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CHARACTERIZING THE NASH AND RAIFFA
BARGAINING SOLUTIONS BY DISAGREEMENT
POINT AXIOMS*

HANS PETERS ano ERIC VAN DAMME

We provide a new characterization of the n-person Nash bargaining solutions which does
not involve Nash’s Independence of Irrelevant Alternatives axiom, but mainly uses axioms
which concern changes in the disagreement point and leave the feasible set fixed. The main
axiom requires a convex combination of a disagreement point and the corresponding solution
point to give rise to that same solution point. Further, we describe how the disagreement
point approach can be applied to other bargaining solutions. The main result of the latter
part 1s a first characterization of the so-called Continuous Raiffa solution.

1. Introduction. Starting with Nash (1950) it has become customary to formulate
an (n-person) bargaining problem as a pair (S,d) where S is a convex set in
n-dimensional Euclidean space, consisting of all utility n-tuples that the players can
obtain by cooperating, and ¢ is a distinguished element of S, representing the
outcome that will prevail when the players do not cooperate. Nash (1953) proposed
two procedures to solve the bargaining problem: the noncooperative approach and
the axiomatic method. In the first, one explicitly models the negotiation process as a
noncooperative game and solves for the Nash equilibria. Unfortunately, this approach
yields indeterminate results since the solution in general depends on the rules of the
negotiation process (Rubinstein 1982, Moulin 1984, Binmore 1987). Nash describes
the second method as “one states as axioms several properties that it would seem
natural for the solution to have and then one discovers that the axioms actually
determine the solution uniquely” (Nash 1953, p. 129). As is well known, also this
approach is indeterminate as the solution depends on which axioms one considers
natural (see Roth 1979 for a survey). Thus, both methods have their drawbacks. In
this paper the axiomatic method is adopted, but our results may also prove relevant
for the strategic approach.

The various bargaining solutions (i.e. functions that assign an outcome f(S, d) to
any bargaining problem (S, d)) that have been proposed generally share a number of
properties, such as individual rationality, Pareto optimality, symmetry, and scale
invariance (independence of the utility representations chosen). Further, for each
solution there is a characterizing axiom which, in combination with the standard
properties, determines the solution uniquely. Usually, this distinguishing axiom de-
scribes how the solution should change when the feasible set S varies while the
disagreement outcome d remains fixed. For example, Nash’s independence of irrele-
vant alternatives axiom states that, when 7 shrinks to S while d remains fixed and
f(T',d) remains feasible in S, then f(S,d) = f(T, d). The individual monotonicity
axiom of Kalai and Smorodinsky (1975) demands that, when more attractive payoffs
become available for a player, then, with fixed disagreement outcome, this player
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448 HANS PETERS & ERIC VAN DAMME

should not receive less utility in the new situation. Perles and Maschler (1981)
consider the situation in which d is given but it is still uncertain what the feasible set
will be, although the players agree on the various possibilities and the probabilities
with which these arise. Their axiom of superadditivity demands that in this case all
players prefer to reach an agreement immediately (formally, when S = %S , + %SZ,
then f(S,d) > 3f(S,, d) + 3f(S,, d)).

In our view, it is at least as natural to require that the solution be well-behaved
when the disagreement outcome varies while the feasible set remains fixed. In Peters
(1986b), Livne (1986, 1989), Chun (1988), Chun and Thomson (1990a, b) and
Thomson (1987), several axioms of this variety have been proposed and also our
axioms are mainly of this type. Our new approach of characterizing bargaining
solutions by axioms concerning the disagreement point has the obvious advantages of
leading to new characterizations of solutions while making the role of the disagree-
ment point more explicit. Maybe even more important is the advantage of having
characterizations based on the existence of only one feasible set together with some
sets derived from it in a natural way. To see why this is an advantage, notice that
implicit in the axiomatic approach to bargaining as proposed by Nash is the assump-
tion that the solution outcome should be independent of all characteristics of a
bargaining situation that are not captured by the pair (S, d). For instance, the
conclusion of the independence of irrelevant alternatives axiom formulated above is
supposed to hold for all bargaining games satisfying the premises, even though the
shrunken set § may well have arisen from an underlying physical situation that
cannot be obtained by deleting physical alternatives in the situation leading to 7.
Roemer (1986) calls this implicit assumption the ‘“Welfarist Axiom” and shows that
the classical results of axiomatic bargaining theory no longer hold without it. Since in
this paper it is not our main purpose to propose another theory without the “Axiom
of Welfarism,” we confine ourselves to pointing out that our disagreement point
approach may well serve as a basis for such a theory.

Finally, let us note that the disagreement point approach can serve as a starting
point of a dynamic theory of bargaining. See, in particular, Furth (1988).

The main result of the paper will be a new characterization of the family of
n-person weighted Nash bargaining solutions in which Nash’s independence of
irrelevant alternatives axiom is avoided and the main axioms concern changes in the
disagreement point. The axioms and motivations are introduced in §2, while §3 is
centered around the characterization result. This characterization result is proved for
the n-person case: In §4 we prove a few additional results which are or seem to be
special for the 2-person case. Finally, in §5, we further exploit our approach of
looking at axioms involving changes in the disagreement point. In particular, we
provide a, as far as we know, first characterization of the so-called Continuous Raiffa
solution (Raiffa 1953).

