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1 Introduction

History. An n-person (noncooperative) game is a game in which each player has
to choose one of his (finite number of) pure strategies without any prior knowl-
edge of what the other players are going to do. Given the choices of all players
each player receives a payoff. The players are also allowed to mix over pure
strategies, i.e. to use probability distributions over pure strategies to determine
their respective choices. Payoffs are then determined as expected payoffs with
respect to the mixtures employed by the players. Nash (1950) showed that such
games always have at least one equilibrium.

Since then it has become clear that this notion of Nash equilibrium is not the
final answer to the problem of solving games. It is for instance well known that
a Nash equilibrium may use weakly dominated strategies (a strategy is called
weakly dominated if there is another strategy that does at least as good as this
strategy against any combination of strategies of the opponents and strictly better
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against at least one). This observation, along with some other points of critique
triggered a whole series of papers presenting different types of selection criteria
for Nash equilibria. Generally speaking the idea was to find a solution cdncept
that weeded out the "bad” Nash equilibria.

(Although there is also a line of literature that tries to weaken the equilibrium
conditions these notions usually address the coordination problem involved in
equilibrium selection. The Nash conditions themselves are hardly ever ques-
tioned.)

Basically we can distinguish two lines of research within equilibrium selection
theory. The first form of selection is known as refinement theory. Examples are
perfect equilibrium by Selten (1975), proper equilibrium by Myerson (1978) and
strictly perfect equilibrium by Okada (1981). These refinements were all designed
in order to mend a newly discovered flaw of either the original notion of Nash
equilibrium or of one of its previously defined refinements. The second stream
of literature is commonly known as the theory of stable sets. Its most renowned
exponents are defined in Kohlberg and Mertens (1986), Mertens (1989, 1991) and
Hillas (1990). This line of research started with the seminal paper of Kohlberg and
Mertens (1986). They argued that the theory of refinements lacked a fundamental
basis. As we already said, most refinements were meant as patching-up jobs for
known solution concepts. Kohlberg and Mertens took a different approach. They
started with a list of desiderata that were in their view essential for any decent
solution concept. Only then they started to search for solution concepts that
actually satisfied the desiderata. This quest more or less ended with the papers
of Mertens (1989, 1991) in which he presented a definition of stable sets that he
argued to be essentially the right concept.

Computation. For several reasons it is desirable to have an algorithm that com-
putes a given notion of equilibrium selection. First of all an algorithm shows that
the notion is more than a theoretical tool. An algorithm unambiguously shows
that it is always possible (at least within the domain considered) to actually
compute the equilibrium for the given game. Besides that an algorithm can be
implemented on a computer, which gives us the opportunity to analyze fairly
large and complicated examples.

There is extensive literature on the computation of Nash equilibrium and its
selections. Algorithms for the computation of Nash equilibria of bimatrix games
can for example be found in Lemke and Howson (1964), Winkels (1979) and
Krohn et al. (1991). These algorithms are implementable and &xaaeneral
n-person version of the Lemke-Howson approach is described in Radlenm
(1971). This procedure is not directly implementable though. Implementable al-
gorithms (based on path-following algorithms for roots of homotopies) for the

1 For an elaborate discussion of the issues involved here we refer to Kohlberg and Mertens (1986).

2 A solution concept is a rule that assigns to each game a collection of (sets of) strategy combi-
nations of that game.

3 An algorithm is called exact in this case if, given the data of the game, it takes a finite number
of operations to exactly produce a strategy for each player that together define a (selection of) Nash
equilibrium.
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computation of a Nash equilibrium for-person games are developed in van den
Elzen and Herings (1999) and Herings and Peters (1999).

Concerning the computation of equilibrium selection, Yamamoto (1993) de-
scribes a path-following procedure for the computation of a proper equilibrium.
This procedure is not fit for implementation though. Talman and Yang (1994)
describe an algorithm for the computation of a proper equilibrium that is imple-
mentable. Van den Elzen and Talman (1991) provide an implementable algorithm
for computation of a perfect equilibrium. Wilson (1992) devised an algorithm for
computation of what he calls a simply stable set. Finally Mertens (1989) provides
an idea of how to construct an algorithm for computation of his type of stable
sets.

Why bimatrices. Many solution concepts fan-person games can be defined as
the solution set of a number of polynomial (in)equalities (see for instance Blume
and Zame, 1994). One way to exploit this fact is explained by Mertens (1989).
He describes an algorithm that, givenaperson game, defines a finite number
of systems of polynomial inequalities whose solution sets (i.e. the union over all
systems of the solution sets of those systems) is a stable set in the sense of the
definition given in Mertens (1989). Such an approach can also be devised for the
computation of, for example, Nash equilibria, i.e. it is possible to find in finite
time a (finite) set of polynomial inequalities whose solutions are Nash equilibria.
However, in this paper we will show that it is possible to find a description of
the solution concepts in question in terms of the combinatorial structure underly-
ing these solutions. In fact we will exploit the construction used by Jansen et al.
(1994) in their proof of the finiteness of KM-stable sets. The example in Hillas
et al. (1997) clearly shows that this construction does not extend to games with
more than two players. Even though it is possible to construct a finite algorithm
in the above sense to compute stable sets, only for bimatrix games is it possible
to actually solve these inequalities.

