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LEARNING TO BID - AN EXPERIMENTAL STUDY OF BID
FUNCTION ADJUSTMENTS IN AUCTIONS AND FAIR
DIVISION GAMES*

Werner Giith, Radosveta Ivanova-Stenzel, Manfred Konigstein and Martin Strobel

We examine learning behaviour in auction and fair division experiments with independent
private values under two different price rules, first and second price, Participants play all four
games repeatedly and submit complete bid functions rather than single bids. This allows us to
study how institutional changes are anticipated and whether learning is influenced by the
structural differences between games, We find that learning does not drive bidding towards the
benchmark solution. Bid functions are adjusted globally rather than locally. Directional
learning theory offers a partial explanation for bid changes. The data support a cognitive
approach to learning,

Learning has become a major topic in economic research. Whereas formerly one
either relied on (common knowledge of) rationality or that markets would drive
out irrational modes of behaviour, one now is interested in the processes of be-
havioural adjustments and open to what may be their results. In this paper we
report an experiment on learning behaviour in four different types of games, the
first price (or respectively second price) auction and the first price (or respectively
second price) fair division game with independent private values (in all cases).
Subjects participated in a sequence of games against randomly matched oppo-
nents, with the game type changing after every three rounds of bidding. Every
subject was asked for a complete bid function rather than a single bid. A bid
function specifies a bid for each possible private value.

The experimental design offers an interesting environment for studying learn-
ing in bidding tasks: first, developing a bid function is more demanding than
bidding for a single value which is the usual practice in bidding experiments.
Second, since the game rules change over time, the task can be considered as
rather complex. Adjustment behaviour in complex settings might differ from ad-
justment behaviour in simple, stationary games. Third, despite differences in game
rules the format of decisions and the information feedback on game outcomes are
the same across all game types. According to noncognitive learning theories — for
example, ‘reinforcement learning’ (Bush and Mosteller, 1955; Roth and Erev,
1995) — behavioural adjustment should therefore be invariant across game types.
However, if learning is driven by cognition and deliberation, bid adjustments
should differ between game types.

To distinguish between cognitive and noncognitive learning theories is one way
to structure different approaches to learning; see Selten (1998) who distinguishes
between ‘cognition’ as reasoning and ‘adaptation’ as routine adjustment without
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reasoning. Among the cognitive models are, for example, ‘best-reply dynamics’,
‘fictitious play’ and ‘direction learning’; see, e.g., Selten and Buchta (1998).
Among noncognitive models ‘reinforcement learning’, ‘imitation’ (Vega-
Redondo, 1997), and ‘replicator dynamics’ (Taylor and Jonker, 1978) are quite
well known.

Drawing a borderline between cognitive and noncognitive learning theories is
to some extent arbitrary.' Even those theories which we consider as noncog-
nitive require some basic reasoning. For instance, to reason that ‘past success is
a good predictor of future chances’ is implicit in reinforcement learning. “What
is good for others is good for oneself’ is a reasoning underlying imitation
dynamics. However, noncognitive learning theories do not require any under-
standing of the true game structure in the sense of understanding the links
between strategy choices and payoffs. This is different for theories which we call
cognitive since they all require a more complete understanding of the game
structure, ‘Bestreply dynamics’ and ‘fictitious play’ require that the decision
maker can determine his payoff for all possible strategy profiles. ‘Direction
learning’ requires this for some, but not necessarily all strategy profiles. We
argue for cognitive rather than noncognitive learning and provide experimental
evidence supporting this view. However, in spite of the evidence for systematic
learning patterns, the data do not suggest where behaviour will converge, if it
does so at all. The dispersion in individual behaviour is rather large even when
participants are more experienced. Consequently, in real world auctions and
fair division games one should not rely on quick convergence to stationary
bidding.

The paper proceeds as follows: Section 1 describes the experimental games and
their benchmark sclutions as well as the experimental procedures and the pay-
ments. Section 2 presents our empirical results and Section 3 concludes.

