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Abstract

This paper contributes to the econometric literature on structural breaks by
proposing a test for parameter stability in vector autoregressive (VAR) models
at a particular frequency x, where x 2 [0, p]. When a dynamic model is
affected by a structural break, the new tests allow for detecting which
frequencies of the data are responsible for parameter instability. If the model
is locally stable at the frequencies of interest, the whole sample size can then
be exploited despite the presence of a break. The methodology is applied to
analyse the productivity slowdown in the US, and the outcome is that local
stability concerns only the higher frequencies of data on consumption,
investment and output.

I. Introduction

Tests for structural changes are important tools in the statistical analysis of
economic time series. In this respect, the well-known Chow (1960) test still
constitutes a standard reference. It consists of splitting the sample into two
sub-periods, before and after the break, and testing the equality of the
parameters between the two sub-samples, using an asymptotic chi-squared
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distribution. Because of its simplicity of implementation, it is still used in
many empirical studies. Nonetheless, this test has been extended in several
directions.1

First, instead of considering the date of the break as known, the testing
procedure should treat it as an unknown parameter to be estimated. Following
the seminal paper of Quandt (1960), a recursive sequence of Chow tests could
be performed, dating the break at the point where the test statistic takes the
largest value. Andrews (1993) delivers the most important contribution for
this extension by defining the asymptotic distribution of the sup-Chow test,
which is no longer a chi-squared distribution. A further extension in this
direction is developed by Bai and Perron (1998, 2003), who consider the case
of multiple structural breaks with unknown dates. These authors propose
several iterative methods to test for the number of breaks, and derive the
asymptotic distributions of the relevant test statistics. All these procedures
are valid for single-equation models with no trending regressors, such as
deterministic trends or I(1) processes.

The above approaches have recently been extended to multivariate
regression models. Bai, Lumsdaine and Stock (1998) generalized the single-
break framework in Andrews (1993) to multiple time series that are either
stationary or cointegrated in the regimes of parameter stability. They showed
that statistical inference is more precise when series with a common break
are analysed jointly. Bai (2000) considered the issue of multiple breaks in a
segmented stationary vector autoregressive (VAR) model and proved that
the number of change points can be consistently estimated via information
criteria, whereas Qu and Perron (2004) proposed a quasi-maximum likelihood
approach to analyse multiple breaks in multivariate regression models.

Secondly, some papers have been devoted to the application of the standard
Chow test to the vector error correction model (VECM). Hansen (2003), inter
alia, provided tests for a break in the coefficients of the VECM, though his
results are restricted to the case of known break dates. In particular, a partial
structural change can be present in the cointegration parameters or in the
adjustment coefficients. Such an extension has interesting economic impli-
cations, as it is possible to interpret a structural break as affecting the long run
(partial change in the cointegration relationships) or the short run (partial
change in the adjustment coefficients).

The present paper generalizes the previous idea by proposing a test for
parameter stability in a segmented stationary or cointegrated VAR model at a
particular frequency x, where x 2 [0, p]. Hence, if a VAR model is affected
by a structural break, it is then possible to detect which frequencies of the data
are responsible for parameter instability. Moreover, if a researcher wishes to

1See Hansen (2001) for a detailed survey of the current state of the art.
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concentrate on a subset of the frequencies of the data, the proposed test allows
one to check whether the whole sample size can be exploited for the analysis,
despite the presence of a break. Although the null hypothesis of local stability
at frequency x implies that the spectral density matrix at frequency x is stable
over time, the testing procedure is easily implemented in the time domain,2 as
it is based on a set of linear hypotheses on the autoregressive parameters. The
test statistic for local stability at a given frequency has a limiting chi-squared
distribution when the break date is either known or estimated by means of the
sup-Chow test for a full structural change. For the latter case, a bootstrap
procedure is also offered. We evaluate the finite-sample behaviour of our
testing procedure through a Monte Carlo study.

The test procedure is applied to analyse the slowdown of the post-war
United States output growth. Following King et al. (1991), we consider a
trivariate system with consumption, investment and output to get a clearer
view on this issue. Similar to Bai, Lumsdaine and Stock (1998), a structural
break is detected in the late 1960s, and our local stability tests reveal that the
system is stable only at high frequencies. This evidence is consistent with the
view that a negative productivity shock is at the origin of the break.

The paper is organized as follows. In section II, the concept of local
stability at frequency x is developed for segmented stationary VAR systems
and known break dates. The extensions for cointegrated systems and unknown
break dates are proposed in section III. In section IV, a simulation study is
performed to investigate the properties of the tests. Section V presents the
empirical application, and section VI concludes.

II. Local stability in stationary VAR models

Let us consider an n-vector time series {Xt, t ¼ 1, . . . ,T} generated by the
following stationary linear stochastic process

Xt ¼ HDt þ CðLÞet; where CðLÞ ¼ In þ
X1
i¼1

CiLi ð1Þ

such that X1
j¼1

j Cj

�� �� <1;
et are independent and identically distributed (i.i.d.) Nn(0, R) innovations, and
Dt is an m-vector of deterministic terms that may contain a constant and
various trigonometric functions of time.