Aim of the paper. In this paper we will focus on strictly perfect equilibria, defined

by Okada (1981) and what we will call KM-stable sets, defined by Kohlberg and
Mertens (1986). Kohlberg and Mertens (1986) considered the type of perturba-
tions introduced by Selten (1975) where every player has to play each of his
pure strategies with at least a specific minimal weight. Such a perturbation of
the game can itself also be viewed as a game in which the players have less
options than in the original game (in fact the perturbation can be interpreted as a
restriction on the strategy space). Moreover, it can be shown that these perturbed
games also have equilibria. Now Kohlberg and Mertens define a KM-set of the
game as a closed set of Nash equilibria for which each sufficiently small pertur-
bation of the game has an equilibrium close to the set itself. A KM-set is called
KM-stable if it does not contain another KM-set (i.e., it is minimal w.r.t. the
stability condition). Okada’s notion of strictly perfect equilibrium now coincides
with one-point KM-sets (and hence KM-stable sets. KM-sets that consist of one
point are automatically stable).
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It is our aim to describe a procedure that computes a KM-stable set for a
given bimatrix game. Further, we will explain how the central algorithm can
also be used to compustl KM-stable sets of that game. Because of the relation
between the notion of strictly perfect equilibrium and KM-stable set, this enables
us to compute a strictly perfect equilibrium (or all of them).

The algorithm. Presenting our exact algorithm we basically follow the paper of
Jansen et. al (1994). They showed that with each strategy pai) (ve can
associate a quadruple of subsets of the collections of pure strategies, namely the
carriers ofp andq and the sets of pure best replies agamandq, respectively.
Given this quadruple it is possible to calculate precisely against which pertur-
bations of the game the strategy pair §) offers protectiofl. In fact, any other
strategy pair that yields the same quadruple will offer the same protection.

This observation lies in the heart of the algorithm. Given a finite set of such
quadruples we can calculate the associated sets of perturbations against which
(any set of strategy pairs generating) these quadruigifiers protection. This
paper shows that one can check in finite time whether or not this collection of
associated sets of perturbations covers the whole perturbation space.

We exploit this result in several ways. First of all, it enables us to calcu-
late precisely which collections of quadruples generate a minimal cover of the
perturbation space (minimal meaning that no proper subcollection of quadruples
generates a cover of the perturbation space). Further, given a set of which we
already know that it is a KM-set (such as the collection of all extreme Nash
equilibria by Jansen et al. (1994)) the above construction provides a method to
select a KM-stable set within the KM-set given. Finally, since a strictly perfect
equilibrium is simply a one-point KM-stable set, the computation of all KM-
stable sets also provides a way to calculate all strictly perfect equilibria. There
is also a procedure to compute just one strictly perfect equilibrium (if any) that
operates a bit more subtle. Since any bimatrix game that has a strictly perfect
equilibrium also has an extreme Nash equilibrium that is strictly perfect, it is
possible to check in finite time whether there is such an equilibrium as soon as
we can find all extreme Nash equilibria. This however has already been done in
e.g. Winkels (1979).

Notation. If M is a finite set,|M| denotes the number of elements Mf and
Av ={p e R" |p >0foralli € M and Y,y pi = 1}. For ani € M,
g is thei-th unit vector in B'. For a setS in R", ext(S) denotes the set of
extreme points o8. For a vectox in R" and¢ > 0, ||x|| denotes the maximum
norm andB(x) := {y € R" | |[x —y| < ¢}. For a setS in R" and¢{ > 0,
B¢(S) := Uyes Be(X)- The Hausdorff distancdy (S, T) between two set§ and
T in R" is the infimum over al > 0 such thatS C B¢(T) and T C B(S).

4 This is very typical for bimatrix games. It is possible to associate with the given strategy pair
a maximal set of perturbations such that any sufficiently small perturbation within this set has an
equilibrium close to g, ). In fact this is the second reason to restrict ourselves to bimatrix games.

5 Of course the quadruples themselves do not offer protection against perturbations. However, since
strategy pairs that generate the same quadruples offer protection against the same perturbations, it is
possible, even convenient, to think in these terms.
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A collection ¢ of sets is said to cover a s&t if D is a subset of the union
Ucew C over all setsC in .