1. Auctions and Fair Division Games
1.1. Games and Theoretical Solutions

Bidding behaviour is a favourite topic in experimental economics; for a selective
survey, see Kagel (1995). As in auction theory, one distinguishes open and sealed-
bid auctions. We will focus here on sealed bid experiments in which a single object
is to be allocated and for which each potential buyer has an independent private
value. We investigate four different allocation rules referred to as game types (see
Table 1): First Price Auction (Al), Second Price Auction (A2), First Price Fair
Division Game (F1) and Second Price Fair Division Game (F2). Fair division games
differ from auctions with respect to the ownership of the good to be allocated. In
F1 and F2 the good is owned by the bidders themselves. The price at which the
object is sold is equally distributed among all bidders. In auctions the price is
earned by an outside agent, the seller (owner). An example for a fair division game
is the allocation of inheritance. The object is collectively owned by the heirs who,

! For examples in the psychological literature on learning, see Macias (1996) and Edelmann (1986).
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Table 1
The Four Game Types

Price Rule Auction Fair Division Game
Price = highest bid Al F1
Price = 2nd highest bid A2 F2

in many cases, are the only bidders. Similar problems result when a joint venture is
terminated.”

Let v; be a bidder’s private value for the object to be sold, and suppose v; is
drawn for each bidder i = 1,...,n independently from a uniform distribution on
the unit interval. If all bidders are risk neutral, the equilibrium bid function 4} (v;),
expected equilibrium price E(p*), and expected equilibrium payoff E[zn}(v;)] are as
shown in Table 2. For a derivation of these results, see Giith and van Damme
(1986). Illustrations of the equilibrium bid functions are provided below together
with the presentation of results.

The solutions rely on the assumption that values and bids are continuous vari-
ables. In experiments, however, this is usually not the case. In our experiment
both, values and bids, are discrete. This raises questions regarding the relevance of
the benchmark solutions above.

Fora first price auction Goeree ¢t al. (1999), using a specific example, have shown
that the solution of the continuous case may be a good approximation of the discrete
case.” However, Riley (1989) shows for the case of discrete values and continuous
bids that pure strategy equilibria do not exist. The intuition underlying this result

Table 2
Bid Function, Expected Price, and Expected Payoff
According lo the Risk Neuiral Equilibrium for the Four

Game Types

Price Auction Fair Division Game

B = 2, biu) = n_-:—l—lviu

Highest bid E(p") = Z: E(p") = (11-’:-1)-
E[n;(v)] = %i—l Efr}(w)] = 1:":"""(’:1——_;_11;
(o) = v B) = — oty

2nd highest bid E(p') = :;i E(p") = (:—}%7
E] =% BlEw) = Loy

2 Foran experimental study on a related topic, the so-called zero-revenue auctions, see Franciosi ¢ al.
(1993). However, since these are multi-unit auctions, we do not compare their results to ours.

3 The model features two bidders whose values are drawn from {0,2,4,6,8,11}. Since bids had to be
integer, this is a rather coarse bid grid.
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is as follows: If several bidders exhibit the same value (due to discreteness) and
submit the same winning bid, then the winner will be determined randomly (among
these bidders). In this case, however, a bidder would have benefited from a
marginally higher bid, which destroys the existence of pure strategy equilibria.
Similar arguments hold if the discreteness of bids is sufficiently fine. Thus, pure
strategy equilibria may not existin the games analysed here, either. We are notaware
of a theoretical study that derives a mixed-strategy cquilibrium for the case of
discrete bids and discrete values, neither for first price auctions nor for fair division
games. Such an analysis would certainly be beyond the scope of our studyand beyond
the capabilities of experimental participants, Rather, we will rely here on the
continuous case as a reasonable approximation of the experimental situation and
use the theoretical solution as abenchmark to be compared with observable bidding.

1.2. Experimental Games and Procedures
In our experiment the private values 7; were drawn from the set
V = {50, 60,70, 80, 90, 100, 110, 120, 130, 140, 150}

with all values 9; € V being equally likely. These values are denoted in a fictitious
currency ECU (Experimental Currency Unit) used by subjects to resell the object
to the experimenter. Bids b; had to be integer values as well, with b; between 0 and
200 ECU. For ease of comparison of the empirical bids & and values #; with the

theoretical solution given above, all our analysis will be done for normalised bids &;
and values v;

% =50
R
_bi—50
‘100

Accordingly, the space of possible values is V= {0, 0.1, ..., 1}. The space of
possible bids is ; € {-0.50, -0.49, ..., +1.50}. Thus, the experimental rules allow
subjects to submit bids below (above) the minimal (maximal) reselling value.

