH(1,1) Random Walk

RMSE 4.097 4.099 4.109 4.164 5.135

HMAE 0.401 0.403 0.411 0.388 0.392

LL 1.264 1.273 1.331 1.157 1.461

B. Four week horizon

Two-regime constant mean Two-regime Four-regime GARCH(1.1) Random Walk

RMSE 4.519 4.522 4.750 4.533 5.281

HMAE 0.384 0.385 0.372 0.413 0.392

LL 1.226 1.227 1.275 1.361 1.479

C. Eight week horizon

Two-regime constant mean Two-regime Four-regime GARCH(1.1) Random Walk

RMSE 4.697 4.703 5.191 4.642 5.497

HMAE 0.364 0.365 0.464 0.397 0.391

LL 1.180 1.184 2.050 1.369 1.526

Bold figures highlight the minimal forecast error.
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Figure 7.1: Conditional variances: GARCH vs. two-regime model.

7.3 The impact of central bank interventions

7.3.1 The TVTP model

As explained in Section 7.2.1, the change over time of the probabilities of being

in one particular regime is in the Markov switching framework the only driving

force of the dynamics of the conditional mean and variance of the exchange rate

returns. Within each regime, these mean and variance remain constant. Up to

now, the transition probabilities of remaining in a particular regime only depend

on the previous state of the economy, i.e. the volatility level of past week. To

study the impact of central bank interventions on the dynamics of exchange rate

returns, we follow Filardo (1994) and Diebold, Lee, and Weinbach (1994) and ex-

tend the constant transition probability assumption (see Eq. (7.5)) by conditioning

the transition probabilities on exogenous variables (in our case central bank inter-

ventions) through a logistic specification. For instance, in the two-regime model
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similar to model (2) that involves only volatility regimes, one has:

p1,t = Prob(st = 1 | st−1 = 1, |xt−1|)

= 1−
[

1 + exp(η1,0 +
k∑

i=1

η1,i |xi,t−1|)
]−1

(7.12)

p2,t = Prob(st = 2 | st−1 = 2, |xt−1|)

= 1−
[

1 + exp(η2,0 +
k∑

i=1

η2,i |xi,t−1|)
]−1

, (7.13)

where xt is a matrix of k explanatory variables, i.e. xt = (x1,t, . . . , xk,t). In our

framework, these explanatory variables are of course the central bank interven-

tions. In the subsequent estimations we use k = 1 when dealing with coordinated

interventions and k = 2 with unilateral interventions.

We use model (2) and also introduce interventions as explanatory variables of

the conditional mean of exchange rate returns. This implies that we allow only for

linear effects on the returns:

yt = µ+
k∑

i=1

$ixi,t−1 + εt. (7.14)

By contrast, since interventions influence the transition probabilities of volatil-

ity regimes, they should be introduced in a non-linear way in the conditional

variance specification. Filardo (1998) provides the necessary conditions to ensure

that the estimation of TVTP with a ML procedure is possible and relevant. Ac-

cording to the main condition of Filardo (1998), the explanatory variables should

be conditionally uncorrelated with the latent regime variable (st). Thus one should

check that the central bank interventions are not caused in a systematic way by

the level of exchange rate volatility. From an econometric point of view, this is

similar to the well-known simultaneous bias problem which has been investigated

in the literature of central bank interventions. In this respect, evidence presented

in the literature is rather mixed: regarding the mean, central banks tend to lean

against the wind (Almekinders and Eijffinger, 1993; Dominguez, 1998; Baillie and

Osterberg, 1997b and Beine, Bénassy-Quéré, and Lecourt, 2002). In other terms,

it is the tendency to depreciate rather than the mere previous change in the level

that matters. Concerning volatility, the results appear rather mixed. Baillie and
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Osterberg (1997a) find that volatility caused interventions on the 1985-1991 pe-

riod. Nevertheless, using another measure of conditional variance over the same

period, Beine, Bénassy-Quéré, and Lecourt (2002) find less evidence according to

which volatility levels motivate the intervention of the major central banks, at least

for the DEM. As a whole, it turns out that the condition of non-causality from

the current state of the market to the central bank interventions is far from being

fulfilled. As a result, one should use one-week lagged interventions(|xi,t−1|) rather
than the contemporaneous ones (|xi,t|) in the TVTP in order to ensure that such a

simultaneous bias does not occur. Given that we work with volatility regimes, both

specifications are used to assess the robustness of the results.10 Before proceeding

to the ML estimation, we describe the central bank intervention data.

7.3.2 The intervention data

Our data consists of weekly official central bank interventions of the Federal Re-

serve (FED) and the Bundesbank (BB) on the DEM/USD market over the 1985-

1995 period and the interventions of the Federal Reserve (FED) and the Bank of

Japan (BoJ) on the YEN/USD market over the 1991-1995 period. As in Bonser-

Neal and Tanner (1996), Dominguez and Frankel (1993) or Dominguez (1998), we

distinguish between the nature of these interventions.

First, we use discrete variables focusing on the number of official interventions

days rather than on the (cumulated) amounts of daily interventions. Basically, this

allows us to assess the influence of the presence of the banks in the markets, and

emphasizes the signalling channel of interventions rather than the basic portfolio

effect. Table 7.4 provides the number of (official) intervention days for each central

bank.11 The number of coordinated interventions is also given. Two interventions

are said to be coordinated if they happen on the same day and in the same direction.

For the DEM, we take FED interventions at day t−1 but Bundesbank interventions

at time t in order to account for time lags between the markets. For the YEN, we

10This is especially important in the DEM case. For the YEN, all results emphasize some
causality from exchange rate volatility to interventions (see Beine, Bénassy-Quéré, and Lecourt,
2002 for details). Not lagging these interventions would definitely result in endogeneity biases.

11Table 7.4 provides the number of official and reported interventions. Reported interventions
are obtained from reports extracted from the financial newspapers (we are grateful to K. Bonser-
Neal for providing the reported interventions on the DEM market over the 1985-1991 period).
Given the important discrepancy between reported and official interventions (see for instance the
reported interventions for the YEN), we prefer to focus on official interventions.
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Table 7.4: Official and reported central bank interventions, number of days

Observations Total number of daily interventions Coordinated

(DEM/USD, 1985-1995)

FED BB

Official 2868 215 264 97

Reported 2868 184 161 -

(YEN/USD, 1991-1995)

FED BoJ

Official 1445 16 159 15

Reported 1445 15 22 -

consider FED and BoJ interventions at day t− 1.12

Because the number of coordinated interventions is large, one may expect that

the weekly intervention data will be highly correlated. Table 7.5 confirms that,

in the case of the DEM, the correlation between interventions measured through

discrete variables, both in levels13 and in absolute value (used in the conditional

volatility specification) is very high.14

Such a high correlation would give rise to multicollinearity problems and poor

estimates of standard errors. To account for this problem, we isolate unilateral

interventions, i.e. interventions made by a single central bank on a particular day.

The cross correlations between these adjusted interventions given in Table 7.6 show

that the correlations have dramatically decreased and thus multicollinearity should

not be a problem in our estimations. We run two types of regressions with discrete

variables: the first one relies only on the unilateral interventions while the second

one uses only the coordinated interventions. This distinction makes sense from an

economic point of view as some authors have argued that the effect of coordinated

interventions has more strength than the one obtained by unilateral ones (see

among others Catte, Galli, and Rebecchini, 1992; Dominguez and Frankel, 1993

12The German market is six hours ahead of the US market and lags the Japanese market by
8 hours.

13In this case, the variable is trinomic: -1 indicates that the bank is selling dollars, 0 means
that the bank does not intervene and 1 that the bank is buying dollars.

14Similar results are also obtained for the YEN (although the problem seems less important
given the lower proportion of coordinated interventions. These results are not reported in order
to save space.
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Table 7.5: Cross correlations between central bank interventions

Discrete variables (DEM/USD, 1985-1995)

Levels Absolute values

BB FED Coord BB FED Coord

Levels BB 1 0.647 0.769 - - -

FED 1 0.770 - - -

Coord 1 - - -

Absolute values BB 1 0.594 0.755

FED 1 0.751

Coord 1

Table 7.6: Cross correlations between central bank interventions

Discrete variables (unilateral) (DEM/USD, 1985-1995)
Levels Absolute values

BB FED Coord BB FED Coord
Levels BB 1 0.208 0.346 - - -

FED 1 0.253 - - -
Coord 1 - - -

Absolute values BB 1 0.113 0.289
FED 1 0.183
Coord 1

and Weber, 1996).

7.3.3 The results

Tables 7.7 and 7.8 report the estimation results for the DEM and the YEN respec-

tively. In both cases, the two-regime specification with a constant conditional mean

is used. In these models, central bank interventions enter linearly the conditional

mean equation. The official central bank interventions are modelled using dummy

variables giving the number of intervention days over a particular week. For both

currencies, we study the effect of coordinated and unilateral interventions.15

15However, in the case of the YEN, it is impossible to consider the effect of unilateral inter-
ventions of the FED, given that there is only one occurrence over the considered period (see also
Table 7.4). This unilateral intervention occurred on the May 24th, 1993.
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Table 7.7: Central bank interventions, DEM (1985-1995)

Discrete variables, official interventions
Coordinated Coordinated (no lag) Unilateral

µ -0.1475 -0.1627 -0.1760
(0.0663) (0.0656) (0.0696)

$1 [Coord/BB] -0.0971 -0.1256 -0.2229
(0.0964) (0.1438) (0.0898)

$2 [FED] - - 0.1398
(0.0919)

σ1 2.3100 2.2150 2.3644
(0.3186) (0.2000) (0.4295)

σ2 1.2771 1.1834 1.2848
(0.0975) (0.1173) (0.0927)

η1,0 2.1562 1.5501 2.3029
(1.1973) (0.6535) (1.4194)

η1,1 [Coord/BB] -1.9778 -2.8840 -0.5312
(0.9440) (1.2807) (0.4362)

η1,2 [FED] - - -0.4257
(0.5804)

η2,0 3.3381 2.4328 3.5558
(0.9334) (0.7621) (0.8762)

η2,1 [Coord/BB] -2.1755 -15.2901 -0.3774
(0.8356) (2.3933) (0.3960)

η2,2 [FED] - - -0.5916
(0.4626)

p1 0.8961 0.8249 0.9091
(0.1113) (0.0944) (0.1172)

p2 0.9651 0.9193 0.9722
(0.0305) (0.0565) (0.0236)

Q20 26.1531 27.1567 25.8283
Q220 18.5289 19.9721 18.5653
SIC 3.854 3.849 3.873
Log-Lik -1078.676 -1077.274 -1074.855
Robust standard errors of maximum likelihood estimates are in parentheses.
SIC is the Schwarz information criterion (divided by the sample size) and Log-

Lik refers to the log-likelihood value at maximum. yt = µ+
∑k

i=1$ixi,t−1+εt,

ps,t = 1 − [1 + exp(ηs,0 +
∑k

i=1 ηs,i |xi,t−1|]−1, ps = 1 − [1 − exp(ηs,0)]
−1 and

s = 1, 2. For coordinated interventions, x1,t stands for the number of official
intervention days; for unilateral interventions, x1,t and x2,t stand respectively
for the number of official intervention days of the Bundesbank [BB] and of
the Federal Reserve [FED]. Column labelled “Coordinated (no lag)” refers to
estimations of ps,t based on |xi,t| rather than |xi,t−1|.
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Table 7.8: Central bank interventions, YEN (1991-1995)

Discrete variables, official interventions

Coordinated Unilateral

µ -0.1539 -0.1661

(0.0896) (0.1520)

$1 [BoJ/Coord] -0.6426 0.0122

(0.4304) (0.0903)

σ1 2.7379 2.5407

(0.5599) (0.9431)

σ2 1.3464 1.3117

(0.0802) (0.1232)

η1,0 2.1913 2.7183

(1.8748) (2.7587)

η1,1 [BoJ/Coord] -12.9226 -1.4253

(1.6359) (13.7202)

η2,0 3.8605 3.6524

(0.8717) (2.6839)

η2,1 [BoJ/Coord] -3.0663 -0.5383

(1.6830) (0.3429)

p1 0.8995 0.9380

(0.1695) (0.1602)

p2 0.9794 0.9747

(0.0176) (0.0661)

Q20 18.0481 17.8551

Q220 20.1797 19.2777

SIC 3.892 3.898

Log-Lik -506.868 -507.742

Robust standard errors of maximum likelihood estimates are in
parentheses. Log-Lik refers to the log-likelihood value at maxi-
mum. yt = µ +

∑k
i=1$ixi,t−1 + εt, ps,t = 1 − [1 + exp(ηs,0 +

∑k
i=1 ηs,i |xi,t−1|]−1, ps = 1 − [1 − exp(ηs,0)]

−1 and s = 1, 2. For
coordinated interventions, x1,t stands for the number of official
intervention days; for unilateral interventions, x1,t stands for the
number of official intervention days of the Bank of Japan [BoJ].
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Basically, our model is in agreement with the literature as far as the condi-

tional mean of exchange rate returns is concerned. This is not surprising since the

basic specification (i.e. linear impacts of the interventions) is consistent with the

previously adopted approaches: the Bundesbank purchases of dollars lead to a sub-

sequent depreciation of the USD, which is also documented in Almekinders and

Eijffinger (1993), Dominguez and Frankel (1993), Baillie and Osterberg (1997a)

and Beine, Bénassy-Quéré, and Lecourt (2002). Baillie and Humpage (1992) in-

terpret this result as a smoothing effect, suggesting that the depreciation might

have been even sharper without such an intervention. The FED interventions do

not give similar results, at least on the 1985-1995 period.16 The results for the

YEN suggest that coordinated interventions or unilateral operations of the BoJ

have a limited impact on the exchange rate returns.

Our results present a quite different view regarding the effects of interventions

on exchange rate volatility. In contrast with the single regime GARCH framework,

our regime-dependent specification allows us to account explicitly for the initial

state of the market in which a specific intervention occurs. Almost all regression

results of Tables 7.7 and 7.8 clearly show that when the market is in the low

volatility state, central bank interventions tend to increase volatility (see estimates

of η2,i (i = 1, 2). For instance, when η2,1 is significantly negative, this means that

coordinated interventions tend to reduce the probability of remaining in the low

volatility regime and thus tends to increase exchange rate volatility. Our results

also suggest that the unilateral interventions had less power than coordinated ones

in “moving” the markets. This tends to be consistent with the main results of the

literature.

Nevertheless, it is also found that, when the market is quite volatile (i.e. when

the high volatility regime prevails), direct coordinated interventions can have a

stabilizing impact. In the second column of Tables 7.7 and 7.8 (labelled “Coor-

dinated”), the η1,1 parameter is negative and significant at the 5% level. To a

certain extent, such a result is fairly new in the literature.17 Furthermore, it holds

16Beine, Bénassy-Quéré, and Lecourt (2002) obtain different results across sub-periods con-
cerning the effects of the FED interventions on the conditional mean. While the full period
(1985-1995) is associated with positive signs (albeit not always significant), the estimations rela-
tive to the 1985-1991 sub-period yield negative signs (net purchases associated to a depreciation).

