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Abstract

It is by now generally accepted that foreign exchange returns exhibit ““heavy tails”” as measured by the
so-called tail index. However, it is unclear whether the tail behavior remains stationary in the presence of
recurrent switches in the exchange rate regime. We therefore test the null hypothesis of tail index con-
stancy by applying a single breaks test “in rounds” which enables the detection of multiple breakpoints.
We are able to identify multiple jumps in the tail index of currency returns. Moreover, some breaks
coincide with documented shifts in monetary and exchange rate policies.
© 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Recent financial meltdowns like the 1997 Asian crisis, the LTCM debacle, the Mexican “Te-
quila” crisis or the Russian debt crisis have strengthened academic attention into the extremal
behavior of financial market returns. Following the seminal work by Mandelbrot (1963) it is
now generally accepted that overnight financial market collapses are more likely to occur
than back-of-the-envelope calculations using the normal distribution (df) paradigm seem to
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suggest. Stated differently, financial returns exhibit ““heavy tails” in contrast to the thin tailed
normal df. This “heavy tail” characteristic has been established for most financial asset classes.
Empirical studies tried to characterize the thickness of the tails by estimating the so-called tail
index a.' Loosely speaking this parameter reflects the number of bounded distributional mo-
ments that are still finite. The more the probability mass in the tails the lower will be this pa-
rameter. For example, for series characterized by o < 2, the variance, skewness and kurtosis do
no longer exist. As for the normal df, the tail index is infinite because all moments exist and are
bounded. Albeit interesting from a purely theoretical perspective, quantifying the tail index is
also relevant for financial practitioners (risk managers, financial regulators, etc.) because it is
a necessary ingredient in order to calculate quantiles very far into the distributional tail, i.e.,
quantiles (or Value-at-Risk (VaR) levels) that correspond with a very low tail probability.

From the empirical literature, it emerges that 2 < @ < 4, both across assets, asset types and
sample periods. Surprisingly, however, this apparent cross sectional and temporal invariance
has barely been the subject of thorough statistical testing.” The issue of whether « is constant
across assets or time — especially the latter presumption — is nevertheless crucial for the appli-
cability of extreme value analysis into, e.g., risk management or financial stability assessment. If
the amount of probability mass in the tails of the unconditional distribution is shifting through
time, the full sample estimates of « and corresponding quantiles probably wrongly reflect the ex-
pected frequency of sharp declines in, e.g., portfolio values for certain subperiods of the sample.

The cited empirical literature on the constancy issue mainly focuses on testing for a single
known (exogenously selected) breakpoint in «. Recently, however, Quintos et al. (2001) pro-
posed test statistics that allow for the identification of single but unknown (endogenously de-
tected) breakpoints in «. Upon applying a recursive, rolling and sequential testing procedure
they were able to detect structural breaks in the tails of three emerging stock markets. More-
over, the detected breakpoints were found to be ‘““meaningful” in the sense that they coincided
with periods of financial turmoil or regulatory change. Upon comparing the three procedures in
terms of small sample power and estimation accuracy for the structural break date, they found
that the proposed recursive procedure performs best. In this paper we extend the Quintos et al.
analysis in that we argue that the recursive testing procedure can be used to detect more than
one break in the tail behavior. Loosely speaking the approach boils down to applying the recur-
sive test ““in rounds”: if a full sample break is detected, the single breaks recursive test is re-
peated over the two subsamples determined by the initial break date and so forth. This
“multistage” implementation of the single breaks test can go on as long as the parameter con-
stancy hypothesis is rejected and the subsamples are not too small.

The testing procedure is applied to Asian and Western exchange rate data because the nu-
merous switches in monetary and exchange rate policies over the recent history make foreign

! Numerous studies have made use of semi-parametric estimators derived from extreme value analysis in order to es-
timate the tail index. Heavy tails in stock markets are most widely documented, see e.g., Jansen and de Vries (1991),
Longin (1996), Lux (1996) and Hartmann et al. (2004). Fat tails in foreign exchange returns are investigated, inter alia,
by Koedijk et al. (1990, 1992), Hols and de Vries (1991) and Hartmann et al. (2003). Bond extremes have been rather
neglected in the empirical literature. de Haan et al. (1994) and Hartmann et al. (2004) constitute two notable exceptions.

2 The scant empirical evidence can be subdivided into three categories. A first group of papers investigates structural
change in «, see e.g., Phillips and Loretan (1990), Koedijk et al. (1990, 1992), Jansen and de Vries (1991) and Pagan
and Schwert (1990). Cross asset tail (in)equalities have been considered by Koedijk et al. (1990) for exchange rates and
Jondeau and Rockinger (2003) for stock markets. Finally, asymmetry tests comparing upper and lower stock market
tails have been performed by, e.g., Jansen and de Vries (1991) and Lux (1996).
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exchange markets the more obvious candidates for exhibiting multiple shifts in tail behavior.
Moreover, previous empirical studies already suggested that the tail index may be influenced
by the degree of fixity of the forex regime. Koedijk et al. (1990) showed that the installation
of the European Monetary System (EMS) did not lead to a lower frequency of extreme currency
fluctuations compared to the period of the Snake (1971—1979). However, upon comparing the
tails of the nearly fixed currency returns of the Bretton Woods era with the post-Bretton Woods
return tails, Koedijk et al. (1992) observed a rise in the tail index.