2Similar approaches can be found in Breitung and Candelon (2006) for Granger-causality tests,
Centoni and Cubadda (2003) for measuring the cyclical effects of permanent–transitory shocks, and
Christiano and Vigfusson (2003) for maximum likelihood analysis of business cycle models.
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We assume that the series Xt admits the following VAR(p) representation:

AðLÞXt ¼ UDt þ et; t ¼ 1; . . . ; T ; ð2Þ
where

AðLÞ ¼ In �
Xp

i¼1
AiLi

is such that det [A(c)] ¼ 0 implies that |c| > 1, and UDt ¼ A(L)QDt.
3

By expanding the polynomial matrix A(L) on the complex conjugate points
z and z)1, where z ¼ exp()ix) and x 2 [0, p], we obtain

AðLÞ ¼ DxðLÞ �PxðLÞL� CxðLÞDxðLÞL; ð3Þ
where Cx(L) is an n · n polynomial matrix of order (p ) 3) if x 2 (0, p),
(p ) 2) if x ¼ 0 or x ¼ p,4 and

DxðLÞ ¼ 1� 2cosðxÞLþ L2 if x 2 ð0;pÞ
ð1� zLÞ if x ¼ 0 or x ¼ p.

�

Comparing both sides of equation (3) for L ¼ z yields

AðzÞ ¼ �PxðzÞz; ð4Þ
and, by equating real and imaginary parts of equation (4), we find

PxðLÞ ¼
�Im½AðzÞ�=sinðxÞ þ ðRe½AðzÞ�
þ Im½AðzÞ� cosðxÞ=sinðxÞÞL if x 2 ð0;pÞ

�zAðzÞ if x ¼ 0 or x ¼ p.

8<
:

Finally, by inserting equation (3) into equation (2), we rewrite the VAR model
as follows:

DxðLÞXt ¼ UDt þPxðLÞXt�1 þ CxðLÞDxðLÞXt�1 þ et; ð5Þ
As the filter Dx(L) annihilates at L ¼ z, the filtered series Dx(L)(Xt ) QDt)

have null spectra at frequency x. Hence the parameters Px(L) fully
characterize the stochastic behaviour of series (Xt ) QDt) at frequency x.
Indeed, the spectral density matrix of the stochastic process (Xt ) QDt) at
frequency x is given by C(z)RC(z)1)0, where C(z) ¼ )(Px(z)z)

)1.5

The frequency-domain properties of model (2) are also determined by the
nature of the deterministic vector Dt. Indeed, a linear combination of the

3The reason why we assume stationarity is twofold. First, the spectral density matrix is well
defined only for stationary VAR processes. Secondly, the asymptotic theory of structural break tests
does not generally allow for unit or explosive roots (see, inter alia, Andrews, 1993; Bai and Perron,
1998, 2003; Bai, 2000).

4For reasons that will be clarified later, we are assuming that p > 2.
5Note that similar reparametrizations of the VAR model are widely used in the context of seasonal

cointegration analysis (see, e.g. Cubadda, 2001).
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trigonometric functions [cos(xt), sin(xt)] has its spectral mass entirely
concentrated at frequency x. Hence, let us write

UDt ¼ U1D1;t þ U2D2;t;

where D1,t and D2,t are composed of m1 and m2 elements, respectively, such
that

DxðLÞD1;t ¼ 0;

DxðLÞD2;t 6¼ 0:

It is clear that the parameters U1 fully characterize the deterministic behaviour
of series Xt at frequency x.

We now allow for a possible structural break at time Tb ¼ ºbTß , where
b 2 (0, 1). Let us assume, for the moment, that there is only a single break
and its date Tb is known. Model (2) is then generalized by the following sub-
sample models:

A�ðLÞXt ¼ U�Dt þ et; t ¼ 1; . . . ; Tb; ð6Þ

AþðLÞXt ¼ UþDt þ et; t ¼ Tb þ 1; . . . ; T ; ð7Þ
where

A�ðLÞ ¼ In �
Xp

i¼1
A�i Li and AþðLÞ ¼ In �

Xp

i¼1
Aþi Li:

Note that we can expand both the polynomial matrices A)(L) and A+(L) on
0 and the complex conjugate points z and z)1, thus obtaining the sub-sample
analogues of model (5). Hence, let us consider the following particular cases
of the sub-sample models (6) and (7):

DxðLÞXt ¼ U1D1;t þ U�2 D2;t þPxðLÞXt�1 þ C�xðLÞDxðLÞXt�1 þ et;

t ¼ 1; . . . ; Tb; ð8Þ

DxðLÞXt ¼ U1D1;t þ Uþ2 D2;t þPxðLÞXt�1 þ CþxðLÞDxðLÞXt�1 þ et;

t ¼ Tb þ 1; . . . ; T; ð9Þ

where U�1 ¼ Uþ1 � U1 and P�xðLÞ ¼ PþxðLÞ � PxðLÞ.
As the structural break does not affect the components of series Xt that

are associated with fluctuations at frequency x, the sub-sample models (8)
and (9) are said to be locally stable at that frequency. Notice that local
stability is possible only if the polynomial parameter matrices C�xðLÞ and
C+(L) can freely vary from Px(L). Therefore, a necessary condition for
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local stability at frequency x is that p > 2 if x 2 (0, p) and p > 1 if
x ¼ 0 or x ¼ p.