Within a session each subject participated in 36 consecutive games of the four
different types. Nine subjects formed a session group. In each of the 36 rounds
(periods) they were randomly partitioned into three groups of three bidders. The
number of bidders involved in each game (n = 3) was known by all, but not their
identity. In all sessions all subjects played the same sequence of games: Al in
periods t=11t03,A2int=4t06,F2ini=71t09and Fl in t= 9 to 12. This
comprised the first block of 12 periods. Then they played block 2 (periods 13 to
24) and 3 (periods 25 to 36) in the same sequence as block 1. We had no strong
reasons for the sequencing Al, A2, F2, F1 within each block. We merely chose
this design in order to change only a single institutional aspect (price rule or
ownership structure) at a time. Furthermore, we started with the most familiar
situation, the first price auction.

Most participants were students of economics or business administration at
Humboldt University of Berlin. They had been invited by leaflets to participate in
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an experiment announced to last about three hours, and sessions actually took
about that long. After entering the laboratory they were placed at isolated com-
puter terminals. Communication among participants was not allowed during the
session. While reading the instructions (see Appendix A), they could privately ask
for clarification or for help in handling the PC.

In each game they had to submit a complete bidding strategy (bid vector)
5i(17£). Thus, they had to enter a bid for each of the 11 values 7;€ V. The actual
value # was drawn thereafter. Payments were determined according to the
game rules and the submitted bidding strategies.® Each participant was in-
formed about ﬁﬁ, about whether or not he was buyer, about the price [7 at which
the object was sold, and about their own payoff in that game. Then the next
game followed. Appendix B shows some sample screen shots of the computer
software.

Thus, each game type was played nine times. In the first of these nine games
the bid fields were blank, and each subject had to enter a vector of 11 bids
(one for each #; € V). In later periods the last bid vector for the same game
type was displayed as default. It could be revised or submitted as it is. Of
course, this may favour the status quo and may work against adjustments of
behaviour over time. We did it for practical reasons. If subjects did not want to
always adjust all bids, this would save time and help to prevent boredom by the
task. Altogether we ran six sessions and collected 1,944 bidding strategies (54
subjects times 36 games).

1.3. Payments

Subjects total earnings out of the 36 games ranged between DEM 31 and DEM
96 with a mean of DEM 56 (about US§ 33 at the time of the experiment
including a show up fee of DEM 10). In the first half of the sessions we used
the same conversion rate for ECU into cash: 1 ECU = DEM 0.05. Theoretically
and practically this generates rather asymmetric monetary incentives for auec-
tions versus fair division games. Giith (1998) tried to guarantee equal monetary
incentives by adjusting the conversion rate such that equilibrium profits were
equal for v; = 0.5. Instead, we used actually observed profits of the first three
sessions and adjusted the conversion rate to induce equal expected payoffs
based on observed behaviour. This meant for sessions 4 to 6 that one ECU was
worth DEM 0.2857 in auctions and DEM 0.02857 in fair division games.

Essentially this meant that we had a payoff treatment: three sessions with equal
conversion rate and three sessions with unequal conversion rate. Theoretically
these payoff differences are irrelevant. Since in all data analyses we ran, we did not
find them relevant, we will not discuss them any further.

* The strategy method obviously provides more information than collecting only one bid for a single
value. But since ex post only one component of the bid vector is payoff relevant, it lowers the incentives
of bidding at each single value. By restricting the set V, we tried to achieve a reasonable compromise
between information and incentives.
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2. Results

2.1. Description of Raw Data

Figure 1 shows the distributions of individual bids for each game type (Al to F2)
and different levels of experience (block 1 to 3). Each dot represents a partici-
pant’s average bid for the given reselling value (i.e., the average of the three bids of
subject ¢ in the respective block). The top row displays the bids for Al. The ref-
erence lines indicate ‘true value’-bidding (black line) and benchmark bidding
(grey line). Bidding above the benchmark for the game Al is rational for risk
averse bidders; namely, this may increase the probability of winning, at the cost of
earning less in case of winning. But in Al bidding above the true value can not be
rationalised, since this is (weakly) dominated. Thus, the two lines define an area
for rational bidding in case of risk aversion. In fact, we find many observations
inside this area.” But there is also a substantial number of observations outside this
area. Overbidding the true value or underbidding the Al-benchmark occurs more
often in block 1 than with experience (blocks 2 and 3).