2 Preliminaries

In this paper we only consider bimatrix games. So we assume that there are two
players, player 1 and player 2. Player 1 has a finiteMeand player 2 has

a finite setN of pure strategies. The payoff matrices; fjcm jen Of player 1

and @;)iem jen Of player 2 are denoted b andB respectively. If the players
choose mixed strategigsc Ay andq € Ay, the payoff for player 1 ipAq and

the payoff for player 2 ipBg. An equilibrium of this game, which we denote

by (A, B), is a strategy pairg q) such that

pAq > p'Ag forall p’ € Ay
and pBq > pBg forall g € Ay.

For a strategyp of player 1, the se€C(p) = {i € M | pi > 0} is called the
carrier of p while

PB2(p) :={j € N | pBg > pBe for all k € N}

is the set ofpure best replies of player 2 top. For a strategyq of player 2,
the setsC(q) and PB;(q) are defined in a similar way. It is well-known that
(p,q) is an equilibrium of the gameA(B) if and only if C(p) € PBi(q) and
C(a) C PBz(p).

In this paper pairsl(,J), wherel ¢ M andJ C N play a prominent role.

Definition A pair (1,J) corresponds to a strategy pairg, q) if
C(p)c | cPBi(q) andC(qg) CJ C PBy(p).

We also say that the paip(q) corresponds to the pait ,(J).

2.1 Perturbed games

A perturbation for player 1 is a vectos = (;)iem with §; > 0 and} ; ., & < 1.
The collection of such perturbations is denoteddy Similarly we can define
the collection# of perturbationss = (gj)jen for player 2. A pair §,¢) of
perturbations is also called a perturbation.

A perturbation §, £) induces gerturbed game (A, B, 4, €). In this game player
1 is only allowed to play a strategy pair in the restricted strategy spgad@) :=
{p€ Am |pi >¢ foralli e M}, while player 2's choices are restricted to the
setAn(e) that is defined in a similar way. The payoff functions and equilibria of
this perturbed game are defined in the obvious way. The collection of equilibria
of the perturbed gameA(B, 4, €) is denoted byE(A, B, 9, €).
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In order to characterize the equilibria of the perturbed gam& (6, <) we
introduce for player 1 the so-calleitcarrier Cs(p) := {i € M | pi > 6}
Analogously one can define thecarrier of a strategy of player 2. The following
characterization, which plays an important role in this paper, can already be found
in Lemma 2.3 in Vermeulen (1996).

Lemma 1 The strategy pair (p,q) is an equilibrium of the perturbed game
(A, B, 0,¢) if and only if the §-carrier of p is a subset of PB;(q) and the e-carrier
of q is a subset of PB,(p).

2.2 Sable sets
Notice that the choicé = 0 (the null element of the vector spacé'Rande = 0
returns the original bimatrix gamé\(B).

Definition A closed seS in Ay x Ay of strategy pairs is called a K¢t if for
each neighborhood of S there exists a number> 0 such thaV NE(A, B, ¢, )
is not empty whenevelt(d, )|| < n. A minimal KM-set — minimal with respect
to set inclusion — is called KN\table.

Jansen et. al. (1994) showed that

Proposition 1 Every KM-set of a bimatrix game contains a finite KM -set.

2.3 A result on sensitivity analysis

An important ingredient of this paper is a result of Cook, Gerards, Schrijver and
Tardos on the sensitivity of the solution set of a system of linear inequalities to
right-hand perturbations of the system. We will use the following simple version
of this result.

Let. 4x >.77d be a system of linear inequalities and¢gtl) := {x | . 4x >
.72d} be the solution set of this system given

Proposition 2 There exists a constant K > 0 such that

dn (¢(d), p(€)) < K||d —e]
for all vectors d and e such that ¢(d) and (e) are not empty.

3 Geometry of the equilibrium correspondence

Lemma 1 shows that sets of pure strategies are important in the analysis of
equilibria. That this is not just idle talk is exemplified in the following.

Letl| ¢ M be a set of pure strategies of player 1 andJlet N be a set
of pure strategies of player 2. With these two sets of pure strategies we can
associate a subs§f; of the productdy x & of the strategy spac4y and the
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collection & of perturbations. This s&}; is formally defined as the collection
of solutions p,d) in RM x RM of the system of linear (in)equalities

pBg —pBac > 0 forallj € J and allk € N

pi > i foralli el

pi =6 foralli &1 )
0 < 6 foralli e M

Z pi =1

ieM

The first group of inequalities states that every pure strategyisa best reply
againstp. The second and third group of (in)equalities guarantee fhiat an
element ofA(§) and that moreover thé&carrier ofp is a subset of. The fourth
and fifth group of (in)equalities are merely added to guaranteeptimindeed a
strategy and is indeed a perturbation as soon psd is a solution of the above
system of inequalities. (The "missing” inequalitips> 0 and}_, ,, 6 < 1 are
already implied by the above system.)

Further, note that the variable only occurs on the left-hand side of the
(in)equality signs while the variabl&only occurs on the right-hand side. There-
fore we can define two matrices4; and.7%);, whose entries are completely
determined by andJ such that the above system of linear inequalities reads as

AP > A350.