2. The axioms. An (n-person) bargaining set is a set S < R" which is closed,
convex, comprehensive, and bounded from above, i.e., there exist p € R, ¢ € R,
with! p > 0 such that £p,x, < ¢ for all x € S.> By BS we denote the family of all
bargaining sets.

Wector inequalities: x > (>) y if and only if x, > (>) y, for all i. Similarly for < and <.

We call a set T comprehensive if y € T whenever x <y <z and x,z € T. Note that we do not
require: y <z & z € T =y € T. Comprehensiveness of a bargaining set can be interpreted as free
disposibility of utility. In some instances, our results would be different without this assumption. See, in
particular, the second part of §3, and also §4.
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NASH AND RAIFFA BARGAINING SOLUTIONS 449

An (n-person) bargaining problem is a pair (S, d) where § € BS and d € S. The
point d is called the disagreement outcome. Note that d is allowed to be on the
boundary bd(S) of §; this will be the case in particular if S has empty interior. The
set of all n-person bargaining problems is denoted by B. By (S,d) we denote a
generic bargaining problem. If x € § we write

S.={yeS:y=>x}

for the points in S that weakly Pareto dominate x. The (strong) Pareto boundary of S
is denoted by P(S):

P(S)={xeS:S, ={x}}.

An (n-person) bargaining solution is a map f: B - R” with f(S,d) € S for every
(S,d) € B. We use f to denote a generic bargaining solution.

The first axiom we want to introduce is in a sense the “dual” of the superadditivity
axiom of Perles and Maschler described in the Introduction. Suppose that S is given,
and that d' will be the disagreement point with probability p’ (i from a finite index
set). Suppose that all solution outcomes f(S, d') are equal. So, if the players only
meet after the disagreement point uncertainty has been resolved, they will always
agree on the same outcome. Will they also agree on this outcome ex ante? Answering
this question affirmatively corresponds to imposing the following axiom:

Convexity (CONV). {d € §: f(S,d) = x} is convex.

This axiom is actually well known: In 2-person bargaining with variable threat
point, together with a few standard axioms it suffices to guarantee that Nash’s threat
game (Nash 1953) has an equilibrium (see, for example, Tijs and Jansen 1982). In the
2-person case, Nash’s solution satisfies this axiom; however, CONV is a surprisingly
strong axiom. If there are more than two bargainers, CONV is inconsistent with the
following two axioms:

Pareto Optimality (PO). f(S,d) € P(S).

Strong Individual Rationality (SIR). For all i we have f(S,d) > d,, with strict
inequality whenever x, > d, for some x € §.

The PO axiom needs no further comment, and SIR adds to the usual individual
rationality requirement an incentive to cooperate for those players who have some-
thing positive to gain.

To prove our claim that CONV, PO, and SIR are inconsistent, let f be a solution
satisfying these three axioms, and let S be the convex hull of the points (0,0, 0),
(1,0,0), (0,1,0), (0,0, 1), and (1,1,0). By PO and SIR the points d = (1,0,0) and
d =1(0,1,0) of S result in the outcome f(S,d) = (1,1,0), but then CONV implies
f(S,d) =(1,1,0) for d = (3, 1,0) and this contradicts SIR. Note that this example
uses the fact that the disagreement point may be a boundary point; it is an open
problem whether PO, CONV, and SIR are inconsistent if this is not allowed.

In our characterization of the weighted Nash solutions we will use an axiom
considerably weaker than CONYV. Specifically, we will require that a convex combina-
tion of a disagreement point and the corresponding solution point give rise to the
same solution point, hence:

Disagreement Point Convexity (DVEX). For all 0 < u < 1 we have

f(S,ud + (1 =) f(S,d)) =f(S,d).
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450 HANS PETERS & ERIC VAN DAMME

This requirement can be motivated as above by referring to exogenous uncertainty
about the disagreement point.

(Another motivation is obtained by the following informal argument concerning
endogenous (strategic) uncertainty. Consider a 2-person bargaining problem (S, d)
and suppose player 1 firmly adheres to the (PO, SIR) solution f. If £,(S, e) > f,(S, d)
for e = (d + f(S, d))/2, then player 2 has an incentive to behave strategically: he
could threaten to toss a coin and to accept f(S, d) if heads come up and to walk away
from the bargaining table in case of tails. By this behaviour the disagreement point is
effectively converted to e, so player 1 will offer f(S, e) in order to avoid disagreement,
which is to the advantage of player 2. DVEX excludes manipulating behaviour of this
kind.)

We will show that, given a list of other reasonable requirements, Nash solutions are
the only ones to satisfy DVEX.

We now introduce our other main axioms.

Invariance (INV). f(A(S), A(d)) = A(f(S, d)) for all positive affine transforma-
tions A of R".2

Disagreement Point Continuity (DCONT). For each bargaining set S and every
sequence d,d', d?, ... in S, if d" - d then f(S,d") - (S, d).

The Disagreement Point Continuity axiom is a mild regularity requirement. Note
that all axioms hitherto defined essentially refer to only one set of feasible outcomes
S. As usually, axiom INV is motivated by the assumption that the players have von
Neumann-Morgenstern utility functions, and hence it only refers to an equivalence
class of problems without comparing two essentially different problems. The axiom
would be acceptable even if one would not accept Roemer’s “Welfarist Axiom”
described in the Introduction. More precisely, the axiom would be acceptable as long
as it is understood that A(S) and S in its formulation refer to the same physical
situation.