Rows 2, 3, and 4 present the data for A2, Fl1, and F2, respectively. Again, the
black lines indicates true value bidding, the grey line indicates benchmark bidding
(in case of A2 the two lines coincide). While many theoretical models in auction
theory work with the assumption that bidders are risk neutral (see, e.g., the survey
by Wolfstetter (1996)), we find overall that the benchmark solutions based on the
continuous case for risk neutral bidders cannot explain the data very well. In Al
and A2 as well as in F1 we observe a strong tendency of overbidding the bench-
mark.® In F2 risk aversion calls for bidding below the benchmark. In contrast,
Figure 1 shows a large number of bids above the grey reference line. We think that
participants perceive F2 as the most complex game among the four experimental
games, since fair division games seem less familiar than auctions and since the
second price rule seems less familiar than the first price rule. However, similar to
Al, A2, and F1 even in F2 the number of bids that are inconsistent with risk
aversion is reduced with experience. This indicates some kind of bid adjustments
at the aggregate level. In the following sections we will investigate these adjustment
processes at the individual level.

In a companion paper (Giith et al., 2002) we analyse static rather than dynamic
aspects of behaviour. For instance, we compare prices and efficiency rates across
game types. We show that most bid functions are increasing and (almost) linear.
Finally, even though bidding differs from the benchmark solution, it is in line with
comparative statics prediction (across game types).’

5 Further experimental evidence on risk averse bidding in first price auctions is provided, e.g., by Cox
et al. (1982, 1985, 1992). The December 1992 issue of AER contains a controversial debate on risk
aversion as an explanation for bidding behaviour,

% Such overbidding in first price single-unit private value auctions has been found as well, e.g., by Cox
et al. (1988) and by Dyer a al, (1989). In second price sealed-bid auctions, bidding above the dominant
strategy was alsc observed, e.g., by Kagel and Levin (1993).

7 For related experimental confirmation of such comparative statics predictions, see Kagel and Levin
(1993).
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Fig. 1. Scatierplot of the Average Bids for Each Subject, for Three Levels of Experience, and for
All Game Types (the horizontal axes denote the private values, the vertical axes denote the bids)

2.2. Monotonicily and Convergence of Bid Changes

Before asking whether subjects learn a specific kind of behaviour, one might ask
whether they do learn anything at all. If so, one should observe more bid function
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adjustments early on and some stationary behavioural pattern after sufficient time.
Thus, with experience bidding should converge toward some stable individual bid
function. To investigate this remember that each subject i played each type of
game nine times. For every type we will refer to the bid function in the ninth play
as 7's final bid function. Hence the final bid functions of game types Al, A2, F2,
and F1 are b;o7(vy), biso(v), biss(vi), and b;s6(v;) respectively. To measure bid
function adjustment we use the Euclidean distance between #'s bid function ;(v;)
in period ¢ and ¢'s final bid function. For instance, in Al we calculated

DM () = || bulu) — bigr(w)|

for all subjects i and all periods (<27 in which Al was played, ie.
t €1(1,2, 8,18, 14, 15, 25, 26). Analogously, we calculated D?(f), DF(t), and
DF'(¢). We consider an adjustment process as monotone if Di(f) with
j € {Al, A2, F2, F1} is decreasing in (. Furthermore, a monotone adjustment
process will be called ‘convergent’ if D(t) decreases more rapidly in earlier than in
later periods, that is, if D)(¢) is convex. Both, monotone processes and (even more
so) converging processes, will be interpreted as evidence for learning.

For classification of the observed processes we used slightly weaker criteria than
those described above in order to allow for some error. Specifically, we fitted a
piecewise-linear regression line to the data with D)({) as dependent and ¢ as in-
dependent variable allowing for a kink of this line after four (out of the eight)
periods. Accordingly, a process is regarded monotone if both slope coefficients
are negative. If, in addition, the coefficient is smaller in absolute value for later
periods, the process is convergent.

Table 3 displays the relative frequencies of observed adjustment processes. As
one can see, between 61% and 74% of all individual bid functions exhibit a con-
vergent adjustment process; between 92% and 100% are monotone. Thus, even
though we do not know yet what specific kind of bidding behaviour subjects learn,
we do know that they learn something.