The statistical problem consists of testing for each of the following null
hypotheses:

H0 ðglobal stabilityÞ: ½A�ðLÞ ¼ AþðLÞ� \ ½U� ¼ Uþ�;
H� ðlocal stabilityÞ: ½P�xðLÞ ¼ PþxðLÞ� \ ½U�1 ¼ Uþ1 �;

vs. the alternative hypothesis:

H1 ðglobal instabilityÞ : ½A�ðLÞ 6¼ AþðLÞ� [ ½U� 6¼ Uþ�:
In particular, the sample-split Chow test statistics (see, e.g. Doornik and
Hendry, 1997) for the systems of hypotheses H0 vs. H1 and H� vs. H1 are,
respectively, the following:

N0j1ðbÞ ¼ ðT � 2p� q0Þ

�
det

PT
t¼pþ1 ê0t êt

� �
� det

PTb
t¼pþ1 ê�0t ê�t þ

PT
t¼Tbþ1 êþ0t êþt

� �

det
PTb

t¼pþ1 ê�0t ê�t þ
PT

t¼Tbþ1 êþ0t êþt
� � !d j2ðq0Þ;

ð10Þ

N�j1ðb;xÞ ¼ ðT � 2p� q�Þ

�
det

PTb
t¼pþ1~e�0t ~e�t þ

PT
t¼Tbþ1~eþ0t ~eþt

� �
� det

PTb
t¼pþ1 ê�0t ê�t þ

PT
t¼Tbþ1 êþ0t êþt

� �

det
PTb

t¼pþ1 ê�0t ê�t þ
PT

t¼Tbþ1 êþ0t êþt
� �

!d j2ðq�Þ; ð11Þ

where fêt; t ¼ 1; . . . ;Tg are the residuals resulting from ordinary least squares
(OLS) estimation of the fixed-parameter model (2), fê�t ; t ¼ 1; . . . ;Tbg,
fêþt ; t ¼ Tbþ 1; . . . ;Tg, f~e�t ; t ¼ 1; . . . ;Tbg, f~eþt ; t ¼ Tbþ 1; . . . ;Tg are the
residuals resulting from OLS estimation of the sub-sample models (6), (7), (8),
(9), respectively, and

q0 ¼ n2p þ mn;

q� ¼ 2n2 þ m1n if x 2 ð0;pÞ
n2 þ m1n if x ¼ 0 or x ¼ p.

�

The statistic (10) is the usual Chow test statistic for global stability,
whereas (11) is the suggested test statistic for local stability at frequency x.
These statistics may be used in a sequential fashion; starting with running the
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test based on the statistic N0|1(b). If the null hypothesis of global stability is
not rejected, the sequence stops. Otherwise, one can test for local stability at
frequencies

xj ¼ x0
k � j

k

� �
þ xk

j
k

� �
; for 0 � x0 < xk � p and j ¼ 0; 1; . . . ; k;

by means of the test statistics N�|1(b, xj).
6

Remark 1. As correctly pointed out by a referee, the definition of the
polynomial matrix Px(L) depends on the parameterization that is considered.
We can, for instance, use an alternative representation to model (5) such as the
following

DxðLÞXt ¼ UDt þ ~PxðLÞXt�pþ1 þ ~CxðLÞDxðLÞXt�1 þ et; ð12Þ

in which the parameters of interest for local stability are the coefficients
of [Xt)p)1, Xt)p] and not those of [Xt)1, Xt)2]. However, in the Appendix
we show that constancy ofPx(L) is equivalent to that of ~PxðLÞ. Hence, tests for
local stability are invariant to isomorphic representations of the VAR.

Remark 2. We must notice that local stability can only occur at a finite set of
frequencies. Indeed, local stability at frequency x requires that both the
following conditions hold

A�ðLÞ 6¼ AþðLÞ; ð13Þ

A�ðzÞ ¼ AþðzÞ: ð14Þ

Given that A)(L) and A+(L) are polynomial matrices of order p, it is clear that
there can exist, at most, p different points on the complex unit circle that
satisfy equation (14) without violating equation (13). Since we are considering
real-valued processes, this implies that local stability may occur, at most, at
( º p/2ß + 1) frequencies in [0, p].

Remark 3. It may be of interest to test for the stability of a subset of parameters
only. In this case, let us write the polynomial matrix A(L) in equation (2) as
A(L) ¼ A1(L) + A2(L). If we assume that the break may solely affect the
parameters in A2(L), the model (2) can be generalized as:

½A1ðLÞ þ A�2 ðLÞ�Xt ¼ U�Dt þ et; t ¼ 1; . . . ; Tb;

½A1ðLÞ þ Aþ2 ðLÞ�Xt ¼ UþDt þ et; t ¼ Tb þ 1; . . . ; T ;

where

6Note that the choice of the interval [x0, xk] reflects the researcher’s a priori knowledge of the
frequencies at which local stability can occur. An agnostic option is to fix x0 ¼ 0 and xk ¼ p.
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A�2 ðLÞ ¼ In �
Xp

i¼1
A�2 Li and Aþ2 ðLÞ ¼ In �

Xp

i¼1
Aþ2 Li:

We can then expand both the polynomial matrices A�2 ðLÞ and Aþ2 ðLÞ on 0 and
the complex conjugate points z and z)1 and perform tests for both global and
local stability of the parameters of interest.

III. Various extensions

This section extends the above framework in various directions. In particular,
we consider the cases of the cointegrated VAR and unknown break dates.