17Note that this dampening effect of central bank intervention is also found by Murray, Zelmer,
and McManus (1996). They show that this effect is specific to some circumstances (including
the size of the intervention) but do not make any distinction concerning the prevailing level of
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for both pairs of currencies. As suggested by the results reported in the third

column of Table 7.7 (labelled “Coordinated (no lag)”), this stabilizing impact is

robust to the choice of the one-week lagging procedure whose goal is to account for

the potential endogeneity problem.18 Quite interestingly, this stabilizing impact

occurs in the case of coordinated interventions only when the high volatility regime

prevails. It should be stressed that such a result is fully consistent with the sig-

nalling approach presented in Dominguez (1998) who shows that an intervention

can reduce exchange rate volatility only if such an intervention is credible and its

associated signal is unambiguous. If the intervention occurs in the high volatility

regime, the objective of reducing exchange rate volatility is best understood by the

market, especially subsequent to the Louvre Agreement which was made public in

1987. By contrast, when the market is less volatile, the signal associated to the

intervention is more ambiguous and the resulting effect on exchange rate volatility

is definitely positive, a case clearly identified in the signalling approach. Another

interpretation involves the traded amounts on the market. Indeed, volatility and

traded volumes on the market are often related (see for instance MacDonald (2000)

on this point). Furthermore, trading volumes reflect the amount of information

processed by the market. This could suggest that the way central bank interven-

tions affect the behavior of market participants depends on market activity and

the amount of information flows. These findings are also in agreement with the

recent results of Mundaca (2001) in the special case of the interventions carried

out by the bank of Norway. Indeed, Mundaca (2001) shows that the direct inter-

ventions carried out by the Bank of Norway were stabilizing when they occurred

while the exchange rate was moving around the central parity of the currency band

rather than near the weakest edge of this band, and thus when the objective was to

decrease exchange rate volatility rather than to support the level of the exchange

rate.

Moreover, it should be noticed that the size of these effects can be substantial.

For example, in the case of the DEM, if both central banks intervene once on

a particular week in a concerted way whereas the market is in the high volatil-

ity regime, the probability of remaining the next week in this regime drops from

volatility.
18In contrast with the DEM, for the YEN, previous empirical evidence emphasizes this simul-

taneity problem even on the volatility side.
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89.62% to 54.4%; in other words, the expected number of weeks of high volatility

in this market drops from 9.62 weeks (more than two months) to 2.19 weeks.19

Ceteris Paribus, when both banks intervene three times during the same week, the

probability of remaining in a high volatility regime falls below 3%. These com-

putations of course assume that the marginal effect of one additional intervention

during a particular week is constant on the logistic scale. When two concerted

interventions occur the same week on the DEM/USD market, the probability of

remaining in the high volatility regime amounts to 14.19%. This probability is less

than 1% when four coordinated interventions are made in the same week. In our

dataset, we observe respectively 4 weeks with 4 concerted interventions, 7 weeks

with 3 concerted ones and 14 weeks with 2 coordinated interventions.

Our results also shed an interesting light on the results found in the literature.

As illustrated by Baillie and Osterberg (1997 a,b), all studies emphasize either

a positive impact or no effect of interventions on exchange rate volatility. Single

regime specifications cannot account for the initial state of the market. As a result,

the estimates of the effect of the central bank interventions tend to correspond to

an average effect. Because the occurrences of the low volatility regime are more

frequent (i.e. p̂1 < p̂2 or equivalently η̂1,0 < η̂2,0 for both exchange rates), single

regime estimates tend to be driven by the effects related to this regime. Our results

confirm that these impacts are definitely positive. Next to this, it is found that the

effect of coordinated interventions differs drastically from the effect of unilateral

interventions. While coordinated interventions influence the volatility patterns of

the DEM and the YEN exchange rates, unilateral interventions do not seem to

be effective in “moving” the markets. These results are in agreement with the

results obtained by several authors including Catte, Galli, and Rebecchini (1992),

Dominguez and Frankel (1993) or Weber (1996).

7.4 Conclusion

In this chapter we study the impact of weekly central bank interventions on the

level and the volatility of the DEM/USD and YEN/USD exchange rate returns. In

contrast to the usual literature which favors GARCH-type specifications, we rely

19The η1,0 and η2,0 parameters are expressed on the logistic scale. Given pii, the expected
value of the number of periods with prevailing regime i is equal to 1

1−pii
.
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on a regime dependent approach. Because of this new feature, the interventions

can have different outcomes depending on the prevailing state of the market. Our

estimations suggest that the dynamics of both series is mainly driven by volatility

regimes (a high and a low volatility regime). Thanks to out-of-sample forecasting

experiments, it is shown that this specification compares very well with GARCH

models and thus offers a relevant statistical alternative to the usual methodology

presented in the literature.

Our results partly confirm the positive impact of central bank interventions on

exchange rate volatility emphasized in the literature. Nevertheless, it is found for

both the DEM and the YEN that when the market is highly volatile and when

market participants expect the central banks to intervene, concerted interventions

can have a stabilizing effect. This new result in the empirical literature is con-

sistent with the signalling approach to central bank interventions on the foreign

exchange market. It is also consistent with the 1987 Louvre Agreement objective

of decreasing excess volatility of exchange rate through direct coordinated inter-

ventions. Such a result also sheds an interesting light on previous results obtained

with a “single regime” specifications. By not taking into account the volatility

regime in which the interventions occur, these models tend to favor the impact

observed in the most prevailing state of the market, i.e. the low volatility one.

Regarding economic policy issues, our results have two important implications.

First, they confirm previous results according to which coordinated rather that

unilateral interventions lead to large effects in the currency market. Second, our

findings suggest that the signal sent to market participants through central bank

interventions and hence its impact on exchange rates crucially depends on the cur-

rent state of the market and the perceived motivation to intervene. This supports

a more transparent intervention policy by central banks.
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Conclusion

Modelling high-frequency financial time-series is far from being obvious. These

data have several properties that make the use of traditional regression tools inap-

propriate. Indeed, it is well known that exchange rate returns and stock returns

(among others), recorded on an intra-daily, daily and weekly basis are in general

serially correlated and often heteroscedastic, fat-tailed and even skewed.

When building a model, it is thus of primary importance to account for these

stylized facts. In this respect, many researchers follow Engle (1982) and choose an

ARMA specification for the conditional mean and an ARCH-type model for the

conditional variance.

To estimate the resulting models, it is convenient to maximize the associated

log-likelihood function. Consequently, one has to make an additional assumption

about the distribution of the innovation process. Even if this hypothesis is un-

realistic in practice, the normality assumption may be justified by the fact that

the Gaussian QML estimator is consistent assuming that the conditional mean

and the conditional variance are correctly specified (Weiss, 1986; Bollerslev and

Wooldridge, 1992). The price to pay for this nice property is that this method it

not efficient, the degree of inefficiency increasing with the degree of departure from

normality (Engle and González-Rivera, 1991).

There is no doubt that searching for a more suitable distribution is crucial to

gain in efficiency. However, the other side of the coin, is that wrongly assuming

that the innovations are, for instance, Student-t distributed (when they are skewed)

will provide biased estimates of the conditional mean and conditional variance. As

a consequence, we have to be very cautious with the choice of the density. It is
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thus important to check its appropriateness for the data to be analyzed.

What do we learn from this thesis ?

The main objective of this thesis was to find a conditional density able to

replicate the stylized facts enumerated above. In this respect, we have proposed to

extend the skewed Student density of Fernández and Steel (1998) in two directions.

First, from a technical point of view, we have reexpressed this density to have

mean zero and unit variance innovations. We have shown that the main advantages

of this technique are threefold:

- the skewed Student is easy to implement because its pdf, cdf and inverse cdf

are linked to the corresponding functions of its symmetric counterpart (which are

available in most statistical packages) and the score vector of this density is fairly

simple to obtain (which can provide more accurate estimations and highly speed-

up the estimation procedure);

- the additional parameters have a clear interpretation;

- and more importantly, it is validated by the data for all the series we have

investigated. For instance, we have shown that the use of the skewed Student

density is very promising in Value-at-Risk applications. Indeed, unlike the normal

and Student densities, the skewed Student (coupled with an AR-APARCH model)

provided fairly accurate Value-at-Risk forecasts for the investigated series.

One possible cause for the fact that, in general, estimated residuals from an

ARCH-type model still have large excess kurtosis and excess skewness is that

few observations on returns are so-called Additive Outliers (AO), which are not

captured by a standard ARCH model. Using and extending the approach proposed

by Franses and Ghijsels (1999) to detect and correct the AO in a GARCH model,

we have shown that for a sample of 2000 daily observations of the NASDAQ stock

index, more than 70 have been characterized as AO in the variance. We have also

shown that this large number of AO is primary responsible for the excess kurtosis

but not for the skewness.

Second, we have proposed a multivariate generalization of this family of skewed

densities. This offers a practical and flexible solution to introduce skewness in mul-

tivariate symmetrical distributions. Applying this procedure to the multivariate

Student density leads to a “multivariate skewed Student” density, for which each

marginal has a different asymmetry coefficient. Similarly, when applied to the

product of independent univariate Student densities, it provides a “multivariate
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skewed density with independent Student components” for which each marginal

has a different asymmetry coefficient and number of degrees of freedom. Combined

with a multivariate GARCH model, this new family of distributions is potentially

useful for modelling stock returns. In an application on the NASDAQ and the

DAX, on a daily basis, these densities were found to outperform their symmetric

competitors (the multivariate normal and Student).

Third, the notion of realized volatility has been introduced recently in the liter-

ature by Taylor and Xu (1997) and Andersen and Bollerslev (1998). According to

these authors the realized volatility, computed as an aggregated measure of volatil-

ity defined on intraday returns, offers an “error free” measure of the daily volatility.

Interestingly, when one uses the realized volatility instead of the conditional vari-

ance produced by a parametric ARCH-type model, the normality assumption on

the innovation process is supported. It is thus natural to question the relevance

of the approach adopted in this thesis. Does the use of the realized volatility in-

validate the choice of a skewed Student density ? The answer is obviously not.

Indeed, the realized volatility is not a forecast but a realization of the observed

volatility. When using a parametric model to produce a forecast of the realized

volatility, the results obtained are very similar to the ones given by the standard

ARCH approach. Using 5-minutes returns of the CAC40 and the SP500 we have

shown how to compute a daily VaR measure based on a one-day-ahead forecast of

the realized volatility. When relying on the normality assumption this technique

was found to produce very bad VaR forecasts, similar to the ones produced by

an APARCH model on daily data with a Gaussian log-likelihood. However, when

coupled with a skewed Student density, the realized volatility produced satisfactory

results that are nearly equivalent to the ones given by a skewed Student APARCH

model. Our main results can be summarized in one sentence: yes, an (adequate)

ARCH type model can deliver accurate VaR forecasts and this model performs as

well as a competing VaR model based on the realized volatility. The key issue is

to use a model that clearly recognizes the full features of the empirical data such

as a high kurtosis and skewness in the observed returns (a skewed Student density

for instance).

Fourth, it is widely accepted that there is no consensus in the literature in

favor of a leading ARCH model (see Palm, 1996 among others). Instead, there

is a large number of alternative specifications. Which model to select for our
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data ? A GARCH, a FIGARCH, an APARCH, ... ? If a GARCH model is

appropriate, do we prefer a GARCH(1,1), a GARCH(1,2), ... ? To answer these

questions, a researcher is likely to estimate several candidate models, with different

lag orders and perhaps different log-likelihood functions. The most challenging part

of this thesis was to develop a package dedicated to the estimation and forecast

of several of the most popular univariate ARCH-type models. The package, called

G@RCH, has been developed with the Ox 3.0 matrix programming language of

Doornik (1999) and offers a friendly dialog-oriented interface similar to the well

known software PcGive. It is free of charge and can be used on several platforms,

including Windows, Unix, Linux and Solaris. For most of the specifications, it is

generally very fast and its main characteristic is its ease of use. To investigate

the numerical accuracy of several econometric softwares, including our package,

we have compared the estimation results of a GARCH (1, 1) with respect to a

benchmark, i.e. the results provided by Fiorentini, Calzolari, and Panattoni (1996)

for the same dataset. Indeed, these authors estimate this model relying on the

analytic hessian (and provide a FORTRAN procedure to replicate their results).

To conclude, even if G@RCH uses numerical scores in the estimation procedure,

it gives very satisfactory results, unlike EVIEWS for instance, which is found to

give the worst numerical accuracy.

The last contribution of this thesis was to investigate the effect of central bank

interventions on the weekly returns and volatility of the DEM/USD and YEN/USD

exchange rate returns (at weekly frequency). In contrast with previous analyzes,

we allowed for regime-dependent specifications (an extension of the normal mix-

ture presented in the third chapter) and investigated whether official interventions

may explain the observed volatility regime switches. The estimation results shed

an interesting light on the conclusions given in the literature. It is found that

depending on the prevailing volatility level, coordinated central bank interven-

tions can have either a stabilizing or a destabilizing effect. Our results lead us

to challenge the usual view that such interventions are necessarily associated with

increases in volatility.
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Appendix A

G@RCH 2.0: An Ox Package for
Estimating and Forecasting
Various ARCH Models

A.1 Introduction

Well known statistical packages such as Eviews, Gauss, Matlab, Microfit, PcGive,

Rats, SAS, S-Plus and TSP provide various options to estimate sophisticated

econometric models in very different areas such as cointegration, panel data, lim-

ited dependent model, etc. It has been shown at the beginning of this thesis that

to fully account for the characteristics of high-frequency financial returns we need

to specify a model in which the conditional mean and the conditional variance may

be time-varying. It is common to use an ARMA structure in the first conditional

moment and an ARCH-type model for the second conditional moment. It has also

been shown that relying on a non-normal assumption for the innovation process

sometimes provides much more efficient estimates (at least asymptotically) than

the Gaussian QML estimator.

A researcher is thus facing the problem of the specification choice. Which

model to select ? And which selection criterion to use ? It is not our goal to

answer these questions. However, it is almost sure that this researcher is going to

estimate several candidate models, with different lag orders and perhaps different

log-likelihood functions.