2.3. No Learning of Bidding According to the Benchmark Solution

As shown the data are not in line with the theoretical benchmark. On the other
side, when looking more thoroughly at Figure 1, one can recognise some changes
in the bidding behaviour as subjects gain experience. In all four game types

Table 3
Classification of Adjusiment Processes for Different Game Types (%)

Game Type
Adjustment Process Al A2 2 Fl
Monotone 92 95 96 100
Convergent 61 69 74 70
Not convergent 31 26 22 30
Not monotone 8 5 4 0
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subjects learned to avoid irrational bidding. For instance, in Al there is a tre-
mendous reduction of bids above the ‘true value’ bidding as well as of extreme
overbidding and/or underbidding in A2 and F1. Since there is a learning process
going on, it could well be that this process works into the direction of the
benchmark solutions. Figure 1 has indicated already that there is no strong con-
vergence towards them. However, it is interesting to investigate this in more detail.
One might speculate whether subjects will play according to the benchmark so-
lutions if they are given more time to gain experience and to learn. Figure 2 shows
the development of bidding for each session. Specifically, based on piecewise—
linear regression estimates of the aggregate bid functions (of each session), it
presents the time paths of predicted bids for v;= 0.5 and each game type.?
A reference line in each figure indicates the benchmark solution &;. There is no
obvious movement towards it. We observe similar patterns for all other reselling
values v;# 0.5. Therefore, we conclude that the learning process does not drive
towards the benchmark solution.

2.4, Local Versus Global Changes

The information feedback received by subject ¢ at the end of each game — the
actually drawn value ¥/, the price p, whether or not i bought the object, and 7's
profit — may suggest whether b;(v}) should be adjusted in future periods. But this
feedback does not tell anything regarding bids &;(v}') for all values ¢! # v|. This
seems obvious for a noncognitive learner. But if learning is cognitive, it is con-
ceivable that changlng bi(v}) induces the bidder to reconsider his bid function at
other values v] as well. A naturally arising question is therefore whether bid
functions were adjusted only ‘locally’ at v; or at many values. If they were adjusted
at all 11 values, we will call this a ‘global’ adjustment.

Figure 3 shows that most adjustments are in fact global. It reports frequency
distributions of bid changes for each game type. For all four game types the mode
of the respective distribution is at 11; that is, in these cases subjects adjusted their
bid function at each value. Furthermore, a more detailed look at the data reveals
that, conditional on whether the bid function was changed at all, it was changed
globally in 54% of the cases in Al. The according statistics for A2, F2, and F1 are
48%, 34%, and 33%, respectively. Thus, if a bid function is changed at all, chan-
ging all bids is most frequent. Bid functions are adjusted globally rather than
locally, suggesting a more cognitive type of learning.

Global adjustments are examined further in Table 4. It reports the number of
monotone shifts versus non-monotone shifts, Monotone shifts are such that for
each value the respective bid is increased (upward shift) or decreased (downward

¥ To give the benchmark a better chance we excluded some data which were obviously problematic.
Remember that altogether we collected 1944 individual bid functions. Giith et al. (2002) showed that
97% of these were strictly i 1ncre'15mg and that most of them were quite accurately predicted (according
to the coefficient of determination R?) by a piecewise—linear model - i.e., &:{v;) is piecewise-linear in v; -
allowing for a kink of the regression line at v; = 0.5. In computing the estimates of the aggregate session
bid function, which we present here, we therefore excluded individual bid functions which were not
strictly increasing, and furthermore those with an R? of the piecewise-linear model smaller than 80%.
Taken together, 84 (4%) of the bid functions were excluded,
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Table 4
Frequencies of Different Kinds of Global Adjustments

Game Type
Type of Global Adjustment Al A2 F2 FIL
Monotone shift 73 77 55 44
Parallel shift up 19 33 20 14
Other shift up 19 23 19 12
Parallel shift down 16 9 5 7
Other shift down 19 12 1 11
Non-monotone shift g 6 4 5
Total 82 83 59 49

shift). In many cases all bids were adjusted by the same amount. This is denoted
as a parallel upward or, respectively, downward shift. Monotone shifts and, even
more so, parailel shifts are highly structured forms of global adjustments. Both
findings, first, that local feedback leads to global adjustments in many cases and,
second, that adjustments are highly structured, support a cognitive learning
approach.

2.5. Direction Learning

We now investigate ‘direction learning’, a learning process proposed by Selten and
Buchta (1998) which predicts the direction of change of a strategy.” It is based on
an ex post comparison between the success of the chosen strategy and some al-
ternative strategy. Specifically, direction learning proposes that, if a strategy is
adjusted, it will be adjusted into the direction where an improvement would have
been feasible. Direction learning requires the decision maker to determine the
payofl he would have received in period {— 1 according to a fictitious strategy
profile.