The rest of the paper is organized as follows. In Section 2 we discuss how a single breaks
recursive testing procedure can be generalized toward detecting multiple breaks. The small
sample performance of the proposed multiple breaks procedure is assessed in Section 3 by
means of a Monte Carlo investigation. Empirical testing results for emerging and developed
currency returns are documented in Section 4. Section 5 offers concluding remarks.

2. Single vs. multiple breaks in tail behavior

Consider the six time series of Asian foreign exchange rate returns in Fig. 1. A detailed data
description is provided in Appendix A. Obviously, the degree of extreme currency return fluc-
tuation seems to change around the 1997 Asian crisis for most of the currencies. One expects
this to be reflected in the value of the tail index over the considered time period. We therefore
implement tests of tail shape constancy to the time series in Fig. 1 and, if possible, we relate the
detected breakpoints to known changes in monetary or exchange rate regimes.

Let X, =1og(S/S,_) represent log exchange rate returns with S, standing for the price of the
domestic currency per unit of US$. Thus, a rise in X implies a depreciation (or devaluation). We
therefore test for structural change in the upper tail of X as this might reveal that the potential
for large drops in currency prices is nonconstant over time.

The nonnormal distribution of exchange rate fluctuations is by now accepted as an empirical
stylized fact. Loosely speaking a forex series’ empirical distribution function exhibits
a “heavy” tail if “extreme” currency fluctuations are expected to strike more often than pre-
dicted on the basis of a normal distribution. Formally, the cumulative df F(x) of the return series
X exhibits a heavy or regularly varying upper tail if

. 1=F(x)
[EIEW—X 5 X>0,0[>O. (1)

The parameter « is called the tail index; it determines the decay of the tail probability if the x is
shifted more outward. Clearly, the lower the « the slower the probability decay and the higher
the probability mass in the tail of X. The regular variation property implies that all distributional
moments higher than «, i.e., E[X'], r > «, are unbounded, signifying the “fat tail property”.
Popular distributional models like the Student’s ¢, symmetric stable or the Autoregressive Con-
ditional Heteroscedasticity (ARCH) model all exhibit this tail behavior. Their tail behavior is to
a first order approximation comparable to the tail of a Pareto distribution 1 —ax™* with the
same index a. As for the normal distribution, the limit in Eq. (1) renders e, i.e., an exponen-
tially declining tail. Distributions with tails that exhibit this latter property are classified as thin
tailed; but these distributions still possess all moments, and hence do not capture the observed
behavior of extreme financial returns.

We study the occurrence of multiple breaks in o by means of Hill’s (1975) estimator because
it is by far the most widely used tail index estimator. Let X; , <X, , <... <X, , stand for the
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Fig. 1. Daily Asian currency returns (4/1/1994—25/6/2003).

ascending order statistics of a return series X with sample size n. Then the Hill statistic boils
down to:
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with m the number of highest order statistics used in estimation. Further details are provided in,
e.g., Jansen and de Vries (1991) and the recent monograph by Embrechts et al. (1997). Hall
(1982) showed for m/n — 0 as m, n — oo that the statistic \/m((a(m)/«a) — 1) is asymptoti-
cally standard normally distributed.

A long standing issue in extreme value analysis constitutes the choice of m. Goldie and
Smith (1987) show that one picks m such that it is in a range that minimizes the asymptotic
mean-squared error. Consequently, minimizing the sample mean-squared error is the appropri-
ate selection criterion in finite samples. More statistically involved procedures have been pro-
posed for small (Huisman et al., 2001) and large samples (Danielsson et al., 2001). For sake
of simplicity, we select the 10% upper order extremes for estimating the tail index, i.e.,
m=0.1n.

Quintos et al. (2001) propose a recursive, rolling and sequential procedure for detecting sin-
gle unknown breaks in «. Let # denote the endpoint of a subsample of size w, < n. The recursive
estimator uses subsamples [1;¢] C[1; n] and boils down to:

1
1 m;—1 Xt'r)
a=|—) In[ 2 , 3
' (mr/ZO (Xtm,A/ ( )

with m, = 0.1¢. The rolling estimator assumes a fixed subsample size w* < n and estimates the
tail index by rolling over the subsample, i.e., the subsample is shifted through the full sample by
eliminating past observations and adding future observations such that the subsample size stays
constant at w*.