The aim of this appendix is to provide a package dedicated to the estimation

and forecast of various univariate ARCH-type models. Contrary to the software’s
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mentioned above, G@RCH 2.0 is only concerned with ARCH-type models (En-

gle, 1982), including some recent contributions in this field such as the GARCH

(Bollerslev, 1986), EGARCH (Nelson, 1991), GJR (Glosten, Jagannathan, and

Runkle, 1993), APARCH (Ding, Granger, and Engle, 1993), Integrated GARCH

(IGARCH, see Engle and Bollerslev, 1986) but also FIGARCH (Baillie, Boller-

slev, and Mikkelsen, 1996a and Chung, 1999), Hyperbolic GARCH (HYGARCH,

see Davidson, 2001), Fractionaly Integrated EGARCH (FIEGARCH, see Boller-

slev and Mikkelsen, 1996) and Fractionaly Integrated APARCH (FIAPARCH, see

Tse, 1998) specifications of the conditional variance and an AR(FI)MA specifica-

tion of the conditional mean (Baillie, Chung, and Tieslau, 1996, Tschernig, 1995,

Teyssière, 1997, Lecourt, 2000 or Beine, Laurent, and Lecourt, 2000). This package

provides a lot of features, including two standard errors estimation methods (Ap-

proximate Maximum Likelihood and Approximate Quasi-Maximum Likelihood)

for four distributions (normal, Student-t, GED or skewed Student-t). Moreover,

explanatory variables can enter the mean and/or the variance equations. Finally,

h-step-ahead forecasts of both the conditional mean and variance are available as

well as many misspecification tests (Nyblom, SBT, Pearson goodness-of-fit, Box-

Pierce,...).

Our package has been developed with the Ox 3.0 matrix programming language

of Doornik (1999).1 It can be used on several platforms, including Windows, Unix,

Linux and Solaris. For most of the specifications, it is generally very fast and its

main characteristic is its ease of use. G@RCH 2.0 may be downloaded from the

web site http://www.egss.ulg.ac.be/garch/.

Two versions of the program are available and called the “Light Version”

and the “Full Version”, respectively. The “Full Version” offers a friendly dialog-

oriented interface similar to PcGive and some graphical features by using OxPack,

a GiveWin batch client module. This version requires a registered version of Ox

and GiveWin.

The “Light Version” is launched from a simple Ox file. It does not take ad-

vantage of the OxPack extension (no dialog-oriented interface and no graphs) and

can therefore be used with a unregistered version of Ox. This version thus simply

requires any Ox executable and a text editor.

This appendix is structured as follows: in Section A.2, we propose an overview

1For a comprehensive review of this language, see Cribari-Neto and Zarkos (2001).
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of the package’s features, with the presentation of the different specifications of the

conditional mean and conditional variance. Comments on estimation procedures

(parameters constraints, distributions, tests, forecasts, numerical accuracy of the

package and a comparison with other softwares) are introduced in Section A.3.

Then a user guide is provided for both versions of G@RCH 2.0 in Section A.4 with

an application using the CAC40 stock index. Finally, Section A.5 concludes.

A.2 Features of the package

This section proceeds to describe the models implemented in G@RCH 2.0 and

gives some technical details. Our attention will be first devoted to review the

specifications of the conditional mean equation. Then, some of the most recent

contributions in the ARCH modelling framework will be presented.

A.2.1 Mean equation

Let us consider an univariate time series yt. If Ωt−1 is the information set at time

t− 1, we can define its functional form as:

yt = E(yt|Ωt−1) + εt, (A-1)

where E(.|.) denotes the conditional expectation operator and εt is the disturbance

term (or unpredictable part), with E(εt) = 0 and E(εtεs) = 0,∀ t 6= s.

This is the mean equation which has been studied and modelled in many ways.

Two of the most famous specifications are the Autoregressive (AR) and Moving

Average (MA) models. Mixing these two processes and introducing n1 determin-

istic or strongly exogenous variables in the equation, we obtain this ARMAX(n, s)

process,

Ψ (L) (yt − µt) = Θ (L) εt

µt = µ+
n1∑

i=1

δixi,t,
(A-2)

where L is the lag operator, Ψ (L) = 1 −
n∑

i=1

ψiL
i and Θ (L) = 1 +

s∑

j=1

θjL
j. To

start the recursion, it is convenient to set the initial conditions as εt = 0 for all

t ≤ max{p, q}.
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Several studies have shown that the dependent variable (interest rate returns,

exchange rate returns, etc.) may exhibit significant autocorrelation between obser-

vations widely separated in time. In such a case, we can say that yt displays long

memory, or long-term dependence and is best modelled by a fractionally integrated

ARMA process (so called ARFIMA process) initially developed in Granger (1980)

and Granger and Joyeux (1980) among others.2 The ARFIMA(n, da, s) is given

by:

Ψ (L) (1− L)da (yt − µt) = Θ (L) εt, (A-3)

where the operator (1 − L)da accounts for the long memory of the process and is

defined as:

(1− L)da =
∞∑

k=0

Γ(da + 1)

Γ(k + 1) Γ(da − k + 1)
Lk

= 1− daL−
1

2
da(1− da)L

2 − 1

6
da(1− da)(2− da)L

3 − . . .

= 1−
∞∑

k=1

ck(da)L
k, (A-4)

with 0 < da < 1, c1(da) = da, c2(da) = 1
2
da(1 − da), . . . and Γ(.) denoting the

Gamma function (see Baillie, 1996, for a survey on this topic). The truncation

order of the infinite summation is set to t− 1.

It is worth noting that Doornik and Ooms (1999) recently provided an Ox

package for estimating, forecasting and simulating ARFIMA models. However, in

opposition to our package, they assume that the conditional variance is constant

over time.

A.2.2 Variance equation

The εt term in Eq. (A-1)-(A-3) is the innovation of the process. About twenty

years ago, Engle (1982) defined as an Autoregressive Conditional Heteroscedastic

(ARCH) process, all εt of the form:

εt = ztσt, (A-5)

2ARFIMA models have been combined with an ARCH-type specification by Baillie, Chung,
and Tieslau (1996), Tschernig (1995), Teyssière (1997), Lecourt (2000) and Beine, Laurent, and
Lecourt (2000).

180



A.2. FEATURES OF THE PACKAGE

where zt is an independently and identically distributed (i.i.d.) process with E(zt) =

0 and V ar(zt) = 1. By definition, εt is serially uncorrelated with a mean equal to

zero, but its conditional variance equals σ2t and, therefore, may change over time,

contrary to what is assumed in the standard regression model.

The models provided by our program are all ARCH-type.3 They differ on the

functional form of σ2t but the basic principles are the same. Besides the tradi-

tional ARCH and GARCH models, we focus mainly on two kinds of models: the

asymmetric models and the fractionally integrated models. The former are defined

to take account of the so-called “leverage effect” observed in many stock returns,

while the latter allows for long-memory in the variance. Early evidence of the

“leverage effect” can be found in Black (1976), while persistence in volatility is a

common finding of many empirical studies; see Bera and Higgins (1993), Boller-

slev, Chou, and Kroner (1992) or Palm (1996) for an excellent survey on ARCH

models.

ARCH model

The ARCH (q) model can be expressed as:

εt = ztσt

zt ∼ i.i.d. D(0, 1)

σ2t = ω +

q
∑

i=1

αiε
2
t−i, (A-6)

where D(.) is a probability density function with mean 0 and unit variance (it will

be defined below).

The ARCH model can thus describe volatility clustering. Indeed, the con-

ditional variance of εt is an increasing function of the square of the shock that

occurred in t − 1. Consequently, if εt−1 was large in absolute value, σ2t and thus

εt is expected to be large (in absolute value) as well. Notice that even if the

conditional variance of an ARCH model is time-varying (σ2t = E(ε2t |Ωt−1)), the

unconditional variance of εt is constant and, provided that ω > 0 and
q∑

i=1

αi < 1,

3For stochastic volatility models, see Koopman, Shepard, and Doornik (1998).
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we have:

σ2 ≡ E(ε2t ) =
ω

1−
q∑

i=1

αi

. (A-7)

Note also that the ARCH model can explain part of the excess kurtosis that

we observe in financial time series. As shown by Engle (1982) for the ARCH(1)

case under the normality assumption, the kurtosis of εt is indeed equal to
3(1−α2

1)

1−3α2
1
.

The kurtosis is thus finite if α1 <
1
3
and larger than 3 (the kurtosis of a standard

normal distribution) if α1 > 0.

The computation of σ2t in Eq. (A-6) depends on past (squared) residuals (ε2t ),

that are not observed for t = 0,−1, . . . ,−q + 1. To initialize the process, the

unobserved squared residuals have been set to their sample mean.

In the rest of the appendix, ω is assumed fixed. If n2 explanatory variables are

introduced in the model, ωt = ω +
n2∑

i=1

ωixi,t with an exception for the exponential

models (EGARCH and FIEGARCH) where ωt = ω + ln

(

1 +
n2∑

i=1

ωixi,t

)

.

Finally, σ2t has obviously to be positive for all t. Sufficient conditions to ensure

that the conditional variance in Eq. (A-6) is positive are given by ω > 0 and

αi ≥ 0. However, these conditions are not necessary as shown by Nelson and Cao

(1992). Furthermore, when explanatory variables enter the ARCH equation, these

positivity constraints are not valid anymore (even if the conditional variance still

has to be non-negative).

GARCH model

Early empirical evidence has shown that a high ARCH order has to be selected

to catch the dynamics of the conditional variance (thus involving the estimation

of numerous parameters). The Generalized ARCH (GARCH) model of Bollerslev

(1986) is an answer to this issue. It is based on an infinite ARCH specification and

it allows to reduce the number of estimated parameters by imposing non-linear

restrictions on them. The GARCH (p, q) model can be expressed as:

σ2t = ω +

q
∑

i=1

αiε
2
t−i +

p
∑

j=1

βjσ
2
t−j. (A-8)
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Using the lag or backshift operator L, the GARCH (p, q) model is:

σ2t = ω + α(L)ε2t + β(L)σ2t ,

with α(L) = α1L+ α2L
2 + . . .+ αqL

q and β(L) = β1L+ β2L
2 + . . .+ βpL

p.

If all the roots of the polynomial |1− β(L)| = 0 lie outside the unit circle, we

have:

σ2t = ω [1− β(L)]−1 + α(L) [1− β(L)]−1 ε2t , (A-10)

which may be seen as an ARCH(∞) process since the conditional variance linearly

depends on all previous squared residuals. In this case, the conditional variance of

yt can become larger than the unconditional variance given by:

σ2 ≡ E(ε2t ) =
ω

1−
q∑

i=1

αi −
p∑

j=1

βj

,

if past realizations of ε2t are larger than σ2 (Palm, 1996).

As in the ARCH case, some restrictions are needed to ensure σ2t > 0 to be

positive for all t. Bollerslev (1986) shows that imposing ω > 0, αi ≥ 0 (for

i = 1, . . . , q) and βj ≥ 0 (for j = 1, . . . , p) is sufficient for the conditional variance

to be positive. In practice, the GARCH parameters are often estimated without the

positivity restrictions. Nelson and Cao (1992) argued that imposing all coefficients

to be nonnegative is too restrictive and that some of these coefficients are found to

be negative in practice while the conditional variance remains positive (by checking

on a case-by-case basis). Consequently, they relaxed this constraint and gave

sufficient conditions for the GARCH(1, q) and GARCH(2, q) cases based on the

infinite representation given in Eq. (A-10). Indeed, the conditional variance is

strictly positive provided ω [1− β(1)]−1 > 0 is positive and all the coefficients of

the infinite polynomial α(L) [1− β(L)]−1 in Eq. (A-10) are nonnegative. The

positivity constraints proposed by Bollerslev (1986) can be imposed during the

estimation (see A.3.1). If not, these constraints, as well as the ones implied by the

ARCH(∞) representation, will be tested a posteriori and reported in the output.

EGARCH model

The Exponential GARCH (EGARCH) model is introduced by Nelson (1991).

Bollerslev and Mikkelsen (1996) propose to re-express the EGARCH model has
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follows:

ln σ2t = ω + [1− β(L)]−1 [1 + α(L)]g(zt−1). (A-11)

The value of g(zt) depends on several elements. Nelson (1991) notes that, “to

accommodate the asymmetric relation between stock returns and volatility changes

(...) the value of g(zt) must be a function of both the magnitude and the sign of

zt”.
4 That is why he suggests to express the function g(.) as

g(zt) ≡ γ1zt
︸︷︷︸

sign effect

+ γ2[|zt| − E|zt|]
︸ ︷︷ ︸

magnitude effect

. (A-12)

E|zt| depends on the assumption made on the unconditional density of zt. For

the normal distribution, E (|zt|) =
√
2
π
. For the skewed Student distribution,

E (|zt|) = 4ξ2

ξ+ 1
ξ

Γ( 1+υ
2 )

√
υ−2

√
π(υ−1)Γ(υ2 )

, where ξ = 1 for the symmetric Student. For the GED,

we have E (|zt|) = λ2
1
υ
Γ( 2

υ )
Γ( 1

υ )
. ξ, υ and λ concern the shape of the non-normal

densities and will be defined in Section A.3.2.

Note that the use of a ln transformation of the conditional variance ensures

that σ2t is always positive.

GJR model

This popular model is proposed by Glosten, Jagannathan, and Runkle (1993). Its

generalized version is given by:

σ2t = ω +

q
∑

i=1

(αiε
2
t−i + γiS

−
t−iε

2
t−i) +

p
∑

j=1

βjσ
2
t−j, (A-13)

where S−t is a dummy variable that takes the value “0” (respectively “1”) when εt

is positive (negative).

In this model, it is assumed that the impact of ε2t on the conditional variance σ2t

is different when εt is positive or negative. The TGARCH model of Zakoian (1994)

is very similar to the GJR but models the conditional standard deviation instead of

the conditional variance. Finally, Ling and McAleer (2002) has proposed, among

other stationarity conditions for GARCH models, the conditions of existence of

the second and fourth moment of the GJR.

4Note that with the EGARCH parameterization of Bollerslev and Mikkelsen (1996), it is
possible to estimate an EGARCH (p, 0) since lnσ2t depends on g(zt−1), even when q = 0.
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APARCH model

We have shown in Chapter 2 that the additional features introduced by the APARCH

model seem justified at least for modelling the NASDAQ (on a daily basis). This

model has been introduced by Ding, Granger, and Engle (1993). The APARCH

(p, q) model can be expressed as:

σδt = ω +

q
∑

i=1

αi (|εt−i| − γiεt−i)
δ +

p
∑

j=1

βjσ
δ
t−j, (A-14)

where δ > 0 and −1 < γi < 1 (i = 1, ..., q).

This model couples the flexibility of a varying exponent with the asymmetry

coefficient (to take the “leverage effect” into account). The APARCH includes

seven other ARCH extensions as special cases:5

• The ARCH of Engle (1982) when δ = 2, γi = 0 (i = 1, . . . , p) and βj =

0 (j = 1, . . . , p).

• The GARCH of Bollerslev (1986) when δ = 2 and γi = 0 (i = 1, . . . , p).

• Taylor (1986)/Schwert (1990)’s GARCH when δ = 1, and γi = 0 (i =

1, . . . , p).

• The GJR of Glosten, Jagannathan, and Runkle (1993) when δ = 2.

• The TARCH of Zakoian (1994) when δ = 1.