The conversion of the smaller-than sign and the equalities in the sys)einto
the larger-than signs in the latter system of inequalities can of course easily be
established.

In Ay x & we can analogously define the sBy by a system of linear
inequalities and represent this system by

€10 > Aye.

The main advantage of this rather abstract setup is that it enables us to use
Proposition 2. Why that is an interesting thing to do becomes clear once we
have the following

Lemma 2 Let (p,q) be a strategy pair. Then (p,q) is an equilibrium of the
perturbed game (A, B, 4, ) if and only if, for some pair (1 ,J), (p, ) isan element
of S; and (q, ¢) is an element of Tj;.

Proof. For a pair (,J)
(p,0) €8S Aup > A0 Cs(p) C 1 CPBy(q)
= —=

(Q,e) €Ty 9 > Yge C.(q) cJ CPByp).
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(0,0,p,q)

Figure 1

Hence if p,9) € S, and @,¢) € T3, then Lemma 1 implies thap(q) is an
equilibrium of the perturbed gamé (B, 4, ). If (p,q) € E(A, B, 9, ¢), then take
| =Cs(p) andJ = C.(q). <

The foregoing lemma tells us in fact that we can view the polyhedral set
S; x Ty; as part of the graph of the equilibrium correspondence &/ex . In
order to formalize this idea we define the correspond@mg:ﬂ?ﬁ" x RN —» Ay x
Ay as follows: for all §,¢) € RM x RV,

©13(d,€) ={(p,q) € Am x An | (p,6) € Sy and @,¢) € Ty} C E(A,B,9,¢).

The set of points{ ) for which ¢;(d, €) is not empty is denoted bly,;. Note
that every elementj(¢) of P; is automatically a perturbation. Furthermore, we
can also writeP;; asP/; x P/; with

Py :={d | (p,0) € Sy for somep}.

Finally, if (p,q) is an equilibrium of the gameA(B) and the pairl(,J) corre-
sponds tof, ), then ,q) € ¢13(0,0). So (Q0) € Py;. Also, for all sufficiently
small ¢, <) € P, the game A, B, 4, ) has an equilibrium close tgp(q).
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Example. The above figure is to clarify the geometrical intuition underlying the
construction just described. The horizontal plane containing the two horizontal
axes depicts the perturbation spagex & while the vertical axis stands for the
strategy space\y x Ay. The block containing the point {0, p, q) represents the
polyhedral se§; x T;. In the figure the pairl(, J) is supposed to correspond to
(p, g). By definition of p,; this block is equal to the graph of the correspondence
P13 -

In Figure 1 the se§; x T,; has six extreme points. The doma); on
which the correspondencg; is not empty is precisely the convex hull of the
projections of the extreme points §f x T,; onto the perturbation spacg x & .
This specific fact will be used in the next section.

4 Characterization of finite KM-sets

We exploit the results from the previous section as follows. For a finit€& st
equilibria

Z’(F) :={Pyy | (1,J) corresponds to some elementFjf.

Then we have the following

Theorem 1 F isa KM-set if and only if the collection &°(F) covers a neighbor-
hood of the zero perturbation (0,0) in RY x RY.

Proof. (A) Suppose that”’(F) covers a neighborhood of the zero perturbation
(0,0). We have to show tha is a KM-set. To this end, take a real number
¢ > 0. It is sufficient to show that there exists a number 0 such that

B:(F)NE(A,B,J,¢)

is not empty whenevelt(d, )| < 7.
We will construct an appropriatgin two steps. Firstly we take a real number
n* > 0 such that every perturbation, €) with

16, )l <n*

is an element of some sBt; in &°(F).
Secondly, consider a fixed sBf; in &°(F) and let ¢, <) be a perturbation
contained inP;. Since

(P,9) € pi3(d,e) <= (p,9) €Sy and@,c)eTy

Ay 0 p Fy 0 0
RN > ] :
o 0 ,%J 9

0 ‘s q
Py, is precisely the collection of vectors, ) in RM for which the above system
is solvable. So, by Proposition 2 there exists a congtgnt> 0 such that for
any two perturbationsi(e) and ¢’,¢’) in Py
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dy (SDIJ((Sv 5),¢|J(5/,€')) < Ky[|(6,8) — (5'75')||~

Now choose a real number> 0 such that; < n* and moreover
n < min{-=| Py € Z(F)}.
Kig

Next, take an arbitrary perturbation, €) with [|(d, €)|| < n. We will show that
B¢(F)NE(A B, d,¢)

is not empty, which will conclude the first part of the proof.