Our final axiom no longer refers to just one feasible set: it also refers to S, but this
set arises naturally from S.

Independence of Nonindividually Rational outcomes (INIR). f(S, d) = f(S,, d).

The INIR axiom was first formally discussed in Peters (1986b), and amounts to a
very weak form of Nash’s “independence of irrelevant alternatives.” Still it is far from
being harmless, although many authors assume it to hold implicitly by their choices of
the domain of bargaining problems. For example, Kalai and Smorodinsky (1975,
p. 514) defend the axiom, or rather their restriction to bargaining problems (S, d)
with § = §,, on the ground that “if this (i.e., S = S,) is not the case, we can disregard
all the points of S that fail to satisfy this condition (i.e., of dominating d), because it is
impossible that both players will agree to such a solution” (i.c. a nonindividually
rational solution outcome). Note that actually Kalai and Smorodinsky need a stronger
argument to defend the criterion “S = S,”: nonindividually rational outcomes should
not only never occur as solution outcomes, but they should also never influence the
solution outcome. This argument exactly amounts to INIR.*

*A(x) = (ayx, + by,...,a,x, + b,) with a, > 0 for all ; A(S) = {4(x): x € S).

*In more general games INIR may not be entirely convincing. Cf. for example the discussion on the
NTU-value between Roth (1986) and Aumann (1985,1986). For further discussions in the case of
bargaining problems, see Peters (1986¢) and Perles and Maschler (1981).
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NASH AND RAIFFA BARGAINING SOLUTIONS 451

For completeness’ sake we give here the formal definition of

Independence of Irrelevant Alternatives (11A). For all (S, d) and (T, d) in B with
S cTand f(T,d) € S, we have f(S,d) = f(T,d).

For + € R" with ¢t > 0 and ¥ ,¢, = 1 we define the n-person weighted Nash bargain-
ing solution with weights t by

(2.1) N'(S,d) = argmax [ | (x, —d,)", where
xeS§, 1EM
(2.2) M= {i:y, > d, forsome y € §}.

It is straightforward to verify that N’ is a well-defined solution which satisfies I1A,
INV, SIR, PO, INIR, and DCONT (for verification of the last axiom a little bit more
effort may be required). We have already seen that CONYV is inconsistent with PO
and SIR for n > 2. Furthermore, also if we restrict attention to bargaining problems
where the disagreement point is not allowed to be a boundary point, then the Nash
solutions still do not satisfy CONYV; this can be seen by taking, in the previous
example, points of the form (1 — a,«,0) and (8,1 — 8,0) instead of (1,0,0) and
(0,1,0) as disagreement points, for suitably chosen « and g, sufficiently small.
However, with the aid of Lemma 2.1 below it can be shown that N’ satisfies DVEX.
This lemma may be well known (cf. Peters 1986a, Lemma 28.14) but for complete-
ness’ sake we provide a proof. It will be convenient to introduce the following
notation for z,d, t € R” with t as above and with z > d.

(2.3) L'(d,z) = {x eR" Yt (x,—d)(z,—d) "= 1},

1}.

L'(d, z) is a hyperplane through z and H'(d, z) is an associated halfspace. Let us
call a bargaining problem (S, d) nondegenerate if x > d for some x € S. The
following lemma characterizes N’ for nondegenerate bargaining problems. Specifi-
cally, we have that z = N'(S, d) if and only if L'(d, z) supports S at z.

N

(2.4) H'(d,z) = {xER”: Yt (x,—d)(z,—d)""

Lemma 2.1.  For a nondegenerate bargaining problem (S, d) and z € S we have that
z=N'S,d) ifand only if S c H'(d, z).

Proor. Let z solve the program (2.1) with M = {1,2,...,n}. Then L'(d, z) is the
unique tangent hyperplane at z of the set

{x <R TT(x, —d)" > [1(z, - d,)"}.

Hence, S € H'(d, z) by a separating hyperplane theorem. To prove the converse,
note that N'(H'(d, z),d) = z. Consequently, if z€ S and S c H'(d, z), then
N'(S,d) = z since N’ satisfies IIA. m

In the next sections we use the following notation. If A4 is an axiom, then we also
write A for the class of bargaining solutions satisfying A.

3. Characterization of Nash solutions. We first state and prove the main result
of this section, and of the paper. In the second part of the section, we will discuss our
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choice of domain (what happens, in particular, if also noncomprehensive problems
are considered?), and provide a sensitivity analysis with respect to the axioms used in
the main theorem.

Tueorem 3.1.  f € INV N SIR N INIR N DCONT N DVEX if and only if there
exists t € R", t > 0 with X,t, = 1 such that f = N' on B. In particular, IIA c INV N
SIR N INIR N DCONT N DVEX.

For the proof of Theorem 3.1, we need some lemmas.
Lemma 3.2. DVEX N SIR c PO.

Proor. Let (S,d) € B. DVEX implies f(S, f(S, d)) = f(S, d). Pareto optimality
now immediately follows from applying SIR. =
The following axiom is a considerable strengthening of DVEX.

Disagreement Point Linearity (DLIN). If e = ud + (1 — w)f(S, d) with & € R and
e € S then f(S,e) = f(S, d).

Lemma 3.3. DVEX N DCONT N SIR c DLIN.