-1

o~k 1 ]! Xw*f'.w*
o = 7/ Z ln(x Y . X) ’ (4)

=0 w

where m,~ = 0.1w*. Notice that the number of upper order extremes is increasing in the sub-
sample size for the recursive estimator but is constant for the rolling estimator. Finally, the se-
quential estimator (denoted by ay,) is identical to the recursive estimator in (3) but calculated in
reverse calendar time, i.e., using the more recent observations first.

The three tests are constructed using the sequences:

- (")(2 1)2, (5)

22(1) = (’%) (g—z— 1)2, (7)

Expressions (5) and (6) measure the fluctuation in the recursive and rolling values, respectively,
of the Hill statistic relative to their full sample counterpart @, whereas the sequential test uses
(7) to compare the fluctuations of the recursive with the reverse recursive estimator. The null
hypothesis of interest is that the tail index is temporally invariant. More specifically, let «,
be the tail index of the distribution of X,. For numerical reasons the above tests are evaluated
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over a compact subset of [0; 1], i.e., z equals the integer part of nr for re R, = [r;1 — 7] and for
small 7> 0.> The null hypothesis of constancy then takes the form

Hy:opy=a, VreR,.

with the alternative hypothesis Ha: o,y # o for some r € R,. Conform with Quandt’s (1960)
seminal work on structural change tests for time series models, the candidate-break date r can
be selected such as to maximize the value of the sequences of test statistics in (5)—(7). At this
date, the constancy hypothesis is most likely to be violated.

Asymptotic critical values can be easily derived for the sup-values of the three testing pro-
cedures. However, the test sequences Y2, V2 and Z> need additional scaling to ensure proper
convergence behavior when the data are non-i.i.d. Indeed, it is well known that forex returns
exhibit nonlinear dependencies like ARCH effects (volatility clustering) which necessitates
the scaling. The stronger the volatility clustering, the larger the scaling factor has to be.
More details on the ARCH robust procedure in general and how the scaling factor can be con-
sistently estimated are provided in Quintos et al. (2001). We now have to select r for, e.g., the
recursive test such that Y2(r) — appropriately scaled — is maximal:

QrER, = Sup/ﬁt_lyr%(t)a (8)

where %), is the estimate of the time varying scaling factor. The null of parameter constancy is
rejected if the sup-value exceeds the asymptotic critical values, e.g., for the recursive test we
reject parameter constancy if Q > £, with p = 5% or 1%. Quintos et al. also performed a Monte
Carlo investigation in order to compare the small sample performance of the three procedures
in terms of power, size and ability to consistently estimate the break date. The three tests are
found to exhibit negligible size distortion in small samples. Moreover, the direction of the
change in « under the alternative hypothesis seems to play a crucial role in determining the
power of the tests in small samples. The recursive and rolling tests satisfactorily detect a de-
crease in . On the other hand, the power of the rolling test for detecting an increase in « is
far superior to the recursive test. As for the sequential test, the power differs quite a lot depend-
ing on the location of the break and the direction of the change in « but is most of the time
lower than for the other tests.* Finally, the recursive test is found to estimate the break date
with the highest accuracy (lowest small sample bias) in small samples of size n = 500 provided
the tail changes from thick to thin under the alternative hypothesis.

Notice that the poor small sample performance of the recursive test in detecting upward
jumps is only an apparent problem. Indeed, if one lacks prior knowledge on the direction of

3 Sets like R, are often implemented in the construction of parameter constancy tests, see e.g., Hawkins (1987) and
Andrews (1993). The restricted choice of r implies that 77 < ¢ < (1 — 7)n. The lower bound can be justified by the fact
that recursive and rolling estimates become too unstable and inefficient when the subsample is very small. As a result
the tests would systematically reject the null of parameter constancy for small 7, also when there are actually no breaks.
On the other hand, the tests will never identify breaks for ¢ equal to or very close to n because the testing values in (5)—
(7) are close to zero in that latter case. Thus a computational efficiency argument justifies the upper bound choice for r.
In the empirical applications we set the smallest recursive sample size equal to 200, i.e., 7 = 200/n.

* The poor performance of the recursive test when a; < ct, can be understood by observing that extremal returns oc-
curring in the initial recursive sample will partly remain in the selection of m highest order statistics when the sample
size is increased. This initial extremes dominance does not occur for the rolling test since the influence on @ of extremal
behavior that occurs in the initial sample gradually drops out when the rolling window is shifted through the total sam-
ple. For further intuition on the small sample power outcomes we refer to the simulation section in Quintos et al.
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the jump in the tail index, the recursive test can be performed by applying Eqgs. (5)—(8) both in
calendar time (“‘forward” recursive test) and by inverting the sample (‘“‘backward” or ‘re-
verse” recursive test). A decrease of the tail index should then be signaled by the forward
test whereas an increase should be detected by the backward test. Because of its superior per-
formance, we opt to work with Quintos’ single breakpoint recursive test in this paper and we
apply it into a multiple breaks setup.