• The NARCH of Higgins and Bera (1992) when γi = 0 (i = 1, . . . , p) and

βj = 0 (j = 1, . . . , p).

• The Log-ARCH of Geweke (1986) and Pentula (1986), when δ → 0.

The properties of the APARCH model have been studied recently by He and

Teräsvirta (1999a, 1999b). Following Ding, Granger, and Engle (1993), provided

that ω > 0 and
q∑

i=1

αiE(|z| − γiz)
δ+

p∑

j=1

βj < 1, a stationary solution for Eq. (A-14)

exists and is:

E
(
σδt
)
=

ω

1−
q∑

i=1

αiE(|z| − γiz)δ −
p∑

j=1

βj

.

5Complete developments leading to these conclusions are available in Ding, Granger, and
Engle (1993).
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Notice that if we set γ = 0, δ = 2 and zt has zero mean and unit variance,

we have the usual stationarity condition of the GARCH(1,1) model (α1+ β1 < 1).

However, if γ 6= 0 and/or δ 6= 2, this condition depends on the assumption made

on the innovation process.

Ding, Granger, and Engle (1993) derived a closed form solution to κi = E (|z| − γiz)
δ

in the gaussian case. We have shown in Chapter 2 that for the standardized skewed

Student:6

κi =
{

ξ−(1+δ) (1 + γi)
δ + ξ1+δ (1− γi)

δ
}
Γ( δ+1

2 )Γ(υ −δ
2 )(υ−2)

1+δ
2

(ξ+ 1
ξ )
√
(υ−2)πΓ(υ2 )

.

For the GED, we can show that:

κi =
[(1+γi)δ+(1−γi)δ]2

δ−υ
υ Γ( δ+1

υ )λδυ
Γ( 1

υ )
.

Note that ξ, υ and λυ concern the shape of the non-normal densities and will be

defined in Section A.3.2.

IGARCH model

In many high-frequency time-series applications, the conditional variance esti-

mated using a GARCH(p, q) process has the following property:

p
∑

j=1

βj +

q
∑

i=1

αi ≈ 1.

If
p∑

j=1

βj +
q∑

i=1

αi < 1, the process (εt) is second order stationary, and a shock to

the conditional variance σ2t has a decaying impact on σ2t+h, when h increases, and

is asymptotically negligible. Indeed, let us rewrite the ARCH(∞) representation

of the GARCH(p, q), given in Eq. (A-10), as follows:

σ2t = ω∗ + λ(L)ε2t , (A-15)

where ω∗ = ω [1− β(L)]−1, λ(L) = α(L) [1− β(L)]−1 =
∞∑

i=1

λiL
i and λi are lag

coefficients depending nonlinearly on αi and βi. For a GARCH(1,1), λi = α1β
i−1
1 .

Recall that this model is said to be second order stationary provided that α1+β1 <

6For the symmetric Student density, ξ = 1.
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1 since it implies that the unconditional variance exists and equals ω
1−α1−β1

. As

shown by Davidson (2001), the amplitude of the GARCH(1,1) is measured by

S =
∞∑

i=1

λi = α1/(1 − β1), which determines “how large the variations in the

conditional variance can be” (and hence the order of the existing moments). This

concept is often confused with the memory of the model that determines “how

large shocks to the volatility take to dissipate”. In this respect, the GARCH(1,1)

model has a geometric memory ρ = 1/β1, where λi = O (ρ−i).

In practise, we often find α1 + β1 = 1. In this case, we are confronted to an

Integrated GARCH (IGARCH) model.

Recall that the GARCH(p, q) model can be expressed as an ARMA process.

Using the lag operator L, we can rearrange Eq. (A-8) as:

[1− α (L)− β (L)]ε2t = ω + [1− β (L)]
(
ε2t − σ2t

)
.

When the [1− α (L)− β (L)] polynomial contains a unit root, i.e. the sum

of all the αi and the βj is one, we have the IGARCH(p, q) model of Engle and

Bollerslev (1986). It can then be written as:

φ(L)(1− L)ε2t = ω + [1− β(L)](ε2t − σ2t ), (A-16)

where φ(L) = [1− α(L)− β(L)](1− L)−1 is of order [max{p,q}-1].
We can rearrange Eq. (A-16) to express the conditional variance as a func-

tion of the squared residuals. After some manipulations, we have its ARCH(∞)

representation:

σ2t =
ω

[1− β(L)]
+
{
1− φ(L)(1− L)[1− β(L)]−1

}
ε2t . (A-17)

For this model, S = 1 and thus the second moment does not exist. However,

this process is still short memory. To show that Davidson (2001) consider an

IGARCH(0,1) model defined as εt = σtzt and σ2t = ε2t−1. This process is often

wrongly compared to a random walk since the long-range forecast σ2t+h = ε2t , for

any h. However, εt = zt|εt−1| which means that the memory of a large deviation

persists for only one period.

Fractionally integrated models

Volatility tends to change quite slowly over time, and, as shown in Ding, Granger,

and Engle (1993) among others, the effects of a shock can take a considerable time
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to decay.7 Therefore, the distinction between I(0) and I(1) processes seems to be

far too restrictive. Indeed, the propagation of shocks in an I(0) process occurs at

an exponential rate of decay (so that it only captures the short-memory), while

for an I(1) process the persistence of shocks is infinite. In the conditional mean,

the ARFIMA specification has been proposed to fill the gap between short and

complete persistence, so that the short-run behavior of the time-series is captured

by the ARMA parameters, while the fractional differencing parameter allows for

modelling the long-run dependence.8

To mimic the behavior of the correlogram of the observed volatility, Baillie,

Bollerslev, and Mikkelsen (1996) (hereafter denoted BBM) introduce the Frac-

tionally Integrated GARCH (FIGARCH) model by replacing the first difference

operator of Eq. (A-17) by (1− L)d.

The conditional variance of the FIGARCH (p, d, q) is given by:

σ2t = ω[1− β(L)]−1
︸ ︷︷ ︸

ω∗

+
{
1− [1− β(L)]−1φ(L)(1− L)d

}

︸ ︷︷ ︸

λ(L)

ε2t , (A-18)

or σ2t = ω∗ +
∑∞

i=1 λiL
iε2t = ω∗ + λ(L)ε2t , with 0 ≤ d ≤ 1. It is fairly easy to show

that ω > 0, β1−d ≤ φ1 ≤ 2−d
2

and d
(
φ1 − 1−d

2

)
≤ β1 (φ1 − β1 + d) are sufficient to

ensure that the conditional variance of the FIGARCH (1, d, 1) is positive almost

surely for all t. Setting φ1 = 0 gives the condition for the FIGARCH (1, d, 0).

Once again, these conditions are verified after the estimation and printed in the

output.

Davidson (2001) notes the interesting and counterintuitive fact that the mem-

ory parameter of this process is −d, and is increasing as d approaches zero, while in

the ARFIMA model the memory increases when da increases. According to David-

son (2001), the unexpected behavior of the FIGARCH model may be due less to

any inherent paradoxes than to the fact that, embodying restrictions appropriate

to a model in levels, it has been transplanted into a model of volatility. The main

7In their study of the daily S&P500 index, they find that the squared returns series has
positive autocorrelations over more than 2,500 lags (or more than 10 years !).

8See Bollerslev and Mikkelsen (1996, p.158) for a discussion on the importance of non-integer
values of integration when modelling long-run dependencies in the conditional mean of economic
time series.
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characteristic of this model is that it is not stationary when d > 0. Indeed,

(1− L)d =
∞∑

k=0

Γ(d+ 1)

Γ(k + 1) Γ(d− k + 1)
Lk

= 1− dL− 1

2
d(1− d)L2 − 1

6
d(1− d)(2− d)L3 − . . .

= 1−
∞∑

k=1

ck(d)L
k, (A-19)

where c1(d) = d, c2(d) = 1
2
d(1 − d), etc. By construction,

∑∞
k=1 ck(d) = 1 for

any value of d, and consequently, the FIGARCH belongs to the same “knife-edge-

nonstationary” class represented by the IGARCH (S = 1).9 To test whether this

nonstationarity feature holds, Davidson (2001) proposes a generalized version of

the FIGARCH and calls it the HYperbolic GARCH. The HYGARCH is given by

Eq. (A-18), when λ(L) is replaced by 1− [1− β(L)]−1φ(L)
{
1 + α

[
(1− L)d − 1

]}
.

Note that we report ln(α) and not α. The ck(d) coefficients are thus weighted by α.

Interestingly, the HYGARCH nests the FIGARCH when α = 1 (or equivalently

when ln(α) = 0) and if the GARCH component observes the usual covariance

stationarity restrictions, then this process is stationary with α < 1 (or equivalently

when ln(α) < 0) (see Davidson, 2001 for more details).

Chung (1999) underscores some little drawbacks in the BBM model: there is a

structural problem in the BBM specification since the parallel with the ARFIMA

framework of the conditional mean equation is not perfect, leading to difficult

interpretations of the estimated parameters. Indeed the fractional differencing

operator applies to the constant term in the mean equation (ARFIMA) while it

does not in the variance equation (FIGARCH). Chung (1999) proposes a slightly

different process:

φ(L)(1− L)d
(
ε2t − σ2

)
= [1− β(L)](ε2t − σ2t ), (A-20)

where σ2 is the unconditional variance of εt .

If we keep the same definition of λ (L) as in Eq. (A-18), we can formulate the

conditional variance as:

σ2t = σ2 +
{
1− [1− β(L)]−1φ(L)(1− L)d

} (
ε2t − σ2

)

9Note that the hyperbolic memory of the FIGARCH is measured by the parameter d, such
that λi = O(i−1−d). The memory is thus increasing as d approaches 0 unlike for the ARFIMA
model. See Davidson (2001) on this point.
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or

σ2t = σ2 + λ(L)
(
ε2t − σ2

)
. (A-21)

λ (L) is an infinite summation which, in practice, has to be truncated. BBM

propose to truncate λ (L) at 1000 lags (this truncation order has been implemented

as the default value in our package, but it may be changed by the user) and initialize

the unobserved ε2t at their unconditional moment. Contrary to BBM, Chung (1999)

proposes to truncate λ (L) at the size of the information set (t−1) and to initialize

the unobserved (ε2t − σ2) at 0 (this quantity is small in absolute values and has a

zero mean), see Chung (1999) for more details.

The idea of fractional integration has been extended to other GARCH types of

models, including the Fractionally Integrated EGARCH (FIEGARCH) of Boller-

slev and Mikkelsen (1996) and the Fractionally Integrated APARCH (FIAPARCH)

of Tse (1998).10

Similarly to the GARCH(p, q) process, the EGARCH(p, q) of Eq. (A-11) can be

extended to account for long memory by factorizing the autoregressive polynomial

[1− β(L)] = φ(L)(1−L)d where all the roots of φ(z) = 0 lie outside the unit circle.

The FIEGARCH (p, d, q) is specified as follows:

ln
(
σ2t
)
= ω + φ(L)−1 (1− L)−d [1 + α(L)]g(zt−1). (A-22)

Finally, the FIAPARCH (p, d, q) model can be written as:11

σδt = ω +
{

1− [1− β (L)]−1 φ (L) (1− L)d
}

(|εt| − γεt)
δ . (A-23)

A.3 Estimation methods

A.3.1 Parameters constraints

When numerical optimization is used to maximize the log-likelihood function with

respect to the vector of parameters Ψ, the inspected range of the parameter space

is ]−∞;∞[. The problem is that some parameters might have to be constrained in

10Notice that the GJR has not been extended to the long-memory framework. It is however
nested in the FIAPARCH class of models.

11When using the BBM option in G@RCH for the FIEGARCH and FIAPARCH, (1− L)
d
and

(1− L)
−d

are truncated at some predefined value (see above). It is also possible to truncate this
polynomial at the information size at time t, i.e. t− 1.

190



A.3. ESTIMATION METHODS

a smaller interval. For instance, the leverage effect parameter γ of the APARCH

model must lie between -1 and 1. To impose these constraints one could estimate

Ψ∗ (which ranges from −∞ to +∞) instead of Ψ where Ψ is recovered using the

non-linear function: Ψ = x (Ψ∗). In our package, x(.) is defined as:

x(Ψ∗) = Low +
Up− Low

1 + e−Ψ∗ , (A-24)

where Low is the lower bound and Up the upper bound (i.e. in our example,

Low = −1 and Up = 1).

So, applying unconstrained optimization of the log-likelihood function with re-

spect to Ψ is equivalent to applying constrained optimization with respect to Ψ∗.

Therefore, the optimization process of the program results in Ψ̂∗ with the covari-

ance matrix being noted Cov
(

Ψ̂∗
)

. The estimated covariance of the parameters

of interest Ψ̂ is:

Cov
(

Ψ̂
)

=




∂x
(

Ψ̂∗
)

∂Ψ∗



Cov
(

Ψ̂∗
)




∂x
(

Ψ̂∗
)

∂Ψ∗





′

. (A-25)

In our case, we have Cov
(

Ψ̂
)

= Cov
(

Ψ̂∗
)
exp(−Ψ̂∗)(Up−Low)

[1+exp(−Ψ̂∗)]
2 . Note that, in

G@RCH 2.0, lower and upper bounds of the parameters can be easily modified by

the user in the file startingvalues.txt.

A.3.2 Distributions

Four distributions are available in our program: the usual Gaussian, the Student-t,

the Generalized Error Distribution (GED) and the skewed Student distribution.

The GARCH models are estimated using an approximate Maximum Likelihood

(ML) approach. It is quite evident from Eq. (A-6) (and all the following equations

of Section A.2) that the recursive evaluation of this function is conditional on un-

observed values. The ML estimation is therefore not perfectly exact. To solve the

problem of unobserved values, we have set these quantities to their unconditional

expected values or sample mean.

If we express the mean equation as in Eq. (A-1) and εt = ztσt, the Gaussian,

Student and skewed Student log-likelihood functions are given respectively in Eq.

(2.5), (2.13) and (2.31).
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The GED log-likelihood function of a normalized random variable is given by:

LGED =
T∑

t=1

[

ln (υ/λυ)− 0.5

∣
∣
∣
∣

zt
λυ

∣
∣
∣
∣

υ

−
(
1 + υ−1

)
ln(2)− ln Γ (1/υ)− 0.5 ln

(
σ2t
)
]

,

(A-26)

where 0 < υ <∞ and

λυ ≡
√

Γ
(
1
υ

)
2−

2
υ

Γ
(
3
υ

) .

In principal, the gradient vector and the hessian matrix can be obtained nu-

merically or by evaluating its analytic expressions. We have shown in Chapter

3 that using analytical scores can highly speed-up ML estimation and improve

the numerical accuracy. However, due to the high number of possible models and

distributions, we use numerical techniques to approximate the derivatives of the

log-likelihood function with respect to the parameter vector.