Proor. Let f satisfy DVEX, DCONT, and SIR, and let (S, d) be a bargaining
problem. Let e be as in the statement of DLIN with u > 1 (the case u < 1 follows
from DVEX). Let M be the subset of players such that i € M if and only if x, > d,
for some x € S. Then note that f(S, e) = f(S,d) = d, for all i € M, in view of SIR.
We want to show that f(S, e) = f,(S, d) also for all i € M.

Forall x,y € §, x # y, write f(x) instead of f(S, x), and let /(x, y) be the straight
line through x and y; by [x, y] denote the line segment with endpoints x and y.
Then, for x € §,, define g(x) as the other (i.e. # f(x)) point of intersection of
I(d, f(x)) with relbd(S,), i.e. with the boundary of S, relative to the |M|-dimensional
subspace containing S,. This map is well defined since d is in the interior, relint(S,),
of S, relative to that same |M|-dimensional subspace, and continuous since f is
continuous by DCONT. Since S, is compact and convex, by Brouwer’s fixed point
theorem there exists z € §, such that g(z)=z. Then z € relbd(S,) and d €
I(z, f(z)). By PO, d > f(z) would imply d = f(z) which contradicts d € relint(S,).
Further, d <z with d # z would imply z € relint(S,), also a contradiction. So we
must have d €[z, f(z)], so f(d) = f(z) by DVEX. In particular we also have
e € I(z, f(z)). But then we must have z = e since e € relbd(S,). So f(e) = f(z) =
fld). =

In his 1953 paper on 2-person cooperative games, Nash justifies his IIA-axiom as
follows: “This axiom is equivalent to an axiom of ‘localization’ of the dependence of
the solution point on the shape of the set S.°> The localization of the solution point on
the upper right boundary of § is determined only by the shape of any small segment
of the boundary that extends to both sides of it. It does not depend on the rest of the
boundary curve” (Nash 1953, p. 138). Formally, one may state this “localization”
axiom as follows (see also Lensberg 1987, p. 953):

Localization (LOC). For problems (S, d) and (T, d),if UN S = U N T for an open
neighbourhood U of f(S, d), then f(T,d) = f(S, d).

Clearly this axiom is closely related to IIA. However, it is neither weaker nor
stronger than IIA. The relationship between the two axioms will be discussed in more
detail at the end of this section.

SActually, Nash uses “B” instead of our “S”.
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It is easy to prove that our basic axioms imply LOC:
Lemma 3.4. DVEX N DCONT n SIR N INIR < LOC.

Proor. Assume (S, d) and (T, d) satisfy the condition stated in LOC, and let e be
a convex combination of d and f(S, d) sufficiently close to f(S, d) such that S, = T,.
Such a point e exists in particular since f satisfies PO, see Lemma 3.2. Then from
INIR and f(S,,e) = f(T,,e) we conclude f(S,e)=f(T,e), so f(S,d)=f(T,d)
follows from DLIN (Lemma 3.3). =

We are now sufficiently equipped to prove Theorem 3.1.

ProOF oF THEorREM 3.1. Let ¥V = {x € R": L,x, < 1} and write ¢ = f(}/,0). By
SIR and Lemma 3.2, ¢t > 0 and L,t, = 1. Let (S, d) € B. We show that f(S,d) =
N'(S,d). We may suppose that S is full-dimensional, i.e. has nonempty interior; if
not, by INIR of f and N, we can replace S by {x € R": x <y forsome y € S}. We
may further suppose that d € §\ bd(S$), for boundary points are taken care of by
DCONT of f and N': boundary points can be approximated by interior points, so it
is sufficient to give the proof for interior disagreement points. In view of axioms INV
and SIR we may then assume that d =0 and f(S,d) =1 for all i. We write
2z =N'(S,d) > 0, and suppress d = 0 from notation: so we write f(5), L'(x),...
instead of f(S,0), L'(0, x),... .

By Lemma 2.1, S € H(z), so f(§)< H'(z). We will first show that actually
f(8) € L'(z). Suppose not (see Figure 1). Then L4, f(8)z, ' = Er,z,' <1, so we
can choose an a > 0 such that £,¢,z;' <1 —a, and let T=S8 N H {1 — a)z).
Then T coincides with S in a neighbourhood of f(S) so that, by LOC (Lemmas 3.3
and 3.4), f(S)=f(T). Now Lemma 2.1 implies that N(T) = (1 — @)z, so that
N(T) is an interior point of S. This in turn implies that, in a neighbourhood of
NUT), T coincides with the halfspace H'((1 — a)z). Then INV and the fact that
f(V)=N'V) imply f(H'((1 — «)z)) = N'(H'((1 — @)z)) = N(T), hence, by LOC
of f, f(T) = N'T). However, N'(T) & P(S), in contradiction with PO of f, since
N(T) = f(T) = f(S). Consequently, f(§) € L'(z) and L,t,z;' = 1.

E((1-a)2

f(s)

NN

S—w

FIGUre 1.
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Now assume z # f(§) (=(1,1,...,1)) and let y = 3z + 1f(S) € S. Since the
function 4 on R, with A(B) = B~! is strictly convex we have A(3(1) + 3(z,)) < 1h(1)
+ 3h(z,) ie.

yit=(3+32)  <E Azt iz E 1= £(S)
so that

(3.1) Yy l<i+ Ytz =1 if z# f(S).