The single breakpoint recursive testing approach can now be readily generalized toward de-
tecting multiple breakpoints in «. The proposed procedure implies testing the presence of b + 1
breaks given that there are b breaks in the following five steps’:

e Step 1: Perform the single break recursive test (8) over the full sample in order to test Hy:
b=0. If no break is detected (i.e., Qre[r1—7 = supﬁ;lYﬁ(Z) < &59,), the “no breaks” null
hypothesis is not rejected and the testing procedure ends here.

e Step 2: If a statistically significant full sample break (b = 1) is detected at date f,, the sam-
ple is partitioned into two subsamples [rn,fy — 1] and [ty + 1, (1 — 7)n].

e Step 3: The recursive test is repeated on each of the subsamples. If no subsample break is
detected (i.e., O =supYj .| () <Esq (respectively, O, =supY?, (1) < Esq)),
the procedure ends with one single break located at date .

e Step 4: If a subsample break is detected at a date #,€[to+ 1, (1 — 7)n] (respectively,
t1€[rn, ty — 1]), there are multiple breaks b > 2.

e Step 4a: The presence of additional breaks might have distorted the initial break date es-
timate in step 2, as this was determined unconditionally to any other break. We therefore
run the recursive test for the sample [n, 1] (respectively, [t;, (1 — 7)n]) in order to check
whether the break over these subsamples — if any — coincides with 7,. If both dates are
identical, we keep the break at #,, otherwise the break with the highest significance level
is retained. Steps 2—4a are then performed again, until the breakpoint in step 4a is iden-
tical to this obtained in step 2.

e Step 5: The sample partitioning and accompanied testing (steps 2—4a) are repeated until the
null hypothesis of constant « can no longer be rejected.

We impose a minimum size for the subsamples of 500 observations in order to be able to use
the asymptotic critical values for Q. Quintos et al. (2001) have shown that the size distortion of
the structural breaks test in small samples is still acceptably small for samples of this size. The
above five-step procedure can now be performed using both the recursive (forward) and reverse
recursive (backward) tests independently. This allows for detecting gradual increases (back-
ward test) as well as gradual decreases (forward test) in «.

3. Simulation experiments

In this section we investigate the ability of both the single recursive test and the five-step
multistage recursive approach to consistently determine multiple breaks. We opt for the Stu-
dent’s ¢ parametric distribution model as Data Generating Process (DGP) in our Monte Carlo
investigation. Notice that the ¢-distribution’s degrees of freedom parameter v = . The Student’s

> Notice the conceptual analogy between the Bai and Perron (1998) approach toward detecting multiple breaks in the
coefficients of linear regression models and our approach.
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t model has become a popular workhorse in the empirical exchange rate literature as an alter-
native to, e.g., the symmetric stable df because it exhibits fat tails while still allowing for a finite
variance if v > 2.

We distinguish four different simulation scenarios for changes in the degrees of freedom
parameter v:

.DGP; : Student

(10),—; 1000 |Student
.DGP, : Student(10

(10

(10

—1...1000) (
—1...1000) | Student(
1...1000) | Student(
_1._.1000) [Student(

1=1001...2000)
—1001...2000) |Student(S)([:mOL”3000)

)

)=

) i=1001...2000) [Student(3) _s001 . 3000)
)(x 1001...2000) [Student(10) 540, 3000

3
4
.DGP; : Student 9
.DGP, : Student 3

The single break process DGP; contains a switch from relatively thin tails (o = 10) to rel-
atively thick tails (¢ = 3) and will act as a benchmark for comparison with the Quintos et al.
single break results. The remaining processes exhibit two breaks in the tail behavior. Whereas
DGP, and DGP; reflect a gradual decline in « over time the final process DGP, assumes a
U-shape for the tail index. Each subsample contains 1000 observations. The single break for
DGP; is chosen exactly in the sample middle whereas the two breaks for the remaining data
generating processes divide the total sample in three equal parts, i.e., 7 = 1/3 and 2/3.

Fig. 2 reports the small sample break distributions for the forward and backward recursive
single and multiple breaks test. Each of the simulated dfs is based upon 2000 replications. The
histograms only reflect breaks that are statistically significant. This implies, inter alia, that it
only makes sense to consider the histograms for tests which exhibit reasonable power against
the alternative. Otherwise, the histogram would not be very informative because it would be
based on a too small number of statistically significant breaks.