3.1. Cointegrated time series

Let us now consider an n-vector of cointegrated time series {Yt, t ¼ 1, . . . ,T}
of order (1, 1) that is generated by the following VAR(p) model:

BðLÞYt ¼ UDt þ et; ð15Þ
where

BðLÞ ¼ In �
Xp

i¼1
AiLi

is such that det [B(c)] ¼ 0 implies that |c| > 1 or c ¼ 1, B(1) ¼ )ab0, a and b
are n · r-matrices with rank equal to r, and the matrix a0?Cb? has full
rank, where b^ are n · (n ) r)-matrices with rank equal to (n ) r) such that
a0?a ¼ b0?b ¼ 0,

C ¼ In �
Xp�1
i¼1

Ci and Ci ¼ �
Xp

j¼iþ1
Aj for i ¼ 1; 2; . . . ; p � 1:

Series Yt also admits the following Wold representation:

DYt ¼ HDt þ F ðLÞet; where F ðLÞ ¼ In þ
X1
i¼1

FiLi ð16Þ

is such that X1
j¼1

j Fj

�� �� <1;
and QDt ¼ F(L)UDt.

In this case, a difficulty emerges in testing for local stability at the
zero frequency. As F ð1Þ ¼ b?ða0?Cb?Þ�1a0? (see e.g. Johansen, 1996), the
spectral density matrix of series DYt is singular at x ¼ 0. Thus, the coefficient
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matrix B(1) does not fully characterize the long-run behaviour of series
Yt. However, we can reparameterize model (15) in order to avoid such
singularity.

Suppose that the cointegration matrix b is fixed over time and is known.
Then we can transform series Yt such that Xt ¼ T(L)Yt, where T ðLÞ ¼
ðb0;Db0?Þ. Model (15) can thus be written as in equation (2), where
A(L) ¼ B(L)T(L))1. Notice that if a super-consistent estimate of the cointeg-
ration matrix is available, one can simply use the estimate of b instead of the
unknown population values without affecting the asymptotic distributions of
the test statistics (10) and (11).

However, the cointegration matrix may be affected by the structural break
at time Tb as well. In this case, series Yt can be transformed as Xt ¼ T(L, t)

0
Yt,

where

T ðL; tÞ ¼ ðb�;Db�?Þ
0; t ¼ 1; . . . ; Tb

ðbþ;Dbþ?Þ
0; t ¼ Tb þ 1; . . . ; T .

�

Again, one can substitute the matrices b) and b+ with their super-
consistent estimates. Inference on time-varying cointegration relationships is
discussed, inter alia, by Hansen (2003), and Andrade, Bruneau and Gregoir
(2005).

3.2. Unknown break date

In the previous sections of the paper, the date of the break was considered as
known beforehand. However, it is especially relevant to extend our procedure
to the case where the break date is determined by means of the data itself.
In such a case, Quandt (1960) proposed performing the Chow (1960) test
recursively, using the supremum of the statistics. It is possible to apply this
approach to the test based on equation (10) by considering the following
statistic:

N0j1ðb̂Þ ¼ sup½N0j1ðbÞ�;

where t ¼ [bT] and b 2 (0, 1). Based on Andrews (1993), Bai et al. (1998)
provided the asymptotic distribution of the above test statistic in the multi-
variate case.

We recommend testing for local stability at the various Fourier frequencies
fixing b ¼ b̂. A rationale for this procedure lies in the fact that the limit
distribution of the break date estimator is unaffected by the imposition of valid
restrictions on the other parameters of the model, see Qu and Perron (2004).
This implies that imposing local stability at a given frequency provides no
efficiency gains for the break date estimation in large samples. Formally, we
then propose using the test statistics:

749Parameter stability in dynamic models across frequencies

� Blackwell Publishing Ltd 2006



N�j1ðb̂;xjÞ ð17Þ
where

xj ¼ x0
k � j

k

� �
þ xk

j
k

� �
for 0 � x0 < xk � p and j ¼ 0; 1; . . . ; k:

Since Bai et al. (1998) proved that the estimators of the segmented
VAR parameters have the same asymptotic distribution when the break
date is either known or estimated, the test statistic (17) converges in
distribution to the same as that of equation (11) under the null hypothesis.
Nevertheless, the chi-squared distribution is sometimes a poor approximation
of the exact distribution even when the break date is known (see, e.g.
Candelon and Lütkepohl, 2001). Hence, we propose the following bootstrap
procedure:

1 Compute the usual Chow test statistic N0|1(b) and find b̂ ¼
argfsup½N0j1ðbÞ�g for b 2 [0.15, 0.85].

2 Save the unrestricted residuals of the sub-sample models under H1

conditional on b ¼ b̂. Then obtain one matrix of residuals ê.
3 Save the estimated parameters of the full-sample model under

H0.
4 Save the estimated parameters of the sub-sample models under H�

conditional on b ¼ b̂.
5 Sample from ê h times. Then, take the estimated parameters in (3) to

rebuild the data that are used to bootstrap N0j1ðb̂Þ, and use the estimated
parameters in (4) to rebuild the data that are used to bootstrap
N�j1ðb̂;xjÞ.