A.3.3 Tests

In addition to the possibilities offered by GiveWin (ACF, PACF, QQ-plots. . . ),

several tests are provided:

• Four Information Criteria (divided by the number of observations):12

- Akaike = −2LogL
n

+ 2 k
n
;

- Hannan-Quinn = −2LogL
n

+ 2k ln[ln(n)]
n

;

- Schwartz = −2LogL
n

+ 2 ln(k)
n

;

- Shibata =−2LogL
n

+ ln
(
n+2k
n

)
.

• The value of the skewness and the kurtosis of the standardized residuals (ẑt)

of the estimated model, their t-tests and p-values. Moreover, the Jarque-Bera

normality test (Jarque and Bera, 1987) is also reported.

• The Box-Pierce statistics at lag l∗ for both standardized, i.e. BP (l∗), and

squared standardized, i.e. BP 2 (l∗), residuals. Under the null hypothesis

of no autocorrelation, the statistics BP (l∗) and BP 2 (l∗) are respectively

χ2 (l∗ −m− l) and χ2 (l∗ − p− q) distributed (see McLeod and Li, 1983).

12LogL = log likelihood value, n is the number observations and k the number of estimated
parameters.
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• The Engle LM ARCH test (Engle, 1982) to test for the presence of ARCH

effects in a series.

• The diagnostic test of Engle and Ng (1993) to investigate possible misspec-

ification of the conditional variance equation. The Sign Bias Test (SBT)

examines the impact of positive and negative return shocks on volatility not

predicted by the model under construction. The negative Size Bias Test

(resp. positive Size Bias Test) focuses on the different effects that large and

small negative (resp. positive) return shocks have on volatility, which is not

predicted by the volatility model. Finally, a joint test for these three tests is

also provided.

• The adjusted Pearson goodness-of-fit test. See Chapter 2 for more details.

• The Nyblom test (Nyblom, 1989 and Lee and Hansen, 1994) to check the

constancy of parameters over time. See Hansen (1994) for an overview of

this test.

A.3.4 Forecasts

Estimating a model can be useful to try to understand the mechanism that pro-

duces the series of interest. It can also suggest a solution to an economic problem.

Is it the only game in town ? Certainly not. Indeed, the main purpose of building

and estimating a model with financial data is to produce a forecast. G@RCH 2.0

also provides forecasting tools. Actually, forecasts of both the conditional mean

and the conditional variance are available as well as several forecast error measures.

Forecasting the conditional mean

Our first goal is to give the optimal h-step-ahead predictor of yt+h given the infor-

mation we have up to time t.

For instance, for the following AR(1) process,

yt = µ+ ψ1(yt−1 − µ) + εt.

The optimal13 h-step-ahead predictor of yt+h, i.e. ŷt+h|t, is its conditional ex-

13By optimal, we mean optimal under expected quadratic loss, or in a mean square error sense.

193



APPENDIX A. G@RCH 2.0: AN OX PACKAGE FOR ARCH MODELS

pectation at time t (given the estimated parameters µ̂ and ψ̂1):

ŷt+h|t = µ̂+ ψ̂1(ŷt+h−1|t − µ̂), (A-29)

where ŷt+i|t = yt+i for i ≤ 0.

For the AR(1), the optimal 1-step-ahead forecast equals µ̂ + ψ̂1(ŷt − µ̂). For

h > 1, the optimal forecast can be obtained recursively or directly as ŷt+h|t =

µ̂+ ψ̂h1 (ŷt − µ̂).

In the general case of an ARFIMA(n, da, s) as given in Eq. (A-3), the optimal

h-step-ahead predictor of yt+h is:

ŷt+h|t =

[

µ̂t+h|t +
∞∑

k=1

ĉk(ŷt+h−k − µ̂t+h|t)

]

+
n∑

i=1

ψ̂i

{

ŷt+h−i −
[

µ̂t+h|t +
∞∑

k=1

ĉk(ŷt+h−i−k − µ̂t+h|t)

]}

+
s∑

j=1

θ̂j(ŷt+h−j − ŷt+h−j|t). (A-30)

Recall that when exogenous variables enter the conditional mean equation, µ be-

comes µt = µ +
n1∑

i=1

δixi,t and consequently, provided that the information xi,t+h

is available at time t (which is the case for instance if xi,t is a “day-of-the-week”

dummy variable), µ̂t+h|t is also available at time t. When there is no exogenous

variable in the ARFIMA model and n = 1, s = 0 and da = 0 (ck = 0), the forecast

of the AR(1) process given in Eq. (A-29) can be recovered.

Forecasting the conditional variance

Independently from the conditional mean, one can forecast the conditional vari-

ance. In the simple GARCH(p, q) case, the optimal h-step-ahead forecast of the

conditional variance, i.e. σ̂2t+h|t is given by:

σ2t+h|t = ω̂ +

q
∑

i=1

α̂iε
2
t+h−i|t +

p
∑

j=1

β̂jσ
2
t+h−j|t,

where ε2t+i|t = σ2t+i|t for i > 0 while ε2t+i|t = ε2t+i and σ2t+i|t = σ2t+i for i ≤ 0. Eq.

(A-31) is usually computed recursively, even if a closed form solution of σ2t+h|t can

be obtained by recursive substitution in Eq. (A-31).
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Similarly, one can easily obtain the h-step-ahead forecast of the conditional

variance of an ARCH, IGARCH and FIGARCH model. By contrast, for thresh-

olds models, the computation of the out-of-sample forecasts is more complicated.

Indeed, for the GJR and APARCH models (as well as for their long-memory coun-

terparts), the assumption made on the innovation process may have an effect on

the forecast (especially for h > 1).

For instance, for the GJR (p, q) model,

σ̂2t+h|t = ω̂ +

q
∑

i=1

(α̂iε
2
t−i+h|t + γ̂iS

−
t−i+h|tε

2
t−i+h|t) +

p
∑

j=1

β̂jσ
2
t−j+h|t. (A-32)

When all the γi parameters equal 0, one recovers the forecast of the GARCH

model. Otherwise, one has to compute S−t−i+h|t. Note first that S−t+i|t = S−t+i for

i ≤ 0. However, when i > 1, S−t+i|t depends on the choice of the distribution of

zt. When the distribution of zt is symmetric around 0 (for the Gaussian, Student

and GED density), the probability that εt+i will be negative is S−t+i|t = 0.5. If

zt is (standardized) skewed Student distributed with asymmetry parameter ξ and

degree of freedom υ, S−t+i|t =
1

1+ξ2
since ξ2 is the ratio of probability masses above

and below the mode.

For the APARCH (p, q) model,

σ̂δt+h|t = E
(
σδt+h|Ωt

)

= E

(

ω̂ +

q
∑

i=1

α̂i (|εt+h−i| − γ̂iεt+h−i)
δ̂ +

p
∑

j=1

β̂jσ
δ̂
t+h−j | Ωt

)

= ω̂ +

q
∑

i=1

α̂iE
[

(εt+h−i − γ̂iεt+h−i)
δ̂|Ωt

]

+

p
∑

j=1

β̂jσ
δ̂
t+h−j|t, (A-33)

where E
[

(εt+k − γ̂iεt+k)
δ̂|Ωt

]

= κiσ
δ̂
t+k|t, for k > 1 and κi = E (|z| − γiz)

δ̂ (see

Section A.3.2).

For the EGARCH (p, q) model,

ln σ̂2t+h|t = E
(
lnσ2t+h|Ωt

)

= E

{

ω̂ +
[

1− β̂(L)
]−1

[1 + α̂(L)]ĝ(zt+h−1) | Ωt

}

=
[

1− β̂(L)
]

ω̂ + β̂(L) ln σ̂2t+h|t + [1 + α̂(L)]ĝ(zt+h−1|t), (A-34)
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where ĝ(zt+k|t) = ĝ(zt+k) for k ≤ 0 and 0 for k > 0.

Finally, the h-step-ahead forecast of the FIAPARCH and FIEGARCH models

are obtained in a similar way.

One of the most popular measures to check the forecasting performance of

the ARCH-type models is the Mincer-Zarnowitz regression, i.e. ex-post volatility

regression:

σ̌2t = a0 + a1σ̂
2
t + ut, (A-35)

where σ̌2t is the ex-post volatility, σ̂2t is the forecasted volatility and a0, a1 are

parameters to be estimated. If the model for the conditional variance is correctly

specified (and the parameters are known) and E(σ̌2t ) = σ̂2t , it follows that a0 = 0

and a1 = 1. The R2 of this regression is often used as a simple measure of the

degree of predictability of the ARCH-type model.

However, σ̌2t is never observed. By default, G@RCH 2.0 uses σ̌2t = (yt − y)2,

where y is the sample mean of yt. The R
2 of this regression is often lower than 5%

and this could lead to the conclusion that GARCH models produce poor forecasts

of the volatility (see, among others, Schwert, 1990, or Jorion, 1996). But, as

described in Andersen and Bollerslev (1998), the reason of these poor results is the

choice of what is considered as the “true” volatility. G@RCH 2.0 allows to select

any series as the “observed” volatility (Obs.-Var., see Figure A.1). The user may

then compute the daily realized volatility as the sum of squared intraday returns

and use it as the “true” volatility. Actually, Andersen and Bollerslev (1998) show

that this measure is a more proper one than squared daily returns. Therefore,

using 5-minute returns for instance, the daily realized volatility can be expressed

as:

σ2t =
K∑

k=1

y2k,t, (A-36)

where yk,t is the return of the kth 5-minutes interval of the tth day and K is the

number of 5-minutes intervals per day.

Finally, to compare the adequacy of the different distributions, G@RCH 2.0 also

allows the computation of density forecasts tests developed in Diebold, Gunther,

and Tay (1998), that we have briefly reviewed in Chapter 2.14 An illustration is

provided in Section A.4 with some formal tests and graphical tools.

14For more details about density forecasts and applications in finance, see the special issue of
Journal of Forecasting (Timmermann, 2000).
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A.3.5 Numerical accuracy

McCullough and Vinod (1999) and Brooks, Burke, and Persand (2001) use the

daily German mark/British pound exchange rate data of Bollerslev and Ghysels

(1996) to compare the numerical accuracy of GARCH model estimation among

several econometric softwares. They choose the GARCH(1,1) model described

in Fiorentini, Calzolari, and Panattoni (1996) (hereafter denoted FCP) as the

benchmark. In this section, we use the same methodology with the same dataset

to check the accuracy of our procedures. Coefficients and standard errors estimates

of G@RCH 2.0 are reported in Table A.1 together with the results of McCullough

and Vinod (1999) (based on the FORTRAN procedure of FCP and thus entitled

“FCP” in the table).

Table A.1: Accuracy of the GARCH procedure

Coefficient Standard Errors Robust Standard Errors

G@RCH FCP G@RCH FCP G@RCH FCP

µ -0.006184 -0.006190 0.008462 0.008462 0.009187 0.009189

ω 0.010760 0.010761 0.002851 0.002852 0.006484 0.006493

α1 0.153407 0.153134 0.026569 0.026523 0.053595 0.053532

β1 0.805879 0.805974 0.033542 0.033553 0.072386 0.072461

G@RCH 2.0 gives very satisfactory results since the first four digits (at least)

are the same as those of the benchmark for all but two estimations. In addi-

tion, it competes well compared to other well known econometric softwares. Table

A.2 gives indeed the coefficient estimates and the error percentage associated for

5 softwares. G@RCH, PcGive and TSP (these last two softwares use analyti-

cal second-order derivatives for the standard GARCH model) clearly outperform

Eviews and S-Plus on this specification (if one believes in the benchmark values).

Moreover, to investigate the accuracy of our forecasting procedures, we have

run a 8-step ahead forecasts of the model, similar to Brooks, Burke, and Persand

(2001). Table 4 in Brooks, Burke, and Persand (2001) reports the conditional

variance forecasts given by six well-known softwares and the benchmark values.

Contrary to E-Views, Matlab and SAS, G@RCH 2.0 hits the benchmarks for all

steps to the third decimal (note that GAUSS, Microfit and Rats also do).
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Table A.2: GARCH accuracy comparison

FCP G@RCH Eviews PcGive TSP S-Plus
µ -0.00619 -0.00618 -0.00541 -0.00625 -0.00619 -0.00919
ω 0.010761 0.010760 0.009581 0.010760 0.010761 0.011696
α1 0.153134 0.153407 0.142284 0.153397 0.153134 0.154295
β1 0.805974 0.805879 0.821336 0.805886 0.805974 0.800276
µ - 0.10% 12.58% 0.91% 0.00% 48.41%
ω - 0.01% 10.96% 0.01% 0.00% 8.69%
α1 - 0.18% 7.08% 0.17% 0.00% 0.76%
β1 - 0.01% 1.91% 0.01% 0.00% 0.71%

Finally, Lombardi and Gallo (2001) extend the work of Fiorentini, Calzolari,

and Panattoni (1996) to the FIGARCH model of Baillie, Bollerslev, and Mikkelsen

(1996) and derive analytic expressions for the second-order derivatives of this model

in the Gaussian case. For the same DEM/UKP database as in the previous exam-

ple, Table A.3 reports the coefficients estimates and their standard errors for our

package (using numerical gradients and the BFGS optimization method) and for

Lombardi and Gallo (2001) (using analytical gradients and the Newton-Raphson

algorithm; results correspond to the columns entitled “LG”).

Table A.3: Accuracy of the FIGARCH procedure

Coefficient Standard Errors
G@RCH LG G@RCH LG

µ 0.003606 0.003621 0.009985 0.009985
ω 0.015772 0.015764 0.003578 0.003581
α1 0.198134 0.198448 0.042508 0.042444
β1 0.675652 0.675251 0.051800 0.051693
d 0.570702 0.569951 0.075039 0.074762

Results show that G@RCH 2.0 provides accurate estimates, even for an ad-

vanced model such as the FIGARCH. As expected, it is however more time-

consuming than the C code of Lombardi and Gallo (2001)15 (163 sec. vs 43 sec.

using a PIII processor with 450 Mhz).

15This C code is available at http://www.ds.unifi.it/∼mjl/ in the “software” section. Note
that the only configuration available is a FIGARCH (1, d, 1) with a constant in the mean and
variance equations and a Gaussian likelihood.

198



A.4. APPLICATION

A.3.6 Features comparison

The goal of this section is to compare in the most objective way, the features of-

fered by G@RCH 2.0 with respect to nine other well known econometric softwares,

namely PcGive 10 (also programmed in Ox), GAUSS and its Fanpac package,

Eviews 4, S-Plus 6 and its GARCH module, Rats 5.0 and its garch.src procedure16,

TSP 4.5, Microfit 4, SAS 8.2 and Stata 7. It is not our intention to evaluate a pro-

gram against another, but we will rather show an overview of what can or cannot

be done with these softwares.