Consider the set ' = § N H'(y). Then Lemma 2.1 implies N’(S’) = y. Furthermore,
S" and S coincide in a neighbourhood of f(S) =(1,1,...,1) in view of (3.1), so that
f(8) = f(8") by LOC. However, the previous part of the proof applied to S’ implies
f(8) € L'(y), so f(§) € L'(y) but this contradicts (3.1). Consequently, we must have
N(S)=z=f(S). =

The remainder of this section will be devoted to a discussion on, firstly, our choice
of domain, in particular the assumption of comprehensiveness; secondly, the relation
between IIA and the localization axiom LOC; thirdly, the nonredundancy of the
axioms in Theorem 3.1; and fourthly, related literature. The second point in particu-
lar gives rise to a few unsolved problems.

The domain. Our least standard domain requirement is comprehensiveness. Al-
though this requirement seems fairly reasonable, it is not innocent. Let us denote by
B the family of bargaining problems without the comprehensiveness assumption.
The following example shows that, on B , Lemma 3.3 no longer holds. Another
notation: “conv” denotes “the convex hull of”. ;

ExampLE 3.5. Let § = conv{(0,0),(2,2),(1,3)) € B . Let D = {x: x = (a, &) with
a <1} For x =(a,a), x€D NS, define f(S,x)=(+ a,3 —a). Note that
{conv{x, f(S, x)}: x € D} is a partition of S so that f can be extended from D to S
by the requirement of DVEX. Then f satisfies DVEX, DCONT and SIR but not
DLIN. (This solution f can be extended to B~ in any arbitrary way, as long as it
satisfies DVEX, DCONT, and SIR.)

Let us note that Theorem 3.1 still holds on B~ for n = 2, despite the violation of
Lemma 3.3. For a proof of this fact we refer to the next section (Corollary 4.4). If
n > 2, then Theorem 3.1 no longer holds without the comprehensiveness assumption,
as is shown by the following example.

ExampLE 3.6. For every d € R? let H? be the collection of all hyperplanes in R?
through d which contain an x > d. If (S, d) is a bargaining problem in B~ with § C &
for some & € H? then we define f(S, d) = N?(S, d) with p = (, 1, 1). Otherwise let
f(S,d) = NS, d) with g = (3, 1, 3). This f satisfies INV, SIR, INIR, DCONT, and
DVEX; the easiest way to see this is to note that both N? and N9 satisfy these
axioms, and that none of the axioms involves a comparison between bargaining
problems belonging to both classes distinguished in the definition of f. For the
opposite reason, f does not satisfy IIA: e.g. take an (S,d) contained in some
hyperplane in H¢ so that f(S,d) = N?(S,d) and such that £(S,d) # NS, d), and
next consider (T, d) where T = {x € R* x <y for some y € §}. Then S € T and
f(T,d) = NUT,d) = NS, d) where the last point is in S, but unequal to f(S, d). So
we have a violation of IIA.
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As a final remark concerning our choice of domain, we note that adding the
following axiom makes Theorem 3.1 hold also on the extended class B :

Independence of Non-Pareto Optimal Outcomes (INPO). For all (S,d),(T,e)
B™, d = e and P(S) = P(T) imply f(S,d) = f(T, e).

IIA and LOC. We next examine more closely the relation between IIA and LOC.
Under certain lists of additional assumptions, the two axioms are equivalent, e.g. the
list of conditions in Theorem 3.1. In general, however, this is not the case.

ExampLE 3.7. Let f be the 2-person bargaining solution on B defined as follows.
Let (S,d) € B and let v,w € P(§) NS, be the points with maximal first and
maximal second coordinates, respectively. Then let f(S,d) = v if v, —d, > w, — d,,
and let f(S,d) = w otherwise. It is easily verified that f satisfies IIA but not LOC.

Note that, on the extended class B”, LOC does not imply I1A: see Example 3.6.
Also, it is not hard to prove that for a solution satisfying the following axiom, IIA and
LOC are equivalent, see e.g. Lensberg (1987, p. 953, Lemma 15).

Feasible Set Continuity (FCONT). Let (S, d),(S', d),(S% d),... be a sequence of
bargaining problems with $” — § in the Hausdorff metric. Then f(8”, d) — f(S, d).

Although often taken for granted, FCONT is a quite powerful axiom, and it does
not fit in our setup of considering axioms for fixed feasible sets. Our next example
shows that, also on the class B, LOC does not imply IIA. The example, though, is
rather trivial, and we conjecture that, at least for the 2-person case, under very mild
additional conditions LOC does imply I1A, but as yet we have not been able to make
this statement precise. For instance, we do not know whether PO suffices to obtain
the implication LOC = IIA.

ExampLE 3.8. To every 2-person problem (S, d) in B such that S is a subset of a
horizontal or vertical straight line, let f assign the unique Pareto optimal point. To
every other problem (S, d) let f assign d. This f satisfies LOC but not IIA.

The axioms. The following example briefly shows that none of the axioms in
Theorem 3.1 can be omitted: for SIR, DCONT, DVEX, INIR, and INV, see Example
3.9(a), (b), (¢), (d), and (e), respectively.

ExampLE 3.9. (a) f(S,d) =d for all (S,d) € B.