6 Obtain the bootstrap distributions of N0j1ðb̂Þ, and N�j1ðb̂;xjÞ for
j ¼ 1, . . . , k.

The testing procedure for local stability can be extended to the case of
multiple breaks with unknown dates. As shown by Bai and Perron (2003),
a dynamic programming algorithm can be used to search for an optimal
partition that globally maximizes the likelihood function for any given
number of breaks. The number of breaks can then be determined by means
of either information criteria (see Bai, 2000) or testing procedures (see Qu
and Perron, 2004). After fixing the number and dates of the breaks to
their estimated values, the tests for local stability can be applied to any pair
of adjacent regimes. In principle, a bootstrap procedure could also be used
for the case of multiple breaks. However, the combined use of dynamic
programming algorithms and resampling techniques is, admittedly, rather time
consuming.

750 Bulletin

� Blackwell Publishing Ltd 2006



IV. Simulation study

In this section, a Monte Carlo experiment is conducted to evaluate the finite-
sample performances of the proposed testing procedure. In particular, we
examine in a simple univariate framework, the size and power of both the
asymptotic and bootstrap tests for local stability, at frequency x (H�) vs.
global instability (H1).

7

To this aim, we start by considering the following simple stationary AR(3)
model:

Xt ¼ a1Xt�1 þ a2Xt�2 þ a3Xt�3 þ et;

where et � N(0, r2). We assume that the date-generating process (DGP) under
the hypothesis H1 has the following form:

Xt ¼ a1Xt�1 þ a2Xt�2 þ a3Xt�3 þ et; t ¼ 1; . . . ; Tb: ð18Þ

Xt ¼ sðlþ a1Xt�1 þ a2Xt�2 þ a3Xt�3Þ þ et; t ¼ Tb þ 1; . . . ; T : ð19Þ

While the DGP under the null hypothesis H� of local stability at frequency
x is of the form:

DxðLÞXt ¼ PxðLÞXt�1 þ a3DxðLÞXt�1 þ et; t ¼ 1; . . . ; Tb; ð20Þ

DxðLÞXt ¼ PxðLÞXt�1 þ s�½lþ a3DxðLÞXt�1� þ et; t ¼ Tb þ 1; . . . ; T

ð21Þ

where Px(L) ¼ a1 ) a3 ) 2cos(x) + [1 + a2 + 2a3cos(x)]L.
The design parameters are set at the following values: a1 ¼ 0.15,

a2 ¼ )0.05, a3 ¼ 0.1, r ¼ 1, l ¼ 0.15, T ¼ 200, 500, b � Tb/T ¼ 0.25,
0.50, 0.75, s ¼ 1, 2, 3, 4, s� ¼ 2, 3, and x ¼ p/4, p/2, 3p/4.

Some comments on the choices of the parameter values are in order. We let
the breaks occur at three different fractions of the sample and take three
different sizes. Indeed, previous results in the literature suggest that the
parameters b and s are the most important in determining the performances of
structural change tests (see, inter alia, Candelon and Lütkepohl, 2001; Bai and
Perron, 2006). Notice that the break fraction b is treated as an unknown
parameter to be estimated, and we use a trimming parameter equal to 15%.
The AR parameters are chosen such that the process is stationary in both the
regimes and for all the considered sizes of the break. We let the constant term
vary across the regimes because both the models, (18, 19) and (21, 22), are
locally unstable at the zero frequency.

7For a detailed analysis of the bootstrapped version of the global stability test (H0 vs. H1), the
reader can refer to Diebold and Chen (1996) or Candelon and Lütkepohl (2001).
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The rejection rates of the tests for local stability are based on both the
asymptotic and bootstrap critical values at the 5% level. In each experiment,
500 series of length T + 50 are generated with initial values set to zero. The
first 50 observations are discarded to eliminate dependence resulting from the
starting conditions. For the bootstrap tests, 500 bootstrap draws are performed
in each of the 500 replications.

Table 1 shows the rejection rates of the tests at the 5% level when the
DGP is given by the processes (20, 21). We see that the rejection rates of the
bootstrap test are always quite close to the nominal size, while we also see that
the asymptotic test tends to be oversized, especially when T ¼ 200, s� ¼ 2,
and Tb/T differs from 0.50. With T ¼ 200, the bootstrap test is better sized
than the asymptotic one for all the 18 experiments and 15 differences between
the rejection rates are indeed significant.8 Even with T ¼ 500 the bootstrap
test is less size-distorted in 17 experiments and 12 differences between the
rejection rates are significant. Interestingly, the empirical sizes of the two tests
are more similar when the model is locally stable at frequency 3p/4.

In order to evaluate the effects of the break at frequencies p/4, p/2 and
3p/4 under the alternative hypothesis H1, Table 2 reports the spectra of the
processes (18, 19) at those frequencies. It emerges that the effect of the break,

TABLE 1

Rejection rates of 5% level tests under the null hypothesis of local stability at frequency x

Tb/T:

Asymptotic test Bootstrap test

0.25 0.50 0.75 0.25 0.50 0.75

T ¼ 200; s� ¼ 2
x ¼ p/4 0.192 0.164 0.186 0.052 0.050 0.054
x ¼ p/2 0.172 0.160 0.184 0.056 0.078 0.076
x ¼ 3p/4 0.134 0.134 0.160 0.068 0.064 0.068

T ¼ 200; s� ¼ 3
x ¼ p/4 0.136 0.100 0.108 0.056 0.060 0.052
x ¼ p/2 0.130 0.082 0.102 0.060 0.058 0.062
x ¼ 3p/4 0.070 0.056 0.070 0.068 0.054 0.062