The proposed models and options differ widely from one program to another

as can be seen in Table A.4. Regarding the range of different univariate models,

if many programs propose asymmetric models, very few (G@RCH, S-Plus with

the FIGARCH and the FIEGARCH and Fanpac with the FIGARCH) offer long

memory models in the variance equation and none (except G@RCH) offers a frac-

tionally integrated specification in the mean. As for the distribution, the choice

is often limited to symmetric densities (except G@RCH that provides a skewed

Student likelihood). Finally, robust standard errors are proposed in 5 programs

out of the 10 we have compared (G@RCH, PcGive, GAUSS Fanpac, Eviews and

Stata).

A.4 Application

A.4.1 Data and methodology

To illustrate our G@RCH 2.0 package with a concrete application, we analyze the

French CAC40 stock index for the years 1995-1999 (1249 daily observations). It is

computed by the exchange as a weighted measure of the prices of its components

and is available in the database on an intraday basis with the price index being

computed every 15 minutes. For the time period under review, the opening hours

of the French stock market were 10.00 am to 5.00 pm, thus 7 hours of trading per

day. This translates into 28 intraday returns used to compute the daily realized

volatility. Intraday prices are the outcomes of a linear interpolation between the

closest recorded prices below and above the time set in the grid. Correspondingly,

16This file is available at http://www.estima.com/procindx.htm for download.
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all returns are computed as the first difference in the regularly time-spaced log

prices of the index. Because the exchange is closed from 5h pm to 10h am the next

day, the first intraday return is the first difference between the log price at 10h15

and the log price at 5h pm the day before. On the first hand, the intraday data

are used to compute the daily realized volatility using Eq. (A-36). On the other

hand, daily returns in percentage are defined as 100 times the first difference of

the log of the closing prices.17

The estimation of the parameters is carried out for the 800 observations while

forecasting is computed for the last observations.

A.4.2 Using the “Full Version”

Once the installation process is correctly completed following the instructions of

the readme.txt file, the user may open the database he wants to use in GiveWin

(in the example “CAC15.xls”), and then select the OxPack module.

Once our package has been selected, one can launch the Model/Formulate

menu. The list of all the variables of the database appears in the Database section

(see Figure A.1). There are four possible statuses for each variable: dependent

variable (Y variable), regressor in the mean (Mean), regressor in the variance

(Variance) or observed volatility (Obs. Var.). Our program provides estimations

for univariate models18, so only one Y variable per model is accepted. However

one can include several regressors in the mean and the variance equations and the

same variable can be a regressor in both equations.

Once the OK button is pressed, the Model/Model Settings box automatically

appears. This box allows to select the specification of the model: AR(FI)MA

orders for the mean equation, GARCH orders, type of GARCH model for the

variance equation and the distribution (Figure A.2). The default specification is

an ARMA(0,0)-GARCH(1,1) with normal errors. In our application, we select an

ARMA(1,0)-APARCH(1,1) specification with a skewed Student likelihood.

As explained in Section A.3.1, it is possible to constrain the parameters to

range between a lower and an upper bound by selecting the Bounded Parameters

17By definition and using the properties of the log distribution, the sum of the intraday returns

is equal to the observed daily return based on the closing prices.
18The extension of this package to multivariate GARCHmodels is currently under development.
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Figure A.1: Selecting the variables

option. The defaults bounds can be changed in the startingvalues.txt file.

In the next window, the user is asked to make a choice regarding the starting

values (Figure A.3): he might (1) let the program use the predefined starting

values19, (2) enter them manually, element by element, or (3) enter the starting

values in a vector form (the required form is “value1;value2;value3”).

Then, the estimation method for standard deviations is selected: ML or QML

(with a specified pseudo-likelihood) or both. In this window (see Figure A.4), one

may also select the sample and some maximization options (such has the number

of iterations between intermediary results printings) when clicking on the Options

button.

The estimation procedure is then launched and the program comes back to

GiveWin. Let us assume that the element-by-element method has been selected.

A new window appears (see Figure A.5) with all the possible parameters to be

estimated. Depending on the specification, some parameters have a value, other

do not. The user should replace only the former, since they correspond to the

parameters to be estimated for the specified model.

19Note that these default values can be modified by the user. Indeed they are stored in the

startingvalues.txt file installed with the package.
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Figure A.2: Model settings

Figure A.3: Selecting the starting values method
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Figure A.4: Standard errors estimation methods

Figure A.5: Entering the starting values
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Once this step is completed, the program starts the iteration process. The

final output is divided by default in two main parts: first, the model specification

reminder; second, the estimated values and other useful statistics of the parame-

ters.20 The output is given in the box “Output 1”.

After the estimation of the model, new options are available in OxPack: Menu/Tests,

Menu/Graphic Analysis, Menu/Forecasts, Menu/Exclusion Restrictions,

Menu/Linear Restrictions and Menu/Store.

The Menu/Graphic Analysis option allows to plot different graphics (see Fig-

ure A.6 for details). Just as any other graphs in the GiveWin environment, they

can be easily edited (color, size,. . . ) and exported in many formats (.eps, .ps, .wmf,

.emf and .gwg). Figure A.7 provides the graphs of the squared residuals and the

conditional mean with a 95% confidence interval.

The Menu/Tests option allows to run different tests (see Section A.3.2 for

further explanations). It also allows to print the variance-covariance matrix of

the estimated parameters (Figure A.8). The results of these tests are printed in

GiveWin. An example of output is reported in the next box (“Output 2”).

20Recall that the estimations are based on the numerical evaluation of the gradients.
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Output 1

********************
** SPECIFICATIONS **
********************
Mean Equation: ARMA (1, 0) model.
No regressor in the mean.
Variance Equation : APARCH (1, 1) model.
No regressor in the variance.
The distribution is a Skewed Student distribution, with a tail coefficient of 15.72 and an asymmetry coefficient of
-0.08751.
Strong convergence using numerical derivatives

Maximum Likelihood Estimation

Coefficient Std.Error t-value t-prob
Cst(M) 0.065337 0.037157 1.758 0.0791
AR(1) 0.004704 0.037117 0.1267 0.8992
Cst(V) 0.017498 0.013488 1.297 0.1949
Beta1 0.947590 0.020193 46.93 0.0000
Alpha1 0.038464 0.017776 2.164 0.0308
Gamma1 0.676364 0.348702 1.940 0.0528
Delta 1.462837 0.533581 2.742 0.0063
Asymmetry -0.087512 0.054314 -1.611 0.1075
Tail 15.718323 8.087414 1.944 0.0523

No. Observations: 800 No. Parameters: 9
Mean (Y): 0.08103 Variance (Y): 1.27405
Log Likelihood: -1190.521 Alpha[1]+Beta[1]: 0.98605

The sample mean of squared residuals was used to start recursion.
The condition for existence of E(σδ) and E(|eδ|) is observed.
The constraint equals 0.9926 and should be < 1.
Vector of estimated parameters:
0.065337; 0.004704; 0.017498; 0.947590; 0.038464; 0.676364; 1.462837;-0.087512; 15.718323
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Output 2

TESTS:
—————
Information Criterium (minimize)
Akaike 2.998802 Shibata 2.998553
Schwarz 3.051504 Hannan-Quinn 3.019048
—————

Statistic t-value t-prob
Skewness -0.2135 2.47 0.0135
Excess Kurtosis 0.4684 2.713 0.006674
Jarque-Bera 13.39 13.39 0.001235
—————

BOX-PIERCE:
H0: No serial correlation ⇒ Accept H0 when prob. is High [Q < Chisq(lag)]
Box-Pierce Q-statistics on residuals
→ P-values adjusted by 1 degree(s) of freedom
Q(10) = 14.47 [0.1064]
Q(20) = 21.67 [0.3012]

Box-Pierce Q-statistics on squared residuals
→ P-values adjusted by 2 degree(s) of freedom
Q(10) = 9.887 [0.2731]
Q(20) = 16.13 [0.5838]
————— Diagnostic test based on the news impact curve (EGARCH vs. GARCH)

Test Prob
Sign Bias t-Test 0.98838 0.32297
Negative Size Bias t-Test 0.14581 0.88407
Positive Size Bias t-Test 0.62400 0.53263
Joint Test for the Three Effects 5.13914 0.16189
—————

Joint Statistic of the Nyblom test of stability: 2.727
Individual Nyblom Statistics:

Cst(M) 0.72438
AR(1) 0.68524
Cst(V) 0.51505
Beta1 0.42785
Alpha1 0.46229
Gamma1 0.43489
Delta 0.54130
Asymmetry 0.21342
Tail 0.08950

Rem: Asymptotic 1% critical value for individual statistics = 0.75.
Asymptotic 5% critical value for individual statistics = 0.47.
—————
Adjusted Pearson Chi-square Goodness-of-fit test

Lags Statistic P-Value(lag-1) P-Value(lag-k-1)
40 24.9000 0.961261 0.729877
50 26.7500 0.995994 0.946240
60 32.6500 0.997893 0.972622

Rem.: k = # estimated parameters

We do not intend to comment this application in details. However, looking at
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Figure A.6: Graphics menu

these results, one can briefly argue that the model seems to capture the dynamics

of the first and second moments of the CAC40 (see the Box-Pierce statistics).

Indeed, the Sign Bias tests show that there is no remaining leverage component

in the innovations while the Nyblom stability test suggests that the estimated

parameters are quite stable during the investigated period. Finally, our model

specification is not rejected by the goodness-of-fit tests for various lag lengths.

To obtain the h-step-ahead forecasts, access the menu Test/Forecast and set

the number of forecasts, pre-sample observations (to be plotted) as well as some

other graphical options.

Figure A.9 shows 10 pre-sample observations and the forecasts up to horizon 10

of the conditional mean. The forecasted bands are ±2σ̂t+h|t (note that the critical

value 2 can be modified by the user).

A.4.3 Using the “Light Version”

First, to specify the model you want to estimate, you have to edit GarchEstim.ox

with any text editor. Yet we recommend OxEdit. It is a shareware that highlights
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Figure A.7: Graphical analysis
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Figure A.8: Tests dialog box
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Figure A.9: Forecasts from an AR(1)-APARCH(1,1).
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Ox syntax in color (see http://www.oxedit.com for more details). An example

of the GarchEstim.ox file is displayed in the next box.

The GarchEstim file consists of five parts:

• the “Data” part deals with the database, the sample and the variables selec-

tion;

• the “Specification” part is related to the choice of the model, the lag orders

and the shape of the distribution;

• the “Tests & Forecasts” part allows to compute different tests and to param-

eterize the forecasting part. Note that BOXPIERCE, ARCHLAGS and PEARSON all

require a vector of integers corresponding to the lags used in the computation

of the statistics;

• the “Output” part includes several options including MLE that refer to the

computation method of the standard deviations of the estimated parame-

ters, TESTONLY, useful when you want to run some tests on the raw series,

prior to any estimation and GRAPHS and FOREGRAPHS, to print graphs for the

estimation and the forecasting, respectively;21

21Graphics will only be displayed when using GiveWin as front-end.
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GarchEstim.ox
#import <packages/garch/garch>
main()
{

decl garchobj;
garchobj = new Garch();

//*** DATA ***//
garchobj.Load("/data/cac40.xls");
garchobj.Info();
garchobj.Select(Y_VAR, {"CAC40",0,0});

// garchobj.Select(X_VAR, {"NAME",0,0}); // REGRESSOR IN THE MEAN
// garchobj.Select(Z_VAR, {"NAME",0,0}); // REGRESSOR IN THE VARIANCE
// garchobj.Select(O_VAR, {"REALVOLA",0,0}); // REALIZED VOLATILITY

garchobj.SetSelSample(-1, 1, 1000, 1);
//*** SPECIFICATIONS ***//

garchobj.CSTS(1,1); // cst in Mean (1 or 0), cst in Variance (1 or 0)
garchobj.DISTRI(1); // 0 for Gauss, 1 for Student, 2 for GED, 3 for Skewed-Student
garchobj.ARMA_ORDERS(1,0); // AR order (p), MA order (q).
garchobj.ARFIMA(0); // 1 if Arfima wanted, 0 otherwise
garchobj.GARCH_ORDERS(1,1); // p order, q order
garchobj.MODEL(1); // 1:GARCH 2:EGARCH 3:GJR 4:APARCH 5:IGARCH

// 6:FIGARCH(BBM) 7:FIGARCH(Chung) 8:FIEGARCH(BBM only)
// 9:FIAPARCH(BBM) 10: FIAPARCH(Chung) 11: HYGARCH(BBM)

garchobj.TRUNC(1000); // Truncation order (only F.I. models with BBM method)
//*** TESTS & FORECASTS ***//

garchobj.BOXPIERCE(<10;15;20>); // Lags for the Box-Pierce Q-statistics, <> otherwise
garchobj.ARCHLAGS(<2;5;10>); // Lags for Engle’s LM ARCH test, <> otherwise
garchobj.NYBLOM(1); // 1 to compute the Nyblom stability test, 0 otherwise
garchobj.PEARSON(<40;50;60>); // Cells for the adjusted Pearson Chi-square Goodness-of-fit test
garchobj.FORECAST(0,9,1); // Arg.1 : 1 to launch the forecasting procedure, 0 otherwize

// Arg.2 : Number of forecasts
// Arg.3 : 1 to Print the forecasts, 0 otherwise

//*** OUTPUT ***//
garchobj.MLE(1); // 0 : both, 1 : MLE, 2 : QMLE
garchobj.COVAR(0); // if 1, prints variance-covariance matrix of the parameters.
garchobj.ITER(0); // Interval of iterations between printed intermediary results
garchobj.TESTSONLY(0,0); // Arg.1 : if 1, runs tests for the raw Y series, prior to ...

// Arg.2 : if 1, runs tests after the estimation.
garchobj.GRAPHS(0,0,""); // Arg.1 : if 1, displays graphics of the estimations.

// Arg.2 : if 1, saves these graphics in a EPS file
// Arg.3 : Name of the saved file.

garchobj.FOREGRAPHS(1,0,""); // Same as GRAPHS(p,s,n) but for the graphics of the forecasts.
//*** PARAMETERS ***//

garchobj.BOUNDS(1); // 1 if bounded parameters wanted, 0 otherwise
garchobj.FixParam(1); // 1 to fix some parameters to their starting values, 0 otherwize
garchobj.FixedParam(<0;0;0;0;0;0;1>);

// 1 to fix and 0 to estimate the corresponding parameter
garchobj.DoEstimation(<>);

// m_vPar = m_clevel | m_vbetam | m_dARFI | m_vAR | m_vMA | m_calpha0 | m_vgammav | m_dD | m_vbetav |
// m_valphav | m_vleverage | m_vtheta1 | m_vtheta2 | m_vpsy | m_ddelta | m_cA | m_cV | m_vHY

garchobj.STORE(0,0,0,0,0,"01",0); // Arg.1,2,3,4,5 : if 1 -> stored. (Res-SqRes-CondV-...
// Arg.6 : Suffix. The name of the saved series will be...
// Arg.7 : if 0, saves as an Excel spreadsheet (.xls)...

delete garchobj;
}

• the “Parameters” part consists in four procedures. BOUNDS to constraint

or not several parameters to range between a lower and an upper bound

(see Section A.3.1), FixParam to fix some parameters to their starting val-

ues, DoEstimation that launches the estimation of the model and the STORE

function allowing to store some series. The argument of the DoEstimation
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procedure is a vector containing starting values of the parameters in a spec-

ified order (but the user can also let the program take defaults values by

entering “<>” as function argument).