Sincen < n*, we know that <) is an element of som®; in &(F).
Let (B,§) be a point inF that corresponds to the pair,J). We will show in
particular that

B:(p,8) NE(A,B,0,¢)

is not empty. To this end, note that, ) is an element of,; (0, 0). Furthermore,

dh (213(8,€), 13(0,0)) < Kig[|(8,€)|| < Kig - < Kig - Kiu =(.
These two facts combined imply that there is a strategy jpai)(in ¢;(9, ) C
E(A, B, 4, ) whose distance top(q) is smaller thar(.

(B) Conversely, suppose thatis a KM-set. We have to show that’(F) covers
a neighborhood of the zero perturbation. So we need to specify a real positive
number such that every perturbation whose norm is smaller that this number is
an element of somB,; in &°(F). Choosing this particular number requires some
effort.

First, take an elemenip(q) of F. By Lemmas 8.5 and 8.6 of Vermeulen
(1996) there exist real numbers> 0 and¢ > 0 such that for any(¢) with
”rfé’ &)l < n and 6,q) € A (9) x An(e) with [|(p,q) — (p.d)| < ¢ we have
that

C(p) C Cs(p) andPBy(q) C PB4(d)
and  C(§) C C.(q) andPBy(p) C PB(p).

Now, sinceF is finite, we may suppose thatand¢ do not depend orp(q) € F.

Furthermore, given the numbéer> 0 we can use the assumption tifais a
KM-set to obtain a real number > 0 such that for any perturbation, €) with
I(6,€)|| < x we have that

B:(F)NE(AB,é,¢)

is not empty.

Switching back to the main problem, take a perturbatiha)(with ||(J, €)|| <
min{n, x}. We will show that §, ¢) is an element of some sBf; in &°(F). To
this end, note thaB.(F) N E(A, B, J,¢) is not empty sincg|(é,€)|| < . So,
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we can find a point;§) in F and an equilibrium, q) of the perturbed game
(A, B, d,¢) such that
Now takel := Cs(p) andJ := C.(q). We will show (1), that §, ) is an element

of P;; and (2), thatP,; is an element of”(F).
(1) Since p,q) is an equilibrium of A, B, 6, ¢) we know by Lemma 1 that

Cs(p) C PBy(q) and C.(q) C PBy(p).

So, in particular,
J =C.(aq) € PBz(p)

which, together with the fact that= Cs(p) shows thatg, §) is indeed an element
of §;. Similarly we get thatd, ) is an element off;;. So, {,q) is an element
of ¢13(9, €), which immediately implies that)(¢) is an element oP,;.

(2) In order to check thaP,; is an element of’(F) we need to prove
that (,J) corresponds to some elementfof Since||(d,¢)|| < n and||(p,d) —
(p, 9)|| < ¢, we know that

C(p) C Cs(p) andPBy(q) C PBy(§) andC(G) C C.(q) andPBy(p) C PB(p).

by the particular choices efand(. So, using the fact thap(q) is an equilibrium
of (A,B,§,¢),
C(p) € Cs(p) =1 C PBy(q) C PBy(d).

A similar line of reasoning yields
C(d) € J C PBy(d)

and we have thatl (J) indeed corresponds to some elementof N

5 The algorithm

In this section we will discuss how the results from the previous section can be
used to check in finite time whether a given finite Bebf strategy pairs is a
KM-set. We will also elaborate on how this can be used to compute a KM-stable
set or even all KM-stable sets.

So, letF be a finite set of strategy pairs of the gameR). Now if we want
to apply Theorem 1 to check whethEris a KM-set we need to resolve two
problems. Firstly, the theorem does not specify a neighborhood. Secondly, given
a neighborhood, we would need to check wheth@(F) covers it. The next line
of reasoning offers a way out of these problems.

With a setP,; in &2(F) we associate the s€; in Ay x Ay defined by

Qu ={(p,q) € Am xAn | (AP, 2q) € Pyyfor some numbers > 0 andu > 0}.
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This set is obtained by normalizing the nonzero perturbation8/jnand P/;j.
Now let & (F) be the collection of all set®,; we can thus construct. Then we
get

Theorem 2 ¢J(F) covers Ay x Ay if and only if &(F) covers a neighborhood
of (0, 0).

Proof. It is easy to check that/ (F) covers the strategy spack, x Ay whenever
Z(F) covers a neighborhood of (0).

To prove the converse statement, supposedhi@t) coversAy x Ay. Take
an elemen®y; = P{; x P/j in &°(F). Then we know that (®) is an element
of Pi3. So, 0 is an element d?/; and the other O is an element Bf;. Hence,
according to Lemma 4 (which can be found in the Appendix together with the
Lemmas 3, 5 and 6), we can associate a numher 0 with P/; and a number
¢3 > 0 with P}. Furthermore, since”’(F) is finite, we can take a real number
n > 0 smaller than any of the numbeng and ¢(;; thus found. We will show
that the neighborhoo8,, (0, 0) is covered by’(F).