T ¼ 500; s� ¼ 2
x ¼ p/4 0.166 0.120 0.140 0.064 0.054 0.058
x ¼ p/2 0.132 0.136 0.124 0.054 0.074 0.062
x ¼ 3p/4 0.092 0.086 0.090 0.046 0.054 0.054

T ¼ 500; s� ¼ 3
x ¼ p/4 0.088 0.076 0.074 0.058 0.056 0.056
x ¼ p/2 0.072 0.076 0.072 0.062 0.056 0.062
x ¼ 3p/4 0.073 0.060 0.062 0.062 0.064 0.060

8We consider a difference between the rejection frequencies as insignificant when it is smaller than
twice the Monte Carlo standard error at the nominal 5% level, i.e. 0.02.
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as measured by the relative change in the spectrum at the frequency of interest,
is the strongest at frequency 3p/4.

We report in Table 3 the rejection rates of both the asymptotic and
bootstrap tests at the 5% level when the DGP is given by the processes
(18, 19). Given the size distortions of the asymptotic test, caution is needed in
comparing the empirical power of the two tests. However, the asymptotic test
rejects more often in almost all the experiments. The two tests tend to have
similar power as the parameters s and T increase, as well as when the null
hypothesis is local stability at frequency p/4. For both the tests, it appears that
for a break size of two or three times the standard deviation of the errors,
the power is relatively low even if a large sample is considered. This result
indicates that the size of the break should be large enough to make the
distinction between local and global stability. As in Candelon and Lütkepohl
(2001), it is observed that the rejection frequency is generally lower when the
break is located at the borders of the sample (i.e. Tb/T ¼ 0.25, 0.75). The
results reveal to us that the frequency at which the break occurs is also
important for the empirical power. As expected in view of Table 2, the power
is the highest when the break occurs at frequency 3p/4 as the relative change
in the spectrum under H1 is the strongest at that frequency.

A practical problem arises when one ignores the frequencies at which local
stability may occur. In such a situation, it is necessary to apply the test at
several different frequencies to determine those at the which the model is
potentially locally stable.9 Hence, it is important to evaluate the power of the
test for local stability at frequency x� when the model is locally stable at a
frequency x 6¼ x�. In order to save space, only the results relative to s� ¼ 3
are reported in Table 4. As expected, the larger the difference between x and
x�, the larger the rejection rates. Indeed, the power is the lowest whenx ¼ p/2.
Similar to the results for the alternative hypothesis of global instability, the
asymptotic and bootstrap tests tend to perform more similarly when T ¼ 500.

TABLE 2

Spectrum of model (19)

Break size

Frequencies

p/4 p/2 3p/4

s ¼ 1 0.992 1.105 0.696
s ¼ 2 0.972 1.220 0.494
s ¼ 3 0.942 1.342 0.362
s ¼ 4 0.905 1.471 0.274

9A referee suggested an iterative estimation procedure of the frequencies at which local stability
occurs that is similar in spirit to the one that Bai and Perron (1998) proposed to detect multiple
breaks. We leave to future research a formal analysis of the properties of such a procedure.
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In empirical applications, the order of the AR process is unknown. It is
thus of interest to investigate the robustness of the local stability test at
frequency x when the model dynamics are misspecified.10 The test would
clearly be inconsistent if the true order is underestimated. Hence, it is of
interest to examine the implications of choosing the AR order in a liberal
fashion. However, simulations would become too time-consuming if we allow
for estimating the AR order within the bootstrap procedure. Hence, we analyse
the effects of using an AR order which has one lag more than the true one, on
the size and power of our stability tests. The experiments are performed for the
case T ¼ 200 and s ¼ s� ¼ 3, which is quite representative of the other DGPs,
and the results on the size and power of the test are reported in Tables 5 and 6,
respectively. It turns out that the effect of over-parametrization on size is rather
limited. Indeed, only few rejection rates in Table 5 are significantly larger than

TABLE 3

Rejection rates of 5% level tests under the alternative hypothesis of global instability

Tb/T:

Asymptotic test Bootstrap test

0.25 0.50 0.75 0.25 0.50 0.75

T ¼ 200; s ¼ 2
x ¼ p/4 0.222 0.206 0.200 0.068 0.064 0.068
x ¼ p/2 0.170 0.176 0.198 0.066 0.070 0.078
x ¼ 3p/4 0.282 0.256 0.234 0.144 0.136 0.112

T ¼ 200; s ¼ 3
x ¼ p/4 0.278 0.286 0.206 0.114 0.184 0.146
x ¼ p/2 0.154 0.158 0.174 0.084 0.104 0.116
x ¼ 3p/4 0.360 0.400 0.296 0.274 0.336 0.230

T ¼ 200; s ¼ 4
x ¼ p/4 0.432 0.538 0.404 0.272 0.512 0.372
x ¼ p/2 0.134 0.198 0.180 0.120 0.198 0.170
x ¼ 3p/4 0.636 0.672 0.456 0.608 0.690 0.456

T ¼ 500; s ¼ 2
x ¼ p/4 0.264 0.236 0.192 0.126 0.136 0.088
x ¼ p/2 0.168 0.160 0.188 0.082 0.090 0.074
x ¼ 3p/4 0.312 0.348 0.286 0.172 0.226 0.158