(b) Let n =3 and (S,d) € B: if d is an interior point of § then let f(S,d) =
N?(S,d) with p = (3, 1, §), otherwise let f(S,d) = NS, d) with g = (1, 1 1),

(c) Let n =2 and let f be the Kalai-Smorodinsky solution, which assigns to a
problem (S, d) the unique Pareto optimal point on the line segment connecting d and
the utopia point (max{x: x € §,}, max{x,: x € §}).

(d) Let n = 3 and let f(S,d) = NP(S, d) if there is a constant ¢ with x5 = ¢ for all
x € P(S), let f(S,d) = NS, d) otherwise.

(e) Let f be the “lexicographic egalitarian solution” (cf. Chun and Peters 1988).
This solution does satisfy 11A.

Adding an axiom of symmetry (see §5 for the definition in the 2-person case) to the
list of axioms in Theorem 3.1 would of course single out the symmetric Nash solution.
The question then arises whether one or more of the axioms can be dropped. The
answer to this question is negative as regards SIR, DVEX, or INV: cf. Example
3.9(a), (¢), or (e). However, the question is open as regards DCONT and INIR since
the corresponding examples above are nonsymmetric.

Note that the conditions in Theorem 3.1, i.e. the five axioms mentioned above,
imply IIA. In the next section (Theorem 4.3) we will show that, at least for n = 2, the
Invariance axiom INV may be weakened without destroying this implication, even on
the larger class B". Whether a similar result holds if # > 2 (cf. Example 3.9(e)) is
another unsolved problem.
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Related literature. Two papers most immediately related to the present one are
Chun and Thomson (1990a, b). In the first paper, the authors consider an axiom
called Disagreement Point Concavity (DCAV) which can be seen as the proper
“dual” of the Superadditivity axiom of Perles and Maschler (1981). In the presence of
PO and SIR (or also Individual Rationality: f(S, d) > d always), this axiom implies
our CONV and DVEX axioms. Under weak additional assumptions, DCAV is
inconsistent with Invariance; in particular, it is not satisfied by the Nash solutions. In
the second paper, the same authors obtain a characterization of the (symmetric) Nash
solution which is closely related to ours. The main differences are, firstly, that they
use a different relaxation of the Convexity axiom, and secondly, that they use a
stronger continuity axiom (called Pareto continuity); the latter enables them to give
an elementary proof that avoids the use of a fixed point argument.

4. The 2-person case. We start with a result for the 2-person case which does
not generalize to the n-person case: this claim can be verified by considering the
example in the text following the definition of SIR in §2. We give Theorem 4.1 not
only because it is special for the 2-person case, but also because it may have
interesting consequences in the theory of arbitration games; there, CONV together
with a few other conditions guarantee the existence of a value. See, e.g., Tijs and
Jansen (1982).

THEOREM 4.1. Let n = 2 and let f be a solution on B~ satisfying DVEX, DCONT,
and SIR. Then f satisfies CONV.

Proor. First note that f satisfies PO: this follows from Lemma 3.2 which can
easily be seen to hold also on B™. Let (§,d") and (S, d*) be 2-person bargaining
problems in B”, with d' # d?. Let us write f(x) instead of f(S, x), and suppose
f(d) =f(d*) =yeP(S). Let 0 <u <1 and e =pd' + (1 — p)d’>. We have to
prove that f(e) = y. Suppose this is not true. Then, in view of DVEX of f, we must
have

(4.1) [e, f(e)] N [d',y] =@ = [e, f(e)] N [d?,y]

where [+, - ] denotes again a line segment. First note that in view of PO and SIR of f,
(4.1) can only hold if d' > d? or d* > d'. Suppose that the latter holds, and that
fXe) >y, (f(e) >y, can be taken care of in the same way); this can only hold
without violation of (4.1) if f(e) lies above I(d', d?). Then, by DCONT of f, there
must be a point z on [e, d%] with f(z) € I(d', d?). So by DVEX, f(d?) = f(z) = y;
and again by DVEX, f(e) = f(d') =y, contrary to what we assumed. =

Our next result shows that, for the 2-person case and on B~, the five axioms
occurring in Theorem 3.1 still imply IIA, even with INV weakened. The weakening of
Invariance that we will use is usually called homogeneity (HOM) and is obtained from
INV by requiring @, =a, = -+ =a, in its definition (see footnote 5). We first
prove the following lemma, which for n = 2 partially extends Lemmas 3.3 and 3.4
to B".

LemMa 4.2. Let f be a 2-person bargaining solution satisfying SIR, DVEX, and
DCONT on B™. Then (S, e) = f(S, d) for every problem (S,d) in B™ and every e € §
on the straight line through d and f(S, d) whenever d # f(S,d) and f(S, d) is not an
endpoint of P(S). Under the same conditions, if f additionally satisfies INIR and (T, d)
is another problem in B™ such that S and T coincide in a neighbourhood of (S, d), then
AT, d) = f(S, d).
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Proor. Let (S, d) and e be as above. Note that f satisfies PO as well (cf. Lemma
3.2 which also holds on B”). The proof of the first statement uses the same ideas as
the proof of the corresponding Lemma 3.3. First assume that d is an interior point of
S and without loss of generality assume that S is compact. For x € S let g(x) be
again the boundary point of S on the straight line through d and f(S, x) and
different from f(S, x). Then it follows that f(S,e) = f(S, d) by using a fixed point
argument in exactly the same way as in the proof of Lemma 3.3. If d is not an interior
point of S but f(S, d) is not an endpoint of P(S), then there is an interior point d' of
S on the line segment connecting d and f(§,d), so that the result follows from
applying the first step to d’ rather than d.