In a first price auction direction learning proposes that a subject i who became a
buyer in period ¢ — 1 should lower his bid in period ¢since a bid reduction might
have increased his payoff in £ — 1. A bid increase in { — 1 might have done nothing
but decrease his payoff so that an improvement was feasible only in one direction.
Similarly, a non-buyer j whose value in ¢ — 1 was above the price (v]’~ > p) should
increase his bid in ¢since this might have led to a positive profitin ¢~ 1. However,
a non-buyer j whose value in ¢ — 1 was below the price (7 < p) could not possibly
have made a positive profit, either by increasing or by decreasing his bid in ¢ — 1.
Hence, direction learning theory does not make a prediction in this case (Selten
and Buchta, 1998).

By similar arguments we determined directional predictions for all four game
types. They are summarised in Table 5. Compared to Selten and Buchta, we
applied somewhat stronger criteria. To see this consider, for example, a buyer i
in Al who earned a positive profit in ¢—1. A bid reduction might have

9 See also Gith (1998).
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Table 5

Conditions for Applying Direction. Learning Theory and Predicled Directions of Bid
Changes

Criterion for directional prediction

Predicted direction

of bid change Al A2 F2 F1

Bid | Buyer and Buyer and Buyer and Buyer and
I,<0 ;<0 I < ip I; < ip

Bid T Not buyer and Not buyer and Not buyer and Not buyer and
p< o p <o < p<

No prediction Otherwise Otherwise Otherwise Otherwise

increased his profit, but he might as well have lost money by becoming a non-
buyer (since bids had to be made in discrete steps, this could have happened
even for marginally lower bids). Selten and Buchta (1998, p. 88) argue that ‘it is
not clear how high the second bid was but a higher profit could have been
made by some lower bid’. This statement is acceptable for continuous bids. But
with discrete bids, even a small bid reduction may lead to ¢ becoming a non-
buyer. Thus, it is not clear whether an improvement is feasible. Consequently,
direction learning may not apply. However, if buyer i earned a non-positive
profit in f-—1, a bid reduction could have never reduced, but may have
increased his profit. This is the condition we applied in Al. Analogous rea-
soning holds for the other game types.

According to these criteria, direction learning is applicable in 318 of 1,728 cases
(~18%)."° Table 6 reports frequencies and percentages of correct or, respectively,
incorrect predictions. Considering all four game types (see the rightmost column),
131 out of 318 cases (41%) are in line with direction learning and only 12 cases
(4%) are not. In 175 cases (55%) no bid change occurred. Thus, if a bid change
occurred at all, it was correctly predicted by the theory in the majority of cases.

Table 6

Predictive Success of Direction Learning Ouverall and for Each Game Type. Absolute
and Relative Predictions (Changes)

Observed direction Al A2 F2 Fl All
Right 34 39 33 25 131
(56%) (57%) (34%) (27%) (41%)
Wrong 2 1 5 4 12
(8%) (1%) (5%) (5%) (4%)
No bid change 25 29 59 62 175
(41%) (42%) (61%) (68%) (55%)
Tatal 61 69 97 91 318
(100%) (100%) (100%) (100%) (100%)

' Note that directional learning does not make a prediction for first round decisions.
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The conditional frequency for adjusting into the right direction is 92%. Com-
paring across game types, the percentage of correct predictions is smaller in fair
division games (34% and 27% respectively) than in auctions (57% and 56% re-
spectively). We attribute this to the more complex structure of fair division games.
Apparently subjects had more difficulties in figuring out the correct direction in
more complex environments and thus preferred not to adjust their behaviour.
Thus, overall direction learning theory explains a substantial proportion of bid
adjustments.

Investigating the data in more detail, we find that the frequency of correct
predictions is higher than the frequency of incorrect predictions in each of the
six sessions. Accordingly a Binomial test rejects the null hypothesis (‘the prob-
ability for correct predictions and the probability for wrong predictions are
equal’) in favour of direction learning theory (p < 0.016, N = 6 one-tailed test).
Furthermore, in all sessions the relative frequency of correct predictions is higher
in auctions (Al and A2 together) than in fair division games (F1 and F2
together). Thus, we conclude that direction learning theory is more successful
in explaining adjustments in less complex games (p < 0.016, N = 6, one-tailed
Binomial test).