To this end, take a perturbation, £) with ||(d,¢)|| < n. Assume for the
moment that, ) is completely mixed (i.es; > O for all i ande; > 0 for all j).
Then, since botld ande are not equal to zero, we can find numbars 0 and
1 > 0 such that k9, ue) is an element ofdy, x An. So, sinceZ(F) is assumed
to coverAy x Ay there must be an eleme@t; that contains Xd, uc). However,
this means that there are numbers> 0 andy’ > 0 such that X’ \d, p' e) is
an element oP;. Hence, sincd|d|| < n < ny and|e|| < n < (3, Lemma 4
states thatd ) is an element oP/; x P/ = Py;.

So now we know that”’(F) covers the collection of completely mixed
perturbations {, ) with [|(d, €)|| < n. So, sincex’(F) is finite and each element
of &(F) is compact by Lemma 37°(F) also covers the closure of the collection
of completely mixed perturbations,€) with ||(4,¢)|| < n. This latter set though
containsB,, (0, 0). <

This theorem reduces our problem (to check in finite time whether a given
finite setF of strategy pairs of the gamé(B) is a KM-set) to:

(1) can we compute the collectigff(F) in finite time and
(2) can we check in finite time wheth&r(F) coversAy x Ay.

We will address these questions separately in the next two subsections.

5.1 Computation of &/ (F)

Given the sefr we can calculate for everyp(q) € F the setsC(p), PB1(q),
C(qg) andPBy(p) in finite time. So, we can also determine in finite time all pairs
(1,J) that correspond to som@,(q) € F. Therefore we can write down all
systems of linear inequalities of the form

lup > Al
and “Zuq > e
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in finite time. This means that we can calculate in finite time a polyhedral de-
scription of the sef§; x T,; for each pair,J).

Now a setP); in &’(F) is simply the orthogonal projection of the correspond-
ing setS; x Ty onto the perturbation spac® x & . (Formally this projection
maps onto B x RY but it is easily verified that the s&; is even a subset of
9 x &.) So, in order to calculatB; we first need to determine the set

ext(Sy x Tiy) = extSy) x ext(Tyy).

Given the polyhedral descriptions &; andT,; this can also be done in finite
time. So, this enables us to calculate the set

Gy ={0,e)eR" xRY |(p,d,q,¢) € ext(S; x Ty3) for some pair g, q)
c R xRV}
= {4 | (p,d) € ext(S;) for somep} x {¢ | (q,¢) € ext(T,;) for someq}
=Gj; xGj3.

However, it can easily be seen that this 6gf includes extP,;). So,P,; is the
convex hull of Gj;. Now we have in some sense calculated the g&F) in
finite time. Each elemen®; of &(F) is stored as the convex hull of the set
Gi;. These set§5); can indeed be computed in finite time.

Now we turn to the computation af’(F). In order to get a representation
for each of the elements @' (F), take an elemen®,; that represents a s&f;
in &(F). Define

Hiy = {6/ 6 |6 € Gl andd #0}.
ieM
Similarly we defineH,;. The setH;; := H/; x H/j is obviously a subset of the
strategy spacel\y x An. Moreover, by Lemma 6Q); is precisely the convex
hull of H;. Hence, it is verified thaH,; contains the set of extreme points of

Qu.

5.2 The covering problem

Now we have a representation of each @t in < (F) in the form of the set
H,;. The setQ,; itself is simply the convex hull oH,;;. So now we can address
the second problem. How do we check whetlgi) coversAy x Ay? To do
this we need to calculate a system

T {2} > by

of linear inequalities whose solution set is exa€@ly. Given the seH,; that can
also be done in finite time. Given this polyhedral description of the polytopes
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in ¢ (F) it is possible to show that the covering problem can be solved in finite
time. This is easier to explain in a somewhat more general setting.

Suppose that a polytode in R" is given by the system
Lx>b
of linear inequalities where”’ is anm x n matrix. Furthermore, suppose that
for eachj € {1,...,J} a polytopeQ; in R" is given by the system
Gx >g

of linear inequalities wherg’ is ak; x n matrix. The central question is whether
the polytopeQ, ..., Q; cover the polytopd>. Note first that we may assume
w.l.0.g. thatP is of full dimension. Otherwise we can restrict the problem to the
affine hull of P (in finite time!).

In order to explain how we can check whetl@gr, . .., Q; coverP we intro-
duce the notion of transversal system.

Definition Given the systems of polyhedral inequalities that describe the poly-
topesQy, ..., Q; andP, atranversal system over the set®,...,Q; w.rt. P is
a system of linear inequalities of the form

aix < (Co)k

&, Ox < (Ci)x

PX > b.