In order to prove the second statement of the lemma, we just note that it is
sufficient to modify the proof of Lemma 3.4 by replacing DLIN there with the first
statement in this lemma. m

(Actually, we do not really need to use a fixed point argument in the above proof,
but it makes the proof more elegant.) It will be convenient to refer to the two
implications in Lemma 4.2 as Weak DLIN (WDLIN) and Weak LOC (WLOCQ),
respectively.

THEOREM 4.3. Forn = 2 and on B~ we have:
HOM N DVEX N DCONT n SIR N INIR c IIA.

Proor. Let the 2-person bargaining solution f on B” satisfy the five axioms in the
condition of the theorem. Then, in view of Lemmas 3.2 (which can be seen to hold
also on B") and 4.2, f satisfies PO, WDLIN, and WLOC as well. Let (S, d),(T,d) €
B™ with S ¢ 7 and f(7,d) € S. In view of HOM we may assume without loss of
generality that d = 0 and write f(T) instead of f(T,d), etc. We have to prove that
f(S) = f(T). For this, we may also assume that f(7) > 0 for otherwise we are done
in view of PO and SIR. We will assume f(S) # f(T), say f,(S) > f,(T), and derive a
contradiction.

First note that we may assume that f(S) is not an endpoint of P(S): otherwise we
continue the proof with some point d' on the line segment connecting 0 and f(T)
with f(S,d") an interior point of P(S) (by DCONT) and with f(T,d’) = f(T) (by
DVEX).

Next, we start by considering the case where f(S) is an interior point of T for
some 6 > 1 (see Figure 2). Then 0S N T coincides locally with S in a neighbour-
hood of 8f(S) so that f(8S N T) = f(8S5) = 6f(S) by WLOC and HOM (note that

FIGURE 2.
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we may apply WLOC since f(8S) is not an endpoint of P(85)). On the other hand,
f(T) is an interior point of 85 so that 85 N T coincides locally with T around f(T).
If f(T) is not an endpoint of P(T), then we may conclude f(6S N T) = f(T) by
WLOC. If f(T) happens to be the lower endpoint of P(T), then we can find some
point e on the line segment connecting 0 and f(8S) such that still f(6S N T,e) =
f(8S, e) = 0f(S) by the first part of this paragraph and DVEX, and such that f(T, e)
is above f(T) but still an interior point of S. Then, by WLOC, we conclude
f(T,e) = f(8S N T, e). Altogether we have f(T) = 6f(S) in the first case, or f(T,e)
= 0f(S) in the second case, with #f(S) an interior point of T, so a violation of PO.

Next, continue to assume f(§) # f(T) and let d(a) = af(T) for 0 < @ < 1. The
previous paragraph of the proof and DVEX imply that, if f(S,d(a)) = f(T) =
f(T, d(a)), then 0f(s,d(a)) & T for all 8 > 1. Therefore, DCONT implies that the
whole segment of P(S) in between f(S) and f(T) must belong to P(T). Now let
0 < a <1 be such that f(S,d(a)) lies strictly in between f(S) and f(T). Then
WLOC implies that f(S, d(a)) = f(T, d(a)) = f(T, d), a contradiction. So we must
have f(§) = f(T),and IIAof f. =

CoroLLARY 4.4. On B™ we have: f € INV N DVEX N DCONT N INIR N SIR
if and only if f = N* for some t > Q with t, + 1, = 1.

Proor. Every N’ satisfies the axioms in the corollary. For the converse, note that
f satisfies IIA by Theorem 4.3. The desired conclusion is then a standard result of
axiomatic bargaining theory (see, e.g., Roth 1979, p. 16). =

5. The continuous Raiffa solution. In Peters (1986b), the disagreement point
axiom approach was used to obtain characterizations of some of the most well-known
solutions in literature, within one system of axioms. Apart from the symmetric Nash
solution N = N1/2V2  the following solutions were characterized: the Kalai-
Smorodinsky solution (Kalai and Smorodinsky 1975), the Kalai-Rosenthal solution
(Kalai and Rosenthal 1978), the egalitarian solution (e.g., Kalai 1977), and the
so-called Continuous Raiffa solution (Raiffa 1953). In this section, we limit attention
to this last solution and its characterization. All the solutions mentioned here are
2-person, symmetric solutions.

Let CR denote the Continuous Raiffa solution. It is defined as follows. Let
(S,d) € B and let h(S,d) denote the utopia point of (S,d), where h/(S,d) =
max{x,: x > d} for i = 1,2. If d < h(S, d), then let R be the (unique) solution of
the differential equation dx,/dx, = rg(x) (x in the interior of §) with Ry(d,) = d,,
where rg(x) is the slope of the straight line through x and A(S, x). For this case
CR(S, d) € P(S) is defined to be the limit point of the graph of R. Otherwise, let
CR(S, d) be equal to the unique Pareto optimal point weakly dominating d. For
technical details, see Peters (1986b) or Livne (1989).°

Next, we present some additional axioms needed for the characterization of the
Continuous Raiffa solution CR. Again, f denotes a generic 2-person bargaining
solution and (S, d) a generic 2-person bargaining problem in B. The disagreement
point set of (S, d) with respect to f is the set D(S, d, f) defined by:

D(S,d,f) = {x €S: (S, x) = f(S,d)}.