Finally, Table 7 reports the relative frequency of correct predictions of di-
rection learning theory in periods with recent feedback versus periods with
distant feedback. The numbers in parentheses show the number of correct
predictions divided by the total number of cases in which direction learning
theory is applicable. Recent feedback means that a subject plays the same game
as in the previous period. Distant feedback means that a subject returns to
game type i after playing nine rounds of other game types j. In these cases one
can imagine that direction learning predicts less well than in periods with
recent feedback.

According to Table 7 the relative frequency of correct predictions is higher with
recent feedback than with distant feedback. This holds overall (see bottom row)
and for each game type. However, looking at each session separately, there are four
sessions where direction learning predicts better for recent feedback but two ses-
sions in which it predicts better for distant feedback. Thus, we cannot reject the
null hypothesis (‘predictive success of direction learning is equal for both feedback
conditions’).

Table 7
Relative Frequencies of Correct Predictions of Direction Learning Theory
Sfor Recent versus Distant Feedback

Game type
Feedback time Al A2 F2 F1 All
Distant 50% 55% 3%% 15% 35%
(5/10) (11/20) (7/21) (4/27) (27/178)
Recent 57% 57% 34% %3% 43%

(29/51) (28/49) (26/176) (21/64) (104/240)
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We summarise our findings regarding direction learning as follows:

1. About 18% of the observed bids can be considered as test cases for di-
rection learning theory.

2. The frequency of bid adjustments that are correctly predicted by direction
learning theory is significantly higher than the frequency of wrong
predictions.

3. Direction learning theory predicts significantly better for auctions than
fair division games; that is, for the less complex game types.

4. Direction learning theory predicts slightly better for recent feedback
than for more distant feedback, but the differences are not statistically
significant.

Since direction learning requires a cognitive model of a payoff function that
determines the payoff for fictitious strategy profiles, we regard it as a cognitive
theory. According to Selten (1998) direction learning is not ‘a full-fledged leamn-
ing theory, but rather the description of an important aspect of behaviour’ (p.
423). ‘It is a qualitative theory which makes only weak predictions’ (p. 422). In
general, it does not specify by which amount behaviour is adjusted and whether
the process converges. Nevertheless, direction learning ‘describes an influence of
cognition on adaptation’ (Selten, 1998, p. 422) and may organise empirical data."’

3. Conclusions

In this paper, we study learning behaviour in a laboratory experiment on four
different game types. So far, there ‘has been very little study of learning and
adjustment processes in private value auctions’ (Kagel, 1995, p. 521) and fair
division games. A few exceptions are, for example, Smith and Walker (1993),
Selten and Buchta (1998) and Guth (1998). Compared to some other experi-
mental studies on learning,'? the decision environment in our experiment is more
complex. The game rules differ between game types, although the format of de-
cisions remains constant. The participants submit bid functions rather than bids
for a single private value. We classify different modes of adjustment behaviour into
cognitive versus noncognitive (adaptive) learning models and characterise some
basic aspects of learning behaviour which, in our view, suggest cognitive rather
than noncognitive learning.

Without claiming to know where learning will finally settle, we find the fol-
lowing features of the learning process: First, we observe no strong tendency to
learn bidding according to the benchmark solution for the continuous case (bids
and values) and risk neutral bidders. While this model may be viewed as a natural
candidate to approach the bidding problem theoretically, it does a bad job
in explaining behaviour. Second, we show, however, that subjects do learn
something: Almost all adjustment paths are monotone, and most are convergent

13 For other experimental contexts, see, e.g., Cason and Friedman (1997), Nagel (1996).
'* For instance, Daniel of al. (1998) study learning in a bilateral bargaining situation. Abbink et al.
(2001) investigate learning within the ultimatum game,
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in the sense that adjustments are smaller in later rather than in earlier periods.
Third, bid functions are adjusted globally rather than locally. Thus, subjects
‘interpret’ local feedback as having informational content for other or even all
components of the bid vector. A cognitive principle that accounts for such be-
haviour is ‘generalisation’.'® Fourth, global adjustments are highly structured in
the sense that most are monotone shifts, and many are even parallel shifts. Last
but not least, direction learning offers a partial explanation of the observed
changes in bidding behaviour.