So, from each systeri{x > ¢; we pick precisely one row, say, and change
the greater-than-or-equal sign into a smaller-than sign. Furthermore we add the
inequalities that describe the polytope

Now it is obvious thatQq,...,Q; coverP if and only if each transversal
system is not solvable. This is so if and only if the solution to the linear problem
to maximizey subject to

eix+y < (Cok,

a,.Ox+y < (G
SX > b

is smaller or equal to zero. This latter statement can be verified in finite time
using a simple linear program solver.
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Hence,(F) coversAy x Ay if and only if each transversal system over
the set of all proper paird (J) of the systems

T4 Lﬂ > by

w.r.t. Ay x Ay is empty. According to the above argumentation this can be
checked in finite time.

6 Computation of KM-stable sets and strictly perfect equilibria

Let (A,B) be a bimatrix game and Iét be a finite set of strategy pairs. From
Theorem 1 we know how to check whethieis KM-stable or notF is KM-stable
if and only if

(1) &°(F) covers a neighborhood of (0), and
(2) there exists no proper subgetof F such that=’(G) covers a neigh-
borhood of (Q0).

Given the seF we know how to check both items in finite time. This gives us
an opportunity to compute KM-stable sets. One way to do that works as follows.

Suppose we know thdt is a KM-set. Then it is easy to construct a KM-
stable subset of . Check for each proper subggtof the setF whether it is a
KM-set. If none of these sets is a KM-set, thenis KM-stable. If one of these
sets is a KM-set, repeat the above procedure with respect to this new set. Since
F is finite we will find a KM-stable subset ¢ in a finite number of steps.

So the only question is whether we can find a finiteFsetf which we know
that it is a KM-set. There is at least one way to find such a set.

Jansen et al. (1994) showed that the set of extreme equilibrium points is a
KM-set of the gameA, B). This set can be computed in finite time.

6.1 Computation of all KM-stable sets

However, from the formulation of (1) and (2) we can also derive a more general
procedure for the computation of KM-sets.

Let. 4 be a collection of pairsl(J) with | ¢ M andJ c N. With each pair
(I,J) we can associate a def;. Let & be the collection of sets of the for®;
with (1,J) € .. Then we can check in finite time whether

(1) &7 covers a neighborhood of (0), and

(2) &’ has no proper subcollection that covers a neighborhood,®).(0

Now suppose that we do have such a.séf(i.e. its associated se¥’ covers
(0,0) and no proper subcollection e does so). Then we can construct a set
F as follows.
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(1) Take a pairl(,J) in .. Since no proper subset sf’ covers a neighbor-
hood of (Q0) we know that (Q0) is an element oP,;. Therefore it is possible
to compute an equilibriump(s, gi3) in ¢13(0, 0).

(2) Once this is done for every sBf; in & we know that the finite set

F = {(pu,(ﬁ]u) | (| ,J) S ./Z}

is a KM-set. Hence, we can find a KM-stable subsefofising the procedure
described above.

The assertion now is that every KM-stable set can be found in this way given
that we pick the right equilibria in step (1) and throw out the right equilibria in
the selection procedure. In this sense it is possible to compute all KM-stable
sets of a given bimatrix game. Notice that generically speaking eacP, set
admits only one choice. So, generically it is possible to actually write down all
KM-stable sets.

6.2 Computation of strictly perfect equilibria

In this section we will discuss how the results from the previous section can
be used to check in finite time whether or not a given strategy pair is a strictly
perfect equilibrium. It will also enable us to compute one (if existing) or even
all strictly perfect equilibria.

Definition A strategy pair f,q) in Ay x Ay is called astrictly perfect equi-
librium if for each neighborhood& of (p, q) there exists a numbey > 0 such
that

V NE(A B,J,¢)

is not empty whenevelt(d, ¢)|| < 7.

Obviously a strategy paip(q) is a strictly perfect equilibrium if and only
if {(p,q)} is a KM-set. So, if we want to find a strictly perfect equilibrium, we
can use the following procedure. First calculate all setsthat are minimally
covering. Secondly, check whether the setg(0,0) associated with” have
a non-empty intersection. If yes, each element of this intersection is a strictly
perfect equilibrium. If no, then this sef’ only generates KM-stable sets (at least
one) that consists of more than one element.

A more efficient algorithm can be based on a result of Jansen et al. (1994).
In fact they prove that a bimatrix game possesses a strictly perfect equilibrium
if and only if there exists an extreme equilibrium that is strictly perfect. Now
there are algorithms that calculate all extreme equilibria of a bimatrix game.
Given these extreme equilibria, it can be checked whether any of them is strictly
perfect using the algorithm of the previous section. The result of Jansen et al.
now guarantees that either we find a strictly perfect equilibrium, or we find out
that the game in question does not have a strictly perfect equilibrium.
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7 Appendix A

In this section we will go into the details of the analysis of the systems of linear
inequalities that define the various sets used in the paper. First we will show
Lemma 3 The sets S, Tiy, P, P/} and Py; are polytopes.