The first row of graphs in Fig. 2 presents the forward and backward recursive tests in the
presence of a single break. The left graph reveals that the single break date for DGP; is accu-
rately estimated by the forward test as most probability mass seems to be concentrated in the
distributional centre. The top right graph shows that applying the backward test to the same
DGP leads to a more uniform df of the breaks. However, this histogram is not very informative
because it is based on a very small number of significant breaks, i.e., the backward test has neg-
ligible power when the tail is switching from thin to thick. The second row of graphs in Fig. 2
deals with the behavior of the single recursive forward test when the tail index is gradually de-
clining (e; > o > 3). By construction the single break recursive test can only pick up one of
the two breaks. Unsurprisingly, the biggest breaks seem to correspond with the largest proba-
bility mass in the second row figures. The third row of histograms illustrates how the single
recursive test might be implemented to detect more than one break in case the tail index ex-
hibits a U-shape. We do not need a multiple breaks procedure in this case. The histograms
show that the first break is picked up by the recursive forward whereas the second break can
be detected by reversing the calendar time, i.e., by running the reverse recursive test. Again
this is due to the fact that the recursive test has only high power for detecting tail index de-
clines; increases in the tail index can nevertheless be detected by running the backward version
of the test. The final row in Fig. 2 graphically depicts the performance of the breakpoint esti-
mates to capture multiple breaks using the five-step iterative procedure based on the recursive
test. Each graph in the final row basically depicts two histograms: the full sample breakpoint
df and the subsample breakpoint df conditional upon this full sample one. The bimodality
in the two histograms clearly shows that the iterative procedure is able to locate the two
breaks.
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Fig. 2. Simulated distributions of the break dates for different DGPs.

As a complement to the figures, Table 1 reports the sample means and corresponding stan-
dard errors for the histograms in Fig. 2.

The simulated break scenarios are reported in the first column whereas the applied test-
ing procedures are mentioned in the second column. The proportion r =t/n reflects the rel-
ative position of the break(s) in the sample. The recursive test does well in estimating the
single breakpoint (first row). The estimates are only slightly downward biased which is in
accordance with the Quintos et al. results who used the symmetric stable df in their
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Table 1
Estimates of simulated breakpoints
Simulated break (s)* Used test Estimated breakpoints (standard error)®
r=1/3 r=1/12 r=2/3
(g, o) =(10; 3) 1-step rec. — 0.4977 (0.0938) —
(a1, az, a3) =(10; 4; 3) 1-step rec. 0.4384 (0.1375) - —
(ay, o, a3) =(10; 9; 3) 1-step rec. — — 0.6290 (0.0961)
(g, o, a3) =(10; 3; 10) 1-step rec. 0.3617 (0.1269) - -
(ay, o, a3) =(10; 3; 10) 1-step rev. rec. — — 0.6625 (0.1010)
(ay, o, a3) =(10; 4; 3) Multiple rec. 0.4345 (0.1402) — 0.7293 (0.1179)
(a, Az, a3) =(10; 9; 3) Multiple rec. 0.3751 (0.1462) — 0.6278 (0.1007)

? Estimated breakpoints are reported for the Student’s ¢ distribution and for different single and multiple break
scenarios.

® The break estimates are reported for a fixed subsample size of 1000 and for varying locations of the true breakpoints
(r=1/3, 1/2, 2/3). The number of Monte Carlo replications is set to 5000 but the estimates are conditioned on the sta-
tistically significant breakpoint replications only. The accompanying sampling errors are reported between brackets.
Q-tests are calculated starting with a minimum sample size of 200. The number of upper order extremes used in estimating
the tail index equals 10% of the total sample size.

simulations. This small “anticipation” effect has already been noticed in a time series
framework by Lee and Strazicich (2001). We also investigated the behavior of the single
breaks (1-step) recursive test in the presence of multiple (two) breaks (rows 2, 3, 4, 5).
By construction the recursive test can only detect one break. The question arises which
of the breaks will then be selected. The simulation experiments reveal that the magnitude
of the jump is crucial in the breakpoint selection. Indeed, rows 2 and 3 show that the larg-
est jump in « will predominantly be selected. Because the smaller shock is also sometimes
selected as single breakpoint, the r = 1/3 breakpoint estimate is slightly upward biased (row
2) whereas the r=2/3 breakpoint estimate is slightly downward biased (row 3). On the
other hand, the breakpoint bias under the U-shape break scenarios (rows 4 and 5) is
much smaller. The smaller bias follows from the low power of the (reverse) recursive
test to detect upward (downward) swings. As a consequence, the r=2/3 (r=1/3) break
will nearly never be selected as a significant break in the row 4 test (row 5 test). Finally,
the two bottom rows report breakpoint estimates for the multiple recursive test. Full sample
breaks are estimated in a first round. Just as in rows 2 and 3, the testing procedure will pre-
dominantly select the largest jump (0.4345 for »=1/3 in row 6 and 0.6278 for r =2/3 in row
7). The recursive test can now be implemented again for the two subsamples determined by
the first round break. The subsample break estimates for the subsamples that actually con-
tain a break are found to be slightly upward biased (0.7293 and 0.3751). Average break
estimates for the stationary subsamples are of a spurious nature and are therefore not
reported.®