T ¼ 500; s ¼ 3
x ¼ p/4 0.502 0.614 0.438 0.416 0.596 0.412
x ¼ p/2 0.158 0.216 0.206 0.134 0.196 0.174
x ¼ 3p/4 0.692 0.800 0.600 0.638 0.778 0.572

T ¼ 500; s ¼ 4
x ¼ p/4 0.888 0.968 0.863 0.878 0.968 0.851
x ¼ p/2 0.306 0.432 0.335 0.296 0.442 0.297
x ¼ 3p/4 0.954 0.966 0.942 0.944 0.972 0.934

10We thank an anonymous referee for pointing out this issue.
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TABLE 4

Rejection rates of 5% level tests for local stability at frequency x� under local stability at
frequency x 6¼ x� with s� ¼ 3

Asymptotic test Bootstrap test

Tb/T: 0.25 0.50 0.75 0.25 0.50 0.75

T ¼ 200
x ¼ p/4 x� ¼ p/2 0.324 0.456 0.412 0.200 0.334 0.268
x ¼ p/4 x� ¼ 3p/4 0.526 0.566 0.418 0.386 0.460 0.294
x ¼ p/2 x� ¼ p/4 0.266 0.268 0.188 0.120 0.156 0.124
x ¼ p/2 x� ¼ 3p/4 0.194 0.200 0.164 0.126 0.160 0.118
x ¼ 3p/4 x� ¼ p/2 0.740 0.854 0.700 0.424 0.814 0.658
x ¼ 3p/4 x� ¼ p/4 0.344 0.346 0.238 0.288 0.320 0.238

T ¼ 500
x ¼ p/4 x� ¼ p/2 0.630 0.810 0.718 0.550 0.758 0.652
x ¼ p/4 x� ¼ 3p/4 0.858 0.930 0.816 0.794 0.900 0.754
x ¼ p/2 x� ¼ p/4 0.554 0.656 0.474 0.450 0.612 0.408
x ¼ p/2 x� ¼ 3p/4 0.316 0.384 0.296 0.276 0.360 0.258
x ¼ 3p/4 x� ¼ p/2 0.996 0.998 1.000 0.992 0.998 0.998
x ¼ 3p/4 x� ¼ p/4 0.730 0.802 0.620 0.706 0.796 0.618

TABLE 5

Rejection rates of 5% level tests under the null hypothesis of local stability at frequency x
based on an AR(4) model

Tb/T:

Asymptotic test Bootstrap test

0.25 0.50 0.75 0.25 0.50 0.75

T ¼ 200; s� ¼ 3
x ¼ p/4 0.156 0.116 0.136 0.072 0.072 0.064
x ¼ p/2 0.102 0.070 0.082 0.066 0.056 0.050
x ¼ 3p/4 0.088 0.072 0.060 0.074 0.080 0.052

TABLE 6

Rejection rates of 5% level tests under the alternative hypothesis of global instability based on
an AR(4) model

Tb/T:

Asymptotic test Bootstrap test

0.25 0.50 0.75 0.25 0.50 0.75

T ¼ 200; s ¼ 3
x ¼ p/4 0.248 0.258 0.206 0.126 0.172 0.142
x ¼ p/2 0.144 0.132 0.240 0.086 0.108 0.098
x ¼ 3p/4 0.414 0.412 0.274 0.314 0.344 0.206
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the corresponding ones in Table 1. It also appears that when the model is
over-parametrized, the bootstrap version has lower size distortion than the
asymptotic one.

We also notice that power is slightly affected by the over-parametrization
of the AR model, in particular for the case of the bootstrap test. Overall, these
results suggest that local stability tests are quite robust to a liberal choice of
the AR order.

V. Empirical application: output, consumption and investment

Several studies have been devoted to the analysis of the productivity
slowdown in postwar US output. As the univariate analysis of the output
series by Bai et al. (1998) lead to inconclusive results, these authors con-
sidered a trivariate system composed of consumption (C), investment (I) and
output (Y). Following King et al. (1991), the rationale behind this idea is that a
break in the productivity process should also be present in variables
possessing strong long-run links with output, in particular, consumption and
investment. Indeed, Bai et al. (1998) proved that if the stochastic growth
model by King et al. (1988) is augmented with a break in the average growth
rate of productivity, such a break will affect the three variables c ¼ ln(C),
i ¼ ln(I), and y ¼ ln(Y), but not the ‘great ratios’ (c ) y) and (i ) y).

We thus investigate local and global stability in the following dynamic
model:

A3ðLÞ
ct � yt

it � yt

Dðct þ yt þ itÞ

0
@

1
A ¼ U3 þ e3;t;

where A3(L) is a polynomial matrix of order 4,11 U3 is a vector of constant
terms and e3,t are N3(0, R3) innovations. Quarterly data are obtained from the
Saint-Louis Federal Reserve Bank and cover the period 1954Q1–2004Q4. Yt
is the private GDP per capita, Ct the real personal consumption expenditures
per capita and It the private fixed investment per capita. The variables are
seasonally adjusted and divided by the civilian non-institutional population
aged 16 and over.

The parameter stability of the above model will be investigated using the
bootstrap procedure for unknown breaks that was discussed in section 3.2.
Following Andrews (1993), the trimming region is [0.15, 0.85], and the
results, reported in Table 7, show that a break is detected in 1968Q3. Similar
to Bai et al. (1998), the break is dated earlier than the first oil shock.