Proof. First consider the se&;. By definition this set is the collection of points
(p,d) that satisfy the system?,;p > .7;0 of linear inequalities. S&; is
polyhedral. Furthermore, the points 8y particularly satisfy

pi > 0 foralli el

pi =4 foralli ¢1.
0 < 0 foralli e M
1 > iem O

ZieM p =1

This clearly shows tha®; is bounded. Hence§; (andT,; for similar reasons)
is a polytope.

FurthermoreP/; is the set ofy such that g, d) € §; for somep. HenceP/,
is the image of the polytop&; under the linear mamp(J) — J. Hence P/; (and
P/; also) is a polytope. FinallyR,; must be a polytope since it is the product of
the polytopesP/; andP/;. N

Now we can prove the following lemma. Obviously we can do something
similar for P. Its associated positive real number is denotedpy

Lemma 4 Suppose that 0 is an element of P/;. Then there exists a real number
my > 0 such that any point ¢ with ||5|| < 7, isan element of P; whenever \¢ is
an element of P/; for some real number A > 0.

Proof. SincePy; is a polytope by Lemma 3, we can find a system
Fo>b

of linear inequalities whose solution set equBfg. Now since 0 is an element
of P/; by assumption, we know that 0.0 > b. Let K be the collection of
numbersk for which 0> by, whereby is thek-th coordinate ob. Then for each
k € K we can take a numbey > 0 such thag.7 ¢ > by whenever||d| < 7.
Choosern; > 0 smaller than any numbej;. Let § be a point with||d]| <
and suppose that > 0 is such that\é is element ofP/;. Then, since|d|| < my
we know that

Q<75 > bk

for everyk in K. So we only need to show that.7 6 > by, for h ¢ K. Since
h is not an element oK, we know that O =by,. Further, since\d is an element
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of P/; we also know that’7 (\J) > b. So, in particularg,.7 (Ad) > by = 0 and
(since A > 0) we can calculate that

enZo=\tenZ(\)>A"1-0=0=hy.
This shows that’7§ > b andé is an element oP/;. <

Lemma 5 Let r and s be two points in RM and suppose that p = pr + (1 — p)s
for some 0 < p < 1. Suppose further that a and b are two positive real numbers.
Then there is a positive multiple of p that is also a convex combination of ar and
bs.

Proof. We have to show that there are numbers @ < 1 and¢ > 0 such that
(p = w(ar) + (1 — x)(bs).

bp ab

Tak S 7 B— =
ake FEbpradop " T bprado )

It easily follows that 0< « < 1 and( > O sincea andb are positive and
0 < p < 1. Moreover,

M)+ 0bS) = (e s D)
bpral—p) (or +(1—p)s) = (pr +(1— p)s) = (p.<

Lemma 6 The set Q,; is the convex hull of the set H;.

Proof. We will exploit the decomposition d?; into the producP/; x P;. Notice
that this enables us to write

Qu =Qj x Q)

where Q/; :={p € Am | A\p € P/;for some numben > 0}

andQ/; is defined analogously. It suffices to show tk} is the convex hull of
H/;. To this end, notice tha®/; is the collection of pointg in R™ for which
the system

P > A0

has a solutiorp. So, any poin® in P/; at least has to satisfy the inequalities

6 >0 foralli € M.

So, sinceG/; = {¢ | (p,d) € ext(S,) for some p} is a subset ofP/; we
know thatG/; is a subset of the non-negative orthant df RFrom this it easily
follows thatH/; is a subset ofQ/; since} ;. di is automatically positive for
each non-zero elementin the non-negative orthant.
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A. First we will show thatQ/; is convex. To this end, take two pointsands
in Q/;. We will show that a convex combinatigm + (1 — p)s is also an element
of Q.

Sincer ands are points inQ/; we can take\ > 0 andy > 0 such that\r
and us are elements oP/;. Furthermore, from Lemma 5 it follows that there
exists a positive multiple opr + (1 — p)s that is also a convex combination of
Ar andus. However, a convex combination af and s must be an element of
P/, sinceP/; is convex. Henceypr +(1— p)s is a positive multiple of an element
in P{; and therefore an element Q.

B. Conversely, letp be an element of)/;. We have to show thgp is a
convex combination of elements kfy;. To this end, notice thaXp is an element
of P{; and therefore a convex combination of the element§pf By changing
the multiple A if necessary we can assume that it is even a convex combination
of the non-zero elements @&;.

Suppose thakp = pr +(1— p)s, with r ands both in the non-negative orthant
and not equal to 0. Write

1 -1

a:= <Zri> and b= <Za> .
ieM ieM

Then we can take and( as in Lemma 5 and we get that
CAp = k(ar) + (1 — x)(bs).

It is sufficient to show that\ = 1. To this end notice that

A= Y P =Y Ow =) k@) (L- )b
ieM ieM ieM
= naZrﬁ(lfn)sz:l.
ieM ieM

Now the statement follows by induction to the number of non-zero elements
of G/; that are used to writdp as a convex combination. Q
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