6 Notice that the probability of detecting statistically significant break estimates for the stationary subsamples (no sub-
sample breaks) is equal to the size of the test (0.05 or 0.01). Thus, an average break estimate can be calculated but will
be based on a very small number of statistically significant break estimates which reflect the spurious character of the
break outcomes.
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4. Identifying emerging currency regimes as multiple breaks

In previous sections we introduced a multistep procedure, centered around the recursive test
proposed by Quintos et al. (2001), in order to identify multiple breaks. We also showed that the
approach seems to perform well in small to medium-size samples. In this section we apply the
technique to a panel of developed currencies and a panel of emerging (Asian) currencies.” We
believe that foreign exchange markets are the more obvious candidates for detecting (multiple)
breaks in the tail behavior because of the direct link between currency price formation and the
exchange rate regime. Moreover, as emerging currencies were more regularly hit by speculative
attacks and resulting regime switches than developed currencies in recent times, we expect the
latter currency tails to be characterized by a lower number of breaks. We will therefore also
consider developed currency breakpoint test results as a benchmark for comparison.

We start the empirical analysis by calculating the recursive Hill estimates that we will use as
an input for the stability tests later on. Fig. 3 contains the forward (upper plot) recursive Hill
estimates and backward (lower plot) recursive Hill estimates for the tails of six Asian currency
return series.

Most striking in the pictures is the nonconstancy of @;. For most currencies the forward and
backward recursive estimates vary between 1 and 3 (except for the reverse recursive Malaysian
estimates near the end of the sample period). Moreover, the forward recursive estimates seem to
decline gradually during 1997 before stabilizing later on. From Quintos et al. (2001) and our
own simulations we know, however, that the horizontal parts in the forward estimates might
hide increases in the tail index because the recursive estimates are dominated by the extremes
from the first half of the sample in case of an increase in the tail index later on. The upward
sloping backward estimates indeed suggest that the tail index again started to increase in the
aftermath of the Asian crisis (from 1998 onwards).

The recursive and reverse recursive estimates are clearly suggestive of a U-shaped pattern in
« over the second half of the 1990s. We were also able to reproduce the U-shape in rolling sub-
sample estimates which — as noted earlier — do not suffer from lack of consistency when
switching from thick to thin.

It remains to be seen whether the U-shape is statistically significant and not merely a small
sample phenomenon. As a second step in the empirical analysis, we therefore applied the single
breakpoint forward and backward recursive tests in (8) over the full sample. Fig. 4 reports for-
ward (full lines) and backward (dotted lines) values of ﬁt_' Y,f in Eq. (5) with the scaling factor
7, ! reflecting ARCH effects in the forex return series.

Notice that the pictures have a dual vertical scaling because the range of the two series is
very different in most cases. The left scale refers to the (full line) recursive testing values
whereas the right scale refers to the (dotted line) backward test. Clearly, the forward and back-
ward sup-values correspond with significant breaks as they all lie above the critical values of
1.78 (5%) or 2.56 (1%). Moreover, the forward break dates seem to precede the backward break
dates for most currencies. This confirms the U-shape. Finally, the statistical significance of rises

7 Testing results for Latin American currencies are available upon request. We decided not to include these results
because the bulk of the breakpoints was difficult to interpret economically in terms of regime changes. The erroneous
outcomes might be due to frequent currency reforms and resulting data handling. A lot of Latin American countries
replaced old currency by new fiat money during the 1990s in order to fight inflation and reduce ‘‘monetary overhang”.
Data providers typically rescaled backward forex time series by using the conversion rate between old and new currency
units. This causes some of the forex series to be basically zero over large parts of the historical sample.
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Fig. 3. Recursive (forward) and reverse recursive (backward) Hill estimates for tail indexes of emerging currency returns
(3/1/1994—25/6/2003).

in o (backward test) seems higher than the significance of falls (forward test) since the back-
ward testing series usually dominate the forward series in magnitude (except for Thailand and
Pakistan).

The corresponding full sample estimates of the break dates are reported in bold in Table 1
with the sup-values between brackets. Reported break dates and sup-values not in bold reflect
the subsample breaks estimated using the five-step iterative procedure introduced in Section 2.
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Fig. 4. ARCH-robust recursive (forward) and reverse recursive (backward) endogenous break tests for emerging cur-

rency returns (4/1/1994

—25/6/2003).