11The lag length is chosen according to the Akaike information criterion. Other choices of the lag
length do not qualitatively modify the results.
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In order to gain a deeper insight into the origin of the break, the local
stability tests are performed for the frequencies xj ¼ (j/100)p, for j ¼
1, 2, . . . , 99. The tests statistics, along with their bootstrap 95% and asymp-
totic critical values, are plotted in Figure 1.

It turns out that this system appears to be unstable at the lower frequencies,
in particular when x approaches zero. It must be noticed that the empirical
results seem to indicate that local stability holds for all the frequencies higher
than 1, which is contradicted by Remark 2. In the light of the simulation
results documented in Table 4, this phenomenon is likely due to a sort of
leakage problem of local stability tests, namely power is low for frequencies
that are close to the ones for which the model is stable. Breitung and Candelon

TABLE 7

Stability test H0 vs. H1

Break date Statistic
Bootstrap
p-value

Asymptotic
p-value

1968q3 51.576 3.92% <1.00%

Note: The bootstrap p-value is obtained after 5,000 replications.
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Figure 1. Tests for local stability
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(2006) documented a similar problem for their causality test via a local power
analysis. Nevertheless, the testing results clearly indicate that global instability
concerns the low frequencies.

The empirical evidence suggests that the break in 1968Q3 can be labelled
as ‘real’ as it affects the long-run properties of the variables. However, unlike
the prediction of the theoretical model by Bai et al. (1998), the stochastic
components of the data are also unstable at low frequencies. Therefore, a
simple break in the productivity average growth rate is not, apparently, the
only origin of this break.

VI. Conclusions

In this paper, we develop a new testing procedure for parameter stability at a
particular frequency in a segmented stationary or cointegrated VAR model. By
doing so, it is possible to determine the frequencies which are responsible for
the parameter instability in a dynamic model. The local stability tests can
provide a deeper insight into the origin of a structural break. The example
presented in this study highlights the practical value of this procedure in
empirical studies. A structural break is detected at 1968Q3 for an output–
consumption–investment system, and the application of the new tests reveals
that local stability exclusively concerns the high frequency components of the
data. This evidence suggests that a real productivity shock is likely to be at the
origin of the structural break.
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Appendix

In this appendix we show that tests for local stability are invariant to
reparametrizations of the VAR such as that in equation (12). Indeed, the
considered alternative representation is based on the following expansion

AðLÞ ¼ DxðLÞ � ~PxðLÞLp�1 � ~CxðLÞDxðLÞL;
which yields at L ¼ z

AðzÞ ¼ � ~PxðzÞzp�1:

By comparing the above equation with equation (4), we obtain the following
relation

~PxðzÞ ¼ z2�pPxðzÞ; ð22Þ

which immediately reveals that ~PxðLÞ ¼ PxðLÞ when x ¼ 0 or x ¼ p and
p is even, and ~PxðLÞ ¼ �PxðLÞ when x ¼ p and p is odd. Hence, in the
following we concentrate on the case x 2 (0, p).
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By equating real and imaginary parts of both sides of equation (22) we
find

Ref ~PxðzÞg ¼ RefPxðzÞg cos½ð2� pÞx� þ ImfPxðzÞg sin½ð2� pÞx�; ð23Þ

Imf ~PxðzÞg ¼ ImfPxðzÞg cos½ð2� pÞx� � RefPxðzÞg sin½ð2� pÞx�: ð24Þ

Moreover, by writing Px(L) ¼ Px,0 + Px,1L, we obtain for L ¼ z

RefPxðzÞg ¼ Px;0 þPx;1 cosðxÞ;
ImfPxðzÞg ¼ �Px;1 sinðxÞ:

Substituting the above equations into (23) and (24) yields

Ref ~PxðzÞg ¼ ½Px;0 þPx;1 cosðxÞ� cos½ð2� pÞx�
�Px;1 sinðxÞ sin½ð2� pÞx�; ð25Þ

Imf ~PxðzÞg ¼ �Px;1 sinðxÞ cos½ð2� pÞx�
� ½Px;0 þPx;1 cosðxÞ� sin½ð2� pÞx�: ð26Þ

Similarly, by writing ~PxðLÞ ¼ ~Px;0 þ ~Px;1L, we obtain for L ¼ z

Ref ~PxðzÞg ¼ ~Px;0 þ ~Px;1 cosðxÞ;
Imf ~PxðzÞg ¼ � ~Px;1 sinðxÞ:

Substituting the above equations into (26) and (25) yields the following linear
system

~Px;0
~Px;1

� 	
¼ !

Px;0

Px;1

� 	
;

where

!¼
cos½ð2�pÞx�þ

cosðxÞsin½ð2�pÞx�=sinðxÞ
sinðxÞsin½ð2�pÞx�þ

½cosðxÞ�2sin½ð2�pÞx�=sinðxÞ
�sin½ð2�pÞx�=sinðxÞ cos½ð2�pÞx��cosðxÞsin½ð2�pÞx�=sinðxÞ

2
4

3
5:

Since |!|¼1, we conclude that coefficients of ~PxðLÞ are a non-singular
linear transformation of those of Px(L). Hence, constancy of Px(L) is
equivalent to that of ~PxðLÞ.
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