Note that the “Light Version” is more than just a replication of the “Full Ver-

sion” without the graphical interface. Indeed, G@RCH uses the object-oriented

programming features of Ox and provides a new class called Garch. All the func-

tions of this class can thus be used within an Ox programme. To illustrate the

potentiality of our package, we also provide Forecast.ox, an example that com-

putes 448 one-step-ahead forecasts of the conditional mean and conditional vari-

ance (using the estimated parameters presented in the previous section), computes

the Mincer-Zarnowitz regression and performs some out-of-sample density fore-

cast tests as suggested by Diebold, Gunther, and Tay (1998) and summarized in

Chapter 2.

The interesting part of Forecast.ox is printed in the next box. This code has

been used to produce Figure A.10 and the outputs associated with this forecasting

experiment (see below).

In the first four panels of Figure A.10, we show the correlograms of
(

ζ̂ − ζ̂
)j

,

for j = 1, 2, 3, 4, where ζ̂ is the probability integral transform (see Section 2.4).

This graphical tool has been proposed by Diebold, Gunther, and Tay (1998) to

detect potential remaining dependence in the conditional mean, variance, skew-

ness, kurtosis (see Chapter 2 for more details). In our example, it seems that the

probability integral transform is independently distributed.

Panel 5 of Figure A.10 also show the histogram (with 30 cells) of ζ̂ with the

95 % confidence bands. From this figure, it is clear that the AR(1)-APARCH(1,1)

model coupled with a skewed Student distribution for the innovations performs

very well with the dataset we have investigated. This conclusion is reinforced

by the Pearson Chi-square goodness-of-fit test printed hereafter that provides a

statistical version of the graphical test presented in Figure A.10. Finally, the

programm performs the Mincer-Zarnowitz regression given in Eq. (A-35) that

regresses the observed volatility (in our case the realized volatility) on a constant

and a vector of 448 one-step-ahead forecasts of the conditional variance (produced

by the APARCH model).22 The results (reported in the box “Output 3”) suggest

22The realized and one-step-ahead forecasts are plotted in the last panel of Figure A.10.
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that the APARCH model gives good forecasts of the conditional variance. Indeed,

looking at the estimated parameters of this regression, one can hardly conclude that

the APARCH model provides biases forecasts. Moreover, the R2 of this regression

is higher than 40 % (which is similar to findings of Andersen and Bollerslev, 1998

or Blair, Poon, and Taylor, 2000).

Forecast.ox

#import <packages/garch/garch>

main()

{

decl garchobj;

garchobj = new Garch();

...

garchobj.DoEstimation(<>);

decl number_of_forecasts=448; // number of h_step_ahead forecasts

decl step=1; // specify h (h-step-ahead forecasts)

decl T=garchobj.GetcT();

decl par=garchobj.PAR()[][0];

println("!!! Please Wait while computing the forecasts !!!");

decl forc=<>,h,yfor=<>,Hfor=<>;

decl RV=columns(garchobj.GetGroup(O_VAR));

decl shape=<>;

if (garchobj.GetDistri()==1 || garchobj.GetDistri()==2) // Except for the HYGARCH

shape=par[rows(par)-1];

else if (garchobj.GetDistri()==3)

shape=par[rows(par)-2:rows(par)-1];

for (h=0; h<number_of_forecasts; ++h)

{

garchobj.FORECAST(1,step,0);

garchobj.SetSelSample(-1, 1, T+h, 1);

garchobj.InitData();

yfor|=garchobj.GetForcData(Y_VAR, step);

forc|=garchobj.FORECASTING();

if (RV==1)

Hfor|=garchobj.GetForcData(O_VAR, step); // If you use the realized volatility

}

decl cd=garchobj.CD(yfor-forc[][0],forc[][1],garchobj.GetDistri(),shape);

println("Density Forecast Test on Standardized Forecast Errors");

garchobj.APGT(cd,20|30,rows(par));

garchobj.AUTO(cd, number_of_forecasts, -0.1, 0.1, 0);

garchobj.confidence_limits_uniform(cd,30,0.95,1,4);

if (RV==0)

{

DrawTitle(5, "Conditional variance forecast and absolute returns");

Hfor = (yfor - meanc(yfor)).^2;

}

else

DrawTitle(5, "Conditional variance forecast and realized volatility");

Draw(5, (Hfor~forc[][1])’);

ShowDrawWindow();

garchobj.MZ(Hfor, forc, number_of_forecasts);

garchobj.FEM(forc, yfor~Hfor);

garchobj.STORE(0,0,0,0,0,"01",0); // Arg.1,2,3,4,5 ...

// Arg.6 : Suffix. ...

// Arg.7 : if 0, ...

delete garchobj;

}
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Figure A.10: Density forecast analysis

Output 3

Density Forecast Test on Standardized Forecast Errors Adjusted Pearson Chi-square Goodness-of-fit test

Lags Statistic P-Value(lag-1) P-Value(lag-k-1)

20 21.0179 0.335815 0.020969

30 26.5089 0.598181 0.149654

Rem.: k = number of estimated parameters

Mincer-Zarnowitz regression on the forecasted volatility

Coefficient Std.Error t-value t-prob

a0 -0.225818 0.264837 -0.8527 0.3940

a1 1.370648 0.176086 7.784 0.0000

R2: 0.402914

Note: S.E. are Heteroskedastic Consistent (White, 80)
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APPENDIX A. G@RCH 2.0: AN OX PACKAGE FOR ARCH MODELS

A.5 Conclusions

This appendix documents the software G@RCH 2.0, an Ox package allowing

to estimate and to forecast numerous univariate ARCH-type processes including

GARCH, EGARCH, GJR, APARCH, IGARCH, FIGARCH, HYGARCH, FIE-

GARCH and FIAPARCH specifications of the conditional variance. Several fea-

tures of the program are worth noting since they are unavailable in most of the

traditional econometric softwares: the asymmetric and fractionally integrated pro-

cesses, four distributions (normal, Student-t, GED and skewed Student-t), (ed-

itable) parameters bounds, several mispecification tests and h-step-ahead forecasts.

G@RCH 2.0 is free of charge when used for educational or research purposes

and can be downloaded at http://www.egss.ulg.ac.be/garch/.
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Appendix B

Appendix Chapter 2

Additive Outliers (AO) detection and correction

In this Appendix we briefly review and discuss the extension of Franses and Ghijsels

(1999) method to deal with additive outliers in an GARCH model.

Consider a univariate time series y∗t following and ARMA (n, s) process:

Ψ (L) (y∗t − µ) = Θ (L) εt
∗ (B-1)

ε∗t = σ∗t zt (B-2)

where Ψ(L) = 1−ψ1L− ...−ψnLn and Θ(L) = 1+θ1L+ ...+θsL
s are the usual AR

and MA lag polynomials of respective orders n and s (with all roots lying outside

the unit circle), σ∗t is a time-varying conditional standard deviation and zt is an

independent and identically distributed (i.i.d.) random variable with zero mean.

Let us also assume that σδt
∗
is described by an APARCH (p, q):

σδ∗t = ω +

q
∑

i=1

αi (
∣
∣ε∗t−i

∣
∣− γiε

∗
t−i)

δ +

p
∑

j=1

βjσ
δ∗
t−j. (B-3)

Eq. (B-3) can be rewritten as follows:

σδt
∗
= ω + α+(L)(ε

∗+
t )δ + α−(L)(−ε∗−t )δ + β(L)σδt

∗
, (B-4)

where ε∗+t = max(ε∗t , 0), ε
∗−
t = min(ε∗t , 0), α+(L) =

q∑

i=1

αi(1− γi)L
i,

α−(L) =
q∑

i=1

αi(1 + γi)L
i and β(L) =

p∑

i=1

βiL
i.
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APPENDIX B. APPENDIX CHAPTER 2

After some manipulations, (B-4) can be re-expressed as an ARMA (maxp,q, p)

process (where maxp,q is the maximum value with respect to p and q):

|ε∗t |δ = ω + [α+(L) + β(L)] (ε∗+t )δ + [α−(L) + β(L)] (−ε∗−t )δ + v∗t − β(L)v∗t , (B-5)

where v∗t = |ε∗t |δ−σδ∗t plays the role of the innovation term of the APARCH model

(similar to ε∗t in Eq.(B-1)).

An additive outlier model in the conditional variance can be represented by:

vt = v∗t + ϕIt(τ
∗), (B-6)

where It(τ
∗) = 1 when t = τ ∗, 0 otherwise, while v∗t is given by Eq. (B-5). Note

that we have non a priori knowledge of τ ∗.

This process with vt instead of v∗t leads to yt instead of y∗t . If an ARMA (n, s)-

APARCH (p, q) model is fitted to yt, one obtains v̂t as:

v̂t = λ+(L)(ε
∗+
t )δ + λ−(L)(−ε∗−t )δ − ω [1− β(L)]−1 , (B-7)

where λ+(L) = [1− β(L)]−1 [1− α+(L)− β(L)] = 1 − λ+1 L − λ+2 L
2 − . . . and

λ−(L) = [1− β(L)]−1 [1− α−(L)− β(L)] = 1− λ−1 L− λ−2 L
2 − . . ..

For the moment we assume that the values of the parameters, as well as the

orders n, s, p and q, are known. For the AO in (B-6), the Eq. (B-7) amounts to:

v̂t = v∗t + ϕλ+(L)S
+
t It(τ

∗) + ϕλ−(L)S
−
t It(τ

∗), (B-8)

where S+t = 1 when εt > 0, 0 otherwise and S−t = 1− S+t .

The expression in (B-8) can be viewed as a regression model for v̂t, i.e.

v̂t = ϕxt + v∗t , (B-9)

where xt = 0 for t < τ ∗, xt = 1 for t = τ ∗ and xt+k = −λ+k if ετ∗ > 0, −λ−k
otherwise for t < τ ∗ and k = 1, 2, . . ..

The impact ϕ of the AO at time t = τ ∗ can then be estimated as:

ϕ̂(τ ∗) =

∑T
t=τ∗ v̂txt
∑T

t=τ∗ x
2
t

(B-10)

Chang, Tiao, and Chen (1988) suggest to standardize ϕ̂(τ ∗) such that one can

test for the significance of an AO. For this standardization we need an estimate
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of the variance of the residual process. Preferably, this estimate should not be

biased too much because of outliers. Chen and Liu (1993) suggest three methods

to estimate a robust error variance. In the empirical section below we will use the

so-called omit-one method for computational convenience. This method calculates

the error variance from the sample where the observation at t = τ ∗ has been

deleted. Denoting the estimated error variance, based on the omit-one method, as

σ̂a, we can construct the standardized statistic:

ÂO(τ ∗) =
ϕ̂(τ ∗)σ̂−1a
√
∑T

t=τ∗ x
2
t

(B-11)

When ÂO exceeds some value C, the impact of the AO is said to be significant.

Based on extensive simulations, Chen and Liu (1993) advocate setting C equal

to 4. However, the choice of C remains arbitrary. In case ÂO is large and in

excess of C, one can adjust the observation yt to obtain the AO-corrected y∗t . In

case of more than one AO, one can repeat this procedure until any ÂO statistic

becomes insignificant. In a final step one can re-estimate the parameters for all

observations, where some of these have been corrected for AOs.

This can be done in five steps:

• Step 1: Estimate the parameters of (B-1)-(B-3) using the observed data (yt)

and construct v̂∗t = |ε̂∗t |δ − σ̂δ∗t .

• Step 2: For each t = τ ∗, perform the regression (B-9) and calculate the

statistics ÂO(τ ∗).

• Step 3: The observation on v̂t at t = τ ∗ with the largest value of the ÂO

statistic (which should exceed C), is replaced by v̂t
∗ using Eq. (B-8) and the

estimated weight described in Eq. (B-10).

• Step 4: With v̂t
∗ and σ̂δt , construct ε

δ
t
∗
via εδt

∗
= v̂t

∗ + σ̂δt at time t = τ ∗.

Furthermore, construct the AO-corrected residuals as ε∗t = εt for t 6= τ ∗ and

ε∗t =
(
ε∗t

δ
)1/δ

sign(εt) for t = τ ∗ (to preserve the sign of the returns). The

AO-corrected observations y∗t are finally recovered by inverting Eq. (B-1).

• Step 5: Go back to Step 1 with the y∗t series, and repeat all steps until no

ÂO test statistic values exceed C, i.e. until there appear to be no more AOs

in the data.
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Appendix Chapter 7

Forecasts

For the two-regime model, the variance forecast at time t of a single observation

at time t+ j (denoted s2t+j) is computed as:1

s2t+j ≡ var [yt+j p ỹt]

= Et

[
y2t+j

]
− Et [yt+j]

2

= p1t,t+j
(
σ21 + µ21

)
+ (1− p1t,t+j)

(
σ22 + µ22

)

− [p1t,t+jµ1 + (1− p1t,t+j)µ2]
2 ,

where ỹt = {yt, yt−1, ...} and p1t,t+j = Pr [St+j = 1 p ỹt] which is the first element in

a two-element vector of regime probabilities for time t+ j given by

pt+j = p′tP
j.

The j-week variance forecast is then

j − week =

j
∑

i=1

s2t+i.

For the four-regime forecasts, the variance forecasts are constructed in a similar

way. For example, for a one-week forecast, we have:

Et

[
σ2t+1 p ỹt

]
= Et

[
y2t+1

]
− Et [yt+1]

2

= p1t,t+1
(
σ21 + µ21

)
+ p2t,t+1

(
σ21 + µ22

)

+p3t,t+1
(
σ22 + µ21

)
+ p4t,t+1

(
σ22 + µ22

)

− [(p1t,t+1 + p3t,t+1)µ1 + (p2t,t+1 + p4t,t+1)µ2]
2 .

1See Bollen, Gray, and Whaley (2000).
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Expected maximum likelihood procedure

This Markov-Switching model is estimated by the so-called Expected Maximum

Likelihood (EML) procedure. As the name of this procedure suggests, it involves

two main steps: the computation of the probabilities of being in each regime (the

“expectation” part) and the maximization of the sum of log-likelihoods condi-

tional on each regime (the “maximum likelihood” part). Basically, the estimation

procedure may be described in three steps.

Step 1: Initialization of the filter at time t = 0.

At time t and for given values of P , one has to compute the steady-state

probabilities (ergodic probabilities) πj = Prob(s0 = j) in order to initialize the

filter. For instance, in the two state case, this can be computed in a straightforward

way:

π1 =
1− p22

2− p22 − p11
(C-3)

π2 =
1− p11

2− p22 − p11
. (C-4)

Step 2: Computation of the log-likelihood for observation t.