The “forward” panel results (Panel A) correspond with statistically significant drops in
o whereas the “backward” panel outcomes stand for significant rises in the tail index.
Following unsustainable speculative pressures, all considered countries had to abandon their
currency pegs against the US$ during the second half of 1997. Most of these regime changes
can be traced back in Table 2. The Central Banks of Thailand, Malaysia and Indonesia an-
nounced a managed float on July 2, July 14 and July 11, respectively. For Indonesia, the
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Table 2
ARCH-corrected multiple break date estimates and test statistics: Asian currencies

Currencies

Indonesia Pakistan Malaysia Philippines South Korea Thailand
Panel A: Forward breakpoints™™ (a; > a,)
1997 10/7/97 15/5/97 24/11/97 15/5/97

(43.36)** (38.77)** (2.41)%* (10.21)**
1998 25/5/98 20/3/98

(3.80)** (5.80)**

2/7/98
(15.77)**
1999 5/4/199
(89.21)**

Panel B: Backward breakpoints™™® (a; < a,)
1996 28/6/96

(4.26)**
1997 712197 10/4/97

(11.18)** (11.92)**

1998 6/11/98 2/12/98 11/8/98 6/1/98

(10.33)** (2118)** (4.88)** (6.76)** 22/7/98
2000 23/11/98 (8.15)**

(15.56)**

2001 3/5/01

(5.24)%*

Values of forward and backward test statistics are reported between brackets. The recursive test calculations start with
an initial sample size of 200. The number of upper order extremes used in estimating the tail index equals 10% of the
total sample size.

? Calendar dates of the breaks are in continental (dd/mm/yy) notation.

® Full sample breaks are in bold and correspond with the global maxima of the sup Q test.

¢ * and ** denote statistically significant breakpoints at the 5% and 1% significance levels, respectively; the used as-
ymptotic critical values for Q are equal to 1.78 and 2.54, respectively.

estimated July break nearly perfectly coincides with the date of the regime shift. As for Malay-
sia and Thailand, the estimated break dates closest to the regime change (May 1997) seem to
anticipate the managed float announcement. The Central Bank in the Philippines announced in
June 1997 that the Philippine Peso could trade in a wider range; they did, however, not deval-
uate. This half-hearted measure did not lift speculative pressure on the Peso and it continued
losing value during the rest of 1997. The June 1997 widening of the bands does not seem to
have been picked up by the breakpoint test but the resulting depreciations obviously are (24/
11/97). Clearly, the three cited countries were not very successful in curbing the rise in extreme
volatility in the immediate aftermath of the exchange rate liberalization. South Korea consti-
tutes a notable exception. The Central Bank in South Korea decided to abandon its defense
of the Won in November 1997 which is relatively accurately approximated by the January
1998 break. However, and in contrast to all previously discussed breaks, this latter break
date reflects an increase in «, i.e., a reduction in extreme volatility. This might be understood
by the fact that the Korean monetary authorities were relatively more successful in curbing in-
creased volatility after they abolished the fixity of the Won. Already in December 1997, they
agreed with the IMF on huge bailout package and new regulatory legislation for the financial
sector was passed through parliament. Presumably, these measures were perceived as credible
and sustainable by financial market participants because they resulted in huge net capital
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inflows and a re-stabilization of the Won. The other countries eventually also managed to sta-
bilize the currency but it took them more time. In Indonesia, the cancellation of fuel and food
subsidies and the resulting resignation of President Suharto in May 1998 aggravated extreme
forex volatility and thus further decreased the tail index « (25/5/98 break). Indonesian author-
ities were finally able to win back the trust of forex speculators by abolishing the plan for
re-introducing a currency board system with a fixed peg in March 1998 and by voting new
bankruptcy law (August 1998). (Probably) as a result of these and other measures the Rupiah
appreciated with 40.79% during October 1998 (6/11/98 break). In the Philippines, forex turbu-
lence diminished markedly after President Estrada was impeached on the basis of corruption
charges and replaced by President Arroyo. The consecutive win in the parliamentary elections
of president Arroyo’s coalition (May 2001) coincides with the 3/5/01 break. Finally, Malaysia
re-established a fixed peg against the US$ in September 1998 which has proven to be successful
since then. This explains the 2/12/98 breakpoint. Pakistan is the only country for which none of
the devaluations in the sample period (August 1996, September 1996, October 1996, October
1997) occurs as break in Table 28

Summarizing, we are able to identify multiple statistically significant breaks and some of
them can be linked to changes in monetary regimes or other types of institutional reform. More-
over the forward breaks (drops in «) in the top panel of Table 2 usually precede the backward
breaks reported in the bottom panel (rises in o). This further confirms the U-shape already ob-
served in the forward and backward recursive Hill estimates. The fact that we find multiple for-
ward and backward breakpoints indicates that the tail index « did not change all of a sudden but
rather gradual. The drops in « are mostly situated during the 1997 Asian crisis era (with an ex-
ception for Pakistan) which basically blew away all Asian fixed exchange rate regimes. Also,
notice that the lower panel results in Table 2 confirm earlier findings that fully floating systems
let exchange rates adjust more smoothly compared to fixing the emerging currency returns
against the USS$, see e.g., Koedijk et al. (1990, 1992) for earlier references.