®These technical details are, in particular, well definedness and uniqueness. Further, we note that the
CR-solution is the “continuation” of the Kalai-Smorodinsky-solution. See also Furth (1988).
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Disagreement point Monotonicity (DMON). If e € § with e, =d, and ¢, > d,,
then f(S,e) > f(S,d), for i,j = 1,2 with i #j.

Strong Disagreement point Monotonicity (SDMON). As DMON with “ > " instead
of “>= 7, but only if such a point f(S, e) exists.

Differentiability (DIFF). If D(S,d, f) is the graph of a function on some interval
(a, f(S, d)] (where possibly @« = —), then this function is differentiable.

Disagreement Point Set Invariance (DPSI). If (T, d) € B is problem with {x € T:
xrdi={xeS x»d},then{x e DT, d, f) x#d ={xD(S,d,f)x»*d.

Symmetry (SYM). If (S, d) is a symmetric problem, i.e. (S, d) is invariant under
interchanging the coordinates, then f(S, d) = f,(S, d).

A few comments on these axioms are in order. The interpretations of (S)DMON
and SYM are obvious; DMON was first formulated by Thomson (1986) and Wakker
(1987). DIFF is mainly a technical requirement, although some justification might be
found by considering the disagreement point set as a kind of negotiation path: DIFF
then requires smoothness, no sudden changes of direction. The DPSI axiom says that,
if two problems differ “only” in their individually rational subsets, then their dis-
agreement point sets should be the same as far as nonindividually rational points are
concerned. An informal interpretation might read as follows. Imagine that the set of
disagreement points leading to the same solution outcome constitutes some time
path; then DPSI claims that negotiations (“intermediate” disagreement points) in an
early stage are independent of the precise options attainable in the end, but only
depend on the momentary utopia point. The Nash solution N‘'/%1/2 typically does
not have this property (recall that it satisfies LOC), all the other solutions mentioned
above do have it. Note that the DPSI axiom involves an implicit comparison of
different feasible sets in a certain class, and hence does not exclusively concern
changes in the disagreement point.

We need the following lemma for the characterization of the Continuous Raiffa
solution. We call a solution f Individually Rational (IR) if always f(S,d) > d.

Lemma 5.1.  Let f satisfy PO, INIR, DCONT, and SDMON. Let (S,d) be a
2-person bargaining problem in B containing more than one Pareto optimal point. Then
[ satisfies IR, and if h(S,d) > d, then on the interval [d,, f(S,d)), D(S,d, f) is the
graph of a strictly increasing function.

Proor. By INIR, f(S,d) = f(S,,d), which proves the first statement in the
lemma. For the second statement, suppose A(S,d) > d. By PO, IR, and SDMON,
f(S, d) must be an interior Pareto optimal point. Let @ be an interior number in the
mentioned interval. By SDMON, f(S,(a, d,)) > f,(S, d), and by PO and Individual
Rationality, we have f,(S, m(a)) > f,(S, d) where m(a) is the upper boundary point
of § with first coordinate «. So by DCONT, PO, and SDMON, there is a unique
number g(a) with f(S, (e, g(a))) = f(S, d). Then g is the desired function. m

THEOREM 5.2.  The Continuous Raiffa solution CR: B = R is the unique solution
satisfying the axioms DCONT, SDMON, DIFF, PO, INIR, DPSI, INV, and SYM.

Proor. We leave it to the reader to verify that CR satisfies the eight axioms in
the theorem. See also Peters (1986b) or Livne (1987). Now let f be a solution
satisfying the eight axioms, and let (S, d) be a 2-person problem in B. Let A(S, d) > d;
otherwise, we are done in view of PO and the first statement in Lemma 5.1. By INIR,
we may suppose that § = {x € R*: x <y for some y € S}, and by Lemma 5.1, we
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have that on the interval [d,, f|(S, d)], D(S, d, f) is the graph of a strictly increasing
function, say j. By DIFF, j must be differentiable.

Next consider 7 = {x € R?: x <y for some y in the convex hull of the points
v =1_(d,hyS,d) and w = (h(S, d), d,)}. By SYM, INV, PO, and SDMON, we have
that D(T, d, f) is the straight line through 4 and 1(v + w). So by DPSI and DIFF,
the slope of this straight line is exactly the right derivative of the function j in d,. By
noting that this slope is equal to r(d) in the definition of the Continuous Raiffa
solution, and so j = R, we complete the proof. =

In the above theorem we use eight axioms to characterize one solution. If we omit
SYM, then still there are 2 axioms more than in Theorem 3.1. However, the result is
tight in the sense that there is no nontrivial relaxation of the axioms without violating
the result (see Peters 1986b for most of the details). Every axiom in itself is quite
weak, and is satisfied by a number of nontrivially different solutions. Furthermore, all
axioms are explicit, whereas many authors rely on one or more implicit axioms,
notably INIR (see our discussion in §2). Livne (1989) provides another characteriza-
tion which avoids the use of the technical axiom DIFF. On the other hand, he
implicitly uses the INIR axiom by his choice of domain. Also Livne uses eight axioms;
the intersection with our set of axioms consists of: INIR, SDMON, PO, INV, SYM.
He further appeals to a stronger continuity axiom, namely FCONT.
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