Despite these systematic learning patterns, the data do not suggest where be-
haviour will converge to, if it does so at all. The dispersion in individual behaviour
is rather large even with experience. Given these findings it seems unlikely that
behaviour in real world auctions and fair division games will converge quickly to
stationary bid functions. In order to draw a convincing picture of learning beha-
viour, more work needs to be done, including not only theoretical modelling, but
also collecting more data and formulating stylised facts.
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Appendix: A. Instruction

Please read these instructions carefully. They are identical for all participants.

During the experiment you will take part in several auctions. In every auction a fictitious
commodity is for sale which you can resell to the experimenters. You are one of three
bidders. Each bidder has his own private reselling value » which can be 50, 60, 70, 80, 90,
100, 110, 120, 130, 140, or 150 ECU (Experimental Currency Unit) and is independently
drawn. Each value appears with the same probability.

Before you learn your individual reselling value v, you have to place a bid for every
possible v:

b(50), b(60), 6(70), ..., b(150).

After every bidder in your group has placed his bid vector your actual bid is determined by
b(v). The bidder with the highest bid buys the commodity and pays a price according to the
pricing rule. Then he sells the commodity to the experimenter and receives his reselling
value. The other bidders do not pay anything and do not receive the commodity. If there are
two or three highest bids, the buyer is chosen at random.

% Noncognitive approaches could possibly model this behaviour as parameter learning, e.g., by
allowing adjustments of a proportional or absolute degree of under- or, respectively, overbidding
that is applied to all components of the bid vector.

™ This is a shortened and wanslated version of the instructions, For the original instructions (in
German), please contact one of the authors,
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There are four different types of auctions. In type 1 and 2 the auction revenue is kept back
by the experimenter whereas in type 3 and 4 the auction revenue is equally divided among the
bidders. In auction types 1 and 4 the price corresponds to the highest actual bid. In auction
types 2 and 3 the price which has to be paid corresponds to the second highest actual bid.

Type 1 (First Price Auction)

Price = highest bid (p = )

Bidder with highest bid becomes buyer. He pays p.
Revenue (p) is kept back by the experimenter.
Profit of buyer: v~ p=v— b

Profit of non-buyers: 0

Type 2 (Second Price Auction)

Price = second highest bid (p = &)

Bidder with highest bid becomes buyer. He pays p.
Revenue (p) is kept back by the experimenter.
Profit of buyer: v — p=v—k

Profit of non-buyers: 0

Type 3 (Second Price Iair Division Game)

e Price = second highest bid (p = &)

e Bidder with highest bid becomes buyer. He pays p.
Revenue () is distributed among the bidders.

Profit of buyer: v — p + %/} =v -y + %bz =y — %lzz
Profit of non-buyers: 1p = 1i

Type 4 (First Price Pair Division Game)

Price = highest bid (p = &)

Bidder with highest bid becomes buyer. He pays .
Revenue () is distributed among the bidders.

Profit of buyer: v — p+ip=v—b + {bh = v — 3b
Profit of non-buyers: 1p = {4

Altogether you play 36 auctions. In each auction the bidder groups are formed randomly.
After you have placed your bid you are informed about the price, your private reselling
value, whether or not you bought, and how much you have earned. Any decision you make is
anonymous and cannot be related to you. If you have questions, please, do not ask aloud,
but raise your hand. We will then clarify problems privately.

B. Sample screen shots

The screen in Figure Bl was used by the subjects to place their bids. In the upper right
corner one finds information about the type of the game. When subjects play a certain
type of game for the first time all bid fields are empty. In subsequent rounds subjects look
at the strategy they used in the last play of the same game type. They do not have to retype
their strategy if they do not want to change it.

Figure B2 is the screen which subjects received after an auction. It informs the subject
whether he became the buyer, the price, the individual value o}, his own bid for this value,
and the payoff resulting from all these events.
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Bitte geben Sle Ihre Gebotsfunktion ein:

Wieder-
verkaufswert  Gebot

E

60

70
90 .
100,

I

r

P

P

| 100
L1
!.

I

[

l

120
130
140
150

I

Fig. Bl. Example of a Bidding Screen

Ergebnis der Auktion

Sie haben gekauft.

Der Preis, den Sie
zahlen muBten, war:

Ihr ausgewahiter
Wiederverkaufswert war:
lhr Gebot flir diesen
Wiederverkaufswert war:

Ihr Gewinn betréagt:

Fig. B2. Example of an Information Screen
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