As a benchmark for comparison with the emerging currency panel, we also applied the mul-
tiple breaks testing procedure to a set of developed currency returns. Fig. 5 reports the values of
7, 'Y? for the recursive and reverse recursive test statistic and for five developed currencies
against the US$.

The figure clearly shows that the values of the test statistics do not give rise to significant
breaks (except for Japan in the backward test). These results are not too surprising given the
lack of explicit regimes in US$ currency markets.

5. Conclusions

Extreme value techniques gained in popularity in recent years, both in academia and finan-
cial practice (risk management, regulation). Taking into account the empirical stylized fact that
the returns on foreign exchange exhibit more probability mass in the tails than the normal dis-
tribution (heavy tails), extreme value analysis typically focuses upon estimating the so-called
tail index « of the return distribution. This parameter is assumed to be constant over time.
The question arises whether this assumption is always justified. Recently, Quintos et al.

8 As concerns the interpretation of the breaks that have been identified for Pakistan, the March 1998 break might be
related to the political turmoil raised by the resignation of four government ministers.
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Fig. 5. ARCH-robust recursive (forward) and reverse recursive (backward) endogenous break tests for developed cur-
rency returns (4/1/1994—25/6/2003).

(2001) tested whether the tail shape of emerging stock index returns is constant over time by
proposing a novel set of endogenous structural breaks tests for «. Using these tests, they found
some evidence for structural change in emerging stock market tails indeed.

In this paper we generalized their analysis toward an analysis of multiple breaks for emerg-
ing currency returns. We argued that emerging forex markets are the most obvious candidates
for detecting multiple breaks in the tail index «: if the value of the tail index depends on the
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exchange rate regime — an often made corroboration in the empirical literature — then one
might expect a lot more breakpoints in the tail behavior of emerging currencies compared to
developed (industrial) currencies. This is because emerging currency markets have been char-
acterized by nearly endemic switches in currency regimes in recent monetary history.

We then proposed to test for multiple breaks by generalizing the recursive test from the
Quintos et al. paper. The approach basically amounts to applying the recursive test both over
the full sample and over subsamples. More specifically, we first applied the recursive test to
the full sample; if a significant breakpoint was detected then the recursive test was repeated
over a partitioning of subsamples. We continued calculating recursive testing values for smaller
and smaller subsets of the original sample until we were no longer able to reject the null hy-
pothesis of parameter constancy. A problem with the Quintos et al. recursive approach is
that it cannot detect rises in « because the extremes of the initial recursive sample also dom-
inate the tail behavior of recursive a-estimates for larger samples. However, we argued that this
problem is more apparent than real because one can perform the test over the “inverse” of the
sample, i.e., by reversing the calendar time.

Upon applying the “multistage’ version of the recursive and reverse recursive procedure for
six Asian currencies we were indeed able to identify multiple breakpoints. Moreover, the recur-
sive test signaled breakpoints that are less recent than it’s reverse recursive counterpart indicat-
ing that the tail index « tends to increase toward the end of the sample period. Initial drops in
tail indexes during 1997 might be attributed to speculative attacks and abolishments of ex-
change rate regimes and the resulting upswings in volatility; whereas the increase in the tail
index later on might be linked to widespread attempts in most Asian countries to further liber-
alize the legal-institutional framework of their financial markets. We also compared the multi-
ple breaks results for emerging markets with testing results for developed currencies and barely
found any breakpoints in the tail index of the latter currencies. The smaller amount of regime
switches in the developed currency block provides further evidence for the corroboration that
there is a relationship between regime switches and structural changes in the tail index. If tail
indexes are found to be time varying, extreme value analysis may be less suitable for applica-
tions with emerging market data, e.g., calculating Value-at-Risk levels far out in the tails of
emerging market currency portfolios.
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Appendix A. Data description and discussion

Data were obtained from Datastream Inc. We downloaded daily nominal bilateral spot rates
against the Pound sterling for six emerging Asian currencies (Indonesian Rupiah, Malaysian
Ringgit, Thai Baht, Philippine Peso, South Korean Won, Pakistan Rupee) and five developed
currencies (Japanese Yen, British Pound, Swiss Franc, Canadian Dollar, German Mark). Notice
that we downloaded against the Pound sterling numéraire because this renders the largest cross
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section of currencies over the longest possible time span within the Datastream database. US$
denominated cross rates were then calculated by applying the no triangular arbitrage condition.
Thus, a depreciation (appreciation) of the currency against the US$ corresponds with a rise
(fall) in its value. Since January 1999 and the introduction of the Euro, German Mark rates
are irrevocably fixed to the Euro, by a conversion rate of 1.9558 DEM/EUR, so that Euro
and Mark returns are basically identical, irrespective of the numéraire currency. The sample
period for the selected currencies runs from January 3, 1994 until July 25, 2003 which amounts
to 2473 daily observations.
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