The log-likelihood function is written as:

Lmarkov =
T∑

t=1

ln∆ (yt|Ωt−1) , (C-5)

where ∆ is the Gaussian density. Starting with the conditional joint density of yt,

st and st−1, one can write:

∆(yt, st, st−1|Ωt−1) = ∆(yt|st, st−1,Ωt−1)Prob(st, st−1|Ωt−1). (C-6)

The idea is to get ∆(yt|Ωt−1) by summing this joint density over all possible

values of st and st−1. Again, in the two state case:

∆(yt|Ωt−1) =
2∑

st=1

2∑

st−1=1

∆(yt|st, st−1,Ωt−1)Prob(st, st−1|Ωt−1). (C-7)

Using (C-5), the log-likelihood may be then computed for given values of

Prob(st, st−1|Ωt−1).
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Step 3: Filtering step; Calculate Prob(st, st−1|Ωt).

For t > 1, update Prob(st, st−1|Ωt−1), using information up to time t:

Prob(st, st−1|Ωt) =
∆(yt, st, st−1|Ωt−1)

∆(yt|Ωt−1)
. (C-8)

This updated joint probability at time t is then used to apply again step 2 to

the next observation, i.e. observation at time t+ 1. From (C-8), it is also possible

to compute the (2×1) vector of filtered probabilities:

Prob(st|Ωt) =
2∑

st−1=1

Prob(st, st−1|Ωt−1) (C-9)
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Bera, A., and M. Higgins (1993): “ARCH Models: Properties, Estimation and

Testing,” Journal of Economic Surveys.

Black, F. (1976): “Studies of Stock Market Volatility Changes,” Proceedings of

the American Statistical Association, Business and Economic Statistics Section,

pp. 177–181.

Blair, B., S. Poon, and S. Taylor (2000): “Forecasting S&P 100 Volatility:

The Incremental Information Content of Implied Volatilities and High Frequency

Index Returns,” Forthcoming in Journal of Applied Econometrics.

Bollen, P., S. Gray, and R. Whaley (2000): “Regime-Switching in Foreign

Exchange Rates: Evidence From Currency Option Prices,” Journal of Econo-

metrics, 94, 239–276.

Bollerslev, T. (1986): “Generalized Autoregressive Conditional Heteroskedas-

ticity,” Journal of Econometrics, 31, 307–327.

227



(1987): “A Conditionally Heteroskedastic Time Series Model for Spec-

ulative Prices and Rates of Return,” Review of Economics and Statistics, 69,

542–547.

(1990): “Modeling the Coherence in Short-run Nominal Exchange Rates:

A Multivariate Generalized ARCH model,” Review of Economics and Statistics,

72, 498–505.

Bollerslev, T., R. Chou, and K. Kroner (1992): “ARCH Modeling in

Finance: A Review of the Theory and Empirical Evidence,” Journal of Econo-

metrics, 52, 5–59.

Bollerslev, T., R. Engle, and D. Nelson (1994): “ARCH Models,” in

Handbook of Econometrics, ed. by R. Engle, and D. McFadden, chap. 4, pp.

2959–3038. North Holland Press, Amsterdam.

Bollerslev, T., R. Engle, and J. Wooldridge (1988): “A Capital Asset

Pricing Mode1 with Time Varying Covariances,” Journal of Political Economy,

96, 116–131.

Bollerslev, T., and E. Ghysels (1996): “Periodic Autoregressive Conditional

Heteroskedasticity,” Journal of Business and Economics Statistics, 14, 139–152.

Bollerslev, T., and H. O. Mikkelsen (1996): “Modeling and Pricing Long-

Memory in Stock Market Volatility,” Journal of Econometrics, 73, 151–184.

Bollerslev, T., and J. Wooldridge (1992): “Quasi-maximum Likelihood

Estimation and Inference in Dynamic Models with Time-varying Covariances,”

Econometric Reviews, 11, 143–172.

Bond, S. (2000): “A Review of Asymmetric Conditional Density Functions in Au-

toregressive Conditional Heteroscedasticity Models,” mimeo, Duke University,

Durham.

Bonser-Neal, C., and G. Tanner (1996): “Central Bank Intervention and

the Volatility of Foreign Exchange Rates: Evidence from the Options Market,”

Journal of International Money and Finance, 15, 853–878.

228



Box, G., and G. Jenkins (1970): Time Series Analysis, Forecasting and Control.

Holden-Day, San Francisco.

Branco, M., and D. Dey (2000): “A class of Multivariate Skew-Elliptical Dis-

tributions,” Forthcoming in Journal of Multivariate Analysis.

Brennan, M. (1979): “The Pricing of Contingent Claims in Discrete Time Mod-

els,” Journal of Finance, 34, 53–68.

Brooks, C., S. Burke, and G. Persand (2001): “Benchmarks and the Accu-

racy of GARCH Model Estimation,” International Journal of Forecasting, 17,

45–56.

Catte, P., G. Galli, and S. Rebecchini (1992): “Exchange Markets Can Be

Managed!,” Report on the G-7, International Economic Insights.

Chang, I., G. C. Tiao, and C. Chen (1988): “Estimation of Time Series

Parameters in the Presence of Outliers,” Technometrics, 30, 193204.

Chen, C., and L. Liu (1993): “Joint Estimation of Model Parameters and Outlier

Effects in Time Series,” Journal of the American Statistical Association, 88,

284296.

Christoffersen, P., and F. Diebold (2000): “How Relevant is Volatility Fore-

casting for Financial Risk Management?,” Review of Economics and Statistics,

82, 1–11.

Chung, C.-F. (1999): “Estimating the Fractionally Integrated GARCH Model,”
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Engle, R., and G. González-Rivera (1991): “Semiparametric ARCH

Model,” Journal of Business and Economic Statistics, 9, 345–360.

Engle, R., and F. Kroner (1995): “Multivariate Simultaneous Generalized

ARCH,” Econometric Theory, 11, 122–150.

Engle, R., and G. Lee (1999): “A Permanent and Transitory Component Model

of Stock Return Volatility,” in Cointegration, Causality, and Forecasting: A

Festschrift in Honor of Clive W.J. Granger, ed. by R. Engle, and H. White, pp.

475–497. Oxford University Press, Oxford.

Engle, R., and V. Ng (1993): “Measuring and Testing the Impact of News on

Volatility,” Journal of Finance, 48, 1749–1778.

Engle, R., and A. Patton (1999): “What Good is a Volatility Model?,” Mimeo,

San Diego, Department of Economics.

Fernández, C., and M. Steel (1998): “On Bayesian Modelling of Fat Tails

and Skewness,” Journal of the American Statistical Association, 93, 359–371.

231



Filardo, A. (1994): “Business Cycles Phases and their Transitions,” Journal of

Business and Economics Statistics, 12, 299–308.

(1998): “Choosing Information Variables for Transition Probabilities in a

Time-Varying Transition Probability Markov Switching Model,” Federal Reserve

Bank of Kansas City RWP 98-09.

Fiorentini, G., G. Calzolari, and L. Panattoni (1996): “Analytic Deriva-

tives and the Computation of GARCH Estimates,” Journal of Applied Econo-

metrics, 11, 399–417.

Fiorentini, G., E. Sentana, and G. Calzolari (2000): “The Score of Condi-

tionally Heteroskedastic Dynamic Regression Models with Student t Innovations

and an LM Test for Multivariate Normality,” Working paper N 0007, CEMFI.

Franses, P., and H. Ghijsels (1999): “Additive Outliers, GARCH and Fore-

casting Volatility,” International Journal of Forecasting, 15, 1–9.

Franses, P., and D. van Dijk (2000): Non-Linear Series Models in Empirical

Finance. Cambridge University Press, Cambridge.

French, K., G. Schwert, and R. Stambaugh (1987): “Expected Stock Re-

turns and Volatility,” Journal of Financial Economics, 19, 3–29.

Gable, J., S. Van Norden, and R. Vigfusson (1997): “Analytical Derivatives

for Markov Switching Models,” Computational Economics, 10, 187–194.

Gallant, R., D. Hsieh, and G. Tauchen (1991): “On Fitting a Recalci-

trant Series: The Pound/Dollar Exchange Rate, 1974-1983,” in Semiparametric

and Nonparametric Methods in Econometrics and Statistics, ed. by W. Barnett,

J. Powell, and G. Tauchen, pp. 199–240. Cambridge University Press, Cam-

bridge.

Gallant, R., and G. Tauchen (1989): “Seminonparametric Estimation of Con-

ditionally Constrained Heterogenous Processes: Asset Pricing Applications,”

Econometrica, 57, 1091–1120.

Garcia, R. (1998): “Asymptotic Null Distribution of the Likelihood Ratio Test

in Markow-Switching Models,” International Economic Review, 39, 763–788.

232



Geweke, J. (1986): “Modeling the Persistence of Conditional Variances: A Com-

ment,” Econometric Reviews, 5, 57–61.

(1989): “Bayesian Inference in Econometric Models Using Monte Carlo

Integration,” Econometrica, 57, 1317–1339.

Geweke, J., and G. Amisano (2001): “Compound Markov Mixture Models

with Application in Finance,” Mimeo, University of Iowa.

Geweke, J., and S. Porter-Hudak (1983): “The Estimation and Application

of Long Memory Time Series Models,” Journal of Time Series Analysis, 4, 221–

238.

Giot, P. (2000): “Intraday Value-at-Risk,” CORE DP 2045 and Maastricht Uni-

versity METEOR RM/00/030.

Giot, P., and S. Laurent (2001a): “Modelling Daily Value-at-Risk Using Re-

alized Volatility and ARCH Type Models,” Maastricht University METEOR

RM/01/026.

(2001b): “Quantifying Market Risk for Long and Short Traders,” Forth-

coming in European Investment Review.

(2001c): “Valut-at-Risk for Long and Short Positions,” CORE DP 2001-

22 and Maastricht University METEOR RM/01/005.

Glosten, L., R. Jagannathan, and D. Runkle (1993): “On the Relation

Between Expected Value and the Volatility of the Nominal Excess Return on

Stocks,” Journal of Finance, 48, 1779–1801.

Gourieroux, C. (1997): ARCH Models and Financial Applications. Springer

Verlag, Berlin.

Gourieroux, C., A. Monfort, and A. Trognon (1984): “Pseudo Maximum

Likelihood Methods: Theory,” Econometrica, 52, 681–700.

Granger, C. (1980): “Long Memory Relationships and the Aggregation of Dy-

namic Models,” Journal of Econometrics, 14, 227–238.

233



Granger, C., and N. Hyung (1999): “Occasional Structural Breaks and Long

Memory,” UCSD Discussion Paper 99-14, June 1999.

Granger, C., and R. Joyeux (1980): “An Introduction to Long-Memory Time

Series Models and Fractional Differencing,” Journal of Time Series Analysis, 1,

15–29.

Gray, S. (1996): “Modeling the Conditional Distribution of Interest Rates as a

Regime-Switching Process,” Journal of Financial Economics, 42, 27–62.

Hafner, C. (2001): “Fourth Moment of Multivariate GARCH Processes,” CORE

DP 2001-39.

Hamilton, J. (1994): Time Series Analysis. Princeton University Press, Prince-

ton.

Hansen, B. (1992): “The Likelihood Ratio Test under Nonstandard Conditions:

Testing the Markov Switching Model of GNP,” Journal of Applied Econometrics,

7, S61–S82.

(1994): “Autoregressive Conditional Density Estimation,” International

Economic Review, 35, 705–730.

Hardle, W., and C. Hafner (2000): “Discrete Time Option Pricing with

Flexible Volatility Estimation,” Finance and Stochastics, 4, 189–207.

Harvey, A., E. Ruiz, and N. Shephard (1994): “Multivariate Stochastic

Variance Models,” Review of Economic Studies, 61, 247–264.

Harvey, C., and A. Siddique (1999): “Autoregressive Conditional Skewness,”

Journal of Financial and Quantitative Analysis, 34, 465–487.
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Nederlandse Vertaling

Het is algemeen gekend dat aandelen returns, waargenomen op een intra-dagelijkse,

dagelijkse en wekelijkse basis, in het algemeen serieel gecorreleerd en dikwijls het-

eroskedastisch zijn. Dikwijls hebben de verdelingen van deze returns dikke staarten

en zijn ze scheef.

Het doel van deze thesis was een model te vinden dat de hierboven genoemde

eigenschappen van de returns kan reproduceren, en om de belangrijkheid aan te

tonen van dichtheidsfuncties die vershillen van de normale dichtheidsfunctie in

financile toepassingen. Een AR-APARCH specificatie werd in staat bevonden de

eerste twee conditionele momenten te beschrijven van de onderzochte series. Om

rekening te houden met de mogelijke asymmetrie and de hoge kurtosis die we

empirisch waarnemen, hebben we voorgesteld om gebruik te maken van de scheef

verdeelde student dichtheid van Fernández and Steel (1998). We breiden deze

dichtheid uit in twee richtingen.

Vooreerst hebben we deze dichtheid geherformuleerd opdat deze een nul- gemid-

delde en unitaire variantie heeft. We geven ook een analytische uitdrukking van de

gradient vector voor dit model. We hebben ook de gebruiksvriendelijkheid aange-

toond van deze dichtheid (gemakkelijke implementatie, een duidelijke interpretatie

van de parameters en de empirische relevantie) ten aanzien van haar concurrenten.

Vanuit een empirisch perspectief werd aangetoond dat een AR-APARCH gecom-

bineerd met een scheve student verdeling accurate VaR voorspellingen gaf.

Het meest uitdagende deel van deze thesis was het ontwikkelingen van een

software pakket voor het schatten en voorspellen van de meest populaire univariate

modellen van het ARCH type. Dit pakket, genaamd G@RCH, werd ontwikkeld

met de OX 3.0 matrix georienteerde programmatietaal van Doornik (1999). Het

bied een gebruiksvriendelijke venster georienteerde interface aan te vergelijken met
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de welgekende PcGive software.

De laatste contributie van deze thesis is nog steeds gerelateerd met het gebruik

van niet normale verdelingen. Het idee was om het effect te bestuderen van cen-

trale bank interventies op de wekelijkse returns en de volatiliteit van de DEM/USD

en de YEN/USD wisselkoersen. Hier, in tegenstelling tot de vorige hoofdstukken,

laten we regime-afhankelijke specificaties toe (dit is een extensie van normale mix-

tuur voorgesteld in het derde hoofdstuk) en we onderzoeken of officile interventies

de geobserveerde regime veranderingen in de volatiliteit kunnen verklaren. De

schattingsresulaten werpen een interessant licht op de conclusies gegeven in de lit-

eratuur. Het werd bevonden dat afhankelijk van het gegeven volatiliteits niveau,

gecordineerde centrale bank interventies een stabiliserend of een destabiliserend

effect kunnen hebben. Onze resultaten zijn in opspraak met de algemene visie dat

deze interventies enkel stijgingen in de volatiliteit impliceren.
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